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Three-line summary. We test the hypothesis that maximum entropy production is a 

potential thermodynamic driver for self-organised criticality in earthquake dynamics.  

The result is positive, with the caveat that the MEP state is near but just below the 

strict critical point, where system memory in the form of fractal patterns in the strain 

field emerge as a consequence of a finite order parameter.   

 

Media Abstract.  Reliable earthquake prediction remains the ‘holy grail’ of 

seismology.  For now the research frontier remains probabilistic: can we forecast the 

population dynamics better than a series of random events with aftershocks?  We 

apply methods developed in thermodynamics to the problem of earthquake population 

dynamics, using a simple computer model that reproduces many of the characteristics 
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of real earthquake populations.  The system, in the absent of other constraints, tunes 

itself spontaneously to a near-critical state where individual events are inherently 

difficult, if not impossible, to predict reliably, but there may be some forecasting 

power at a lower level of probability.  

 

Summary. 

We derive an analytical expression for entropy production in earthquake populations 

based on Dewar’s formulation, including gradient (tectonic forcing) and fluctuation 

(earthquake population) terms, and apply it to the Olami-Feder-Christensen (OFC) 

numerical model for earthquake dynamics. Assuming the commonly-observed power-

law rheology between driving stress and remote strain rate, we test the hypothesis that 

maximum entropy production is a thermodynamic driver for self-organized 

‘criticality’ (SOC) in the model.  Maximum entropy production occurs when the 

global elastic strain is near-critical, with small relative fluctuations in macroscopic 

strain energy expressed by a low seismic efficiency, and broad-bandwidth power-law 

scaling of frequency and rupture area.  These phenomena, all as observed in natural 

earthquake populations, are hallmarks of the broad conceptual definition of SOC, 

(which includes self-organizing systems in a near but strictly sub-critical state).  In 

this state the strain field retains some memory of past events, expressed as coherent 

‘domains’, implying a degree of predictability, albeit strongly limited in practice by 

the proximity to criticality and our inability to map the stress field at an equivalent 

resolution to the numerical model.  

 

Key words:  Maximum entropy production, self-organized criticality, earthquakes. 
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Introduction 

The maximum entropy principle is useful in determining the underlying distribution 

of energy states at equilibrium in a variety of physical systems with known 

macroscopic constraints (Jaynes, 1957).  In general this results in a probability density 

distribution of the Boltzmann form p(E)~g(E)e−E/kT, where g  is the degeneracy of 

states, k  is Boltzmann’s constant and T  is temperature.  In recent years it has been 

suggested that the maximum entropy principle may also hold for some far-from 

equilibrium, steady-state, dissipative systems. For example the twin constraints of 

finite tectonic energy flux and the fact that source rupture area is confined to a near-

two dimensional fractal set of potential fault rupture surfaces implies a gamma 

frequency distribution of radiated energy SE , of the form θ/1~)( SEB
SS eEEp −−− , 

where B  is a power-law exponent and θ  is a characteristic energy (Main & Burton, 

1984; Main, 1996).   For self-similar ruptures radiated energy is related to rupture area 

by 2/3~ AES , so 
2/3)/(1~)( AAb eAAp θ−−− , where Bb

2
3

=  is equal to the Gutenberg-

Richter exponent b  in the frequency ( F ) magnitude ( m ) relation bmaF −=10log  

(Kanamori & Anderson, 1975; Turcotte, 1997).  Additional constraints may be 

appropriate e.g. angular momentum or enstrophy are commonly used in fluid systems, 

and may be appropriate in modeling solid state flow in the whole earth system, but 

these are negligible in terms of the brittle field plate tectonic forcing we investigate 

here.   

Real data on regional earthquake populations (Kagan, 1997) do commonly 

show a gamma distribution of scalar seismic moment (the product of the rigidity, 

rupture area and average slip) a source parameter proportional to the radiated energy.  

However, it can be hard to pin down θ , which depends on the distribution of extreme 



 4 

events that may not have been recorded in current time-limited data sets (Main et al., 

2008), far less converged to a stable central limit (Naylor et al., 2009a) given 

correlations in the data and Poisson errors in counting integer frequencies associated 

with a finite temporal sample (Greenhough & Main, 2008).   In the absence of a good 

statistical fit to time-limited earthquake data sets, an upper bound can be estimated 

from the tectonic deformation release rates as a constraint (Main & Burton, 1984).  

