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Abstract  

Treatment of polluting discharges from abandoned coal mines in the UK currently 

produces ca 30,000 t y-1 of hydrous iron oxides ("ochre"), for which there is no major 

end-use, but which has previously been shown to have potential for removing P from 

wastewater and agricultural runoff. The efficiency of ochre for P removal from 

wastewater was investigated in experiments at two sites in the UK: Leitholm in 

Scotland and Windlestone in England. The three-year experiment at Leitholm 

involved diverting secondary-treated wastewater effluent through a trough which 

contained granular and pelletized ochre at different times. In the nine-month 

experiment at Windlestone, beds of ochre pellets in horizontal and vertical flow 

configurations were tested. The ochre treatment systems at Leitholm reduced influent 

concentrations of total P (TP) and TP mass by ca 80 and ca 50%, respectively, during 

optimal flow conditions, and achieved a removal rate of up to 65±48 mg TP kg-1 

ochre d-1. There was no detectable release of potentially toxic metals from the ochre 

during the experiments. P removal rates by concentration were inversely related to 

flow and declined during the different phases of the experiments, probably due to 

clogging. At Windlestone, higher removal rates up to 195 mg TP kg-1 ochre d-1 were 

achieved for short periods of time following cleaning of the experimental system. 

Ochre has considerable potential to remove P from wastewater in a multi-stage 

treatment system and has a lifetime estimated to be 10 times longer than other 

substrates tested for P removal. 

 

Keywords: Field experiment; Mass removal; Operational lifetime; Potentially toxic 

metals; Waste recycling; Wastewater treatment  
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1. Introduction 

 

Fe(II) in water draining from disused coal mines readily oxidises to Fe(III) and 

precipitates as coatings on stream beds that may smother aquatic life (Younger et al., 

2002). Thus treatment involves oxidation of the Fe(II) and precipitation as “ochre” 

((Fe(OH)3 and FeO(OH)). At present in the UK, after dewatering the ochre is 

landfilled at a total disposal cost of ca £80-100 t-1 (Morritt, A., personal 

communication). However, ochre has potential for combatting another threat to 

aquatic ecosystems, i.e. P in effluent from wastewater treatment plants (WWTPs) and 

agricultural runoff, which contributes to eutrophication (Mainstone and Parr, 2002). 

Controls on P discharges from WWTPs (EC, 1991) are currently mainly achieved in 

the UK by costly dosing with chemicals, e.g. Fe(III) salts.  

 

Short-term laboratory experiments have demonstrated P removal from wastewater 

by various iron-rich substrates (reviewed by Johansson Westholm, 2006). Batch 

experiments and a nine-month trough experiment with ochre proved particularly 

effective (Heal et al., 2004a),  with the measured uptake of > 20 g P kg dry ochre-1 

being an order of magnitude higher than that of other materials tested. In previous 

publications (Heal et al., 2003; Heal et al., 2004b; Sibrell, 2007) a number of potential 

applications are described of ochre for P removal from agricultural runoff and 

wastewater. Here we report the results of field experiments set up to evaluate how 

ochre performs at a more realistic scale, investigating long-term P removal from 

wastewater and also any associated release of potentially toxic metals that might have 

adsorbed onto the ochre during mine water treatment.   
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2. Materials and methods 

2.1 Leitholm experiment 

The principal experiment was conducted at the WWTP at Leitholm, south-east 

Scotland, UK (55.69o N, 2.34o W), which treats 150 population equivalents of sewage 

d-1 and road runoff. Wastewater receives primary and secondary treatment in a 

settlement tank and a biological filter. Then it passes into a horizontal subsurface flow 

wetland (175 m2 area planted with common reed (Phragmites australis) in 0.5-0.6 m 

deep gravel) for tertiary treatment before entering a settlement tank which discharges 

into the receiving watercourse. The effluent is dosed with Fe(III) sulphate to ensure 

compliance with the discharge consent. For the experiment, the outflow from the 

biological filter was transferred by a level-activated pump to an ochre-filled 

galvanised steel trough (2.1 m3 capacity, Fig. 1) located before the wetland. The 

wastewater was dispersed along the trough via a perforated 0.11 m diameter pipe and 

flowed up through the ochre, spilling out over the trough rear wall into the wetland.  

