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Stability of Localized Patterns in Neural Fields
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Princeton, NJ 08544, U.S.A.

J. Michael Herrmann
michael.herrmann@ed.ac.uk
University of Edinburgh, Institute for Perception, Action and Behaviour,
Informatics Forum, 10 Crichton St., Edinburgh, EH8 9AB, U.K.

We investigate two-dimensional neural fields as a model of the dynamics
of macroscopic activations in a cortex-like neural system. While the
one-dimensional case was treated comprehensively by Amari 30 years
ago, two-dimensional neural fields are much less understood. We
derive conditions for the stability for the main classes of localized
solutions of the neural field equation and study their behavior beyond
parameter-controlled destabilization. We show that a slight modification
of the original model yields an equation whose stationary states are
guaranteed to satisfy the original problem and numerically demonstrate
that it admits localized noncircular solutions. Typically, however, only
periodic spatial tessellations emerge on destabilization of rotationally
invariant solutions.

1 Introduction

Neural fields (Amari, 1977; Wilson & Cowan, 1973) describe the dynam-
ics of distributions of activity on a layer of neurons. Neural fields have
been suggested as models of internal representations in natural agents
(Takeuchi & Amari, 1979; Gross, Stephan, & Krabbes, 1998) as well as in
robots (Steinhage, 2000; Iossifidis & Steinhage, 2001; Erlhagen & Bicho,
2006; Giese, 1998). Various modalities are covered, such as spatial local-
ization, viewing direction, attentional spotlight, the dynamics of decision
making, elementary behaviors, and positions of other agents in the environ-
ment. More extensive studies in theoretical neuroscience (Suder, Wörgötter,
& Wennekers, 2001; Mayer, Herrmann, & Geisel, 2002; Bressloff, 2005) con-
centrate on primary visual cortex (Lieke et al. 1989), superior culliculus
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(Schierwagen & Werner, 1996), the representation of motoric primitives
(Thelen, Schöner, Scheier, & Smith, 2001; Erlhagen & Schöner, 2002), and
working memory in prefrontal cortex (Schutte, Spencer, & Schöner, 2003;
Camperi & Wang, 1998). Generally neural fields serve as nonparametric
representations of probability densities, and their dynamics may perform
operations on the densities such as Bayesian computations (Herrmann,
Pawelzik, & Geisel, 1999).

Recently neural fields have attracted attention in modeling and analysis
of brain imaging data, because they are able to represent the dynamic
interaction of an active medium with time-varying inputs and because
the spatial and temporal scales in the data and neural field models are
starting to become comparable. Especially if information about connectivity
is available from the data (Jirsa, Jantzen, Fuchs, & Kelso, 2002), neural fields
are of high explanatory power. Moreover the analysis has reached a level
where applications directly benefit from the theoretical progress, and at the
same time, computational power has become available that allows us to
perform online simulations of two-dimensional neural fields.

One-dimensional problems were comprehensively studied in the 1970s
(Amari, 1977; Kishimoto & Amari, 1979; Takeuchi & Amari, 1979). While
for spatially extended (e.g., periodic) patterns, the transition to the more
relevant two-dimensional case is nontrivial but fairly well understood (Er-
mentrout & Cowan, 1979; Ermentrout, 1998), localized activities in dimen-
sions larger than one have not yet been treated with the same rigor. The
situation, however, does not seem to be complex: a large body of numeri-
cal studies, together with theoretical considerations (Laing, Troy, Gutkin, &
Ermentrout, 2002; Laing & Troy 2003), imply a general instability of multi-
bump solutions if the interactions are excitatory at small and inhibitory
at large distances (see also Laing & Chow, 2001, for stability analysis in
one-dimensional models of spiking neurons). Further, there has been nu-
merical evidence that single-bump solutions in two dimensions for radially
symmetric interactions are essentially circular, which was exploited as an
assumption in Taylor’s early attack on the two-dimensional case (Taylor,
1999). Werner and Richter (2001) provided evidence for the existence of
ring-shaped solutions that are possible for certain types of neural interac-
tions. Along these lines, one may conjecture that finite mesh-like structures
of higher genus exist as well.

The situation became more spirited recently when Herrmann,
Schrobsdorff, and Geisel (2004), Bressloff (2005), and Doubrovinski (2005)
tackled the stability problem of localized activations in two-dimensional
fields. Although the generality that has been achieved in the one-
dimensional neural fields cannot be expected in two dimensions, a number
of interesting variants of the circular activity configurations have been
analyzed.