Tectonic deformation rates are in fact remarkably stationary, testament to the 

relatively constant slow forcing due to plate tectonics operating on scales of millions 

of years (DeMets, 1994). 

The power law component of the gamma distribution holds over a very wide 

bandwidth of scales, implying large θ .  Broad-band scale invariance is one of the 

most important hallmarks of self-organized criticality, as defined by Bak, Tang & 

Wiesenfield, (1987), and first applied to earthquake models by Bak & Tang (1989).  

However, the converse is not true, i.e. power laws can also arise from systems that are 

not near critical (Reid & Hughes, 2002), and commonly arise in turbulence in the 

inertial range, in a state very far from SOC.  ‘Self-organized criticality’ is not a 

precisely defined concept but other key hallmarks relevant to the earthquake problem 

(summarized by Main, 1996) include a constant forcing (tectonic strain) rate, 

(consistent with palaeomagnetic and modern satellite data, DeMets, 1994); a system 

that has already self-organized to a state of near-critical stress everywhere, not just at 

mega-faults (consistent with man made stress perturbations inducing seismicity 

remote from plate boundaries, Gupta & Chadha, 1995); and small fluctuations about 

the near-critical state (consistent with the relatively low stress drop observed at all 

magnitudes, Abercrombie and Leary, 1993).  The main current debate is not whether 

or not SOC (albeit defined in this loose way) is a stationary state with no 
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predictability of individual events, or there remain systematic fluctuations about this 

state in an ‘intermittently critical’ state that could lead to the possibility of forecasting 

individual events in advance, above that expected by say a temporally random process 

with aftershocks.  Here we address a different question – what might determine how 

close the system average is to the critical point, and hence how predictable might we 

expect the system to be as it fluctuates around that state? 

 For at least some non-equilibrium systems the maximum entropy solution 

occurs where entropy production is also an extremum.  For example, in a linear, near-

equilibrium system, such as heat conduction through a solid with fixed temperatures 

at its boundaries and few degrees of freedom, it can be shown that the entropy 

production rate is a minimum (Nicolis & Prigogine, 1989; Kleidon & Lorenz, 2005).  

In contrast, when heat is transported by convection in a fluid, the effective heat 

conductivity of the medium becomes a variable that depends on the fluid velocity, 

which in turn depends on a temperature gradient that is no longer fixed.  This inherent 

non-linearity in a system maintained in a steady state, far from equilibrium, with 

feedback, open boundary conditions and many degrees of freedom, can result instead 

in a steady state of maximum entropy production, MEP, (Kleidon & Lorenz, 2005; 

Whitfield, 2005).  For example the temperature profile predicted by MEP is consistent 

with that of the atmospheres on Earth, Mars, and Titan, and perhaps that of mantle 

convection (Paltridge, 1978; Ozawa et al., 2003).  Critical in this analysis is the ability 

of the atmosphere to self-tune its effective thermal conductivity.   

Dewar (2003, 2005) attempted to generalize the maximum entropy production 

hypothesis to non-thermal systems, deriving a specific generic formulation for 

information entropy production that includes equivalent gradient, flux and fluctuation 

terms to the thermodynamic equivalents, and is a corollary of the maximum entropy 
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principle under a given set of constraints.  Using this theoretical approach, he was the 

first to connect a maximum in information entropy production to self-organized 

criticality.  For example in the classical sand-pile model (Bak et al, 1987), he showed 

the MEP solution for a constant slow forcing rate (‘grain’ rate) implied a divergence 

of the scale of fluctuations (equivalent to θ  defined above), one of the key hallmarks 

of SOC. 