 

FIG 1 

 

Two different forms of ochre were used in the experiment:  

(1) Coarse granular ochre from drying beds at the mine water treatment plant at 

Polkemmet, central Scotland, with a saturated hydraulic conductivity of 26-32 

m d-1 and an inter-clastic porosity of 30%. The ochre was shown by x-ray 

diffraction to consist predominantly of goethite (FeO(OH)) and its 

composition by % dry weight was Fe 65, Ca 7.0, Al 0.7 and Mg 0.6 (Heal et 

al., 2004a). 
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(2) Near-spherical ochre pellets (6.4–9.5 mm diameter), made from dried ochre 

from treatment plants at Polkemmet and Acomb, northern England, to create a 

material that was robust and easy to handle but which retained its reactivity. 

The pellets were made by mixing oven-dried and sieved ochre with Portland 

cement, a surfactant and water, agglomerating the mixture in a pan pelletizer 

and then drying at 105 °C. The pellets thus formed had a higher hydraulic 

conductivity (22 x 103 m d-1) than unpelletized ochre and an inter-clastic 

porosity of 35%.  

 

Monitoring of the wetland began in July 2002, the trough was introduced in 

November 2003, and the experiment continued until January 2006. Rainfall and 

wetland water depth were measured hourly from July 2002 until December 2004, 

using an ARG 100 tipping bucket rain gauge (Environmental Measurements Ltd, 

Sunderland, UK) and a PDCR1830 pressure transducer (Druck, Leicester, UK), 

connected to a CR10X datalogger (Campbell Scientific Inc, Logan, UT, USA). Flow 

from the biological filter was measured from January 2003 until January 2006 at 15-

min intervals using a Xytec 7050 IS survey meter (Buhler Montec, Dusseldorf, 

Germany). At 1-4 wk intervals the outflows from the biological filter, wetland and the 

trough (after installation) were sampled and analysed in Scottish Water laboratories 

for total P (TP), soluble reactive P (SRP) and total and dissolved (0.45 μm membrane-

filtered) metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, Zn). TP (limit of detection (LOD) 0.02 

mg L-1) was determined colorimetrically (molybdate method) after UV digestion, 

using a Skalar SAN System auto-analyser (Breda, The Netherlands). SRP was 

similarly determined (LOD 0.02 mg L-1) after 0.45 μm membrane-filtration, using a 
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Kone auto-analyser (Espoo, Finland). The metallic elements were determined with a 

PerkinElmer Optima DV3300 ICP-OES instrument (Wellesley, MA, USA).  

 

The experiment compared P removal from wastewater with and without ochre 

present and the effectiveness of ochre in granular and pellet form and had four phases, 

described below. Phase 1 (July 2002 – October 2003) established the efficiency of P 

removal in the wetland in the absence of ochre. From July 2002 to June 2003 (Phase 

1a) the wetland had a relatively stable water depth of 26.0±0.1 cm. Then, failure of 

the water level control mechanism resulted in mainly subsurface water flow in the 

wetland and shallower water depths in Phase 1b and thereafter, with flooding only 

occurring briefly after heavy rain. After Phase 1b the trough was installed which 

contained granular ochre during Phase 2 (November 2003 – March 2005). Uneven 

flow occurred at first (Phase 2a), with outflow occurring along only a short section of 

the trough wall, which was overcome by introducing a coarse gravel layer below the 

ochre (Fig. 1) in February 2004. This arrangement was maintained (Phase 2b) until 

March 2005. Mean water residence time in the trough was determined in July 2004 

using fluorescent rhodamine WT dye and a 10-005 fluorimeter (Turner Designs Inc., 

Sunnyvale, CA, USA). In Phase 3 (May – September 2005), the granular ochre was 

replaced with ochre pellets. The inflow was restricted to 0.05 L s-1 in Phase 4 

(November 2005 – January 2006) and the ochre pellets in half the length of the trough 

were also replaced. The number of datapoints in each phase was 22 (17 in Phase 1a, 5 

in Phase 1b), 27, 6 and 8, respectively, after rejection of two outliers in Phase 2 

(Rorabacher, 1991). 
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2.2 Windlestone experiment 

A second experiment was conducted between June 2004 and February 2005 at 

Windlestone WWTP, north-east England (54.39o N, 1.33o W), to further test P 

removal by ochre pellets. Final effluent from the WWTP was pumped into one end of 

a tank  and passed by horizontal saturated flow through a ca 0.15 m wide band of 20-

25 mm diameter gravel into a bed containing 1166 kg ochre pellets then through a 

second gravel band, retained by 4 mm mesh, and finally over a weir (Fig. 2a). 