Here we present a concise and reproducible scheme for the analysis of
the stability of localized activity distributions in neural fields. We show the
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applicability of the scheme to the special case of circular solutions and also
study ring-shaped and bar-shaped solutions, which present the complete
set of known localized solutions for simple kernels (Werner & Richter, 2001).
In addition to the stability proofs based on the classical scheme (Pismen,
1999; Bressloff, 2005; Doubrovinski, 2005), we are interested in behavior
beyond the phase transitions toward unstable regions. The destabilization
of a circular solution is known to lead to a transient elongation of the ac-
tivity bubble (Bressloff, 2005; Doubrovinski, 2005), which ultimately causes
the localized solution to split or form meandering bands. Either case is
unstable in a strict sense: the splitting into two continues toward a plane-
filling hexagonal pattern, while the banded patterns develop a global stripe
pattern or a quasiperiodic arrangement.

The destabilization is thus fundamental since for typical Mexican hat
interaction kernels, there is no nearby stable state that is approached after
the bifurcation, while the spatially extended patterns are not approached
in finite time (unless a general criterion for convergence is drawn into con-
sideration). Yet the destabilization, at least in neurobiological applications,
is the most interesting part of the theory. Divergences are usually very slow
and may halt completely due to reasonable boundary conditions, such that
an activity-based correlational learning scheme may organize anisotropies
in the connections, which stabilizes the anisotropic activities as assumed
in Bressloff (2005) and exploited in Schierwagen and Werner (1996). A the-
oretical account of the interaction of activity dynamics and learning was
studied in Dong and Hopfield (1992) in relation to the activity effect on
feature maps (cf. Mayer et al., 2002).

2 The Neural Field Equation

The neural field model describes the activations of a layer of neurons
when the geometry of interactions rather than the specific connectivity
among the neurons is relevant. We assume positions r ∈ R

2 for neurons
with continuous-valued activations u(r, t). The synaptic weights between
neurons at the positions r and r′ are expressed by isotropic interaction ker-
nel w(r, r′) = w(|r − r′|) of Mexican hat shape. Neurons are activated if their
total input is greater than zero. We will study only equilibrium solutions
without external input, and we neglect slow learning effects, so the synaptic
weights are constant over time.

The activation at a position results from a weighted integration over the
inputs from all other active locations in the field and a natural decay toward
a resting potential denoted by h. The dynamics of the neural field is thus
determined by the equation

τ
∂u(r, t)

∂t
= −u(r, t) +

∫
R[u]

w(|r − r′|) dr′ + h, (2.1)
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where R[u] = {x | u(r) > 0} is the excited region, that is, a neuron receives
input only from neurons within R. The boundary of R[u] is assumed to
be smooth. Rescaling time, τ can be set to unity without loss of generality.
Equilibrium solutions are defined by

u(r, t) =
∫

R[u]
w(|r − r′|) dr′ + h (2.2)

and depend on the value of the threshold parameter h and the particular
form of w. Here we use a smooth kernel which is more general than the
quasi-constant kernel function in Herrmann et al. (2004). The kernel is
constructed as a difference of gaussian functions and is defined by four
parameters: K , k, M, m:

w = K exp (−k‖r − r′‖2) − M exp (−m‖r − r′‖2). (2.3)

If nonrotationally symmetric solutions are excluded from the beginning
from the consideration of equation 2.2, the situation simplifies dramatically,
and it can be shown (Taylor, 1999) that one-bump solutions u(‖r‖) of certain
radii are stationary states of the dynamics 2.1. Analogously, a ring-shaped
solution (Werner & Richter, 2001) or a stripe-like solution (i.e., a degener-
ate ring of infinite radius) can occur. However, when an arbitrarily small
perturbation of the solution is being considered, the symmetry might be
broken and new phenomena can appear.

3 Stability

It has previously been shown that equation 2.1 admits rotationally in-
variant stationary solutions with disc-shaped activated region (one-bump
solutions). Generically these arise in the course of a “blue sky bifurca-
tion” (Strogatz, 1994): no solution is present in the subcritical parameter
region, whereas two solution branches bifurcate as the control parame-
ter exceeds the critical value. The two solutions are rotationally invariant
one-bumps. Stability analysis of these states with respect to rotationally
invariant perturbation is essentially equivalent to stability analysis of the
one-bump solution of the one-dimensional model. It reveals that the un-
stable branch generically corresponds to the bump of smaller radius. Upon
destabilization, the region of activation expands as the solution approaches
the stable branch, corresponding to the circular bump of larger radius (see
Figure 1).

