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Abstract: 

The zone-center phonon spectra of phase-I ammonia and deuterated ammonia have been obtained 

from plane-wave DFT molecular dynamics and localized basis set harmonic lattice dynamics 

simulations. These data have proved to be excellent for benchmarking the two approaches. 

Significant changes to the assignments of the experimental low-frequency lattice modes are proposed 

on the basis of the calculated data. The magnitude of the splitting of the longitudinal and transverse 

optical modes has been determined and is shown to be significant in some cases. The high-frequency 

internal mode region of the spectrum has also been obtained and is shown to be in excellent 

agreement with the results of previous studies. The symmetry coordinates and Davydov splittings of 

the internal modes are fully analyzed. 

 

Keywords: 

phonon spectra, molecular dynamics, velocity autocorrelation function, lattice dynamics, density 

functional theory, LO-TO splitting, Davydov splitting 
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1. Introduction 

The phonon spectrum of a molecular solid typically comprises a region dominated by the high 

frequency internal vibrations of molecules (i.e. bond stretches, angle bends etc.) along with the low 

frequency external vibrations of the system (i.e. motions of the molecules relative to each other). Phonon 

spectra often prove quite difficult to interpret and assign correctly, for whereas an isolated N-atom 

molecule possesses 3N-6 normal modes of vibration, the unit cell of a molecular crystal typically 

contains multiple molecules, the vibrations of each of which combine with the external motions to form 

the larger set of lattice modes. The system upon which this paper focuses, phase I ammonia, provides an 

excellent example of the difficulties encountered. The NH3 molecules condense into a cubic structure 

(P213 space group) with a lattice constant of 5.1305(8) Å at 160 K.1 The unit cell contains four 

molecules, and the Γ-point phonon spectrum comprises 48 modes,2 as compared with the six modes 

obtained for the isolated molecule. Taking account of the degeneracy of the modes leads us to expect 19 

distinct peaks in the experimental spectra. Whilst a wealth of literature2-7 spanning nearly 60 years has 

been devoted to the study of the vibrational properties of this material, no clear and full assignment has 

been forthcoming. 

The confusion over the ammonia phonon spectrum arises mainly in the lattice-mode region of the 

spectrum. Brinbrek and Anderson3 provided the original assignments for the symmetries of the lattice 

modes based upon infra-red (IR) and Raman spectroscopy. Righini et al.4 performed empirical model 

calculations with the aim of reproducing the experimental modes as closely as possible, in order to 

explore the dynamics of the system further. This latter study resulted in significant variations in the 

symmetry assignments from those proposed by Brinbrek and Anderson. The experimental studies also 

include an application of coherent inelastic neutron scattering (C-INS) to deuteroammonia by Powell et 
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al.,5 which also suggested changes to the assignments made by Brinbrek and Anderson but did not agree 

completely with the theoretical assignments of Righini et al. Our group has recently conducted a study 

of the low-frequency modes in ammonia based on constrained molecular dynamics (MD) simulations.2 

A method of extracting the eigenvectors of a particular mode from the MD trajectory was applied, 

permitting us to examine selected atomic displacement patterns and to reassign tentatively some of the 

previously accepted mode symmetries. 

The disagreements in the experimental assignments of the phonon spectrum are not unexpected, for 

each of the techniques applied suffers from its own inherent set of difficulties. The observability of 

certain modes in IR and Raman spectroscopy is often limited by the effects of the selection rules and by 

the weak coupling of certain motions to the probe radiation. The existence of combination and overtone 

bands can lead to considerable confusion, as can the erroneous assignment of split longitudinal- (LO) 

and transverse optical (TO) modes in polar compounds. This latter effect arises from the lifting of the 

degeneracy of some of the modes at the G-point due to long-range electrostatic interactions, leading to 

the appearance of more peaks in the spectrum than would be expected from the group theory analysis 

alone. It is also possible that the introduction into the lattice of defects such as vacancies or interstitials 

may produce localized modes that appear in measured spectra. Given these potential complications, it is 

now common practice to augment the experimental observations with a theoretical determination of the 

spectra. While isolated molecule calculations can be of use in this regard, solid-state approaches are to 

be preferred, the most commonly applied of which are the molecular– and lattice dynamics methods. 

Molecular dynamics (MD) simulations furnish a continuous trajectory for a system by integration of 

the atomic equations of motion at a series of discrete time steps. MD simulations can provide an 

extensive range of physical properties for a material, including thermodynamic functions, diffusion 

constants and elastic properties etc. In the current application we calculate the velocity autocorrelation 

function8 (VAF), which may be Fourier transformed to obtain the normal modes of motion of a material. 