In fact it has long been suggested that MEP applies to many physical, chemical 

and biological systems under specific conditions (reviewed by Martyushev & 

Seleznev, 2006).  These authors also explain that MEP is not a generic probabilistic 

solution, in the sense that it is always subordinate to stronger macroscopic constraints 

– it is not a ‘principle’ as such.  Explicitly they state that ‘attempts to derive the 

maximum entropy principle have so far been unconvincing because they often involve 

additional hypotheses’.  Frederiksen and O’Kane (2008) suggest that this is not 

surprising, since far from equilibrium phenomena are often characterized by multiple 

stationary states and hysteresis.  Martyushev and Seleznev (2006) also explain the 

apparent paradox that minimum entropy production can be viewed as the maximum 

possible entropy production rate for a system otherwise strongly constrained to be 

near equilibrium, e.g. heat conduction in a solid.   They provide a historical 

perspective that provides examples of earlier and alternate mathematical treatments to 

that of Dewar, and highlight the connection between MEP and self-organized 

criticality as a promising current line of inquiry. 

Before exploring this is it useful to explicitly restate what the concept of ‘self-

organized criticality’ as coined by Bak, Tang & Wiesenfield (1986) involves.  Their 

idea was that threshold systems, driven far-from equilibrium by a constant flux, could 

spontaneously organize itself (without tuning) to a ‘critical’ state i.e. always near the 
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threshold for system sized failure, characterized by an order parameter (e.g. change in 

angle of repose in an avalanche or stress drop in an earthquake) near zero, a diverging 

correlation length (e.g. in avalanche or rupture area), and associated broad-band scale-

invariance leading to power law scaling statistics (Main, 1996).  Finite order 

parameters or correlation lengths allowed in this slightly loose definition of SOC may 

be due to finite-sized effects (in which case the system really is at a thermodynamic 

‘critical’ point), or to near but strictly sub-critical behaviour.  

 Main & Naylor (2008) previously explored the connection between MEP and 

SOC in model and natural seismicity.  They defined entropy production in terms of 

the ratio of strain energy flux and a ‘temperature term’ not related to heat (particle 

velocity) but instead to fluctuations in the local strain energy field on a fixed lattice 

(Rundle et al., 1995; Main et al. 2000, Sornette, 2006, section 7.4).  Main & Naylor 

(2008) then applied this to the non-conservative Olami, Feder & Christensen (1992), 

OFC, numerical model for earthquakes, which includes an additional degree of 

freedom in terms of local stress dissipation, and used it to show that MEP occurs 

strictly in a state of self-organized sub-criticality, consistent with all of the key aspects 

of natural seismicity quoted above, as well as the general observation 1≈b .   

In this paper we repeat the analysis of Main & Naylor (2008), but using Dewar’s 

(2003, 2005) broader definition for entropy production applied to a non-conservative 

system.  We first show that at steady state the gradient and flux terms in the OFC 

model are in fact equal, and hence that the conclusions of Main & Naylor (2008) are 

robust with respect to this difference in definition.  We then show how the degree of 

dissipation affects the spatial, temporal and rupture frequency-size distributions in the 

transition from maximum to minimum entropy production as the conservation 

parameter is increased to its critical value of unity in the OFC model.  The precise 
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critical point, defined for an infinite system by diverging rupture area (or correlation 

length) and zero seismic efficiency (a dimensionless ‘order’ parameter defined by the 

ratio of stress drop to average stress) is in a state of minimum entropy production, 

associated with a high ‘temperature term’, a memory-less strain energy field with no 

predictability, and Bolzmann temporal fluctuations in the macroscopic strain energy 

field.  MEP by contrast occurs in a near but strictly sub-critical state, when there is 

some memory of past events in the form of correlated ‘domains’, a component of 

quasi-periodic ‘saw tooth’ fluctuations in macroscopic strain, low but finite seismic 

efficiency or stress drop, and broad-band scale invariance with an exponent b near the 

observed value of 1, all as seen in natural seismicity.  

 

The OFC Model 

The OFC model is a square lattice model of q  elements, where each cell i represents 

a block connected to its nearest neighbors by a connecting spring with a spring 

constant CK  (Olami, Feder & Christensen, 1992, their fig. 1).  These blocks rest on a 

flat plate and are driven at constant strain rate though leaf springs of length l0 and 

stiffness Lk  which connect them to an upper plate. The two plates represent the sides 

of the fault zone. Each cell is initialized with a random scalar strain iε . Strain is then 

accumulated at a constant velocity from the driving plate until a cell reaches its failure 

stress F
iε , at which point the cell ruptures, resets its strain and  redistributes a 

proportion of its strain 4/ii βεαεε ==∆ , to its 4 nearest neighbors, where 

)4/( CLC KKK +=α  is the elastic parameter of the OFC model and αβ 4=  is a 

conservation factor (of local strain).  For complete conservation at finite KC, 

0;1 == LKβ .  If any of these neighboring cells are now above threshold, they too 



 9 

rupture in the same manner until no cells are above threshold. We allow only one 

event to nucleate in a given time step, equivalent to a condition of slow forcing rate.  