Seeking a stationary solution u of the two-dimensional model, equation
2.1, assuming rotational invariance of the field (i.e., u(r) ≡ u(r ) with r =
‖r‖), leads to a problem that is essentially equivalent to that of finding
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Figure 1: (a) Stable one-bump solution of the neural field equation. Parameters
are K = 2.5, k = 5, M = 0.5, m = 0.5, and h = −0.281. (b) Unstable one-bump
solution for the parameter values K = 2.5, k = 5, M = 0.5, m = 0.5, and h =
−0.294. (c) Annular solution with the parameters K = 2.5, k = 5, M = 0.5, m =
0.5, and h = −0.115. (d) Part of a stable stripe-like solution. Parameters as in c.
An unstable solution also exists at the same parameters.

stationary states in the one-dimensional model (see the appendix). Two
types of solutions besides the circular one-bumps are readily constructed:
solutions with annular activated regions and solutions with a stripe-shaped
region of activation (see Figure 1). The possibility of the existence of the
former has been pointed out previously, while the latter can be seen as
degenerate annuli of infinite inner radius.

We now turn to the analysis of the stability properties of the above-
mentioned stationary states. Consider the one-bump solution with a disc-
shaped activated region (i.e., u(r ) > 0 iff r < R ). Consider the dynamics of
a small perturbation εη,

u(r, t) = u(‖r‖) + εη(r ,t). (3.1)

Inserting into equation 2.1 and keeping the terms of up to the first order in
ε, one finds that to linear-order the dynamics of the perturbation obeys

∂η (r, t)
∂t

= −η(r, t) +
∫

R2
w(‖r − r′‖) δ(u(r′)) η(r′, t) dr′, (3.2)
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where δ(u(r′)) is a Dirac delta function (see the appendix). Substituting an
ansatz of the form η(r, t) = exp(λt)ξ (r), one arrives at an eigenvalue problem
that in polar coordinates becomes (see the appendix)

λξ (r, θ ) = −ξ (r, θ ) + 	

∫ 2π

0
g(θ − θ ′) ξ (r, θ ′) dθ ′. (3.3)

Here, g is a 2π periodic function depending on kernel w(‖r − r′‖), and 	 is
a constant given by

	 = R
∣∣∣∣∂u(r )

∂r

∣∣∣∣
r=R

∣∣∣∣
−1

, (3.4)

that is, the ratio of the radius of the activated region R to the absolute value
of the slope of the radial profile of the stationary solution at r = R. Clearly,
explicit evaluation of 	 requires calculating the stationary solution, which
is implicitly given by equation 2.2 in terms of a double integral. Equation 3.3
is known as Fredholm’s integral equation of the second kind. The integral
operator on the right-hand side of equation. 3.3 is compact, bounded, and
self-adjoint, implying that every spectral value is an eigenvalue, all eigen-
values are real, each eigenspace is finite-dimensional, and zero is the only
possible accumulation point of eigenvalues (Kreyszig, 1978). Solving equa-
tion 3.3, we obtain eigenvalues and eigenfunctions that in polar coordinates
read (see the appendix)

λn = −1 + 	

∫ 2π

0
g(θ ) cos (nθ ) dθ

ξn =
∫ 2π

0
w(r, θ, R, θ ′) cos (nθ ′) dθ ′, (3.5)

where R is the radius of the circular activated region. The nth eigenfunction
is 2πn-periodic in θ , implying that it is Dn-symmetric (symmetry with re-
spect to rotation by 2π/n around the origin and with respect to reflections
on the n respective symmetry planes; the square is, e.g., D4-symmetric,
whereas a regular hexagon is D6-symmetric) and corresponds to a multi-
periodic deformation of a circle. Eigenvalue spectra for one-bump solutions
are given in Figure 2. Certain features of these are readily interpretable. For
example, we see that for the bump with a smaller radius, the eigenvalue
λ0, corresponding to rotationally invariant deformation is positive, imply-
ing instability with respect to perturbations in the radius of the bump. The
spectrum, corresponding to the larger bump, however, is nonpositive, im-
plying stability with respect to arbitrary perturbation in agreement with
earlier results. Also, the eigenvalue λ1, which corresponds to a 2π-periodic
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Figure 3: (a) Four eigenvalues versus bump radius R. The curve that represents
λ0 describes the stability with respect to perturbations in bump radius. The oth-
ers are (from left to right) λ2 (reflection-invariant deformation), λ3 (D3-invariant
eigenmode), and λ4 (D4-invariant eigenmode). λ1 is identically zero, reflecting
the metastability of the solutions with regard to lateral shifts. Parameters are
K = 1.5, k = 5, M = 0.5, and m = 1.5. (b) The spectrum determining the stabil-
ity of the stripe-shaped solutions shown in Figure 1d. Only the information for
the stable solution if given here. This solution loses stability for a band of values
of � (see section A.3).