MD simulations based upon the forces obtained from density functional theory (DFT) have recently 

become much more commonplace. Alongside the natural incorporation of anharmonic effects in the MD 



 

4 

approach in general, such DFT-MD simulations offer the further advantage of including the 

instantaneous changes in the electronic structure and bonding of a material due to atomic motion. The 

inclusion of both of these effects has been shown to be important if close agreement with experimental 

data is sought. However, DFT-MD calculations are generally computationally intensive and may as a 

consequence be capable of providing only short trajectories, whereas obtaining adequate spectral 

resolution of low frequency modes usually requires long sampling times. This problem can be partially 

overcome by convolution of the VAF with a windowing function9 prior to Fourier transformation, in 

effect limiting the error due to the finite extent of the dataset. Non-ergodicity of the system can also be a 

problem in short simulations, but this can be addressed by use of thermostats that effectively enforce the 

proper equipartitioning of the energy. We note also that the extraction of frequency-specific eigenvectors 

from MD simulations is an uncommon practice,10-12 and that the assignment of the symmetry of the 

motions, which must currently be done by hand, might become a difficult task in large, complex 

systems. 

Lattice dynamics calculations approach the problem of obtaining the normal modes from a different 

perspective altogether, and seek to solve the strictly harmonic atomic equations of motion by direct 

diagonalization of the dynamical matrix.13 Density functional perturbation theory or frozen-phonon 

methods can both be generally applied to determine the Γ-point modes and also the full phonon 

dispersion relations throughout the reciprocal space zone.14 The method offers a number of advantages 

over MD simulations, amongst the most useful of which is the implicit inclusion of crystal symmetry 

and the provision of correctly symmetrized eigenvectors for each mode that require no assignment. 

Further, no issues relating to the sampling of low-frequency modes or ergodicity arise, and the 

calculations are typically much less intensive than comparable MD simulations on the same system. The 

technique may be efficiently implemented alongside any total energy calculation scheme that provides 

numerically accurate gradients, freeing us to apply any Hamiltonian we choose to the task of calculating 

the phonon spectra. In the current study we make use of this fact, and compare the modes obtained from 

various pure and hybrid DFT functionals.  Lattice dynamics calculations can also be readily extended to 
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include the LO-TO splitting effect, through the addition to the G-point dynamical matrix of a correction 

term that depends in a non-trivial manner on the lattice polarity and the high-frequency dielectric 

constant tensor, ε¥. MD simulations can also capture at least a part of the splitting, but the long-range 

nature of the electrostatic interactions involved mandates the use of large supercells. Such large 

supercells are also required for MD simulations to probe non-G-point modes. Alongside the strengths of 

the method, however, we emphasize again that lattice dynamics calculations are rooted within a strictly 

harmonic approximation, and that this may be a poor representation of the true potential-energy surface 

underlying some motions. Any deficiencies due to this effect are most likely to manifest themselves in 

the nitrogen-proton stretching modes in the current study. We note also that the lattice modes are also 

particularly sensitive to inaccuracies in the calculation of the dynamical matrix. 

The current work focuses upon the phase I ammonia structure, the compact cell of which makes it 

well suited to simulations, and for which a large number of experimental studies of the vibrational 

properties exist. We seek in particular to estimate the size of the LO-TO splitting, for it has often been 

invoked in previous experimental assignments of the modes.2,3 The isotopic frequency shifts have also 

previously assisted the interpretation of the experimental spectra5 and, in particular, provide a means by 

which the low frequency modes can be classified into librational and translational types (as discussed in 

Section 3.3).  We obtain comparable theoretical values for both methods from simulations of the fully 

protonated (NH3) and deuterated (ND3) lattices. Section 2 gives details of the computational techniques 

applied, while the equilibrium geometries obtained from the various methods are presented in Section 

3.1. The results for the low-frequency region of the protonated spectrum are presented in Section 3.2 

along with a mode-by-mode assignment. The corresponding region of the deuterated lattice spectrum is 

discussed in Section 3.3. Finally, we discuss the internal mode region of both isotopic forms. 

