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[1] In experimental design, the main aim is to minimize postexperimental uncertainty
on parameters by maximizing relevant information collected in a data set. Using an
entropy-based method constructed on a Bayesian framework, it is possible to
design experiments for highly nonlinear problems. However, the method is
computationally infeasible for design spaces with even a few dimensions. We introduce an
iteratively constructive method that reduces the computational demand by introducing
one new datum at a time for the design. The method reduces the multidimensional design
space to a single-dimensional space at each iteration by fixing the experimental setup
of the previous iteration. Both a synthetic experiment using a highly nonlinear
parameter-data relationship and a seismic amplitude versus offset (AVO) experiment are
used to illustrate that the results produced by the iteratively constructive method
closely match the results of a global design method at a fraction of the computational cost.
This work thus extends the class of iterative design methods to nonlinear problems
and makes fully nonlinear design methods applicable to higher dimensional
real-world problems.

Citation: Guest, T., and A. Curtis (2009), Iteratively constructive sequential design of experiments and surveys with nonlinear

parameter-data relationships, J. Geophys. Res., 114, B04307, doi:10.1029/2008JB005948.

1. Introduction

[2] Large sums of money are invested every year in
scientific surveys and experiments by both industry and
scientific funding agencies. For each experiment a design
process must first take place. Physical and logistical con-
straints define bounds on the types of experiments that are
feasible, while minimizing cost often trades off with max-
imizing the amount of information we expect to record from
the experiment. For this reason, optimizing designs of
experiments in terms of cost, logistics, and the information
which the experiment is expected to provide becomes of
critical importance to maximizing return on investment
[Curtis and Maurer, 2000; Maurer and Boerner, 1998].
[3] Statistical experimental design (SED) is a field of

statistics devoted to developing methods to design experi-
ments so as to optimize the expected information obtained.
However, in many practical fields the design process is
carried out using heuristics (rules of thumb) rather than
physical relationships and mathematical modeling. Within
the Geosciences for example, where enormous sums are
spent on data collection, formal SED theory has only been
applied in a handful of cases to design tomographic surveys
[Barth andWunsch, 1990;Curtis, 1999a, 1999b;Curtis et al.,
2004], earthquake monitoring surveys [Kijko, 1977a, 1977b;

Rabinowitz and Steinberg, 2000; Steinberg et al., 1995;
Winterfors and Curtis, 2008], microseismic monitoring
surveys [Curtis et al., 2004], resistivity surveys [Furman et
al., 2004, 2007; Maurer et al., 2000; Stummer et al., 2004;
Wilkinson et al., 2006], geological expert elicitation pro-
cesses [Curtis and Wood, 2004], and amplitude versus offset
experiments [van den Berg et al., 2003]. See Curtis [2004a,
2004b] for a review of SED related to the Geosciences.
[4] In this paper we focus on designing experiments such

that the predicted postexperimental uncertainties on param-
eters are minimized while satisfying other constraints (for
example, logistical, physical or financial). Optimal experi-
mental design therefore requires an understanding of how
the recorded data and postexperimental parameter uncer-
tainties are related [Atkinson and Donev, 1992; Box and
Lucas, 1959; Silvey, 1980].
[5] Let function Fx represent the relationship between

parameters m and data d, such that if we ignore measure-
ment noise for now,

d ¼ Fx mð Þ ð1Þ

would be recorded if parameters m were true. The subscript
x in the forward function Fx indicates that the parameter-
data relationship is dependant on the experimental design x
where x is a vector representing, for example, source and
receiver types and locations, or any other pertinent aspects
of the design.
[6] One of themain reasons that SED theory has not gained

general acceptance in the Geosciences is that the relationship
Fx is commonly highly nonlinear. The results of applying
linear SED theory are therefore not necessarily robust, while
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applying fully nonlinear design theory is too computationally
costly. Consequently, in the above list of cited work in this
field, only the papers of van den Berg et al. [2003] and
Winterfors and Curtis [2008] apply nonlinearized design
theory, and these only addressed one-dimensional and two-
dimensional parameter vectors respectively. Since naturally
occurring design problems in many other fields are also
nonlinear, we suspect that the uptake of SED techniques will
be similarly hampered. There is thus a great need for new
methods of SED that are applicable to multidimensional,
nonlinear problems without linearization.
[7] Experimental error and data noise always result in

uncertainty on the measurement of data d. Figures 1a and 1b
show schematically the results of two experiments charac-
terized by the same nonlinear parameter-data forward func-
tion. Experiment (a) collects a single data measurement d0
with associated uncertainty s, while experiment (b) collects
multiple identical measurements that reduce the data uncer-
tainty. The aim is to invert equation (1) to infer the
postexperimental (a posteriori) parameter range. Figures 1a
and 1b show that both inversions result in a bimodal
parameter estimate, however experiment (b) is better con-
strained. Figure 1c shows an estimate of the parameters that
could be inferred from an experiment using two different
parameter-data relationships. Since both experiments are
used to constrain the same parameters the results must be
consistent. The resultant parameter range is given by the
intersection of the two inversion solutions and is shown in
Figure 1c to be unimodal.
[8] Consider designing an experiment that allows n = 10

data measurements to be recorded so as to minimize
postexperimental uncertainties. Say 20 unique designs are
available for each datum, all of which have the same cost.
This results in 2010 possible designs, and assuming that the
optimality of the overall experimental design can be quan-
tified in some way, finding the globally optimal design out
of so many possibilities is generally computationally infea-
sible. Ryan [2003] proposed a method to calculate the
optimal design using Markov chain Monte Carlo techniques
without any parameter-space or data-space discretization
(which is in contrast to our method), while Muller and
Parmigiani [1996] used the assumption that the quantifiable
design space is a smooth surface to reduce the computa-
tional cost. As noted by Hamada et al. [2001], when the