In accordance with the original OFC model, cells which have been ruptured can 

accumulate stress from subsequent updates in the same rupture propagation event: i.e. 

a cell, once ruptured and reset, heals immediately.  This introduces a stochastic 

roughening of the strain field behind the rupture front that is a source of strong spatial 

fluctuations that increasingly ‘wipe’ the memory of the rupture as a coherent domain 

as β increases (Naylor & Main, 2008).  We use a spatially uniform fault with 1=F
iε  

for all 200200×=q  cells, and assign a local reset value of 0=iε .   

 

Entropy Production Rate 

Using the constraints of unit probability, and assuming a stationary state (averaged 

over the long term) of constant internal energy and mass, and constant energy and 

mass flux applied to the boundary of a system, Dewar (2003) used the maximum 

entropy technique applied to path integrals for a Hamiltonian system to derive a 

general formula for information entropy production in an open, dissipative, non-

equilibrium, steady-state system.   For a system with a constant forcing rate F , a 

forcing gradient ϑ∇ , and an output flux Q  at inverse temperature ϑ , the entropy 

production rate is  

 ).( QF
dt
dS

V
ϑϑ +∇= ∫   .     (1) 

The first term describes rate of the entropy production for the system’s fluxes and can 

be interpreted as a product of input fluxes and their conjugate forces. The second term 

relates to the entropy production due to the fluctuations, as an analogue for heat flow 

out of the system.  For the sand pile the relevant input flux term is the mass flux of 
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sand particles added to the pile (‘grain’ rate), and the flux or forcing term F  is 

proportional to the slope of the sand pile (Dewar, 2005).   

 Explicitly ignoring fluctuations about the long-term average state, and using the 

same constraints as those to define equation (1), Dewar (2003) then shows that the 

maximum probability path, taking into account both reversible and irreversible 

components, is one of maximum entropy production [implicitly subject, as 

Martyushev and Seleznev (2006) noted later, to additional constraints when they are 

present].  Dewar (2003) also showed that, in the limit of low driving rate, MEP is 

associated with a divergence in the variance of the magnitude of the output flux, a 

‘characteristic signal of self-organized criticality’ with occasional system-size 

avalanche events (2003, 2005).  The derivation of MEP is such that it applies only to 

the statistical properties of the (long-term averaged) stationary state, and not to the 

individual fluctuations we may otherwise wish to predict.  It is therefore more useful 

in our example in addressing questions such as ‘what is the probabilistic seismic 

hazard based on stationary plate tectonics’ rather than ‘when is the next big 

earthquake’.   

In the two-dimensional version of the OFC model the input flux is determined 

by the constant strain rate dtd /ε  from the driving velocity applied to an upper plate. 

Thus we can replace the forcing term F by a term proportional to dtd /ε  (analogous 

to the mass flux in the sandpile).  The most appropriate conjugate gradient term ϑ∇  

is then proportional to the average strain on the leaf springs ε  (analogous to the 

slope in the sandpile).  The integration over the volume V  in (1) is replaced by a sum 

over the area A  represented by the q  elementary blocks on the fault plane in the OFC 

model. The forcing term (strain energy flux averaged over many cycles) is then 

dtdlqKF L /0 εε ><= .    
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The energy associated with the fluctuations (earthquakes) is 

   
η

sE
t
NQ

∆
∆

=                              ,           (2) 

where tN ∆∆ /  is the seismic event rate, sE   is the mean radiated energy per event 

for the earthquake population, and  η  is the seismic efficiency, defined by EES η= ,  

where E   is the average strain energy held in the crust over time.  For elastic radiation 

the seismic efficiency is related to stress drop σ∆  and the mean stress (average of 

stresses at and after failure) >< σ  by ><∆= σση /5.0 . It is possible that other 

constraints may be useful in geodynamic problems in general, e.g. in heat flux, 

momentum, angular momentum, enstrophy etc., but these are not present in the linear 

elastic, massless OFC model, and not possible to analyse using the recorded 

properties of earthquakes addressed here, which we show can be explained solely 

from considering the energy flux and internal energy terms. 