 

2. Theoretical Methods 
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2.1. Molecular Dynamics Calculations. The geometry of the ammonia unit cell was optimized from 

the initial experimental structure15 within the CASTEP plane-wave pseudopotential DFT code.16 The 

PW91 GGA-type exchange–correlation functional was used, together with a plane-wave cut-off energy 

of 400 eV. Core–valence interactions were represented by standard ultrasoft pseudopotentials, and the 

reciprocal space zone was sampled upon a 2´2´2 Monkhorst-Pack grid. A mesh of this density suffices 

to converge the atomic forces and maximum stress tensor component in a trial distorted geometry to 

better than 0.001 in 0.172 eV Å-1, and 0.02 in 0.93 GPa respectively. Variable volume geometry 

optimizations were pursued until the energy change per atom, maximum atomic force and maximum 

stress component fell below tolerances of 5´10-7 eV, 1 meV Å-1 and 0.02 GPa respectively. The 

subsequent NVE-ensemble molecular dynamics simulation was performed within the NH3 unit cell and 

proceeded from this initial geometry. The initial temperature of 155 K quickly equilibrated to a steady 

77 K. The position and velocity of, and force acting upon, each atom in the cell were obtained at 

intervals of 0.5 fs, where this timestep was chosen to ensure adequate sampling of the high-frequency 

N–H stretching motions. Data were collected for 30 ps in total. A comparable MD simulation for ND3 

was also performed with the same parameters, save that a longer time step of 0.8 fs was used, reflecting 

the fact that a lower stretching frequency was anticipated for the N–D bond. This run also maintained a 

steady temperature of 77 K after equilibration, and data were again collected for 30 ps. 

The eigenvalues of the phonons were extracted from the NH3 and ND3 trajectories via the standard 

VAF method, and the associated eigenvectors were obtained as described in our previous work.2 The 

Fourier transform of the VAF is sensitive to both the finite length of the dataset and to the amplitudes of 

the modes being extracted, but we counter these problems by application of various Blackman 

windowing functions9 with widths of 10, 7.5 and 5 ps. Wider windows lead to greater errors in the small 

amplitude modes (i.e. the internal vibrations) but allow better resolution of the low-frequency modes.  

 

2.2. Lattice Dynamics Calculations.  The geometry of phase I ammonia at equilibrium was 

determined within a range of Hamiltonians and localised basis sets by optimizations using the 
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CRYSTAL06 code.17 Optimizations continued until the changes in total energy fell below 2×10-7 eV, 

and the root-mean-squared (RMS) gradients and displacements were below 2.6 meV Å-1 and 2.5×10-4 Å, 

respectively. The tolerances for individual components of the gradients and displacements were set at 

1.5 times the respective RMS thresholds. SCF convergence tolerances were set at 3×10-8 eV per cell, 

while reciprocal space was sampled with an 8´8´8 Monkhorst-Pack grid, the inexpensive nature of the 

LD calculations permitting a much more dense mesh to be applied than was the case in the MD 

simulations. The convergence of forces and stresses with respect to the sampling mesh is therefore 

superior to that of the MD simulations, but we note that the accuracy of the latter was already more than 

sufficient. The optimized geometries being obtained, the normal modes of the lattice were determined 

within these cells by a series of finite displacement calculations, in which a subset of the atoms in the 

cell were translated by 0.003 Å along each of the Cartesian axes.18,19 The point group symmetry of the 

lattice was used to generate the full force-constant matrix from an irreducible set of atomic 

displacements. In the primitive cell of ammonia, this amounts to the shift of one hydrogen atom along 

the x, y and z axes and the shift of one nitrogen atom along the x axis. The external mode frequencies 

obtained from test calculations with tighter optimization and SCF tolerances differed by 1.2 cm-1 at most 

from the values produced by the procedure detailed above. Furthermore, forcing strict adherence to the 

sum rule through a direct normalization of the dynamical matrix resulted in only negligible variations in 

the frequencies. The dynamical charges of the lattice were determined by a Wannier localization 

procedure, and the LO-TO splitting correction term was added to the Γ-point dynamical matrix 

determined at the B3LYP/6-311G** level of theory. Splittings were calculated for values of ε∞ ranging 

from 1.3 to 2.3, bracketing the experimental value of 1.9 obtained in the liquid phase.20 A similar 

determination of the LO-TO splitting was also made for the fully deuterated lattice. 