dimension of the data-space becomes greater than 3 the
numerical integration required to compute the optimality
measure becomes computationally infeasible.
[9] Curtis et al. [2004] introduced a deterministic, iterative

design algorithm that was applied to linearized design of
seismic tomography and microseismic monitoring surveys.
Their method starts with the design containing the maximum
number of receivers conceivable, then in turn, the receiver
that provides the least postexperimental information is iter-
atively removed until a final design with an affordable
number of data measurements is obtained. We refer to this
kind of algorithm as ‘‘iteratively destructive’’. Curtis et al.
[2004] also described an iteratively constructive version of
their algorithm where at each iteration the datum that pro-
vides the most additional information to some minimal
design is added until a cost constraint is reached. Such an
algorithm was applied by D. Coles and F. Morgan (A method
of fast, sequential experimental design for linearized inverse
problems with applications for borehole dc resistivity, sub-
mitted manuscript, 2009), Stummer et al. [2002, 2004], and
Wilkinson et al. [2006] to design linearized geoelectrical
tomography surveys.
[10] Since these methods are iterative they do not neces-

sarily find globally optimal designs. Furthermore, these
methods have only been developed for linearized design
problems using linear algebraic results to compute informa-
tion increases and losses cheaply.
[11] In this paper we introduce an iteratively constructive

method that works for linear or nonlinear problems, and
which reduces the number of designs considered to nx where
x is the number of possible single-datum designs, and n is the
total number of data to be recorded. In the above example the
total number of designs that need to be considered would be
reduced to 200. In brief, the algorithm works by first
calculating the optimal design for a single-datum measure-
ment (x possible designs to consider). It then designs an
experiment that records two data measurements, but instead
of considering all x2 possible two-data designs it fixes the first
datum to that found in the previous step. There are therefore
only x new designs to consider corresponding to possible
designs for the second datum. This iterative method is
repeated for subsequent data one at a time, fixing previously
found designs, until the required final number of data
measurements has been attained or a cost threshold exceeded.

Figure 1. Parameter-data relationships for three experimental designs. Designs in Figures 1a and 1b use
the same experimental setup so the forward function Fx is identical. (a) The first experiment only uses a
single measurement to predict the parameter and hence has a large uncertainty (±s). (b) The second
experiment represents repeated measurements resulting in a reduced data uncertainty and hence a smaller
parameter uncertainty. In Figure 1c, two data are recorded, both with value d0, but each with a different
forward function (solid and dashed lines).
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[12] By not considering every one of the xn possible
design we find a locally optimal design rather than the
globally optimal design. However, note first that consider-
ing the entire design space is generally infeasible, second
we will show that no linearization of physics is necessary in
iterative methods, and third the final design is found in a
more scientifically rigorous manner than when using rules
of thumb or other heuristic methods. Additionally, as shown
below the designs found can be close to globally optimal,
even in nonlinear problems.
[13] It is important to distinguish ‘‘iterative design’’

methods discussed here, from so-called ‘‘sequential design’’
methods [Fedorov, 1972; Ford et al., 1989; Hu, 1998]. In
sequential methods the data collected from the previous
experiment are used to estimate the parameter probability
density function (p.d.f.) which is then used to design the
next experiment. Sequential design methods thus build on
previous experiments. Iterative design methods on the other
hand use a constant prior parameter p.d.f. when adding
successive data measurements, and are methods to find a
(sub)optimal design for a single experiment when full
global optimization is infeasible or too costly to find.
[14] The iteratively constructive design method intro-

duced herein requires a quantitative measure of the design
quality that is valid for any parameter-data relationship,
however nonlinear. Both linearized design methods [Curtis,
2004a, 2004b; Silvey, 1980; Steinberg et al., 1995] and
classical nonlinear design methods [Atkinson and Donev,
1992; Box and Lucas, 1959; Chaloner and Verdinelli, 1995;
Ford et al., 1989] employ a quality measure based on
linearized physics and so are not robust in highly nonlinear
situations as explained by van den Berg et al. [2003].
Instead, we adopt a Bayesian approach for parameter
inference in which p.d.f.s represent states of information
about parameters, and expected postexperimental informa-
tion can be estimated to assess design quality without
linearization. Our quality measure and example application
(designing amplitude versus offset (AVO) experiments) is
similar to the study of van den Berg et al. [2003]. However,
that previous paper found globally optimal solutions and as
a consequence was limited to designing a single-datum
experiment due to the huge computational demand. In this
paper we show how our new, iteratively constructive
algorithm reduces the computation required for nonlinear
design problems such that we can extend the range of
application to many more data points. More generally,
we believe that iteratively constructive or destructive
methods may represent one of the best available options
to extend fully nonlinear design methods to real-world,
high-dimensional scientific problems.

2. Method

2.1. Nonlinear Design Theory

[15] According to Bayes’ theorem the posterior p.d.f. of
parameters m given recorded data d and design x is given
by

s mjd; xð Þ ¼ q djm; xð Þr mð Þ
s djxð Þ ð2Þ

where q(djm, x) represents the p.d.f. of data d being observed
given parameters m, and design x, r(m) is the p.d.f.

representing the prior information on parameters m and
s(djx) is the marginal distribution over observed data and
contains all information about which data are likely to be
recorded during the experiment:

s djxð Þ ¼
Z

q djm; xð Þr mð Þdm: ð3Þ

[16] In designing an experiment we wish to maximize
the information on the parameters m expected to be
contained in the posterior p.d.f. s(mjd, x). We therefore
need to quantify the information I represented by a p.d.f.
The entropy of any probability distribution f(x) is related to
Shannon’s measure of information [Shannon, 1948] as