deformation (or, equivalently, a translation of the bump), vanishes, reflect-
ing the translational invariance of equation 2.1. Exploiting this observa-
tion, it appears possible to reexpress 	 in equation 3.4 more explicitly as
	 = 1/

∫ 2π

0 g(θ ) cos(θ ) dθ , whereby the expressions for the other eigenvalues
simplify to

λn = −1 +
∫ 2π

0 g(θ ) cos(nθ ) dθ∫ 2π

0 g(θ ) cos(θ ) dθ
. (3.6)

Note that contrary to equation 3.5, equation 3.6 does not explicitly contain
the stationary solution u, which allows us to calculate the nth eigenvalue as a
function of the radius of the activated region without evaluating double in-
tegrals in the implicit expression for u. Only integrals over one-dimensional
manifolds appear in equation 3.6, greatly simplifying the calculation of
the spectrum. Apart from theoretical considerations, this is of importance
for technical applications since the knowledge of stability properties of
solutions of equation 2.1 could affect their use for representing probabil-
ity distributions, for example, in implementations of autonomous robot
memory.

Previous work (Werner & Richter, 2001) conjectured that the bifurcation
branch corresponding to the stable one-bump remained stable for all values
of the control parameter. Using equation 3.6, this is readily proved false:
higher and higher frequency eigenmodes progressively turn unstable as the
radius of the stationary solution is increased (see Figure 3).
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Figure 4: (Top) Time evolution of an unstable bump undergoing stability loss
at a D2-eigenmode. Parameters are K = 1.5, k = 5, M = 0.5, m = 1.5, and h =
−1.46 · 10−2. (Bottom) Time evolution of an unstable bump undergoing stability
loss at a D3 invariant eigenmode. Parameters: K = 1.5, k = 5, M = 0.5, m = 1.5,
and h = −4.43 · 10−3.

Strictly speaking, the assertion that the linear stability analysis as out-
lined above correctly determines the stability properties of stationary so-
lutions relies on additional assumptions on operators appearing on the
right-hand side of equation 2.1 (Golubitsky, Schaeffer, & Stewart, 1985). For
infinitely dimensional nonsmooth fields, these generically need not hold. In
order to check whether stability analysis is adequate, correctly determining
the stability properties of the stationary solutions, we performed a num-
ber of numerical simulations. Figure 4 depicts a simulation of unstable
one-bump whose corresponding stability spectrum reveals that the maxi-
mal (positive) eigenvalue is that of the D2-symmetric eigenmode. As time
elapses, the initially circular activated region keeps deforming, forming
bloblike protrusions. These subsequently bud off from the middle bump.
The newly formed activated domains keep splitting, progressively tiling
the plane in a hexagonal pattern. We stress that the pattern that is formed
immediately after destabilization of the stationary state is D2-symmetric, as
would be expected from the properties of the eigenvalue spectrum. That is,
stability properties of the stationary solutions, as well as qualitative aspects
of the pattern, forming upon destabilization of the steady state, are correctly
predicted from the linear stability analysis.

Symmetry breaking accompanying destabilization of a stationary bump
was examined for a broad range of parameters (e.g., parameters that yielded
solutions with a maximal eigenvalue of the respective spectrum correspond-
ing to D3-, D4-, and D8-symmetric perturbations; see Figure 4). In all of the
cases, the course of the symmetry breaking was appropriately determined
by linear stability.

Stability analysis of annular solutions proceeds along the same lines as
that of one-bumps (see the appendix). The essential difference is that instead
of a single equation, 3.3, a system of two equations results, meaning that to
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every nonnegative whole number corresponds a pair of real eigenvalues.
(In general, to every boundary of an activated domain, there corresponds
an equation in the corresponding eigenvalue problem.) We find that in the
case of the annular solution shown in Figure 1c, the largest eigenvalue
corresponds to a D3-symmetric perturbation. Simulations demonstrate that
initially a rotationally invariant annulus splits into three adjacent blobs that
gradually drift apart (not shown). The symmetry of the resulting state is the
same as that of the largest eigenvalue. Again, the stability of the stationary
solution, as well as qualitative aspects of the emerging pattern, are readily
predicted from the analytically computed spectrum.