We quantify an appropriate ‘temperature term’ ϑ  in terms of local fluctuations 

in the strain energy field, determined in turn by local differences in the leaf spring 

strain.  There are twice as many connecting springs as block elements in the two-

dimensional OFC model, so the temperature term representing the local fluctuations 

in strain energy on the fault plane, averaged over the q  cells in the cellular 

automaton, is then 

222

2
1

oCL lKK 





 ><+><= δεεϑ  . . (3) 

The driving plate is assumed rigid, so that its internal stiffness is infinite, ∞=plate
CK , 

and hence 01 =−
plateϑ .  The gradient term is then 0

1
0

111 //)( llplate
−−−− =−=∇ ϑϑϑϑ .   

Including the Boltzmann term k to retain appropriate dimensions, entropy 

production is then 
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ϑ

η
εε ><

∆
∆

+><
=

∆
∆

S
L

E
t
Nl

dt
dqK

t
S

k

2
01   .  (4) 

At steady state, Main & Naylor (2008) showed that  

η
εε

><
∆
∆

=>< S
L

E
t
Nl

dt
dqDK 2

0   .    (5) 

Empirically, the driving stress is related to strain rate in Earth materials under semi-

brittle conditions across a wide range of scales by a power law 

n
L

n KDCdtd )(/ ><== εσε  where C , D  and the exponent n  are constants for a 

given medium, with n estimated to be in the range 2-6 [Carter and Kirby, 1978; 

Newman and White, 1997].  Applying this to equations (4) and (5) yields 

ϑ
η

ϑ
ε

><
∆
∆

=
><

=
∆
∆

S
n

L

E
t
N

lKqD
T
S

k

2
)(21 2

0  .   (6) 

 

Apart from the factor 2, this is identical to equation (5) in Main & Naylor (2008), 

reflecting the fact that, for this problem at steady state, ∫∫ =∇
VV

QF ϑϑ. .  It follows that 

all of the main results of Main & Naylor (2008) are robust with respect to this change.  

We now explore these in more detail. 

 

MEP and self-organized (sub) criticality 

Figure 1 shows the mean rupture area, seismic efficiency and entropy production as a 

function of the reduced temperature term CC ϑϑϑ /)( −  and conservation factor β .  

Apart from finite size effects (finite q ) the mean rupture area diverges and the 

seismic efficiency tends to zero as 1; →→ βϑϑ C .  The mean rupture area is potted 

as an analogue for the correlation length of rupture.  The seismic efficiency is by 
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definition a dimensionless measure of the difference in energy between ‘broken’ and 

‘intact’ phases.  It is therefore an appropriate ‘order parameter’ (Stanley, 1971), 

analogous to the density contrast between liquid and vapour phases at the critical 

point.  Diverging correlation length and zero order parameter (apart from finite size 

effects associated with the model boundary) define a precise critical point at 

1; == βϑϑ C  in Figure 1.   

 We find entropy production is a maximum for 0.85<< β0.60 , depending on 

the value of the non-linear exponent n  (Fig. 1c), with more ‘brittle’ behaviour (higher 

n ) corresponding to a more critical system.  Thus MEP occurs in a near but strictly 

sub-critical state, with large but finite correlation length and low but finite order 

parameter near the critical point.  Entropy production is a local minimum at 0=β , 

and an absolute minimum at the critical point 1=β .  From equation (6) the zero 

entropy production at 1=β  is a consequence of the extreme case 0=LK  (equivalent 

to zero rigidity modulus and 0→η  in an infinite system).  This property of the 

conservation factor (for which there is no equivalent in the conservative sand pile 

model) explains why MEP occurs slightly below the critical point for the OFC 

earthquake model, rather than at the critical point in the sandpile model (Dewar, 

2005). Here the attractor is strictly in a state of self-organised (sub)-criticality. 