Ent Xð Þ ¼ �I f xð Þf g þ c ¼ �
Z
x

f xð Þ log f xð Þf gdx ð4Þ

where Ent is the entropy function, f(x) is the p.d.f. of the
random variable X, I is the information measure as defined
by Shannon [1948], and c is a constant. The optimal
experimental design can be determined by maximizing the
information expected to be contained, postexperiment, in
the posterior parameter p.d.f. (equation (2)). A fully
nonlinear quality measure can therefore be defined [after
Lindley, 1956] as

F xð Þ ¼ �
Z
D

Ent s mjd; xð Þf gs djxð Þdd ð5Þ

where �Ent{s(mjd, x)} represents the amount of informa-
tion contained in the posterior p.d.f. about the parameters
m given a particular data measurement d recorded
using the design x. The quality measure is calculated by
taking the expectation of the entropy function with respect to
the marginal distribution (equation (3)) over all data
measurements.
[17] To evaluate Ent{s(mjd, x)} requires that the distribu-

tion in equation (2) can be evaluated. In many cases this
represents finding the solution to an inverse problem (finding
constraints on m given a value for d), which in nonlinear
problems can be extremely demanding computationally.
Fortunately under some common assumptions an alternative,
cheaper computation is equivalent. Shewry and Wynn [1987]
showed that

�F xð Þ þ Ent s djxð Þf g ¼ Ent s d;mjxð Þf g ¼ b ð6Þ

where b is a constant, and the second equality is true if both
the prior parameter distribution and the measurement noise
is design independent. The parameter-data relationship is
often assumed to have the form

d ¼ fx mð Þ þ �; ð7Þ

where � is a vector of independent random errors which do
not depend on either the parameters or on the design. It
can be shown that equation (6) holds for relationships of
this type [Shewry and Wynn, 1987]. Instead of maximizing
F(x) equation (6) shows that the optimal design can
be determined by maximizing Ent{s(djx)}. For this
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latter measure, only information about s(djx) is required,
and in most cases s(djx) consists of the prior information on
the parameters projected through the physical relationship
q(djm, x), that is, it only involves solving the forward
problem.
[18] In general, the p.d.f. required to calculate the entropy

is not known analytically and must therefore be deduced
numerically. The Monte Carlo method we adopt here varies
from that used by van den Berg et al. [2003]. Samples of
r(m) are generated and projected through the physical
relationship in equation (7) into a discretized data space.
The physical relationship used incorporates the random
associated measurement error � (equation (7)). The resulting
data space histogram of all projected samples is normalized
to have unit volume, wherefore it represents a numerical
approximation to the posterior p.d.f. s(djx). This approxi-
mation of s(djx) is then used to assess the quality of the
experimental design by calculating the entropy,

Ent s djxð Þf g 	
X
i

ŝ dið Þ log ŝ dið Þf g ð8Þ

where di represents the center of the ith discretized bin in
the data space. For any given experimental design, ŝ(djx) is
affected by the number of parameter samples, the data space
discretization bin size, and the measurement error.
[19] In linearized problems the parameter-data relation-

ship is in the form

d ¼ Gm0
mþ � ð9Þ

where Gm0
is a matrix of derivatives of d with respect to m

calculated at a reference model m0. In linear problems Gm0

is constant with respect to the reference model and the
optimal design is commonly determined by maximizing
measures sensitive to the magnitudes of eigenvalues of
(GTG) [Curtis, 1999a, 1999b]. A common measure used in
linear problems with Gaussian uncertainties is

Flinear xð Þ ¼ k det GTG
� �

ð10Þ

where k is a constant. For linearized (but not truly linear)
problems, if all posterior distributions are Gaussian then the
classical nonlinear estimate for the quality of an experi-
mental design can be used [Atkinson and Donev, 1992; Box
and Lucas, 1959; Chaloner and Verdinelli, 1995; Ford et
al., 1989]:

Flinearized xð Þ ¼
Z
M

k det Gm
TGm

� �
r mð Þdm: ð11Þ

Rather than using a single set of parameter values, the
expected design quality measure is calculated over the prior
distribution of parameters values. Therefore equation (11)
represents an average measure of linearized design quality
over the prior parameter p.d.f. While equations (11) and (5)
have similar forms equation (5) requires no linearization of
the forward function or assumptions regarding the posterior
distributions. Thus equation (5) represents a measure of
design quality applicable to truly nonlinear problems.

2.2. Iterative Design Theory

[20] In the method of van den Berg et al. [2003], the
entropy is calculated for every possible design. The design
that corresponds to the maximum entropy value is deemed
the optimal design. In iteratively constructive methods on
the other hand,

xj ¼ argmax Ent s djxj
� �� �� �

; given such that xj�1 fixed; ð12Þ

meaning that the new optimal design xj combines the data
measurements of the previous iteration xj�1 augmented by
the single datum measurement that maximizes the entropy
of the posterior data p.d.f. given that xj�1 remains fixed.
[21] The same method can be used in an iteratively

destructive manner were all possible data are recorded and
one at a time the datum that provides least information is
removed until the final experimental design is found.
Although this method is plausible in principle, as shown
below it would prove to be computationally infeasible.

2.3. Design of Numerical Implementation

[22] Our ability to evaluate the right side of equation (12)
constitutes the computational limiting factor in the new
method. While computation is greatly reduced compared
to that required to find the global optimum of arg
max[Ent{s(djx)}] used in previous studies, it nevertheless
increases significantly for increasing data space dimensions,
as shown in examples below. We show in section 5 that the
introduction of a second design subproblem, to design
dynamically the number of data space samples required to
design each new xj accurately, greatly enhances the meth-
od’s performance.