Finally, let us consider the stripe-shaped solutions. Their stability is gov-
erned by an eigenvalue problem, similar to that governing the stability of
the annuli. However, the corresponding linear operator is no longer com-
pact (this is a consequence of activated region being unbounded), and the
spectrum no longer needs to remain discrete. Actually, in this case, the spec-
trum is continuous: to every real corresponds a pair of (real) eigenvalues.
Figure 3b shows results of the linear stability analysis of the stripe solution,
depicted in Figure 1d. In the corresponding simulation, the stripe is seen to
split into a row of separate bumps—a “chain-of-pearls” configuration. The
interbump separation is the same as the wavelength of the eigenmode, cor-
responding to the largest eigenvalue. Again, stability and semiquantitative
properties of patterns resulting from the stationary state destabilization are
readily predicted from the respective eigenvalue spectrum.

In summary, the preceding section describes all of the stationary non-
homogeneous solutions of the two-dimensional Amari equation known to
date and exhaustively examines their stability properties. Quite strikingly,
stability analysis of the nonhomogeneous steady state is possible since the
eigenvalue problem, equation 3.5, is effectively one-dimensional, although
a two-dimensional system is being considered.

4 Modified Equation

A long-standing question regarding the Amari model is the existence of
nonrotationally invariant stationary solutions with bounded and connected
regions of activation. Such states are likely to bifurcate from circular solu-
tions on destabilization at a nonrotationally invariant eigenvalue. In fact,
the stability loss of one branch is always accompanied by the emergence
of another in its vicinity, provided that the mappings defining the dy-
namical system under consideration are sufficiently smooth (Crandall &
Rabinowitz, 1971). However, in the simulations, exclusively periodic pat-
terns resulted on destabilization of circular solutions.

In order to address the existence of the nonrotationally invariant solu-
tions of equation 2.1 with a bounded and connected activated region, we
modify the original Amari model, equation 2.1, so as to obtain a related
(modified) equation fulfilling the following three conditions:
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1. Stationary solutions of the modified equations should be solutions of
the unmodified equation, 2.2.

2. The modified equation should not admit solutions with an un-
bounded activated region.

3. The stability of a solution to equation 2.2 should remain unaltered by
the modification.

According to condition 3, rotationally invariant stationary solutions
behave like those of the unmodified Amari model, admitting symmetry
breaking at a nonrotationally invariant eigenvalue. However, the symme-
try breaking cannot result in a spatially extended periodic pattern according
to condition 2. Consequently, a nonrotationally invariant localized state is
likely to emerge. It will be a solution of the original (unmodified) Amari
model with desired properties, provided that its region of activation re-
mains connected in the course of destabilization. Note, however, that con-
ditions 1 through 3 do not suffice to ensure that the activated domain will not
start splitting into a separate disconnected region upon symmetry breaking.

We now turn to the construction of a modification of equation 2.1 sat-
isfying conditions 1 to 3. Consider a circular one-bump solution uh of
equation 2.1 with resting potential h and the area of activated region A[uh].
Let us modify the equation according to

∂tu = −u(r, t) +
∫

R[u]
[w(|r − r′|) + q ] dr′ − q A[uh] + h′, (4.1)

where q is any real number. Suppose that u is a stationary solution of
equation 4.1 for a certain q . Substituting u into equation 4.1, one obtains
with the area of R [u] being denoted by A[u]:

0 =−u(r, t) +
∫

R[u]
[w(|r − r′|) + q ] dr′ − q A[uh] + h′ =

=−u(r, t) +
∫

R[u]
w(|r − r′|) dr′ + q A[u] − q A[uh] + h′, (4.2)

implying that u is a solution of equation 2.2 with the resting potential h re-
placed by h′ − q A[uh] + q A[u]. Consequently, condition 1 is satisfied. Note
that the circular one-bump solution uh of the original problem, equation 2.2,
which was used when constructing equation 4.1, solves the modified prob-
lem 4.1 with h′ = h and any q .

Equation 4.1 does not admit stationary solutions with an unbounded
region of activation. Indeed, assuming that such a solution û exists, sub-
stituting û into the equation, we would conclude that the integral term of
the right-hand side of equation 4.1 is infinite, which forms a contradiction.
Therefore, condition 2 above is satisfied.
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Finally, we show that modification 4.1 preserves stability properties of
the stationary solution uh (which is a stationary solution of both the mod-
ified and the unmodified problems, 2.1 and 4.1, respectively, by construc-
tion). Recall that in deriving equation 3.5, we did not make use of any partic-
ular assumptions on the form of the integral kernel w(|r − r′|). Consequently,
this expression for the eigenvalue spectrum is equally valid for the modified
problem as well as for the unmodified one. Note, however, that when deriv-
ing a stability spectrum in the case of the modified problem, equation 4.1,
we shall exchange g(θ − θ ′) by g(θ − θ ′) + q A[uh] (see the derivations
in the appendix). Using

∫ 2π

0 q A[uh] cos(nθ ) dθ = q A[uh]
∫ 2π

0 cos(nθ ) dθ =
q A[uh]2πδn0, it now follows from equation 3.5 that all eigenvalues of the
stability spectrum of uh (except for λ0 corresponding to perturbations of the
radius of the bump) remain unaltered by the modification. Consequently, if
uh is unstable with respect to some nonrotationally invariant perturbation
in the original problem, 2.1, it is unstable with respect to such a perturbation
in the modified problem, 4.1, whereby condition 3 holds.