 

Memory and a potential mechanism for characteristic earthquakes 

Figure 2 shows how increasing conservation factor results in a steady decline in 

memory of past events in the transition from maximum to minimum entropy 

production as 1→β .  The memory is expressed as long-lived correlated domains of 

cells with equal strain, separated by ‘domain walls’ with much stronger local strain 

gradient where most of the strain energy in the connecting springs is contained at 
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relatively low ϑ .   This solution is energetically favourable since the self-organization 

at low ϑ  minimizes the macroscopic energy held in the connecting springs by self-

tuning to have a large proportion of neighbouring blocks with the same strain.  This 

has direct analogues in the Ising model for magnetism below the Curie temperature 

(Bruce & Wallace, 1989, their fig 8.2).   

 For intermediate β  there is a strong memory of previous large ruptures, 

resulting in a tendency for a similar large rupture to occur in the future as the load is 

increased.  This is consistent with the hypothesis of spatially ‘characteristic’ 

earthquakes, where similar extreme events are thought to repeat because of persistent 

asperities or barriers along the fault plane, analogous to the ‘domain walls’ of high 

strain gradient in Fig 2. In this sense the future event ‘knows’ how big it is going to be 

once nucleated.  As the conservation factor and temperature term increases, the spatial 

field becomes increasingly random due to the re-rupturing mechanism, until the 

spatial memory completely disappears at the critical point 1; == βϑϑ C . 

 Figure 3 shows the time series for the macroscopic strain for the same values of 

ϑ  and β as in Figure 2.  The spatial memory also results in quasi-periodic ‘saw-tooth’ 

fluctuations in macroscopic strain that gradually disappear as 1; →→ βϑϑ C , a 

property first noted by Janosi & Keresz (1993).  The combination of repetition of 

rupture on a persistent large fault segment and quasi-periodic recurrence was used to 

define the concept of a ‘characteristic’ earthquake (Schwartz & Coppersmith, 1984), 

based on comparison of earthquake recurrence estimated from catalogues and on 

longer timescales by geological estimates of repeated slip of similar amount on 

exposed fault traces.  At the critical point the fluctuations in macroscopic strain that 

determine the seismic efficiency also diminish in amplitude and become more 
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Boltzmann-like (Fig. 3), indicating that the temporal as well as the spatial 

predictability diminish as 1; →→ βϑϑ C .   

 In analysis of real data the concept of characteristic earthquakes remains 

controversial however.  The recent Parkfield earthquake in California was an 

acknowledged failure of the hypothesis in prospective mode (Bakun et al., 2005), and 

a larger test based on forecasts made in 1980 failed to reject the null hypothesis of 

spatially localized but temporally random occurrence (Kagan & Jackson, 1991).  

Another aspect of the characteristic earthquake model is the elevated occurrence of 

large events compared to the Gutenberg-Richter trend at low and intermediate 

magnitude (Schwartz & Coppersmith, 1984).  Recently Naylor et al. (2009b) 

demonstrated that very large samples would be required to reject the null hypothesis 

of a Gutenberg-Richter frequency-magnitude law, in favour of the characteristic 

earthquake model, due to integer counting errors for finite temporal samples.  Thus 

while MEP provides a possible theoretical mechanism for characteristic earthquakes 

and a degree of predictability, in practice this may be hard to establish in natural data 

due to the proximity to criticality, a lack of direct observation of the  stress field with 

the kind of resolution shown in Figure 2, and to sampling uncertainties.  For further 

discussion of the implications of self-organized criticality for earthquake 

predictability see the Nature website debate at:  

www.nature.com/nature/ debates/earthquake/equake_frameset.html 

 

Distribution of fluctuations: rupture area 

Figure 4 shows the frequency-rupture area statistics for different values of the 

conservation factor.  When 0.85<< β0.60  it has previously been reported that the 

Gutenberg-Richter b-value is relatively stable near the observed value 1≈b  (Lise & 
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Paczuski, 2001) when the model is driven to steady state.  This is confirmed by Fig. 4, 

with b closest to unity when 7.0=β  and 0.8.  The b-value drops sharply thereafter, as 

the largest events reduce the space available for smaller events.  A strong finite size 

effect is introduced as 1→β , manifest by curvature in the frequency statistics for 

large rupture area (Boulter & Millier, 2003).  Note the increasing scatter due to the 

increasing ‘counting error’ for the rarer largest events, consistent with the analysis by 

Greenhough & Main (2008).   