 

3. Results and Discussion 

3.1 Optimized Structures of Phase I NH3 
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Plane-wave basis set. The optimized structure of ammonia determined in the plane-wave (PW) 

calculations with the PW91 functional is presented in Table 1. The asymmetric unit of phase I ammonia 

consists of a single H/D atom and one third of an N atom. Note that the equilibrium structures of NH3 

and ND3 are identical, as the atomic forces and cell stresses are independent of the nuclear masses. The 

theoretical cell vector, which is formally obtained at 0 K, is 1% longer than the 160 K experimental 

value. Similarly, the calculated N–H bond is 2% longer than that measured at 160 K, while the closest 

H···N distance is nearly 3% shorter than the experimental value. 

Table 1 The optimized fractional coordinates of phase I ammonia as determined by PW91/PW calculations, together with the 
optimized lattice constant, aopt (Å), and N–H and H···N distances (Å). 

Hx  0.3460 

Hy 0.2714 

Hz 0.0910 

Nx 0.1935 

aopt / Å 5.1846 

r(N–H) / Å 1.0347 

r(H···N) / Å 2.336 

 

Localized Basis Sets. The optimised structures obtained from our initial calculations using localized 

basis sets are presented in Table 2. The TZP basis set splits s and p shells, whereas 6-311G** uses more 

computationally convenient but less flexible sp-shells in which the s and p primitive functions share a 

common set of exponents. Despite the use of different basis sets and correlation functionals, the three 

B3 (i.e. 20% Hartree-Fock exchange) hybrid calculations provide similar geometries, with N–H and 

H···N bond lengths that are within 1.0 and 1.4% of the experimental values, respectively. The PW91 

bond lengths show larger differences from experiment of 1.8 and 3.1%, respectively. The larger cell 

vectors obtained from the B3LYP and B3PW91 calculations as compared with the PW91 values are due 

to small reorientations of the molecules. Finally, we note that the substitution of the less constrained 

TZP basis for the 6-311G** set lowers the energy of the optimized cell by 0.41 eV, so that the former 

represents the closest approach to the variational minimum achieved within the current study.    
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Table 2 The optimized lattice constant, aopt (Å), and N–H and H···N distances (Å) obtained from various electronic 
Hamiltonians and basis sets, together with the 160 K experimental values.     

 

Method B3LYP B3LYP B3PW91 PW91 
Expta 

 Basis TZP 6-311G** 6-311G** TZP 

aopt / Å 5.2562 5.2418 5.2354 5.1408 5.1305 

r(N–H) / Å 1.019 1.020 1.020 1.028 1.010 

r(H…N) / Å 2.401 2.377 2.365 2.324 2.398 

a Ref. 1. 

 

3.2. Phase I NH3 Lattice Modes.  

MD trajectory. The time-averaged fractional coordinates of the asymmetric unit of NH3 are presented 

in Table 3. In evaluating these positions the first 4 ps of the trajectory have been discarded to allow for 

equilibration of the system. Figure 1 shows the lattice-mode region (0–650 cm-1) of the mass-balanced 

NH3 phonon spectrum determined by Fourier transformation of the convolution of the VAF with the 

three different Blackman windowing functions. All three spectra show nine distinct peaks, as expected 

from the group theory analysis of the equilibrium structure.  

 

Table 3 The fractional coordinates of the asymmetric unit in NH3 averaged over the 30 ps PW-DFT MD trajectory. 

Hx  0.3518 

Hy 0.2698 

Hz 0.0965 
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Nx 0.1972 

 

 

Figure 1 The lattice mode region of the NH3 phonon spectrum as obtained from the MD trajectory using three Blackman 
windowing functions of different widths. 

 

The eigenvectors for each mode were extracted and the symmetry assigned by observation of the 

corresponding atomic motions. In particular, we discriminate between modes that preserve the three-fold 

axis of the system (A symmetry) or the two-fold axes (E symmetry). The remaining modes are then 

assigned as having F symmetry. We validate these assignments by comparison with the results of the 

harmonic lattice-dynamics calculations. The resultant MD peak positions and assignments are tabulated 

together with the comparable experimental data in Table 4. 
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Lattice Dynamics Calculations. The lattice-dynamics results obtained with a variety of Hamiltonians 

and basis sets are also presented in Table 4. The optimized structures appropriate to each method were 

used, as presented in Table 2. The frequencies of the acoustic modes are imaginary (i.e. negative) but are 

reasonably close to zero in each case, and neither tighter convergence tolerances nor normalization of 

the dynamical matrix improves upon these values. The best agreement between the MD normal modes 

and lattice dynamics frequencies is obtained with the B3LYP/TZP combination, whereas the PW91/TZP 

frequencies are apparently shifted to a higher frequency by 15–30 cm-1.  
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The LO-TO split frequencies obtained from B3LYP/6-311G** calculations with an ε∞ value of 1.9 are 

presented in Table 5, along with the IR intensities calculated from the dynamical charge tensors, the 

scalar magnitudes of which are Z*(N) = –0.817 e and Z*(H) = +0.272 e. We see immediately that some 

of the calculated intensities are very low, which may explain the experimental difficulties encountered in 

trying to resolve and assign these peaks. Further, it should be noted that the IR probe beam is not 

expected to couple to the LO modes, whereas both polarizations are in principle observable by Raman 

spectroscopy. The results indicate that it is only the last two external modes that show any significant 

