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Rapidly learned stimulus expectations alter perception
of motion

IANC, School of Informatics, University of Edinburgh,
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Expectations broadly influence our experience of the world. However, the process by which they are acquired and then
shape our sensory experiences is not well understood. Here, we examined whether expectations of simple stimulus
features can be developed implicitly through a fast statistical learning procedure. We found that participants quickly and
automatically developed expectations for the most frequently presented directions of motion and that this altered their
perception of new motion directions, inducing attractive biases in the perceived direction as well as visual hallucinations in
the absence of a stimulus. Further, the biases in motion direction estimation that we observed were well explained by a
model that accounted for participants’ behavior using a Bayesian strategy, combining a learned prior of the stimulus
statistics (the expectation) with their sensory evidence (the actual stimulus) in a probabilistically optimal manner. Our results
demonstrate that stimulus expectations are rapidly learned and can powerfully influence perception of simple visual
features.
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Introduction

As well as depending on the sensory input that we
receive, our perception of the world is shaped by our
expectations. These expectations can be manipulated
quickly through sensory cues or experimentalists’ instruc-
tions (Posner, Snyder, & Davidson, 1980; Sterzer, Frith, &
Petrovic, 2008) or, more slowly, based on the statistics of
previous sensory inputs. For example, in complex scenes,
objects are recognized faster and more accurately when
they are contextually appropriate to the visual scene as a
whole: when presented with an image of a kitchen, people
are better at recognizing a loaf of bread than a drum (Bar,
2004). In other words, we learn from past experience,
which objects are expected within the context of a
particular visual scene, and our perceptual sensitivity for
these objects is increased accordingly.
Indeed, it has been shown extensively that expectations

modulate perceptual performance. When visual cues are
used to inform participants the location that a stimulus is
most likely to appear, their perceptual sensitivity for
stimuli presented at this location is increased. This results
in decreased reaction times, decreased detection thresh-
olds, and increased sensitivity for discrimination of
features such as orientation, form, or brightness for stimuli

presented at the expected location (Doherty, Rao, Mesulam,
& Nobre, 2005; Downing, 1988; Posner et al., 1980; Yu &
Dayan, 2005b). More recently, it has been shown that, in
complex tasks, participants implicitly learn which visual
signals provide task-relevant information, such as predict-
ing which stimuli are likely to be presented, and that this
information can be used to optimize performance in the
task (Chun, 2000; Eckstein, Abbey, Pham, & Shimozaki,
2004).
As well as enhancing perceptual performance, expec-

tations can also influence “what” is perceived. Specifically,
recent studies have shown that rapidly learned expectations
can help determine the perception of bistable stimuli
(Haijiang, Saunders, Stone, & Backus, 2006; Sterzer et al.,
2008). Perception of such bistable stimuli is unstable,
undergoing frequent reversals (van Ee, 2005) whose
dynamics can be altered voluntarily by the observer
(van Ee, van Dam, & Brouwer, 2005), In contrast,
perception of simple stimuli is typically unambiguous
and, seemingly, not so easily changed. Therefore, whether
expectations can also alter the perception of simple stimuli
that are not bistable is unclear.
A growing body of work suggests that perception is

akin to Bayesian Inference (Knill & Pouget, 2004; Weiss,
Simoncelli, & Adelson, 2002), where the brain represents
sensory information probabilistically in the form of
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probability distributions. Here it is assumed that in
situations of uncertainty, sensory information is combined
with prior knowledge about the statistics of the world,
serving to bias perception toward what is expected. This
framework has been used to understand a great number of
perceptual phenomena, such as why moving images
appear to be moving slower when they are presented at
low contrast (Stocker & Simoncelli, 2006), and the
illusory “filling-in” of discontinuous contours (Komatsu,
2006; Lee & Mumford, 2003), adding support to the idea
that expectations can alter the appearance of simple
unambiguous visual stimuli. However, in these studies,
participants’ expectations (i.e., priors) are usually
assumed to be acquired over long periods of time, through
development and life experience. On the other hand, in the
field of sensorimotor learning, it has been shown that
participants can learn priors about novel statistics intro-
duced during a psychophysical task and that they combine
this with information about their sensorimotor uncertainty
in a manner that is consistent with a Bayes optimal
process (Faisal & Wolpert, 2009; Körding & Wolpert,
2004). In the visual domain, how new sensory priors are
learned is an open question.
Here we sought to understand whether stimulus expec-

tations can be implicitly acquired through fast statistical
learning, and if so, how such expectations are combined
with visual signals to modulate perception of simple
unambiguous stimuli. We examined this in the context of
motion perception in a design where some motion
directions were more likely to appear than others. Our
hypothesis was that participants would automatically learn
which directions were most likely to be presented and that
these learned expectations would bias their perception of
motion direction. A secondary hypothesis was that
participants would solve the task using a Bayesian
strategy, combining a learned prior of the stimulus
statistics (the expectation) with their sensory evidence
(the actual stimulus) in a probabilistic way.

Methods

Observers and stimuli

Twenty naive observers with normal or corrected-to-
normal vision participated in this experiment. All partic-
ipants in the study gave informed written consent,
received compensation for their participation and were
recruited from the Riverside, CA area. The University of
California, Riverside Institutional Review Board approved
the methods used in the study, which was conducted in
accordance with the Declaration of Helsinki.
Visual stimuli were generated using the Matlab pro-

gramming language and displayed using Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997) on Viewsonic P95f

monitor running at 1024 � 768 at 100 Hz. The display
luminance of the CRT monitor was made linear by means
of an 8-bit lookup table. Participants viewed the display in
a darkened room at a viewing distance of 100 cm with
their motion constrained by a chin rest. Motion stimuli
consisted of a field of dots (density: 2 dots/deg2 at 100 Hz
refresh rate) moving coherently at a speed of 9-/sec within
a circular annulus, with minimum and maximum diameter
of 2.2- and 7-, respectively. The background luminance of
the display was set to 5.2 cd/m2.

Procedure

At the beginning of each trial, a central fixation point
(0.5- diameter, 12.2 cd/m2) was presented for 400 ms.
With the fixation point still onscreen, the motion stimulus
was then presented, along with a red bar which projected
out (initial angle of bar randomized for each trial) from
the fixation point (Figure 1). The bar was located entirely
within the center of the annulus containing the moving
dots (length 1.1-, width 0.03-, luminance 3.4 cd/m2).
Participants indicated the direction of motion by orienting
the red bar with a mouse, clicking the mouse button when
they had made their estimate (estimation task). The
display cleared when either the participant had clicked
on the mouse, or a period of 3000 ms had elapsed. On
trials where no motion stimulus was presented, the red bar

Figure 1. Sequence of events in a single trial. Each trial began
with a fixation point, followed by the appearance of a motion
stimulus. A central bar projecting from the fixation point was
presented simultaneously with the motion stimulus and allowed
participants to estimate the direction of motion. After either
participants had made an estimation, or a period of 3000 ms
had elapsed, the stimulus disappeared and was replaced by a
vertical line, with text to either side. Participants moved a cursor to
either side of the line to indicate whether they had perceived the
motion stimulus.

Journal of Vision (2010) 10(8):2, 1–18 Chalk, Seitz, & Seriès 2



still appeared and participants were required to estimate
the perceived direction of motion as normal. Participants
were instructed to fixate on the central point throughout
this period. Participants’ reaction time in the estimation
task determined how long the stimulus was presented for.
On average this was equal to 1978 T 85 ms (standard error
on the mean; see Supplementary Figure 7 for a plot of
reaction time versus presented motion direction). After the
estimation task had finished, there was a 200-ms delay
before a vertical white line was presented at the center of
the screen, with text to either side (reading “NO DOTS”
and “DOTS,” respectively). Participants moved a cursor to
the right or left of this line to indicate whether they had or
had not seen a motion stimulus (detection) and clicked the
mouse button to indicate their choice. The cursor flashed
green or red for a correct or incorrect detection response,
respectively. The screen was then cleared and there was a
400-ms blank period before the beginning of the next trial.
Every 20 trials, participants were presented block

feedback on the estimation task, with text displayed on
screen telling participants what their average estimation
error was in the previous 20 trials (e.g., “In the last 20
trials, your average estimation error was: 20-”). Block
feedback rather than trial-by-trial feedback was given
because we wanted to encourage participants to do their
best at the estimation task, without interfering with their
estimation behavior (and biases) on each trial.