 

Discussion 

The ability of a system to achieve any extremum principle is dependent on there being 

sufficient degrees of freedom for the system to exploit in exploring the phase space.  

In this paper the analogue to the thermal conductivity term as a degree of freedom is 

the conservation factor β , which in turn depends on the spring stiffness ratio.  For 

10,/0 ≤≤∞≤≤ βLC KK .  In this model the connecting springs have the same 

stiffness parallel and perpendicular to the slip direction.  In the slip direction the 

connecting springs deform only axially in the conceptual model and the leaf springs 

only in shear.  Hence the ratio of spring stiffness in the driving direction (connecting 

to leaf spring ratio) is equivalent to the ratio of axial modulus on the fault to shear 

modulus in the surrounding medium.  For a Poisson solid the ratio of axial to shear 

modulus is around three, equivalent to a compressional to shear wave velocity ratio of 

√3, a Poisson’s ratio of 0.25, and 13/12=β , i.e. a value closer to the critical point than 

the MEP solution in Fig 1 for the range of n  shown.  For a given rock type seismic 

velocity and Poisson’s ratio vary significantly with crack density (Walsh, 1965; 

Kachanov, 1986). The crack density is much higher on or near the fault than around it 

leading to velocity contrasts of 5-15% at typical earthquake nucleation depths (Ben 
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Zion et al., 2007).  This is consistent with a softening of CK  relative to LK  (on the 

order of 10-32%) providing a mechanism for reducing β  in the approach to the MEP 

solution, and moving the system away from the strict critical point. 

A big limitation of the OFC model is to assume the fault plane has already 

localized to a 2D plane.  In future work it would be interesting to see how softening 

associated with damage may also be a mechanism for MEP as a driver for 

deformation localizing from an initially intact body into a macroscopic fault plane 

(e.g. as in the modified fuse network model of Cowie et al., 1993).   

 

Conclusion 

We have derived an expression for the entropy production rate for the OFC model for 

earthquake populations using Dewar’s formulation, including both input forcing and 

output energy flux terms.  At steady state the two are equal for the OFC model, so 

previous conclusions using only the output flux term remain robust.  Assuming the 

commonly-observed power-law feedback between remote boundary stress and strain 

rate at steady state, the model maximizes entropy production in a near but strictly sub-

critical state, with a low but finite seismic efficiency (order parameter), an upper 

magnitude cut-off (related to the correlation length of ruptured domains) that is large 

but finite.  The diminishing order parameter and diverging correlation length formally 

identify a critical point where the conservation factor 1=β .  The MEP solution 

exhibits the universally-observed Gutenberg-Richter b-value of around 1 in 

frequency-magnitude data.  In this state the model stress field organizes into coherent 

domains, providing a physical mechanism for retaining a finite memory of past 

events, with quasi-periodic ‘saw-tooth’ fluctuations in macroscopic strain, implying a 

finite degree of predictability, albeit strongly limited theoretically by the proximity to 
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criticality and practically by the difficulty of directly observing Earth’s stress field at 

an equivalent resolution. 
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FIGURES 

 

Figure 1: Mean rupture area, seismic efficiency and entropy production rate as a 
function of the conservation parameter β. Entropy production depends on the non-
linear exponent n, with a maximum between β =0.6 and 0.85 or so, where the b-value 
is relatively stable at b=1 (see Fig. 4). 
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Figure 2: Sample snapshots of the OFC model distribution for different values of the 
conservation factor, β (top row left to right: β =0.0, 0.6, 0.7, 0.8; bottom row 0.9, 
0.95, 0.98, 1.0). 
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Figure 3: Macroscopic strain, expressed as average strain in the leaf springs (black) 
and connecting springs (red) as a function of time for different values of the 
conservation factor, β, arranged as in Fig. 2. 
 

 

Figure 4: Frequency-rupture area plots for different values of the conservation factor, 
β, arranged as in Fig 2, compared to reference slopes corresponding to b=1 (red lines).   
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