3. Synthetic Test: Sawtooth Functions

[23] We now evaluate the performance of the new design
method by applying it to a highly nonlinear, synthetic
problem for which there is an analytic solution for the
projected data space marginal distribution s(d). We imagine
that the experimental situation is such that by choosing
different designs we can alter the forward function fx(m) in
equation (7) to be a sawtooth function with an integer
number x of periods in the range m 2 [0, 10] (Figure 2).
Prior information on m is assumed to be uniform in this
range. van den Berg et al. [2003] illustrated that classical
Bayesian (linearised) nonlinear measures (equation (11))
fail when applied to a one-dimensional sawtooth forward
function. Such measures deliver as optimal design a saw-
tooth with as many periods as possible, corresponding to a
forward function with the highest possible average gradient.
This results in a postexperimental parameter-space posterior
p.d.f. that is highly multimodal, but which in one dimension
provides no Shannon information gain over a single-period
sawtooth function.
[24] Using the entropy value as our optimality measure

we assess the accuracy of our iteratively constructive
method against the globally optimal results for multidimen-
sional sawtooth functions

f x mð Þ ¼ fx1 mð Þ; . . . ; fxn mð Þ
� �

: ð13Þ
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The distribution q(d,m) is defined to have Gaussian error
with standard deviation 0.1 around mean fx(m), truncated at
±3 standard deviations from the mean. The analytical value
of s(d) for any of the sawtooth functions (without
truncation of the Gaussian) is then given by

s dð Þ ¼ 0:1 �erf 5
ffiffiffi
2

p
�2:5þ dð Þ

n o
þ erf 5

ffiffiffi
2

p
2:5þ dð Þ

n oh i
ð14Þ

where erf is the error function.We therefore use equation (14)
as a very close approximation to the truncated Gaussian
distribution for any single sawtooth forward function.
[25] Consider first a sawtooth function with a single period

over the parameter range (Figure 2). The analytical value for
the entropy of the single sawtooth function is equal to 1.645.
s(d) is approximated numerically using different data space
discretization lengths and total number of parameter space
samples. Figure 3 shows the numerical approximation for the
entropy as a function of data space discretization length and
number of parameter space samples for the single period
sawtooth function. The plot shows that as the data space
discretization becomes small the total number of samples
needed to accurately sample the data space becomes large.
When the data space discretization length becomes large then
even several thousand parameter space sample points are
insufficient to approximate equation (14) accurately. For the
remaining sawtooth function examples we use a data space
discretization length of 0.1 with 500,000 random parameter
space samples.
[26] It is instructive to consider the simple problem of

designing a two-datum experiment where each datum could
result in sawtooth functions with either xi = 1 or 2 periods
between m 2 [0, 10]. If the second function had x2 = 1
period, say, this leaves two possible designs: either a repeat
experiment x1 = 1, or a combination experiment x1 = 2
using a single instance of 1 and 2 periods. The same
Uniform prior parameter range and Gaussian errors on each
datum are used as in the single-sawtooth function experi-
ment, and Figure 4 shows the resulting s(d) functions. The
repeat experiment (b) shows a linear trend since any given
parameter value results in approximately the same datum for
both sawtooth functions. The design using both sawtooth
functions in (a) shows lower s(d) values than (b) because a
larger proportion of the data space has been sampled using
the two different period functions.

[27] The entropy Ent{s(djx)} in equation (8) for the
repeat experiment in (b) is 1.126 while the entropy for the
experiment in (a) using both one-period and two-period
functions is 2.184. The data expected to be recorded from
repeat experiments will therefore always provide less post-
experimental information on parameters than an experiment
using different sawtooth functions for each datum.
[28] We now assess the performance of the iteratively

constructive method using this challenging forward function
for each fi between 1 and 10 periods in the range m 2 [0, 10].
Since van den Berg et al. [2003] showed that the entropy
value is constant for any period of sawtooth function in the
single-datum problem, we begin the iteratively constructive
method at the globally optimal design for a two-data scenario.
Figure 5 shows the entropy of s(d) for all possible two-
data experiments. The optimal design uses x1 = 9 and x2 =
10 periods. As was observed in the previous example,
performing a repeat experiment (represented by cells on the
diagonal) provides minimal postexperimental information
compared with any other design.
[29] According to our iterative method the optimal design

for a three-sawtooth function setup is calculated by first
fixing the periods of the two-sawtooth design at x = [9, 10].
The only sawtooth period to be designed is that of the third
function, x3. The entropy is calculated for the 10 possible
resulting three-sawtooth experiments, and the maximum
was found to correspond to period x3 = 8. To compare
this to the globally optimal result, the entropy of all possible
103 designs using 3 sawtooth functions was calculated. In
this case, the locally optimal design found using the
iterative method exactly matches the global optimum.
[30] The iterative method is used again to calculate the

optimal four-sawtooth design, and predicts that the func-
tions with periods 8, 9, 10 and 10 are optimal. In this case
the optimal design uses a repeated data measurement rather
than using another function with a different period. The
globally optimum design was also located from the possible
104 designs. Again, the local optimum of the iterative

Figure 2. Single-period sawtooth function with maximum
amplitude 2.5 in the parameter range m 2 [0, 10].

Figure 3. Entropy values for the single-period sawtooth
function as a function of data space discretization length
(dx) for four experiments with different numbers of
parameter space samples (dotted, 100; dashed, 500; dot-
dashed, 1000; solid, 5000). The gray line represents the
analytical value of 1.645.
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method exactly matches the global optimum while only
searching a 10-element design space, a saving of three
orders of magnitude in computing power.