Design

Participants took part in two experimental sessions
lasting around 1 hour each, taken over successive days.
Each session was divided into 5 blocks of 170 trials,
where all stimulus configurations were presented, making
1700 trials in total (850 trials per session).
Participants were presented stimuli at four different

randomly interleaved contrast levels. The highest contrast
level was at 1.7 cd/m2 above the 5.2 cd/m2 background.
For each session, there were 250 trials at zero contrast and
100 trials at high contrast. Contrasts of other stimuli were
determined using 4/1 and 2/1 staircases on detection
performance (Garcı́a-Pérez, 1998). For each session, there
were 135 trials with the 2/1 staircase and 365 trials with
the 4/1 staircase.
For the two staircased contrast levels, on a given trial

the direction of motion could be 0- T 16-, T32-, T48-, or
T64-, with respect to a central reference angle. To reduce
potential biases in the population, we averaged results due
to reference repulsion from cardinal motion directions
(Rauber & Treue, 1998); this central motion direction was
randomized across participants. We manipulated partic-
ipants’ expectations about which motion directions were
most likely to occur by presenting stimuli moving at T32-
more frequently than the others (Figure 2). Therefore, at
the 4/1 staircased contrast level, there were 130 trials per
session with motion at j32- and +32- and 15 trials per

session for each of the other directions of motion. At the
2/1 staircased contrast level, there were an equal number
of stimuli moving in each of the predetermined directions:
15 trials per session for each motion direction. At the
highest contrast level, there were 25 trials per session with
motion at j32- and +32- and 50 trials per session at
completely random directions (among all possible direc-
tions, not just the predetermined directions used in the rest
of the experiment).

Data analysis

In the analysis of the estimation task, we looked only at
trials where participants both reported seeing a stimulus
and clicked on the mouse during stimulus presentation to
indicate their estimate of motion direction. The first 100
trials from each session (È25 trials from each contrast
staircase) were excluded from the analysis to allow the
staircases to converge on stable contrast levels (Supple-
mentary Figure 2a). Data were analyzed for the 12 (of 20)
participants who could adequately perform both tasks
according to our predetermined performance criteria of
detection greater than 80% (quantified as the fraction of
trials where participants both detect the stimulus and click
on the mouse during stimulus presentation to estimate its
direction) and mean absolute estimation error less than
30- with the highest contrast stimuli in both experimental
sessions (Supplementary Figure 1; see Supplementary
materials for details of different participants’ perfor-
mance). Importantly, our analysis of participants’ perfor-
mance in the estimation task looked only at their responses
to staircased contrast levels, and not their responses to the
highest contrast stimuli, which we used to determine which
participants should be included.
In the estimation task, the variance of participants’

motion direction estimates tended to be quite large and

Figure 2. Probability distribution of presented motion directions.
Two directions, 64- apart from each other, were presented in a
larger number of trials than other directions. Motion direction is
plotted relative to a reference direction at 0-, which was different
for each subject.
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varied greatly across different participants and motion
directions. We hypothesized that this was due to the fact
that in some trials participants made completely random
estimates. Thus, data were fitted to the distribution: (1j a) I
V(2, .) + a/2:, where a is the proportion of trials where
the participant make random estimates, and V(2, .) is a
von Mises (circular normal) distribution with mean 2
and width determined by 1/., given by: V(2, .) = exp(.
cos(E j 2)/(2:I0(.))). Parameters were chosen by max-
imizing the likelihood of generating the data from the
distribution. Participants’ estimation mean and standard
deviation were taken as the circular mean and standard
deviation of the von Mises distribution, V(2, .). The
average biases obtained using this method were qualita-
tively similar to those obtained through calculating the
estimated direction by simply averaging over trials, while
the variances were significantly smaller and with more
consistency across participants and motion directions
when the parametric fits were used. Therefore, in all of
the following analysis, we used this parametric method to
quantify performance in the estimation task.
There was no significant interaction between exper-

imental session and motion direction on the estimation
bias or standard deviation (p = 0.11 and p = 0.41,
respectively, four-way within-subjects ANOVA). There-
fore, we collapsed data across the two experimental
sessions.
There was a considerable degree of overlap between the

luminance levels achieved using both staircases. After
discounting the first 100 trials from each session, the
population averaged standard deviation in the luminance
of the 2/1 and the 4/1 staircased levels over the course of
one experimental session was 0.051 T 0.001 cd/m2 and
0.054 T 0.001 cd/m2, respectively; similar to the average
luminance difference between the two levels (0.052 T
0.004 cd/m2). Further, there was no significant difference
between the luminance levels achieved for both staircases
(p = 0.23, three-way within-subjects ANOVA). This was
reflected in the estimation data: there was no significant
difference between participants’ estimation standard devi-
ations for both staircased contrast levels (p = 0.12, four-
way within-subjects ANOVA). Therefore, we collapsed
data across these contrast levels for all of the analysis
described in the main text. Later, we looked at the effect
of contrast level on participants’ behavior by separating
participants’ responses at different luminance levels,
depending on their detection performance at different
luminance levels. Details of this procedure are described
in the Supplementary materials.
To analyze the distribution of estimations when no

stimulus was present, we constructed histograms of
participants’ responses, binned into 16- windows. We
converted these response histograms into probability
distributions by normalizing them over all motion direc-
tions for each participant individually. There was no
significant interaction between experimental session and
motion direction on the response histograms (p = 0.87,

four-way within-subjects ANOVA). There was also no
significant three-way interaction between motion direc-
tion, experimental session, and detection response (p =
0.81, four-way within-subjects ANOVA). Therefore, we

Figure 3. Estimation responses in the absence of a stimulus. (a)
Probability distribution of participants’ estimates of motion direc-
tion when no stimulus was present. Response distributions are
plotted for all trials (blue) as well as the subset of trials where
participants reported detecting a stimulus (gray) and trials where
they did not (red). Data points from either side of the central
motion direction have been averaged together in this plot so that
the furthest left data point corresponds to the central motion
direction, and the vertical dashed line corresponds to the most
frequently presented motion directions (T32-). Results are aver-
aged over all participants and error bars represent within-subject
standard error. (b) Probability ratio (prel) that individual participants
estimated within 8- from the most frequently presented motion
directions (T32-) relative to other 16- bins, plotted for trials where
the stimulus was undetected versus trials where the stimulus was
detected. prel was significantly greater than 1 for trials where
participants reported detecting stimuli (p = 0.005, signed rank test)
but was only marginally so when subjects failed to detect the
stimulus (p = 0.13). Participants were also significantly more likely
to estimate in the direction of the frequently presented motion
directions on trials where they reported detecting stimuli versus
trials where they did not (p = 0.012).
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collapsed data across experimental sessions for analysis of
the participants’ responses when no stimulus was present.
In this study, we were interested in how the uneven

distribution of presented motion directions influenced
participants’ perception of the motion stimuli. By design,
the probability distribution of presented motion stimuli
was symmetrical around a central motion angle (Figure 2).