These arguments imply that a rotationally invariant solution uh of equa-
tion 2.1 that is unstable at a noncircular eigenmode also solves the modified
equation, 4.1, and is unstable with respect to the same eigenmode of the
dynamics of equation 4.1. Furthermore, contrary to the case of equation 2.1,
the dynamics of equation 4.1 can never result in a periodic pattern with
unbounded activated region if q < 0.

As stated above, conditions 1 to 3 do not suffice to guarantee that the
activated region will remain connected as uh follows the dynamics of equa-
tion 4.1. Nevertheless, by tuning the parameter q in equation 4.1, one is able
to trap the dynamics in the vicinity of instability in a state with connected
activated region.

Assume that for q = 0, the dynamics in the vicinity of the bifurcation
tends to increase the area of the activated region. Note that q could be
understood as a Lagrange multiplier, which ensures the constancy of the
area for one special value, which we certainly exclude. Suppose now that
q is chosen to be negative. The additional term in the integrand of equa-
tion 4.1 will tend to counterbalance the area increase. We can now choose
q such that two effects counterbalance, and a nonrotationally invariant
steady state with bounded and connected region of activation will re-
sult. The calculation of effective values of q requires the consideration of
higher orders of the dynamics. Here, we instead resort to numerical sim-
ulations. These confirm the emergence of nonrotationally invariant steady
states with bounded and connected regions of activation. For example, Fig-
ure 5 shows the destabilization of a circular one-bump that is unstable at
a D2-symmetric eigenmode, developing into a nonrotationally invariant
steady state with an ellipse-shaped activated region. Only one-quarter of
the domain was simulated (the field in the other three quadrants is deter-
mined by that on the simulated quadrant due to the Euclidean symmetry of
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dynamic equations and the D2-symmetry of initial conditions) on a grid of
300 × 300 pixels in order to increase accuracy. Symmetries corresponding
to higher eigenvalues are irrelevant because the eigenvalues λn are stable
for n ≥ 3 for the given parameters. The length difference of the half-axes
of the activated domain of the resulting D2-symmetric stationary state was
much larger than the spatial discretization step (some 30 pixels), allowing
the conclusion that the stationary solution obtained is not a discretization
artifact.

In conclusion, we stress that the particular choice of modification ac-
cording to equation 4.1 is very restrictive. In fact, many other equations
whose stationary states satisfy equation 2.1 and do not admit solutions with
unbounded regions of activation are readily constructed along the same
lines. For instance, ∂tu = −u + ∫

R[u] w(|r − r′|) dr′ − ∫
R[u] |r − r′|dr′dr + h can

be shown to have these properties, arguing essentially as when proving that
conditions 1 and 2 are satisfied by stationary states of equation 4.1. We be-
lieve that further investigation of such modifications will provide insight
into the properties of unstable solutions of the Amari equation.

5 Discussion

Bifurcation theory describes the time course to critical behavior in low-
dimensional systems. Under certain conditions, the parametric destabiliza-
tion of an activity distribution does not lead to a nearby stable state but
initiates a cascade of symmetry-breaking events that eventually approaches
a new distant stable configuration. A motivation for this study is to demon-
strate the complex evolution of the state of the field after the loss of stability.
It is these configurations that bear the greatest computational potentials.

For the Amari equation with a simple kernel, only the existence of ro-
tationally invariant bumps has previously been proven. This work demon-
strates the existence of two other nonperiodic stationary states: stripe
shaped and annular solutions. Stability analysis of these would be expected
to be very involved. Surprisingly, the special form of the Amari equation
makes this stability problem amenable to analytical treatment. The total
synaptic input to a given neuron is dependent only on the shape of the
boundary of the activated domain, making the eigenvalue problem effec-
tively one-dimensional, thereby allowing fairly straightforward calculation
of the spectrum for each of these cases.