Preferential flow over the surface was prevented by a solid barrier. The initial inflow 

rate of 0.75 L s-1 was decreased during the experiment to 0.23 and then to 0.21 L s-1. 

These gave retention times of 7, 23 and 26 min, respectively, for effluent in the tank. 

The permeability of the ochre bed decreased rapidly due to input of organic and 

particulate matter necessitating periodical cleaning. The tank was reconfigured for 

vertical saturated flow conditions from December 2004 to February 2005. A slightly 

smaller (1027 kg) bed of fresh ochre pellets was installed above layers of gravel and 

plastic media of high conductivity to avoid preferential flow (Fig. 2b). A constant 

inflow of 0.21 L s-1 wastewater was distributed by spray bars. Despite a filter on the 

inflow, organic matter accumulated in the spray bars and was removed manually 

every 7 d. In both configurations tank inflow and outflow samples were collected 

every 25 h using two automatic samplers, with the outflow sample collected after a 

time lag equivalent to the retention time of effluent within the tank. Samples were 

analysed colorimetrically (molybdate method) for TP after digestion with potassium 

persulphate.  

 

FIG 2A AND 2B 
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2.3 Data analysis 

Statistical analysis was conducted with Minitab v.14 using general linear model 

analysis of variance followed by Tukey tests. Significance levels are for P < 0.05 

unless otherwise stated. The effectiveness of P removal by ochre was assessed by 

calculating the % P removal by concentration/mass (difference between the inflow 

and outflow concentration/mass expressed as a % of the inflow concentration/mass). 

At Leitholm, instantaneous P mass fluxes in the filter outflow/trough inflow, trough 

outflow and wetland outflow were calculated by multiplying the TP or SRP 

concentration by the flow rate at each point, and integrated to give the cumulative P 

mass for each phase of the experiment. Regression relationships between TP or SRP 

concentrations measured in water samples and measured filter outflow/trough inflow 

rate were used for Phases 1 and 2. In Phases 3 and 4, P masses were calculated using 

measured TP and SRP concentrations. Uncertainties for the P masses calculated as 

described above were estimated from 95% confidence intervals (CI) of the P 

concentrations calculated either by Sigmaplot v.9 (where P concentrations had been 

estimated from regression relationships) or for the mean measured P concentrations. 

Fluxes of potentially toxic metals in the Leitholm experiment were not calculated 

because concentrations were mostly at or below the limit of detection. 

 

3. Results 

3.1 Leitholm experiment 

Phosphorus concentrations. In Phases 1a and 1b, mean TP and SRP 

concentrations were not significantly different between the wetland outflow and the 

inflow (i.e. filter outflow) (Fig. 3). However, in Phase 2 there was a significant 

decrease in TP concentration between the trough inflow (i.e., filter outflow) and the 
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wetland outflow, although differences between trough inflow and trough outflow, and 

trough outflow and wetland outflow, were not significant. A similar trend for SRP in 

Phase 2 was not significant. In Phase 3, when ochre pellets were introduced, TP and 

SRP concentrations were decreased by the trough, but not significantly. However, 

restricting the flow into the trough in Phase 4 resulted in significant decreases in both 

TP and SRP concentrations in the trough outflow compared to the inflow. 

 

FIG 3 

 

Metal concentrations. There were no significant differences in metal 

concentrations in the wetland outflow between any of the experimental phases, i.e., 

before and after the draining of the wetland or before and after introducing ochre in 

either form to the system. In Phase 2, mean total Al was significantly lower in the 

wetland outflow than in the trough outflow (0.60±0.09 and 1.77±0.46 mg L-1, 

respectively). There were no significant differences in concentrations of metals 

between any of the water sampling points in Phase 3, while in Phase 4, total Fe was 

significantly higher in the trough outflow than the inflow (0.40±0.11 and 0.12±0.02 

mg L-1, respectively), probably due to particulates washed out from the ochre pellets, 

as dissolved Fe did not show a similar trend. Dissolved Fe, Cd, Cr, Ni and Pb were 

below the relevant Environmental Quality Standards (EQS) for freshwater (SEPA, 

2002) in all samples in all phases of the experiment. Dissolved Cu and dissolved Al 

were higher than their EQS of 0.01 and 0.025 mg L-1, respectively, although this was 

not because of addition of ochre, as exceedance occurred throughout the experiment, 

and there was no significant change in concentrations by passage through the system. 