Therefore, we figured that any asymmetry in participants’
estimation and detection behavior for stimuli moving to
either side of the central motion direction was likely due
to factors other than the distribution of presented stimuli
that was used, such as participants’ implicit biases, or
“reference biases” away from caudal motion directions
(Rauber & Treue, 1998). To reduce the effect of such
asymmetries from our analysis and to increase the number
of data points that were available for each experimental
condition, we averaged data from points corresponding to
when the presented motion stimuli was moving to either
side of the central motion direction. For the estimation
task, this also required reversing the sign of the estimation
biases for stimuli moving anticlockwise from the central
motion direction before averaging (for “unfolded” ver-
sions of Figures 3a, 4a, and 5 see Supplementary Figures 4
and 5).

Results

Effect of expectations on motion direction
estimates when no stimulus present

First, we investigated whether participants learned to
expect the most frequently presented motion directions.
To assess this, we examined participants’ estimation
performance on trials where no stimulus was presented
but where they reported seeing a stimulus in the detection
task as well as clicking on the mouse to estimate its

Figure 4. Effect of expectations on estimation biases. (a)
Participants’ mean estimation bias is plotted against presented
motion direction. Data points from either side of the central motion
direction have been averaged together so that the furthest left
point corresponds to the central motion direction, and the vertical
dashed line corresponds to data taken from the two most
frequently presented motion directions (T32-). Results are aver-
aged over all participants and error bars represent within-subject
standard error. (b) The estimation bias for stimuli moving at T48-
(black) and T16- (red) from the central motion direction, plotted
against the estimation bias at T32-, for each participant. Again,
data from stimuli moving to both sides of the central motion
direction have been averaged together, with the sign of the bias
for stimuli moving anticlockwise from the central motion direction
(i.e., j48-, j32-, and j16-) reversed before averaging. The red
and black crosses mark the population mean of both distributions,
with the length of the lines on the crosses equal to the standard
error.

Figure 5. Effect of expectations on the standard deviation of
estimations. The standard deviation in participants’ estimation
distributions is plotted against presented motion direction. Data
points from either side of the central motion direction have been
averaged together so that the furthest left point corresponds to the
central motion direction, and the vertical dashed line corresponds
to data taken from the two most frequently presented motion
directions (T32-). Results are averaged over all participants and
error bars represent within-subject standard error.
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direction. On average, this occurred on 46 T 3 trials for
each participant (10.8 T 2% of the total number of trials
where no stimulus was presented). For this subset of trials,
participants’ estimation response probability varied sig-
nificantly with motion direction, with a clear peak close to
the most frequently presented motion directions (T32-;
p G 0.001, three-way within-subjects ANOVA; Figure 3a,
gray). We quantified the probability ratio that participants
made estimates that were close to the most frequently
presented motion directions, relative to other directions,
by multiplying the probability that they estimated within
8- of these motion directions by the total number of 16-
bins (prel = p(Eest = T32(8)-)). This probability ratio would
be equal to 1 if participants were equally likely to estimate
within 8- of T32- as they were to estimate within other
16- bins. We found that the median value of prel was
significantly greater than 1, indicating that participants
were strongly biased to report motion in the most
frequently presented directions when no stimulus was
presented (median(prel) = 2.7; p = 0.005, signed rank test,
comparing prel to 1; Figure 3b).
As on a large proportion of trials, the presented motion

stimuli were moving in one of two directions, it is possible
that participants could have habituated to automatically
move the estimation bar toward one of these two
directions, irrespective of their response in the detection
task (note that the initial bar position was randomized on
each trial and thus biases cannot arise from just leaving
the mouse in its initial location). In this case, we would
also expect their “no-stimulus” estimation distributions to
be biased toward the two most frequently presented
directions for trials where they did not detect a stimulus.
However, on trials where participants did not report seeing
a stimulus in the detection task (but where they did click
the mouse while the stimulus was present to estimate its
motion direction; on average, this occurred on 134 T 9
trials for each participant; 32 T 7% of the total number of
trials where no stimulus was presented), there was no
significant variation in the estimation response probability
with motion direction (p = 0.12, three-way within-subjects
ANOVA; Figure 3a, red). Further, for these trials,
participants were not significantly more likely to estimate
close to the most frequently presented motion directions
than other motion directions (median(prel) = 1.28; p = 0.13,
signed rank test, comparing prel to 1; Figure 3b). Indeed
they were significantly more likely to report motion in the
most frequently presented motion directions when they
also reported detecting a stimulus compared to when they
did not (p = 0.012, signed rank test, comparing the values
of prel obtained for trials where participants either did or
did not report seeing a stimulus in the detection task;
Figure 3b).
It could be argued that we would observe similar results

if participants’ expectations influenced their behavior in
the detection task, but not in the estimation task. Thus, in
the absence of a presented stimulus, they would be more
likely to report detecting a stimulus when they mistakenly

perceived motion in one of the two most frequently
presented motion directions, although their estimation
responses would be unaltered by their expectations. In
this case, participants’ estimation responses would be
distributed uniformly when we looked at data from all
trials where no stimulus was presented (regardless of their
response in the detection task). This was not what we
found: when we looked at data from all zero-stimulus
trials, participants estimation response probability varied
significantly with motion direction (p G 0.001, three-way
within-subjects ANOVA; Figure 3a, blue), and they were
biased to report motion in the two most frequently
presented directions (median(prel) = 1.71; p G 0.001,
signed rank test comparing prel to 1). However, the size of
this bias was reduced compared to the case when we
looked only at trials where participants detected stimuli
(p = 0.027, signed rank test comparing the values of prel
obtained for all trials with trials where participants
reported seeing a stimulus in the detection task).
Another response strategy that could have produced

similar results is if, when participants were uncertain
about the stimulus motion direction, they made estima-
tions that were influenced by the stimulus presented
immediately beforehand. In this case, we would expect
the observed biases in participants’ no-stimulus estimation
distributions to disappear when we excluded trials that
were immediately preceded by stimuli moving in the most
frequently presented directions (T32-). However, when we
excluded these trials from our analysis, participants’ zero-
stimulus estimations (for trials where they reported
detecting a stimulus) were still strongly biased toward
the two most frequently presented directions (median(prel) =
2.11; p = 0.026, signed rank test, comparing prel to 1).
Taken together, our results indicate that the zero-

stimulus biases we observed were not due to “response
strategies” but rather were perceptual in origin: partic-
ipants “hallucinated” motion in the most frequently
presented directions when no stimulus was displayed.
Further, these hallucinations developed extremely quickly.
On trials where no stimulus was presented but where
participants reported detecting a stimulus, they were
significantly more likely to estimate within 8- of T32-
than other directions after a period of only 200 trials (p =
0.008, signed rank test, comparing prel to 1 after 200 trials;
see Supplementary Figure 3), indicating rapid learning of
motion direction expectations.

Effect of expectations on motion direction
estimates when stimulus was presented

We next asked whether these learned expectations
would bias participants’ perceptions of real motion
stimuli. Figure 4a shows the population averaged estima-
tion bias, plotted against motion direction. In this plot,
data points corresponding to presented stimuli moving to
either side of the central motion direction have been
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averaged together (making sure to reverse the sign of the
estimation bias when the presented stimuli was anticlock-
wise from the central motion direction before averaging;
see Supplementary Figure 4 for an alternative version of
this plot without averaging across the central motion
direction). In this plot, the curve has a negative slope
around +32-, which itself was unbiased. This indicates
that estimations were attractively biased toward stimuli
moving at +32- (and by symmetry, also to motion at
j32-). Estimates of the central motion direction were
unbiased, while estimates at +16- were positively biased,
away from the center and toward stimuli moving at +32-
(again, by symmetry, stimuli moving at j16- were biased
away from the center, toward stimuli moving at j32-).
Note that the apparent asymmetry in Figure 4a is expected
and is due to the fact that the data points at 0- and 64- are
not equivalent: 0- lies midway between the two most
frequently presented directions, while +64- is on the edge
of the distribution of presented motion directions (see
Figure 2). Overall, there was a significant effect of motion
direction on the estimation bias (p G 0.001, three-way
within-subjects ANOVA).
We wanted to quantify the extent to which individual