4. Geophysical Application: Multiple
Amplitude-Versus-Offset (AVO) Receivers

[31] Having gained confidence in the new method, we
now apply it to the practical geophysical problem addressed
by van den Berg et al. [2003]. The computational savings
offered by our method allows us to extend their results to far
more complex designs than they found computationally
tractable.
[32] Our data will be the amplitudes of planar seismic

waves generated with unit amplitude at the ground surface,
reflected from a subsurface boundary between two geolog-
ical layers at depth d, and recorded when they arrive again at
the ground surface (Figure 6). Each is a function of the

incident angle of the wave at the boundary, density ri and the
elastic media properties (summarized by the P wave velocity
ai, and S wave velocity bi, for an isotropic medium) of both
layers i = 1, 2. The recorded amplitudes A1, A2 are given in
full by the solution to the Zoeppritz equations,

cos i1A1 þ
a1

b1

sin j1B1 þ
a1

a2

cos i2A2 �
a1

b2

sin j2B2 ¼ cos i1

� sin i1A1 þ
a1

b1

cos j1B1 þ
a1

a2

sin i2A2 þ
a1

b2

cos j2B2 ¼ sin i1

� cos 2j1A1 � sin 2j1B1 þ
r2
r1

cos 2j2A2 �
r2
r1

sin 2j2B2 ¼ cos 2j1

sin 2i1A1 �
a2
1

b2
1

cos 2j1B1 þ
r2
r1

b2
2

b2
1

a2
1

a2
2

sin 2i2A2 þ
r2
r1

a2
1

b2
1

� cos 2j2B2 ¼ sin 2i1

ð15Þ

where for a horizontal boundary i1 is the P wave angle of
incidence and reflection, i2 the P wave angle of refraction, j1

Figure 5. Two-data entropy values of entropy of s(d) for
the complete design space for pairs of sawtooth functions
with integer periods ranging from 1 to 10 over the parameter
range of 0–10. For each experiment, the data space
discretization length is 0.1 and 500,000 samples are drawn
at random from a Uniform prior distribution over the
parameter range. The white crosses indicate the optimal
two-data experimental design.

Figure 6. Geometry of an AVO experiment with a single
interface. The distance between the source (X) and the
receiver (V) is called the offset (x). The depth to the
interface is d. At the interface, the incident P wave energy is
split into a reflected P wave and P-S wave conversion and is
also transmitted into the second layer as a P wave and P-S
wave conversion. The amplitudes of each wave are given by
equation (15). The properties of the subsurface are given by
density (r), P wave velocity (a), and S wave velocity (b) in
each layer.

Figure 4. Plots of s(d) for (a) a design that uses both period sawtooth functions and (b) a repeat
experimental design, calculated using 500,000 parameter-space samples and a data-space discretization
length of 0.1. Scale bar represents the normalized s(d) value for each data-space discretization.
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the converted P-Swave angle of reflection and j2 the converted
P-Swave angle of refraction [Yilmaz, 2001]. The amplitudes of
the waves are represented by A1 for the reflected P wave, A2

for the refracted P wave, B1 for the reflected S wave and B2
for the refracted S wave. From the reflected P wave amplitude
it is possible, given values for the other elastic properties, to
estimate the P wave velocity of the lower layer (a2)

A1 ¼ fx a2ð Þ: ð16Þ

Our initial design problem is to find the single offset (x)
between one source and one receiver that best constrains the
value of a2, given the P wave reflection coefficient A1
measured at that offset.
[33] We assume that both layers are represented by a

Poisson medium in which b = ca where c = 1/
ffiffiffi
3

p
, and that

there is no significant density contrast between the layers.
Figure 7 shows the P wave reflection amplitudes as a
function of the parameter a2 for 4 different offsets using a
depth of 500 m for the reflecting boundary and a P wave
velocity of 2750 m s�1 for the top layer. The discontinuities
in the curves occur when the critical angle of incidence is
reached for the given velocity structure (the angle at which
the refracted P wave becomes horizontal).
[34] For the design problem the prior parameter informa-

tion about a2 is specified by a Uniform distribution ranging
from 3000 m s�1 to 4500 m s�1, and q(d, m) is given by the
numerical solution of equations (15) with added Gaussian
uncertainty of standard deviation 0.01 to simulate measure-
ment uncertainties.
[35] Entropies are calculated for offsets ranging from 0 m

to 5000 m at 25 m intervals. For each offset the data
discretization length is 0.01 and 500,000 samples are drawn
at random from the uniform parameter space. van den Berg et
al. [2003] used the same prior information and geometrical
setup to find the optimal receiver offset. Figure 8 shows the
entropy values as a function of offset for our results and the
most densely sampled results of van den Berg et al. [2003].
[36] The discrepancy between the results is due to differ-

ent forward functions being used to calculate the reflection

coefficient. van den Berg et al. [2003] used the Aki and
Richards [2002] approximation to the solution to the
Zoeppritz equations:

RP ¼ 1

2 cos2 i

Da
a

� 4b2p2
Db
b

þ 1

2
1� 4b2p2
� �Dr

r
ð17Þ

where a is the average P wave velocity,Da is the difference
in the P wave velocities in the upper and lower layers, and
b, Db, r, and Dr are similarly defined. i is the average of
the P wave reflection and refraction angle, and p is the
horizontal slowness. Assuming a Poisson medium (b = ca,
where c = 1/

ffiffiffi
3

p
) and no density contrast between the layer

(Dr = 0) simplifies the equation to that used by van den
Berg et al. [2003]:

RP ¼ 1

2
1þ tan2 i
� �

� 4c2 sin2 i

� �
Da
a

ð18Þ

[37] The approximation of Aki and Richards [2002]
assumes that the angles i1, i2, j1 and j2 (Figure 6) are real
and close to 90�. This assumption holds for small offsets
(less than 1000 m) and low layer-2 P wave velocities (less
than 3500 m s�1). At values greater than these the approx-
imation fails and only the Zoeppritz equations correctly
predict the reflection amplitude coefficient. We therefore
use the full solution to the Zoeeppritz equations for our
results (equation (15)).
[38] The new results show that the optimal location for a

single receiver is at an offset of 1050 m. This is in contrast
to the van den Berg et al. [2003] optimal offset of approx-
imately 1500 m. Both methods produce a local minimum at
an offset of 500 m, a distance equal to the interface depth. A
standard rule of thumb approximation for an AVO experi-
ment is to use offsets between 1 and 3 times the depth to the
interface under study. For the single receiver case this rule is
confirmed.