Strictly speaking, spectral properties of the linearized operator do not
guarantee the stability of the stationary state unless additional assump-
tions are satisfied. However, our extensive numerical investigation shows
that stability is indeed correctly predicted by eigenvalue analysis. Further-
more, the spectrum allows predicting certain semiquantitative features of
solutions approached after the onset of instability.
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Our numerical experiments showed that exclusively spatially extended
solutions (those with unbounded activated domain) appeared in the un-
stable parameter region. Yet a slight modification of the interaction kernel,
introducing long-range interactions, circumvents this, yielding nonrota-
tionally invariant stationary states with bounded and connected regions of
activation that at the same time are stationary states of the original unmod-
ified equation. This settles a long-standing question regarding the existence
of solutions of this type. Note, however, that stability analysis of these is
nontrivial, requiring the knowledge of analytical parameterization of the
boundary of the activated domain. The existence of such states is also rele-
vant for biological systems. Assuming a certain degree of shift-twist symme-
try, the existence of elongated blobs suggests mechanisms for the emergence
of orientation selectivity in neurons of the primary visual cortex (Tanaka,
Ribot, Imamura, & Tani, 2006). Although the degree of asymmetry of nonro-
tationally invariant solutions was moderate, these effects could in principle
be enhanced by (Hebbian) learning, which we disregarded in our treatment.

Appendix: Linear Stability of Rotationally Invariant Solutions

A.1 Circular One-bump Solution. Consider the development of a small
perturbation εη of a stationary rotationally invariant one-bump ū. Substi-
tuting into the Amari equation and linearizing in ε, we have

∂η(x, t)
∂t

= −η (x, t) +
∫

R2
w(|x − x′|) δ(ū(x′)) η(x′, t) dx′. (A.1)

In polar coordinates, we write (somewhat informally) w(|x − x′|) =
w(r, θ, r ′, θ ′) and use the rotational invariance of ū, such that

∂η (r, θ, t)
∂t

= −η (r, θ ) +
∫ 2π

0

∫ ∞

0
r ′w (r, θ, r ′, θ ′) δ(ū(r ′)) η(r ′, θ ′) dr ′dθ ′.

(A.2)

Recall that

δ( f (x)) =
∑

xi

δ(x − xi )∣∣ d f (xi )
dx

∣∣ , (A.3)

where the sum is over the roots of f , provided that f is differentiable at the
corresponding points. Using equation A.3, equation 2.2 simplifies to

∂η (r, θ )
∂t

= −η (r, t) +
∫ 2π

0
Rw

(
r, θ, R, θ ′) 1∣∣ ∂ū(R)

∂r

∣∣η (
R, θ ′) dθ ′, (A.4)
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where R is the radius of the (circular) region of activation of ū. Substituting
η = eλtξ (r, θ ), we arrive at the following eigenvalue problem,

λξ (r, θ ) = −ξ (r, θ ) + 	

∫ 2π

0
w

(
r, θ, R, θ ′) ξ

(
R, θ ′) dθ ′, (A.5)

where 	 ≡ R/|(∂ū(R)/∂r )|. By restriction of both sides to r = R, the eigen-
value problem A.5 is solved by

ξn (R, θ ) = cos nθ

λn =−1 + 	

∫ 2π

0
w (R, θ, R, 0) cos (nθ ) dθ, (A.6)

where n are nonnegative integers. The last equation can be verified by noting
that w(R, θ, R, θ ′) is a function of (θ − θ ′) alone and Fourier-expanding the
integrand of equation A.5.

The r -dependence of the eigenfunctions can be derived from equa-
tion A.6 by exploiting the special form of the eigenvalue problem, equation
A.5:

ξn(r, θ ) =
∫ 2π

0
w(r, θ, R, θ ′) cos (nθ ′) dθ ′. (A.7)

Shift invariance allows us to conclude that λ1 = 0. Thus, 	 is obtained more
explicitly from equation A.6:

	 = 1∫ 2π

0 w(R, θ, R, 0) cos (θ ) dθ
. (A.8)

Now the eigenvalues can be calculated without evaluating the slope of the
stationary solution ū:

λn = −1 +
∫ 2π

0 w(R, θ, R, 0) cos (nθ ) dθ∫ 2π

0 w(R, θ, R, 0) cos (θ ) dθ
. (A.9)

Equation A.9 is particularly convenient for examining the stability proper-
ties of circular one-bump solutions.