participants’ estimates were biased toward the most
frequently presented motion directions. For participants
whose estimates were attractively biased toward stimuli
moving at +32-, we would expect their estimates of
stimuli moving at +48- and +16- to be positively and
negatively biased, respectively, compared to their estima-
tion bias for stimuli moving at +32- (and by symmetry,
we would also expect the converse to hold for stimuli
moving anticlockwise from the central direction: for a
participant whose estimates were attractively biased
toward stimuli moving at j32-, we would expect the bias
at j48- and j16- to be negatively biased and positively
biased, respectively, compared to their estimation bias for
stimuli moving at j32-). Figure 4b plots individual
participants’ estimation bias for stimuli moving at T48-
and T16- versus their estimation bias at T32- (plotted in
black and red, respectively). Note that, similarly to Figure 4a,
we averaged data from motion directions moving to either
side of the central motion directions in this plot, making
sure to reverse the sign of the bias for stimuli moving
anticlockwise from the central motion direction. After
doing this, the computed estimation biases at T48- and
T16- were significantly smaller and larger, respectively,
than the bias at T32- (p = 0.005 and p = 0.001,
respectively, signed rank test). This indicates that on
average, participants were biased to estimate stimuli as
moving in directions that were closer to the most
frequently presented motion directions (T32-) than they
actually were.
Stimuli in between T32- were expected to be biased by

both frequently presented directions, and thus we expected
that these directions should yield larger standard devia-
tions in estimated angles than those outside of this range.

Figure 5 plots the population-averaged standard deviation
of estimations against motion direction. Again, for this
plot, data points from either side of the central motion
direction have been averaged together. The estimation
standard deviation was greatest for the central motion
direction at 0- and smallest for motion directions that
were closer to the most frequently presented directions
(T16-, T32-, and T48-). As with the estimation biases,
there was a significant effect of motion direction on the
estimation standard deviation (p G 0.001, three-way
within-subjects ANOVA).

Effect of expectations on detection
performance and reaction time

One of our interests was the extent to which stimulus
expectations influenced participants’ performance in the
detection task. To test this, we measured the fraction of
trials where participants both detected stimuli and clicked
on the mouse during stimulus presentation as a function of
motion direction (Figure 6a). Participants were signifi-
cantly more likely to detect stimuli moving in the most
frequently presented motion directions (71.5 T 2.5%
detected at T 32- versus 64.2 T 2.5% detected over all other
motion directions; p G 0.001 signed rank test; Figure 6b).
Overall, there was a significant effect of motion direction
on the fraction detected (p = 0.002, three-way within-
subjects ANOVA).
Another measure that could reflect how easily partic-

ipants detected stimuli was their reaction time in clicking
the mouse during stimulus presentation. For trials where
they detected a stimulus, participants’ reaction time was
significantly reduced for the most frequently presented
motion directions, relative to other motion directions
(1924 T 86 ms at T32- versus 1991 T 85 ms over all other
motion directions; p G 0.001, signed rank test; Supple-
mentary Figure 7). Overall, there was a significant effect
of motion direction on participants’ reaction time (p =
0.003, three-way within-subjects ANOVA).

Modeling

To understand the nature of the biases in motion
direction estimation that we observed, we tested among
alternative models of how participants’ expectations may
be combined with the presented stimulus to produce the
observed response distributions. Two classes of models
were considered. The first class of model assumed that
participants developed response strategies unrelated to
perceptual changes. The second class of model assumed
that participants solved the task using a Bayesian strategy,
combining a learned prior of the stimulus statistics (the
expectation) with their sensory evidence (the actual
stimulus) in a probabilistic way. These models simulate
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the estimation distributions in the case where participants
judged the stimulus to be present.

Multiple-strategy “response bias” models

The first two models looked at whether participants’
behavior could be attributed to a “response bias.” The key
assumption in both of these models was that participants

followed different strategies on different trials: for
example, by making an unbiased estimate of motion
direction on a fraction of the trials and by estimating one
of the most frequently presented motion directions on
other trials.
The first model (“ADD1”) assumed that when partic-

ipants were unsure about which motion direction they had
perceived, they made an estimate that was close to one of
the two most frequently presented motion directions.
In this model, on each trial, participants make a sensory

observation of the stimulus motion direction, Eobs. We
parameterize the probability of observing the stimulus to
be moving in a direction Eobs by a von Mises (circular
normal) distribution centered on the actual stimulus
direction and with width determined by 1/.l:

pl EobskEð Þ ¼ V E;.lð Þ: ð1Þ

On most trials, we assume that participants make a
perceptual estimate of the stimulus motion direction
(Eperc) that is based entirely on their sensory observation
so that Eperc = Eobs. However, on a certain proportion of
trials, when participants are uncertain about whether a
stimulus was present or not, they resort to their “expec-
tations” by making a perceptual estimate that is sampled
from a learned distribution, pexp(E). For simplicity, we
parameterize this distribution as the sum of two circular
normal distributions, each with width determined by 1/.exp,
and centered on motion directions –Eexp and Eexp,
respectively:

pexp Eð Þ ¼ 1

2
V jEexp;.exp
� �þ V Eexp;.exp

� �� �
: ð2Þ

Finally, we accommodate for the fact that there will be
a certain amount of noise associated with moving the
“estimation bar” to indicate which direction the stimulus
is moving in as well as allowing for a fraction of trials !,
where participants make estimates that are completely
random. Thus, the estimation response Eest is related to the
perceptual estimate Eperc via the equation

p EestkEperc
� � ¼ 1j !ð Þ I V Eperc; .m

� �þ !: ð3Þ

Bringing all this together, the distribution of estimation
responses for a single participant is given by

p EestkEð Þ ¼ 1j !ð Þ� 1j a Eð Þð Þ I pl Eobs ¼ EestkEð Þ
þ a Eð Þ I pexp Eestð Þ�* V 0;.mð Þ þ !; ð4Þ

where the asterisk denotes a convolution and a(E)
determines the proportion of trials that participants

Figure 6. Effect of expectations on detection performance. (a) The
fraction of trials where participants correctly detected a motion
stimulus is plotted against presented motion direction. Data points
from either side of the central motion direction have been
averaged together so that the furthest left point corresponds to
the central motion direction, and the vertical dashed line
corresponds to data taken from the two most frequently presented
motion directions (T32-). Results are averaged over all partic-
ipants and error bars represent within-subject standard error. (b)
The fraction of trials where participants correctly detected a
stimulus, averaged over all presented motion directions except
for T32-, plotted against the fraction of trials where participants
correctly detected a stimulus moving at T32-, for each participant.
The black cross marks the population mean, with the length of the
lines on the cross equal to the standard error.
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sampled from the “expected” distribution, pexp(E). For this
model, free parameters that were fitted to the estimation
data for each participant were the center and width of
participants’ “expected” distributions (determined by Eexp
and 1/.exp, respectively), the width of their sensory
likelihood (determined by 1/.l), the fraction of trials
where they made estimates by sampling from their
“expected” distribution (a(E)), the magnitude of the
“motor” noise in their responses (determined by 1/.m),
and the fraction of trials where they made estimations that
were completely random (!).
The second “response bias” model (ADD2) assumed a

more complex strategy, such that when participants were
unsure of stimulus direction, they made estimates that
were preferentially sampled from different proportions of
their “expected” distribution. Crucially, the portion of this
“expected” distribution that was sampled from depended
on the actual stimulus motion direction.
Here, the expected distribution pexp(E) was divided into

two parts:

panti clockwise Eð Þ ¼ V jEexp;.exp
� �

; ð5Þ

pclockwise Eð Þ ¼ V Eexp;.exp
� �

: ð6Þ

As before, on a single trial, participants made estimates
that were either equal to their sensory observation Eobs or
sampled from a learned distribution of expected motion
directions. However, instead of sampling from a single
distribution of expected motion directions, pexp(E), partic-
ipants could now make estimates that were sampled either
from the distributions panticlockwise(E) or pclockwise(E), with
a probability that was dependent on the actual stimulus
motion direction. For example, on a single trial, a
participant might be aware that the stimulus was moving