Figure 7. Reflected P wave amplitude data as a function
of parameter a2 for four different offsets: x = 500 m (dotted
line), x = 1000 m (dot-dash line), x = 1500 m (dashed line),
and x = 2000 m (solid line). The velocity of the top layer is
2750 m s�1, and the depth to the reflecting boundary is
500 m.

Figure 8. Entropy values as a function of offset for a
single receiver. The most densely sampled results of van
den Berg et al. [2003] are represented by the dashed line
(data space discretization length of 0.001 using 300,000
samples). The solid line represents our results using a data
discretization length of 0.01 using 500,000 samples.
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[39] Using the Zoeppritz equations we now consider a
two-receiver experiment. Using both the iteratively con-
structive method and calculating the entropy values across
the complete design space we can see how closely the two
resulting experimental designs match. For the iterative
method the first receiver is fixed at an offset of 1050 m.
The second receiver is varied between offsets ranging from
0 m to 5000 m at 25 m intervals. The same data space
discretization and number of parameter space samples are
used as in the single receiver experiment.
[40] Figure 9 shows the entropy values as a function of

offset for the two-receiver design. The optimal design

would therefore place the second receiver at an offset of
1350 m, resulting in a two-receiver design with offsets of
1050 m and 1350 m. Similarly to the single receiver
experiment there is a local entropy minimum at an offset
of approximately 500 m and a decreasing entropy trend with
increasing offsets greater than 2500 m. The entropy notch at
1050 m represents a repeat experiment; although this would
provide extra information about velocity a2, the extra
information obtained by placing the second receiver at a
slightly larger or smaller offset significantly outweighs this
advantage.
[41] Figure 10 shows the entropy values obtained for

every possible two-receiver configuration. The globally
optimal receiver locations are at offsets of 1275 m and
950 m. These do not coincide with the locations found using
the iterative method as the offsets lie either side of the
optimal single-receiver offset. However, the entropy map
shows several global features that are also seen in Figure 9.
First, placing either or both receivers at offsets less than
500 m (equal to the depth of the reflector) or at offsets
greater than 2500 m results in an experiment that is
expected to record relatively little information that can be
used to constrain the parameter. Also, a repeat experimental
design in the offset range 750 m–2250 m provides less
postexperimental information than having a small offset
separation.The information gain expected by performing the
experiment is given by

Ent s djxð Þf g � Ent s djm; xð Þf g ð19Þ

where Ent{s(djx)} is the calculated optimal entropy value,
and Ent{s(djm, x)} represents the entropy of the measure-
ment noise and is described by a Gaussian. The difference

Figure 9. Entropy values as a function of offset for a two-
receiver experimental design using the iteratively construc-
tive method with the first receiver fixed at 1050 m. The
entropy at each offset is calculated using 500,000 samples
and a data space discretization of 0.01. Entropies are
calculated at offsets ranging from 0 m to 5000 m at 25-m
intervals. The dashed lines represent the optimal offsets
found by searching the complete design space (Figure 10).

Figure 10. Entropy values for every possible two-receiver experimental design. The plot consists of
40,401 entropy values. The globally optimal receiver locations are at offsets of 1275 and 950 m.
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in the information gain found using the iteratively
constructive method compared to that found by performing
a complete design space search is 1.7%, while the global
search takes 201 times longer to perform.
[42] Figure 11 show the entropy values obtained for the

three-receiver optimal experiment calculated using the itera-
tively constructive method. In the two-receiver plot (Figure 9)
there were 2 entropy peaks of similar magnitude. The three-
receiver experiment clearly locates the third receiver at an
offset of 850 m. The local entropy minima seen at approxi-
mately 500moffset in both the single and two-receiver setup is

now less prominent. The entropy decline with offsets greater
than 2500 m is also less steep than in the previous designs,
indicating that any offset greater than 2500 m will provide the
same, minimal amount of postexperimental information. The
entropy signal at large offsets also shows small amounts of
numerical noise, indicating poor sampling in the data space. In
the single-receiver case 500,000 parameter samples populated
a maximum of 100 data space discretizations, whereas in the
three-receiver case the same number of samples are used to
populate a data space with 1,000,000 (1003) discretizations.
The entropy signal-to-noise ratio within the offset range
600 m to 2300 m is nevertheless still high as indicated by
the smooth entropy function. The two entropy notches at
offsets of 1050 m and 1350 m represent offsets where a
receiver is already located from previous iterations.
[43] We also calculated the globally optimal three-receiver

experiment by searching the entire experimental design
space. Calculating every possible experimental design at
25 m offset spacing was too expensive computationally, so
Figure 12 shows an entropy isosurface for the three-receiver
design produced using 100 m offset spacings. Since the
maximum seems to occur in the offset range 500 m to
2000 m a more detailed search at 25 m spacings was
performed over that interval. The globally optimal experi-
mental design uses offsets of 800m, 1025 m and 1350 m. This
is almost an exact replication of the design produced by our
iterative method.
[44] A total of 359,632 entropy values were calculated to

locate the three globally optimal receiver offsets. Only
603 entropies were calculated using the iteratively construc-

Figure 11. Entropy values as a function of offset for a
three-receiver experimental design using the iteratively
constructive method with the first two receivers fixed at
offsets of 1050 and 1350 m. The dashed lines represent the
globally optimal three-receiver design (Figure 12).