Although compliance with the total Zn EQS 1 of 0.075 mg L-1 (to protect the most 
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sensitive aquatic life) could not be assessed because values were always around the 

LOD (0.085 mg L-1), concentrations were always less than the EQS 2 value of 0.25 

mg L-1 (to protect less sensitive aquatic life).  

 

Phosphorus removal. Figure 4a shows the effectiveness of the wetland (wetland 

and trough after Phase 1) and of the trough alone in TP removal. In Phase 1a, the 

wetland lowered the TP concentration by 33±7% but only by 10±5% in Phase 1b after 

drainage, probably due to the decrease in water residence time, and less opportunity 

for P removal by substrate and plants. In Phase 2 overall TP removal was 21±4%, 

with the granular ochre-containing trough removing 12±3%. TP removals in Phase 3, 

when ochre pellets were used, were similar: 20±3% overall, with 12±2% removed by 

the ochre. These results were not unexpected as, although the granular ochre had a 

slightly higher P saturation capacity than ochre pellets (26 vs. 22 g P kg-1), P removal 

by the pellets was predicted to be superior because of improved contact with 

inflowing wastewater. Although TP removal by the overall system increased in 

Phases 2 and 3 when ochre in either form was added, the improvement was not 

significant. In Phase 4, after restriction of the trough inflow to 0.05 L s-1, TP removal 

by the trough increased significantly to 66±6%.  

 

FIG 4 

 

At first in Phase 4, TP removal by concentration was 85%, but decreased over 

time (Fig. 4b). The similar decrease in Phase 3 was attributed to biofilm growth and 

organic matter accumulation in the trough clogging the inter-clastic pore spaces and 

decreasing aeration. However the effect of reducing conditions on P removal is 
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uncertain: whilst inorganic P associated with Fe(III) compounds may be released 

(Patrick et al., 1973), conversely, P sorption could increase because of the presence of 

freshly formed amorphous Fe(II) hydroxides (Patrick and Khalid, 1974). Wholesale 

release of P from ochre in the trough is unlikely even if reducing conditions develop 

in the field because the ochre materials have alkaline pH (Heal et al., 2004a; Mayes et 

al., in press) and relatively high Ca contents, conducive to precipitation of stable Ca 

phosphates. The decrease in TP removal in Phases 3 and 4 is unlikely to be due to the 

ochre becoming saturated with P as the overall removal rate was 5.2 and 0.77 g TP kg-

1 ochre, respectively (see Table 1), well below the measured P saturation capacity. 

 

P removal by mass in the trough in each phase is summarised in Table 1. The 

patterns for TP and SRP were similar, with TP influxes and removal rates slightly 

higher than for SRP. Removal improved in Phase 2b after the flow distribution had 

been enhanced by the introduction of gravel, and the most effective removal of P was 

in Phase 4 when the inflow was restricted. The P removal by granular ochre of 24 g 

TP or 21 g SRP kg-1 ochre calculated for Phase 2b, assuming that all P removal in the 

trough was by ochre, was close to the saturation capacity measured in the laboratory 

(26 g P kg-1 ochre).  

 

TABLE 1 

 

Hydraulic conditions and residence time. In contrast, other studies have reported 

lower P retention capacities in field-scale systems compared to the performance 

predicted from laboratory experiments. This is partly because P removal capacities 

estimated from short-term isothermal batch experiments are not representative of 



 12 

long-term removal processes in larger-scale systems (Arias et al., 2001; Drizo et al., 