“anticlockwise from center” and thus would be more
likely to make an estimate that was sampled from the
distribution, pantilockwise(E), than from pclockwise(E).
This more complex response strategy results in a

distribution of estimation responses given by

p EestkEð Þ ¼ 1j !ð Þ� 1j a Eð Þj b Eð Þð Þ I pl Eobs ¼ EestkEð Þ
þ a Eð Þ I panticlockwise Eestð Þ þ b Eð Þ I pclockwise Eestð Þ�
* V 0;.mð Þ þ ! ; ð7Þ

where a(E) and b(E) were additional free parameters that
determined the proportion of trials where participants
sampled from each distribution.
Finally, we considered variations to the ADD1 and

ADD2 models (denoted “ADD1_mode” and “ADD2_
mode,” respectively) where, on trials where participants
were unsure of the stimulus motion direction, they made
perceptual estimates that were equal to the mode of the
“expected” distribution. These models are equivalent to
the ADD1 and ADD2 models, with “1/.exp” set to zero.

Bayesian model

The second class of models assumed that participants
combined a learned prior of the stimulus directions with
their sensory evidence in a probabilistic manner. Specif-
ically, unlike the previous models, where on individual
trials participants either rely entirely on their sensory
observations or on their expectations, in the Bayesian
model participants make estimations based on a combi-
nation of both their sensory observation and expectations.
A schematic of this model class is shown in Figure 7.
As before, we assume that on a single trial, participants

make noisy sensory observations of the stimulus motion
direction (Eobs), with a probability pl(Eobs|E) = V(E, .l).
From Bayes’ rule, the posterior probability that the
stimulus is moving in a particular direction E, given a

Figure 7. Bayesian model. The posterior distribution of possible stimulus motion directions is constructed by combining prior knowledge
about likely motion directions (the expectation) with the available sensory evidence (based on a noisy observation, Eobs) probabilistically.
A perceptual estimate is made by taking the mean of the posterior distribution. This posterior distribution is used to make a perceptual
estimate (Eperc). Additional “motor noise” is added to this perceptual estimate to produce the final estimation response (Eest).
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sensory observation Eobs, is obtained by multiplying the
likelihood function (pl(Eobs|E)), with the prior probability
(pprior(E)):

p EkEobsð Þ ò pprior Eð Þ I pl EobskEð Þ: ð8Þ

While participants cannot access the “true” prior,
pprior(E), directly, we hypothesized that they learned an
approximation of this distribution, denoted pexp(E). In our
model, this “learned prior” was parameterized similarly to
pprior(E) in ADD1 (see Equation 2).
We assume that participants make perceptual estimates

of motion direction, Eexp, by choosing the mean of the
posterior distribution so that:

Eperc ¼ 1

Z

Z
E I pexp Eð Þ I pl EobskEð Þ I dE; ð9Þ

where Z is a normalization constant. An alternative choice
would be for the perceptual estimate to be given by the
maximum of the posterior distribution. For our work, both
methods gave qualitatively identical results.
We accounted for the “motor noise” associated with

making the estimation response in a similar way to the
previous models. For this model, the free parameters that
were fitted to the estimation data for each participant were
the center and width of participants’ “expected” distribu-
tion (determined by Eexp and 1/.exp, respectively), the
width of their sensory likelihood (determined by 1/.l), the
magnitude of the “motor” noise in their responses
(determined by 1/.m), and the fraction of trials where
they made estimations that were completely random (!).
We included two variants of the Bayesian model:
“BAYES_var,” where the width of the likelihood function
was allowed to vary with the stimulus motion direction,
and “BAYES,” where it was held constant.

Inferring the parameters for each model

At the highest contrast, the stimulus was clearly visible,
so we assumed that the perceptual uncertainty was close to
zero (1/.l È 0). Therefore, for all models, the distribution
of estimations should be given by Equation 3, with the
substitution, Eexp = E. We used this equation to fit
participants’ estimation distributions at high contrast (by
maximizing the log probability of getting the observed
the data; see later), thus allowing us to approximate the
“motor noise” (determined by 1/.m) for each participant.
As with the rest of our data analysis, we modeled

participants’ responses to stimuli at both staircased
contrast levels (although see Supplementary materials).
Also, as all three models looked only at the estimation
task, effectively ignoring the detection response, we

initially looked only at data where participants detected
the motion stimulus (see Supplementary materials for a
version of the Bayesian model which incorporates the
detection task).
For each model, and for a particular set of parameters

M, we were able to calculate the probability of making
an estimate Eest given a stimulus moving in a direction E
(p(Eest|E; M)). Assuming that participants’ responses on
each trial were independent, this allowed us to calculate
the likelihood of generating our experimental data “D”
from the particular model and parameter set M. We then
chose model parameters to fit the data for each participant
by maximizing the log of the likelihood function:

M ¼ argmaxM
Xntrials
i

log p Eest ¼ Ei;datakEi
� �� �" #

; ð10Þ

where the summation was taken over all trials, and Ei and
Ei,data represent the presented motion direction and the
estimation response on the ith trial, respectively. We
found the maximum of the likelihood function using a
simplex algorithm (the Matlab function “fminsearch”).
We were concerned that for some participants our model
fits might converge to local rather than local maxima. To
reduce this possibility, we ran the model fits with a range
of initial values for .l and .exp (.l

j1/2 and .exp
j1/2 were

varied independently in 2- increments, between 1- and
21-), selecting the model fit that produced the highest
value for the log-likelihood. The results obtained were
also found to be robust to changes in all of the other initial
parameter values.
The models varied greatly with respect to the number of

parameters that they required to fit the data. Excluding .m
(as this was obtained from the high contrast responses, not
the low contrast responses that were the principle area of
investigation), ADD1 and ADD2 required 9 and 14 free
parameters, respectively: .l, Eexp, .exp, and !, plus 5
values for a(E), and for ADD2, another 5 values for b(E)
(one for each presented motion direction). ADD1_mode
and ADD2_mode required 8 and 13 free parameters,
respectively (one less parameter than ADD1 and ADD2
respectively, as .exp was no longer a free parameter).
BAYES required only four free parameters (.l, Eexp, .exp,
and !). BAYES_var required eight free parameters
(including a value for .l for each presented motion
direction).

Model comparison

We assessed how well each of the models accounted for
the estimation distribution using a metric called the
“Bayesian information criterion” (BIC), defined as:

BIC ¼ j2 I ln Lð Þ þ k I ln nð Þ; ð11Þ
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where L is the likelihood of generating the experimental
data from the model, k is the number of parameters in the
model, and n is the number of data points available. In
general, given two estimated models, the model with the
lower value of BIC is the one to be preferred (Schwarz,
1978). The first term of this expression accounts for the
error between the data and the model predictions, while
the second term represents a penalty for including too
much complexity in the model.
Figure 8 plots, for each participant, the BIC obtained

with each model, subtracted by the BIC obtained with the
BAYES model. From this plot, we can see that the BIC
values obtained with the ADD1, ADD2, ADD1_mode,
ADD2_mode, and BAYES_var models were significantly
greater than the BIC values obtained with the BAYES
model (p = 0.002, p G 0.001, p = 0.003, p = 0.005, and p G
0.001, respectively; signed rank test). Thus, while a small
minority of participants were not best fitted by the
BAYES model (two participants exhibited a lower BIC
value with the ADD1 model, two participants exhibited a
lower BIC value with the ADD1_mode model, and two
participants exhibited a lower BIC value with the
ADD2_mode model), this model provided the best
description of the data for the majority of participants.
Each of the models described attempted to fit the

estimation distributions for each participant. To achieve
a qualitative understanding of how the estimation distri-
butions predicted by each of the models compared to the
experimental data, we analyzed the predicted estimation
biases and standard deviations. As the ADD1_mode and
the ADD2_mode and the BAYES models provided better
fits to the data than the other models, we only analyze here
the predicted estimation biases and standard deviations for
these three models. In our previous analysis of the
experimental data, we parameterized participants’ estima-
tion distributions as the sum of a circular normal

distribution and a “flat” background probability (to
account for the proportion of trials where they made
random estimations). Participants’ estimation means and
standard deviations were then taken as the center and
width of the fitted circular normal distribution, respec-
tively. To be consistent with this, we computed biases and
standard deviations from the estimation distributions
predicted by each model in an identical way.
Figure 9 shows the estimation biases and standard

deviations predicted by each of the models, plotted
alongside the experimental data. Both the BAYES and
ADD2_mode models provided a good fit for the popula-
tion averaged estimation biases (mean absolute error of
0.75- and 0.62- for the BAYES and ADD2_mode models,
respectively). The ADD1_mode model, however, was
unable to reproduce the repulsive biases away from the
central motion direction (at T16-) that were observed
experimentally (mean absolute error of 2.14-; Figure 9a).
This was also reflected in the fits of individual partic-
ipants’ estimation biases (quantified by calculating the
mean absolute error for the fits of the estimation biases
separately for each participant, averaged over motion
directions). The error in the fits of the individual
participants’ estimation biases was significantly smaller
for the BAYES model than for the ADD1_mode model
(p G 0.001, signed rank test), while there was no significant
difference between the BAYES and ADD2_mode models.
The fact that the ADD1_mode model was unable to fit

the experimentally observed repulsive biases away from
the central motion direction can be explained by the fact
that for this model we parameterized the “expected”
distribution of motion directions, pexp(E), to be sym-
metrical around 0-. Thus, even in the extreme case where
all responses are sampled from this distribution, there
would only be an attractive bias toward the central motion
direction.

Figure 8. Model comparison. The Bayesian information criterion (BIC) evaluated with each model, subtracted by the BIC evaluated with
the BAYES model, is plotted separately for each participant. Median values are indicated by horizontal red lines, 25th and 75th percentiles
by horizontal blue lines. Values greater than zero indicate that the BAYES model provided the best description of the data. p-values
indicate whether the median “BIC-BICBAYES” was significantly different form zero for each model (signed rank test).
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The BAYES model produced estimation standard
deviations that varied with motion direction in a qual-
itatively similar way to the experimental data (with a
maximum at 0-, decreasing for stimuli moving further
from the central motion direction), although in general,
the model predicted values that were slightly larger than
what was observed experimentally (Figure 9b). The fits
for the estimation standard deviation produced by the
ADD1_mode and ADD2_mode were worse than the
BAYES model (mean absolute error of 5.11- and 2.74-
for the ADD1_mode and ADD2_mode models , respec-
tively, compared to 2.17- for the BAYES model) and did
not vary with motion in a way that was similar to the
experimental data. However, the error in the fits of the
individual participants estimation standard deviations
(quantified by calculating the mean absolute error for the
fits of the estimation standard deviation separately for
each participant, averaged over motion directions) was
not significantly different between the models (p = 0.91
and p = 0.34, respectively, for comparisons of the
ADD1_mode and ADD2_mode models with the BAYES
model; signed rank test).
While all the free parameters in the BAYES model (.l,

Eexp, .exp, and !) were held constant across presented
motion directions, in order for the “response bias” models
(ADD1, ADD2, ADD1_mode, and ADD2_mode) to fit the
data, additional free parameters were required (a(E) and
b(E)), which had to be varied between different presented
motion directions. Thus, for the ADD1 and ADD2 models
to be valid, participants would have had to alter their
response strategy, varying the proportion of trials where
they sampled from their “expected” probability distribu-
tions, depending on the direction of the presented
stimulus. In addition, the ADD1_mode and ADD2_mode

models assumed that when participants were unsure about
the presented motion direction, they made a perceptual
estimate of motion direction that was exactly the same on
each trial. This seems unrealistic: in reality there would be
some trial-to-trial variation in the expected motion
direction.
In summary, BAYES exhibited significantly smaller

BIC values than all of the other models, as well as
producing fits for the estimation biases and standard
deviation that were at least as good as the response bias
models, despite the fact that it had fewer free parameters
(4 parameters as opposed to 9, 14, 8, and 13 parameters
for ADD1 and ADD2, ADD1_mode, and ADD2_mode,
respectively), leading us to conclude that it provided the
best description of participants’ behavior. Overall, our
results argue against the hypothesis that the observed
estimation biases were produced by “response strategies”
unrelated to perceptual changes but rather support the
hypothesis that participants performed the task using a
Bayesian strategy, where a learned a prior of expected
stimulus directions was combined with their sensory
evidence in a probabilistic way.

Modeling estimation responses in the absence
of a stimulus

We were interested to see whether the prior and
likelihood distribution that we derived to fit participants’
response distributions when a stimulus was present were
sufficient to explain their estimation performance in the
absence of any stimulus.
While the original BAYES model ignored the detection

task, in order to analyze participants “no-stimulus”
behavior, it was important to incorporate this into our

Figure 9. Predicted biases (a) and standard deviations (b) for each model. Predictions for the ADD1_mode model (green), the
ADD2_mode model (blue), and the BAYES model (black) are plotted alongside the experimental data (red). In both plots, data points from
either side of the central motion direction have been averaged together so that the furthest left point corresponds to the central motion
direction, and the vertical dashed line corresponds to the most frequently presented motion directions. In all plots, results are averaged
over all participants and error bars represent within-subject standard error.
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model. The full model, BAYES_dual, which is of the
same form as the original Bayesian model, with the
exception that it simulates the detection task, is described
in the Supplementary materials. The BAYES_dual model
required 3 additional parameters: participants’ prior
expectation that a stimulus would be presented on each
trial, the probability that participants made sensory
observations of the stimulus as being present, on trials
where a stimulus was presented, and on trials where no
stimulus was presented (see Supplementary materials).
Importantly, these parameters were fitted using only data
from trials where the stimulus was presented, and not
zero-stimulus trials, which was what we were aiming to
predict.
Figure 10 shows the estimation distributions predicted

by this model for trials where there was no stimulus
present but where participants detected a stimulus (black),
plotted alongside the experimentally measured distribu-
tion (red). The average “zero-stimulus” estimation distri-
bution predicted by the model provided a good fit for the
population averaged estimation distributions, with an R2

value of 0.71. The behavior of individual participants was
also well predicted by the model: the fits for participants’
zero stimulus estimation distributions had a positive R2

value for 8 out of 12 of them. For these participants, the
median R2 value was 0.65 (0.46, 0.83; 25th and 75th
percentiles). The fact that the majority of participants’

behavior in the absence of a stimulus could be predicted,
based solely on their estimation responses in the presence
of a stimulus, provides strong evidence in favor of the
Bayesian model put forward here.

Discussion

We found that participants quickly and automatically
developed expectations for the most frequently presented
directions of motion. On trials where no stimulus was
presented, but where participants reported seeing a
stimulus, they were strongly biased to report motion in
the two most frequently presented motion directions
(Figure 3). This bias could not be explained as due to
any particular “response-strategy.” Participants’ percep-
tion of real motion stimuli was also influenced by their
learned expectations: they showed increased detection
performance for the most frequently presented motion
directions and estimated stimuli to be moving in directions
that were more similar to the most frequently presented
motion directions than they really were (Figures 4–6).
Participants’ estimation behavior was well described by a
model which assumed that they solved the task using a
Bayesian strategy, combining a learned prior of the
stimulus statistics with their sensory evidence in a
probabilistic way (Figures 7–9). Further, our model of
participants’ behavior in the presence of a stimulus was
able to accurately predict their estimation responses when
no stimulus was presented (Figure 10).