A.2 Annular Solutions. The existence of solutions with annular region
of activation was suggested already by Amari (1977). Denoting the inner
radius by R1 and the outer radius by R2, equation A.4 is immediately
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rewritten as

∂η (r, θ )
∂t

=−η (r, θ ) + 	1

∫ 2π

0
w(r, θ, R1, θ

′) η (R1, θ
′) dθ ′

+	2

∫ 2π

0
w (r, θ, R2, θ

′) η (R2, θ
′) dθ ′, (A.10)

where 	1 = R1/|∂ū(R1)/∂r |, 	2 = R2/|∂ū(R2)/∂r |. Analogous to the deriva-
tion of equation A.5, we set η = eλtξ (r, θ ) and restrict both sides to R1 and R2:

λξ1 =−ξ1 + 	1

∫ 2π

0
w (R1, θ, R1, θ

′) ξ ′
1θ

′

+	2

∫ 2π

0
w (R1, θ, R2, θ

′) ξ ′
2dθ ′

λξ2 =−ξ2 + 	1

∫ 2π

0
w(R2, θ, R1, θ

′) ξ ′
1 dθ ′

+	2

∫ 2π

0
w (R2, θ, R2, θ

′) ξ ′
2 dθ ′, (A.11)

where ξi = ξ (Ri , θ ) and ξ ′
i = ξi (θ ′), i ∈ {1, 2}. It is natural to seek the eigen-

functions of the form [ξ1, ξ2] = v cos(nθ ), where v is a two-dimensional
vector. Using this substitution, it turns out that the eigenvalues of equation
A.11 are the same as those of the matrices[−1 + 	1

∫ 2π

0 w11 cos nθ dθ 	2
∫ 2π

0 w12 cos nθ dθ

	1
∫ 2π

0 w12 cos nθ dθ −1 + 	2
∫ 2π

0 w22 cos nθ

]
, (A.12)

such that equation A.12 allows us to construct the spectrum of
equation A.11.

A.3 Stripe-Shaped Solutions. Stripe-shaped solutions can be con-
structed by assuming the region of activation of the form R[ū] = {(x, y) |
0 ≤ x ≤ L} and can be seen as degenerate annuli with infinite inner radius,
considered in the previous section. Interestingly, in this case, it appears pos-
sible to give an explicit expression for the stationary one-bump solution in
terms of the model parameters:

ū(x, y) = π

2km
(K m erf (

√
kx) − k M erf (

√
mx) −

−K m erf (−
√

kL +
√

kx) + Mk erf (−√
mL + √

mx)) − h.

(A.13)
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The counterpart of equation A.10 now reads

∂η

∂t
=−η +

∫
R2

w(|x − x′|) δ (ū(x′)) η (dx′)

=−η +
∫ ∞

−∞
w(x, y, 0, y′)

1∣∣ ∂ū(0)
∂x

∣∣ η (0, y′) dy′ (A.14)

+
∫ ∞

−∞
w(x, y, L , y′)

1∣∣ ∂ū(L)
∂x

∣∣ η (L , y′) dy′, (A.15)

where (x, y) and (x′, y′) are Cartesian coordinates of x and x′, respectively.
As in the former cases, substituting η(x, y, t) = eλtξ (x, y) and restricting to 0
or to L , we find

λξ1 = −ξ1 + 	1

∫ ∞

−∞
w(0, 0, 0, y′) ξ ′

1dy′ + 	2

∫ ∞

−∞
w(0, 0, L , y′) ξ ′

2 dy′

λξ2 = −ξ2 + 	1

∫ ∞

−∞
w(L , 0, 0, y′) ξ ′

1 dy′ + 	2

∫ ∞

−∞
w(0, 0, L , y′) ξ ′

2 dy′,

(A.16)

where ξ ′
i now denotes ξi (y′). Subscripts 1 and 2 designate restrictions to x =

0 and x = L , respectively, according to 	1 = 1/|∂ū(0)/∂x|, 	2 = 1/|∂ū(L)/∂x|
and ξ1(y) = ξ (0, y), ξ2(y) = ξ (L , y). Arguing in exactly the same way as
when considering annular solutions, we conclude that equation A.15 admits
an uncountable infinity of eigenvalues that are the same as those of matrices

[
−1 + 	1ŵ0(�) 	2ŵL (�)

	1ŵL (�) −1 + 	2ŵ0(�)

]
, (A.17)

where ŵ0(�) = ∫ ∞
−∞ w(0, 0, 0, y′) cos (�y′) dy′ = ∫ ∞

−∞ w(L , 0, L , y′) cos (�y′)
dy′, ŵL (�) = ∫ ∞

−∞ w(L , 0, 0, y′) cos (�y′) dy′ = ∫ ∞
−∞ w(0, 0, L , y′) cos (�y′) dy′.

To every nonnegative real number corresponds a pair of eigenvalues. The
corresponding eigenfunctions can be evaluated from equation A.16.
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