2002) and also since P removal in field-scale systems is determined by the hydraulic 

residence time (Brooks et al., 2000), inflow P concentration and inflow regime as well 

as the P adsorption capacity of the substrate (Drizo et al., 2002). The theoretical total 

residence time of wastewater in the trough in Phase 2a of the experiment was 26 min, 

with 15 min in direct contact with the granular ochre. However, a total residence time 

of only 12 min was measured during this phase by rhodamine dye tracing, indicating 

that the flow was channellised and that the contact time of wastewater with the ochre 

was less than that required for effective P removal in laboratory batch shaking 

experiments (Heal et al., 2005). In addition to residence time, inflow rate also 

appeared to affect P removal by the trough, since % TP removal by concentration 

decreased as flow increased in Phases 2 and 3. TP removal decreased from 9±1% to 

6±1% and 2±2% mean ± standard error as the inflow rate to the trough increased from 

0-1 to 1-2 and 2-4 L s-1, respectively. The most effective TP removal was in Phase 4, 

when the inflow rate was restricted, and the mean residence time of effluent with the 

ochre was maximised at 16 min, indicating that controlling the hydraulics is critical 

for P removal.   

 

3.2 Windlestone experiment 

During the experiment, tank inflow TP concentration varied widely between 0.4 

and 4.8 mg L-1 due to sewage bypassing the treatment works during high rainfall. 

When the ochre bed was configured for horizontal flow TP removal by concentration 

was initially high: 73±3 % (n = 6) after manual cleaning of the bed to remove 

sediment and organic matter. TP removal increased as inflow was decreased: from 

69±2 % (n = 4) at 0.75 L s-1 to 82±2 % (n = 2) at 0.21-0.23 L s-1. Under vertical flow 
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conditions TP removal was also high initially at 78% after 25 h operation, but 

decreased over time, probably due to biofilm development on the ochre pellets, to 

20% mean TP removal after 1000 h operation. The maximum rate of P removal 

measured was 0.2 g P kg-1 ochre d-1 during the horizontal flow configuration when 

inflow of 0.75 L s-1 contained 4.8 mg TP L-1. In vertical flow conditions 502 g TP was 

removed after 1000 h operation, equating to removal of 0.49 g TP kg-1 ochre.  

 

4. Discussion 

The results from the two experiments indicate that further work is required on the 

design of full-scale ochre-based treatment units to achieve consistent removal of P 

from wastewater. The optimum configuration is likely to be a multi-stage system, as 

described by Drizo et al. (1999). This could include a frequently regenerated gravel 

filter, before the ochre-filled unit, to remove organic material and suspended solids 

and minimise clogging of the ochre. Alternatively, the ochre could be backwashed to 

remove solids and biofilm, although this would probably be more expensive. Since 

the greatest % P removal occurred when inflow was constant and controlled at 

Windlestone and in Phase 4 at Leitholm, inflow rates to the ochre unit appear to be 

important, and should be managed to ensure a minimum of 15 min contact time of 

effluent with the ochre. A further design improvement would be to operate a 

minimum of two parallel treatment units. This would allow maintenance without 

disruption to treatment, and operation of the units alternately or passing through 

pulses of wastewater could increase the overall P removal capacity of the system. 

Sibrell (2007) showed in small-scale column experiments that, after 80 h pulsed 

application, > 80% of incoming phosphorus was still removed from simulated 

wastewater applied to pelletised acid mine drainage sludge whereas P removal ceased 
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after 15 h continuous wastewater application. The exact mechanisms involved are not 

known, but Drizo et al. (2002) suggested that new sites for P adsorption could be 

created during the resting period by, firstly, the transformation of Fe and Al minerals 

to more amorphous forms due to a decrease in redox potential and, secondly, the 

movement of Ca and Fe to the material surface as a result of supersaturated conditions 

created by an increase in pH when the material is drained.  

 

It is normally recommended that estimates of the lifetime of field-scale P removal 

systems are based on lower sorption capacities than those determined from small-

scale batch experiments (Drizo et al., 2002; Johansson Westholm, 2006). Even when 

using conservative assumptions the operational lifetime of ochre-based systems for P 

removal is expected to be much greater than other substrates investigated for 

wastewater treatment. At Leitholm, assuming a P sorption capacity for ochre pellets 

of 22 g P kg-1 and 54% mass removal of the typical TP loading on the trough (17.8 g 

P d-1), the operational lifetime of the ca 500 kg ochre pellets in the trough in Phases 3 

and 4 is 3.1 y before P saturation occurs and replacement is required. By comparison, 

a slag with a sorption capacity of 1.2 g P kg-1 but a greater density (Shilton et al., 

2006) operating at 54% P mass removal would have an operational lifetime in the 

trough of only 107 d. Thus ochre pellets would last around 10 times as long. Whilst 

the above estimates of the operational lifetime of field-scale ochre-based treatment 

systems may appear optimistic, it should be noted that the high P sorption capacity of 

ochre measured in the laboratory was replicated in Phase 2b in the Leitholm field trial. 