Learning the “expected” motion directions

Participants rapidly learned to expect the likely stimuli;
within just a few minutes of task performance. One by-
product of such rapid learning was that because partic-
ipants learned which motion directions were expected
within a very few number of trials, it was difficult for us to
measure the short-term time course and dynamics of
learning (Supplementary Figure 3). Future work could
investigate this using a more complicated distribution of
presented stimuli or statistical learning paradigm that pro-
duces slower learning of stimulus expectations (Eckstein
et al., 2004; Orbán, Fiser, Aslin, & Lengyel, 2008).
Recent studies have shown that rapidly learned expec-

tations influence perception of bistable stimuli (Haijiang
et al., 2006; Sterzer et al., 2008). In common with our
results, these studies found attractive perceptual biases
toward participants’ expectations. However, while these
studies looked at perception of relatively complex visual
features, such as whether a stimulus was rotating (Sterzer
et al., 2008), our experiment looked at perception of
simple unambiguous features, which are likely to be
processed at a lower level in the visual hierarchy, such as

Figure 10. Predicted estimation response probability distributions
for trials where no stimulus is presented but where participants
reported detecting a stimulus. Model predictions (gray; BAYES_dual
model; see Supplementary materials for details) are plotted
alongside the experimental results (red). Data points from either
side of the central motion direction have been averaged together
in this plot so that the furthest left data point corresponds to the
central motion direction, and the vertical dashed line corresponds
to the most frequently presented motion directions (T32-). Results
are averaged over all participants and shaded error bars represent
within-subject standard error.
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cortical area MT (Newsome, Britten, & Movshon, 1989).
Whether similar neural changes are responsible for the
effects of expectations on perception of both simple and
more complicated stimulus features is an open question.
Our finding, that participants perceived motion in

expected directions when nothing was presented, is
similar to what has been found in perceptual learning,
where after learning participants report seeing dots
moving in the trained direction when no stimulus is dis-
played (Seitz, Nanez, Holloway, Koyama, & Watanabe,
2005). However, an important difference between our
results and what has been reported previously was the
time taken for these hallucinations to develop: in the study
of Seitz et al., it took around eight 1-hour sessions for
participants to perceive motion in the trained direction
when there was nothing there, while we observed this
effect within the first 250 trials. It is interesting to consider
whether these visual hallucinations were caused by the
same underlying phenomena in both cases. Indeed,
elucidating the similarities and differences between the
physiological and the behavioral effects of different types
of learning is an important goal for future research (Seitz
& Watanabe, 2005).

Bayesian model

In our experiment, participants were implicitly asked to
learn the statistics of the stimulus directions. In Bayesian
terms, this corresponds to learning a prior distribution of
the motion stimuli. Bayesian theory (MacKay, 2004) tells
us how such knowledge should then be combined with
sensory inputs to lead to optimal estimates. Our results
can thus be interpreted in the context of two questions: (1)
are participants able to learn a prior about motion stimuli
in the course of our experiment; (2) is this prior combined
optimally with participants’ sensory observations to lead
to motion estimates?
We constructed a simple model of participants’ estima-

tion behavior, which assumed that on each trial they
combined their sensory evidence (based on a noisy
sensory measurement of motion direction) with a learned
prior distribution of “expected” motion directions, in a
probabilistically optimal manner (Figure 7). For each
participant, we chose the width of the likelihood function
and shape of the learned prior to maximize the probability
of their estimation data being generated by the model. The
model provided a good fit of participants’ estimation
biases and standard deviations (Figure 9). Interestingly,
the quality of the fit to the data did not decrease when the
width of the likelihood was held constant with presented
motion direction (Figure 8). On average, the shape of
participants’ learned prior (Supplementary Figure 10) was
found to be qualitatively similar to the actual distribution
of presented stimuli (Figure 2), indicating that they were
able to rapidly learn a multi-modal prior distribution of
stimulus directions.

In our experiment, the luminances of the two staircased
contrast levels (determined by running staircases on the
detection performance) were very similar to each other,
with a large degree of overlap between them. Therefore,
we combined data from both contrast levels for the
majority of our analysis. Later, we looked at how
participants’ estimation behavior varied with the stimulus
contrast by dividing participants’ estimation responses
into “low” and “high” contrast trials, determined by the
contrast level of each individual trial rather than the
staircased contrast level that it was a part of (see
Supplementary materials for details). We found that the
average magnitude of participants’ estimation standard
deviations increased for lower contrast levels, along with
the magnitude of estimation biases toward the central
motion direction (Supplementary Figure 6).
This is consistent with what we would expect if

participants behaved as Bayesian observers. At lower
contrast levels, participants’ sensory uncertainty should
increase, causing an increase in the standard deviation of
estimations. As a result of this, the learned prior would
begin to dominate over sensory evidence, causing the
magnitude of the estimation biases to increase (Stocker &
Simoncelli, 2006). While we were not able fit participants’
estimation behavior at varying contrast well using our
Bayesian model (as there were too few data points per
experimental conditions to well constrain the model), this
will be an interesting question for future work.
We reasoned that if our participants were indeed

behaving as Bayesian observers, then the prior and
likelihood derived from their estimation responses when
a stimulus was present should also predict their estimation
behavior when no stimulus was present. This is indeed
what we found: the majority of participants’ zero-stimulus
estimation distributions were well fitted by the model
(Figure 10). Therefore, while “hallucinating” motion
when none is there will clearly be disadvantageous in
most everyday situations (Seitz et al., 2005), in the context
of our experiment, it is just what we would expect for an
ideal Bayesian observer who sought to minimize their
estimation error in the face of perceptual uncertainty.
We compared the Bayesian model with various

“response bias” models, which assumed that participants
responded according to different strategies on different
trials: either relying entirely on their sensory observations
or on their expectations. These models were worse at
describing the estimation data than the Bayesian model
(larger BIC values; Figure 8), leading us to rule them out
as an explanation for participants’ behavior in the
estimation task.
Our finding that participants responded according to a

“single-strategy” Bayesian model does not necessarily
imply that the biases we observed were perceptual in
origin. For example, it is possible that participants altered
their overall behavioral strategy in order to incorporate
knowledge about which motion directions were most
likely, while their perception of the stimuli remained
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unchanged. Indeed, distinguishing between biases that
occur at the perceptual or decision-making level is a very
difficult task to perform psychophysically (Schneider &
Komlos, 2008). However, our modeling work does imply
that participants’ combined their expectations with their
sensory observations in a non-trivial way. Specifically, on
each trial participants did not rely solely on either their
expectations or their sensory observations, but rather they
made their estimations based on a combination of both of
these sources of information. Further, we noted that if the
observed estimation biases were due to a change in
behavioral strategy, this must have occurred at a largely
subconscious level, as most participants were unable to
indicate the two motion directions that had been most
frequently presented, with a large proportion (9 out of the
12 participants included in our analysis) reporting either
that there were equal number of stimuli moving in all
directions, or that most of the stimuli were centered
around a single motion direction. Also, our personal
observations from setting up the experiment is that lab
personnel often perceived patterns of moving dots in zero
contrast trials, leading us to the conclusion that exper-
imental subjects experienced the same “hallucinations.”

Effect of expectations on performance

We were interested to see whether participants’ per-
formance in the detection task was improved for stimuli
moving in “expected” directions. We found that there was
a significant increase in participants’ detection perfor-
mance as well as a significant decrease in reaction time for
clicking the mouse during stimulus presentation for
stimuli moving in the most frequently presented motion
directions (Figure 6 and Supplementary Figure 7).
Although somewhat smaller in magnitude, these effects
are similar to what has been reported previously by
Sekuler and Ball (1977), who found large improvements
in both detection performance and reaction time when
participants knew which direction stimuli would be
moving in. Such an increase in perceptual sensitivity
toward expected stimuli is similar to the effects of
selective attention (Downing, 1988; Posner et al., 1980),
suggesting that the learned expectations led participants to
direct selective attention toward the expected stimuli.