Figure 12. Entropy isosurface for a three-receiver experimental design using global sampling. The
isosurface represents entropy values equal to 75% of the maximum.
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tive method, a computational saving of over 99%. The same
general features of the two-receiver design (Figure 10) are
seen in the 3 receiver case (Figure 12). Offsets greater than
2500 m result in experiments with a low associated entropy
value, as do experiments with offsets smaller than 500 m.
[45] The iteratively constructive method was then used to

place 10 receivers in total. For each iterative design the
same number of parameter space samples and data space
discretization lengths have been used. Figure 13 shows the
entropy results for successive experimental designs. Clearly
the last few plots in Figure 13 are contaminated by
numerical noise, a point to which we return below.
[46] The final 10-receiver experimental design is illus-

trated in Figure 14. Note that 9 of the 10 receivers are
placed within the range 500 m to 1500 m (between 1 and
3 times the depth to the reflector), the range often used in
AVO rule-of-thumb design methods. However, 1 of the
receivers lies outside of this range, corresponding to the
fourth receiver. The fourth receiver offset (Figure 13a) is
located with high numerical accuracy indicating that the

classical heuristic rules fail to match the mathematics-based
design criterion in this simple problem.
[47] As the number of receivers increases so does the

noise level in the entropy signal. We can locate the seventh
receiver (Figure 13d) offset with some certainty but for the
eighth, ninth, and tenth receivers the poor data space
sampling causes the noise level to be too large to locate
each receiver offset accurately. However, there is a clear

Figure 13. Entropy plots for successive receiver locations using our iteratively constructive method.
(a) The entropy curve used to place the fourth receiver, and (g) the curve used to place the tenth receiver.
For each plot, 500,000 parameter samples are used and the discretization length in each data-space
dimension is 0.01.

Figure 14. Experimental design using 10 receivers placed
using the iteratively constructive method and 500,000
parameter-space samples. The source is denoted by asterisk
and each receiver by an inverted triangle.
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trend seen in the first 9 receiver plots that places all the
receivers at offsets between 500 m and 2000 m. Also, in the
numerically accurately placed receivers (1–7) a repeat
experiment is never the optimal solution.

5. Design of an Efficient Numerical Sampling
Scheme

[48] Accurately locating more than 7 receivers using the
new method requires a more densely sampled data space
than used above to reduce the noise level in the entropy
signal. The number of samples required to locate each
successive receiver is therefore a tradeoff between the
desired signal-to-noise ratio of the entropy response and
the amount of computation used. We have approached this
tradeoff as requiring a separate design procedure that is
performed as the number of samples is increased.
[49] The minimum required number of parameter space

samples in the iteratively constructive method is determined
by assessing the standard deviation of the entropy estimates.
It should be noted that the use of ‘‘standard deviation’’ is
only used as one possible variation measure in order to
assess whether sufficient samples have been drawn, and not
in the classical sense of characterizing a p.d.f. As more
samples are drawn from the parameter space the entropy
asymptotes to a constant value (Figure 3). We evaluate this
convergence by considering the standard deviation of the
entropy signature at offsets of 1000 m, 2000 m, and 3000 m
which approximately spans the range of offsets likely to
be optimal given the above tests. At each of these offsets
the entropy value is calculated after each subsequent
200 samples have been drawn from the parameter space.
The standard deviations are calculated over each consecu-
tive set of 100 data space entropy values. The standard
deviation measures the variation in 100 entropy values over
the addition of 20,000 parameter space samples. Hence the
standard deviation should be observed to decrease with
every successive set of 20,000 samples as the entropy
estimate converges.

[50] Figure 15a shows how the entropy estimate changes
as samples are drawn from the parameter space for the AVO
experiment that locates the second optimal receiver using
the iteratively constructive method. The standard deviation
is calculated for each offset profile. The maximum standard
deviation from the three profiles is retained as the value
used in the algorithm below.
[51] Figure 15b shows the resulting entropy profile (gray

line) estimated using 20,000 samples. We determine if
sufficient samples have been drawn from the parameter-
space by assessing the entropy signature between the global
maximum (indicated by the solid black line) and 2 standard
deviations from this value (dot-dash line). If no other local
maxima are found in this range we conclude that with 95%
confidence we have found the true maximum value and no
more samples are required. If, as in this example, there are
local maxima in the two standard deviation range another
20,000 samples are added at each offset. The standard
deviation is recalculated as above and the entropy profile
reevaluated. This process is repeated until a single peak is
found within the two standard deviation lower entropy limit.
To reduce the computational time we discard offsets that
have associated entropy estimates that fall below 3 standard
deviations (dashed line) from the maximum entropy value
when adding extra samples these offsets are not considered.
[52] This process creates a dramatic reduction in the

computational time required to place multiple receivers.
We recalculated the optimal 10-receiver design using the
iteratively constructive method and the variable sample size
using the above algorithm. The final design is shown in
Figure 16 (top). Comparing Figure 16 to Figure 14, the new
results locate 2 receivers beyond 1500 m instead of only 1.
Harder to see is that the experiments that required fewer
than 500,000 samples all located the optimal receiver at the
same offset as the previous experiment, showing that we
had needlessly over sampled the data space in the previous
results. Conversely, in the experiments that required more
than 500,000 samples, the receivers were positioned in
different locations indicating that the data space was not