Even if only 10% of the expected P sorption capacity of ochre pellets is achieved in 

the field (as reported by Arias et al. (2003) in field trials of calcite for P removal 
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under high loading conditions) the operational lifetime of the ochre at Leitholm would 

still exceed that of other substrates.  

 

Once the ochre is saturated with P, it could be used as a slow-release P fertiliser 

with no adverse effects on crop yield or plant and soil quality (Dobbie et al., 2005; 

Cucarella et al., 2008). This is a sustainable alternative to mining phosphate deposits 

for fertiliser production and also has the advantage of recycling a material that would 

otherwise be landfilled. 

 

 

5. Conclusions 

 

Field testing within WWTPs has shown that ochre in both granular and pelletized 

forms removes P effectively from wastewater and that there is no mobilisation of 

potentially toxic metals. Ochre-based treatment units potentially have higher P 

removal capacities and operational lifetimes than other substrates tested for this 

purpose but further work is required on their hydraulic design to maximise P removal 

capacity and lifetime, such as incorporation of a regenerating filter or backwash 

system. This use of ochre has potentially lower costs than conventional methods, and 

also has the sustainability advantage of using a by-product of treating coal mine 

discharges to address another water problem (eutrophication). Furthermore, once the 

P removal capacity of ochre is exhausted it can be recycled as a slow-release P 

fertiliser. 
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Table 1. P mass removal by the trough in the different phases of the experiment 

conducted at Leitholm WWTP. It is assumed that all P removal in trough is by ochre. 

Values outside brackets are for TP. Values within brackets are for SRP. Values are 

means ±95% CI for each phase. 

 
Phase  P influx to trough 

(g P kg-1 ochre d-1) 
P mass removal % P mass 

removal 

 (g P) (g P kg-1 ochre) (mg P kg-1 ochre d-1) 

2a 0.094±0.020 
(0.082±0.021) 

-4410±10900 
(-3590±9360) 

-2.1±5.2 
(-1.7±4.4) 

-18±44 
(-14±38) 

-19±-47 
(-18±-46) 

2b 0.15±0.035 
(0.13±0.036) 

25800±18900 
(22300±19500) 

24±9.0 
(21±9.2) 

65±48 
(56±49) 

45±35 
(45±41) 

3 0.29±0.039 
(0.24±0.033) 

2630±3370 
(1280±1910) 

5.2±1.6 
(2.6±0.91) 

46±59 
(22±33) 

16±20 
(9±14) 

4 0.024±0.004 
(0.021±0.003) 

388±181 
(250±146) 

0.77±0.09 
(0.50±0.07) 

13±6 
(8±5) 

54±27 
(38±23) 
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Figure 1. Schematic diagram (not to scale) of the ochre-filled trough in the experiment 

to treat secondary-treated effluent at Leitholm WWTP. 
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Figure 2. Schematic diagrams (not to scale) of the tank containing ochre pellets in the 

experiment to treat final effluent at Windlestone WWTP for (a) horizontal saturated 

flow conditions, and (b) vertical saturated flow conditions. 

(a) 
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(b) 
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Figure 3. (a) TP and (b) SRP concentrations (mean ± standard error) in filter outflow 

(also trough inflow in Phases 2-4), trough outflow and wetland outflow in different 

phases of the experiment at Leitholm WWTP. Letters/numbers above bars indicate 

significant differences within a phase. 
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Figure 4. (a) % TP removal by concentration (mean ± standard error) by the wetland 

(wetland and trough after Phase 1) and ochre-filled trough alone in the different 

phases of the experiment at Leitholm WWTP. Numbers above bars indicate 

significant differences in TP removal by the trough between the phases of the 

experiment. (b) % TP removal by concentration in the trough containing ochre pellets 

before and after the inflow rate was restricted (i.e., in Phases 3 and 4 of the 

experiment at Leitholm WWTP). Values have been calculated for each effluent 

sampling occasion in Phases 3 and 4. 
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