Eye movements

In the experiment of Sekuler and Ball (1977), partic-
ipants reported that they experienced their eye movements
being involuntarily “pulled” in the direction of the
stimulus. It was suggested by the authors that mechanisms
controlling eye movements might be capable of respond-
ing to very low luminance motion stimuli and thus that the
resulting eye movements could be used by participants to

help them correctly detect stimuli that were otherwise
imperceptible.
If this is the case, then it could have also contributed to

changes in detection performance and reaction time with
motion direction in our experiment. For example, if
participants were biased to move their eyes in “expected”
motion directions, then this could result in decreased
detection thresholds for these motion directions. However,
how such eye movements would influence estimation of
motion direction is not so clear. Naively, if participants
were biased to move their eyes in expected motion
directions, then we might expect this to produce estima-
tion biases away from these directions (as the motion
component in this direction would be reduced, relative to
the motion of the eye), which is not what we observed. A
proper understanding of how extra-retinal eye-movement
signals are combined with sensory signals to produce
perceptual estimates is an important area for future work.

Interaction between tasks

We considered how participants’ behavior in one task
could have influenced their behavior in the other (Jazayeri
& Movshon, 2007). Specifically, we asked whether biases
in the estimation task could have come about as a result of
participants optimizing their behavior in the detection
task. To illustrate how this could happen, consider the
case where participants’ expectations influenced their
detection performance, but not their perception of motion
direction. Here, if participants were more likely to detect a
stimulus when they perceived it to be moving in
“expected” directions, then this would also cause the
estimation distributions to be biased toward these direc-
tions when we looked just at trials where a stimulus was
detected. However, this bias would disappear when we
looked at estimation responses from all trials, regardless
of participants’ detection responses, which is not what we
find experimentally (there was no significant difference
between the estimation biases calculated from trials where
participants detected stimuli, and from all trials; p = 0.71,
five-way within-subjects ANOVA).
On the other hand, if, on trials where participants did

not detect a stimulus, they treated the estimation task as
meaningless and provided random estimation responses,
then on average we would still observe a bias toward the
expected directions. This could allow participants to
respond in a “self-consistent” way in both tasks (Stocker
& Simoncelli, 2008): when they have settled on the
hypothesis that there is no stimulus present, it makes little
sense for them to scrutinize which direction it is moving
in. However, as discussed earlier, participants’ detection
performance varied relatively weakly with motion direc-
tion, with a population averaged difference in detection
performance of only 5.9 T 1.0% between the two most
frequently presented motion directions and other direc-
tions (Figure 6). Thus, it seems unlikely that the highly
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significant variation in estimation biases observed exper-
imentally (varying by 14.6 T 2.9- between stimuli moving
at T16- and T64-; Figure 4a) could be brought about by
such small changes in detection performance.

Expectations and attention

The behavioral effects of sensory expectations have
been often linked to those of attention, as both phenomena
result in increased perceptual quality for attended or
expected stimuli (Doherty et al., 2005; Downing, 1988;
Posner et al., 1980; Summerfield & Egner, 2009). In the
context of this experiment, it is possible that participants
learned to direct feature-based attention toward the most
frequently presented motion directions. Therefore, it is
worthwhile comparing our results to previous experiments
looking at the effects of feature-based attention on motion
perception.
Previous studies using transparent motion stimuli have

shown that feature-based attention can modulate how
different motion components are perceptually combined,
thus altering the perceived directions (Chen, Meng,
Matthews, & Qian, 2005; Tzvetanov, Womelsdorf,
Niebergall, & Treue, 2006). For example, Chen et al.
(2005) found that attending toward one of two overlapping
motion signals reduced the degree of repulsion between
the two motion signals so that the non-attended motion
direction was perceived as being closer to the attended
motion direction than it would be otherwise. This is
consistent with our results, where attending to a particular
motion direction resulted in an attractive bias in estima-
tion-responses toward the attended direction. However,
in these previous studies, attention acted to select one of
two competing motion stimuli and thus modified the
interaction between processing of these different motion
signals. Here, we find that when participants “expect”
stimuli to be moving in a particular motion direction, this
alters the perceived direction of motion, even in the
absence of any competing stimuli.
It is interesting to consider how the perceptual effects

that we observed here could be produced by changes at
the neural level in the visual cortex. Much modeling work
has looked at how visual neurons could encode informa-
tion about sensory stimuli in the form of probability
distributions, both at the single neuron (Deneve, 2008)
and at the population level (Knill & Pouget, 2004; Ma,
Beck, Latham, & Pouget, 2006; Pouget, Dayan, & Zemel,
2003). However, at present the evidence for neural
encoding of the prior is minimal (Basso & Wurtz, 1997;
Platt & Glimcher, 1999; Summerfield & Koechlin, 2008).
On the other hand, recent experiments have shown that

expectations of when and where motion stimuli are likely
to be presented can result in increased reliability of
neurons in visual area MT (Ghose & Bearl, 2009). In the
context of visual attention, numerous studies have shown
that selective attention increases the sensitivity of neurons

that are tuned toward attended spatial (Spitzer, Desimone,
& Moran, 1988; Treue & Maunsell, 1996) or feature
(McAdams & Maunsell, 2000; Treue & Martı́nez Trujillo,
1999) dimensions. Looking specifically at visual motion,
electrophysiological studies in macaque MT show that the
firing rate of neurons that are tuned toward an attended
motion direction are increased relative to neurons that are
tuned toward other directions (Treue & Martı́nez Trujillo,
1999). Therefore, if, in our experiment, participants
learned to direct feature-based attention toward expected
motion directions, then it is likely that the gain of neurons
that were tuned toward these directions was increased.
When considered together with our results, this leads to
the following questions. First, are the learned priors that
seem to be involved in our task encoded directly by gain
changes of sensory neurons such as are observed with
attention (Dayan & Zemel, 1999; Rao, 2005; Yu &
Dayan, 2005a)? Secondly, how are these changes inter-
preted, or “decoded,” by upstream cortical areas to
produce the perceptual biases that we observed (Jazayeri,
2007, 2008; Jazayeri & Movshon, 2006, 2007; Seriès,
Stocker, & Simoncelli, 2009)? Finally, an interesting goal
for future research is to understand how priors that are
learned over a short period of time are incorporated with
and used to update long-term priors about the statistical
structure of the world (Knill & Pouget, 2004; Weiss et al.,
2002).

Conclusions

We asked whether the statistics of past motion stimuli
can modulate perception of new motion directions. This
was indeed what we found: participants quickly developed
expectations for the most frequently presented directions
of motion, and this strongly influenced their perception of
simple, unambiguous, visual stimuli, inducing a shift in
the perceived direction of stimuli toward expected motion
directions as well as hallucinations to see motion when
none was presented.
In our work, expectations can be directly interpreted

and modeled as Bayesian priors. In a situation like ours
where stimuli are presented to only one sensory modality,
without conflict or ambiguity, expectations or Bayesian
priors are often thought to develop slowly over a lifetime
of sensory inputs. In contrast, we found that they can be
learned rapidly, in a period of a few minutes. Moreover,
we showed they are combined with sensory inputs in a
way that is compatible with optimal Bayesian inference.
In conclusion, our findings support the idea of a very

plastic perceptual system in which prior knowledge is
rapidly acquired and constantly used to shape our percep-
tions toward what we expect to see. Though useful for the
system in the face of uncertainty, this plasticity comes at the
cost of unconscious illusions and hallucinations.
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