Figure 15. (a) The entropy estimates for offsets of 1000 m (dotted), 2000 m (dot-dash), and 3000 m
(solid), as increasing number of samples are drawn from the parameter space. (b) The resulting entropy
profile (gray line) produced from 20,000 samples. The solid line indicates the maximum entropy value,
the dot-dashed line indicates two standard deviations, and the dashed line indicated three standard
deviations from the maximum.
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previously adequately sampled to reveal the true global
maximum due to numerical noise.
[53] Figure 17 shows the actual number of samples

required to accurately locate the receivers. In the previous
method we had over sampled the first five receiver locations
but under sampled the remaining five. In fact, using the
variable sample size method also shows that only 40% of
the samples were required to place the first 5 receivers when
compared to the iteratively constructive method that used a
static 500,000 samples for each receiver.
[54] The requirement of 95% confidence in finding

global entropy maxima for successive receivers is arbitrary.
Figure 16 (bottom) also shows the design obtained if we are
satisfied with 66% confidence (one standard deviation),
while Figure 17 also shows the number of samples in this
case. 9 of the 10 receivers placed with 66% confidence
match within ±25 m of the receivers offsets found to 95%
confidence. Placing the ninth and tenth receivers with 95%

confidence requires approximately 2.5  106 more samples
than with 66% confidence.

6. Discussion of AVO Results

[55] The final designs for the AVO application appear to
contradict accepted heuristic design methods by placing one
or more receivers at offsets greater than 3 times the depth to
the reflecting layer. However, rather than this being a general,
design-independent phenomenon, the final design can be
shown to depend strongly on the detailed subsurface Earth
structure above the reflecting boundary, on the prior infor-
mation about parameters, and on the data uncertainty. While
the two-layer structure in Figure 6 might be representative of
a shallow geophysical experiment, a more representative
subsurface structure for experiments incorporating deeper
layers would typically contain several layers above the target
interface, each with different properties, and velocity would
usually increase with depth. At every interface the raypath of
the seismic energy would be refracted toward the horizontal
at increasing depths in the model. The refraction process
results in a reduced offset at the surface for the same angle of
incidence and hence reflection coefficient at the subsurface
interface (Figure 18). That is, the angular range at the bottom
reflecting boundary created using our optimal designs in
Figure 16 could also be obtained with receivers placed at
smaller offsets.
[56] Reducing the size of the prior parameter range both

decreases the computational power required to place each
successive receiver and changes the final design. Figure 19

Figure 16. Experimental design using 10 receivers placed
using the iteratively constructive method with the variable
sample size test. Top design represents optimal 10-receiver
design to 95% confidence and lower design to 66%
confidence.

Figure 17. The number of samples required to accurately
locate the optimal receiver using the iteratively constructive
method to 95% (solid line) and 66% (dashed line)
confidence. The dotted line shows the number of samples
used in our previous example (Figure 14); we had
oversampled the first five experiments but undersampled
the final five.

Figure 18. Raypath differences caused by having a
different subsurface model. The dashed line represents a
model with no refraction before the targeted interface,
whereas the solid line refracts at two interfaces (gray lines),
both before and after reflection. Both raypaths have the same
angle of incidence and reflection at the lower-most interface.

Figure 19. Experimental design using 10 receivers placed
using the iteratively constructive method with the variable
sample size test and a reduced prior parameter range. The
source is denoted by asterisk, and each receiver is denoted
by an inverse triangle.
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represents the final 10 receiver design after the parameter
range has been reduced from [3000 m s�1, 4500 m s�1] to
[3375 m s�1, 4125 m s�1]. The design shows that all
receivers now conform to the heuristic design by falling
within the offsets 500 m to 1500 m, and receiver density
decreases with increasing offset.
[57] The final simplification that we used was to have a

uniform data uncertainty with increasing offset. In many
realistic situations uncertainty might increase with offset.
An increased data uncertainty results in a larger volume of
the data space being sampled in the entropy calculation. As
seen in Figure 4 this results in reduced s(d) values and
larger entropy; optimal receiver locations would then tend
toward longer offsets than in Figure 19.
[58] From the three factors given above it is clear that the

heuristic design statement is oversimplified for AVO design
problems. Each situation must be designed independently to
optimize information, incorporating as much prior informa-
tion about subsurface structure and expected data uncertainty
as possible.

7. Conclusions

[59] An iteratively constructive design method has been
presented which is applicable to nonlinear, multidimensional
design problems. The method is based on a Bayesian frame-
work which is suited to nonlinear scenarios where classical
design methods, based on forward function gradients, fail.
[60] For both the synthetic sawtooth and practical AVO

examples, locally optimum experimental designs produced
by the iteratively constructive method closely resemble
globally optimal designs, in low-dimensional cases where
the later designs can be calculated. However, we have also
produced a multireceiver AVO experimental design using
the iterative method that would have been computationally
intractable using grid-search nonlinear design methods. The
parameter space sample size has been treated as both a fixed
parameter, and a variable which requires optimization at
each iteration. This extra optimization process increases the
efficiency of the new method significantly. A simple search
of the possible offsets at uniform intervals through the
design space has been used to locate the optimal receiver
offset. To reduce computation, the only limiting factor to the
number of possible data space dimensions, it is highly
recommended that more efficient methods are used to
search the already-limited design space and to select the
optimal discretization length. Given more efficient algo-
rithms, designing experiments for more complex applica-
tions which use both the P wave and S wave reflection
coefficient for a multilayered subsurface now promises to be
computationally feasible.
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Yilmaz, Ö. (2001), Seismic Data Analysis, Society of Exploration
Geophysicists, Tulsa, Okla.

�����������������������
A.Curtis and T. Guest, Grant Institute, School ofGeoSciences, University of

Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JW,
UK. (andrew.curtis@ed.ac.uk; t.e.guest@sms.ed.ac.uk)

B04307 GUEST AND CURTIS: SEQUENTIAL DESIGN OF EXPERIMENTS

14 of 14

B04307