LO-TO splitting, amounting to 56 and 10 cm-1 respectively. The splittings obtained for other values of 

ε
∞ are presented in Table 6; though there is some variation, we note that the overall distribution of the 

modes does not change, supporting the use of the liquid-phase value.  

 

Table 5 The character, C (T = translational, L = librational), irreducible representation, I, IR and Raman activities (ü = 
active, × = inactive), frequencies, ω (cm-1) and IR absorption intensities, Int (km mol-1) of the external modes in the ammonia 
phase I B3LYP/6–311G** calculation. Frequencies and intensities of the LO and TO components are presented separately, 
where appropriate.  

Mode C I IR Ram w(LO) ω(TO) Int(LO) Int(TO) 

1 T F ü ü -9.0 0.4 

2 T E × ü 99.7 0.0 

3 T A × ü 113.4 0.0 

4 T F ü ü 134.3 132.6 (5.1) 10.4 

5 T F ü ü 177.7 177.0 (3.3) 6.2 

6 L F ü ü 321.9 321.8 (0.9) 2.4 

7 L A × ü 348.5 0.0 

8 L E × ü 354.4 0.0 

9 L F ü ü 511.8 455.3 (765.8) 997.9 

10 L F ü ü 628.9 619.4 (255.9) 142.1 
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Table 6 The external mode LO-TO splittings (cm-1) obtained for different values of the optical dielectric constant, ε∞. 

 LO-TO Splitting 

Mode ε
∞ = 1.3 ε

∞ = 1.5 e∞ = 1.7 ε
∞ = 1.9 ε

∞ = 2.1 ε
∞ = 2.3 

4 2.15 1.96 1.81 1.68 1.56 1.46 

5 1.01 0.92 0.84 0.78 0.73 0.68 

6 0.17 0.16 0.15 0.14 0.13 0.12 

9 75.56 68.01 61.73 56.46 51.98 48.15 

10 16.07 13.12 11.05 9.53 8.37 7.46 

 

 

 

Final lattice-mode assignments. A significant number of differences have arisen between the 

theoretical and experimental assignments of the irreducible representations of the modes. We split the 

low-frequency spectrum into separate regions, and discuss each in detail. 

 

Modes from 0 to 200 cm
-1

 

The positions of the MD phonon modes in this region coincide reasonably well with those of the 

experimentally observed bands. However, the theoretical symmetry assignments differ notably from the 

experimental ones. The first three modes in this region are assigned as E, A and F, respectively, by both 

the MD and lattice dynamics simulations. However, the previous experimental assignments have 

included A (107 cm-1),  E (138 cm-1) and F (138 cm-1) by Binbrek and Anderson,3 A (98.6 cm-1), E (98.6 

cm-1) and F (131 cm-1) from C-INS5 and finally E (122 cm-1), F (130 cm-1) and A (143 cm-1) from the 

atom-atom model calculations.4 The final mode in this region is found at 175 cm-1 in the MD spectrum 

and, in line with the lattice dynamics and all previous experimental and theoretical work, is assigned F 

symmetry. We note again that the frequencies obtained from the B3LYP/TZP and B3LYP/6-311G** 

lattice dynamics calculations are slightly shifted to high frequency with respect to the MD results, but 

are in reasonable agreement overall. The PW91/TZP lattice-dynamics frequencies are shifted by 15–30 

cm-1 in comparison with the B3LYP/6-311G** and MD results. 
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Mode at 260 cm
-1

 

Several experiments have suggested the presence of a fundamental mode at 260 cm-1, but the 

assignments have generally been made on the basis of very weak peaks3 or have been derived indirectly 

from observations in deuteroammonia5 or from combination bands.6 The observation7 of a peak at 

around 280 cm-1 at a temperature of 187.6 K may originate from the modes found at around 300 cm-1 in 

other experiments. It is clear that no mode in the region of 260 cm-1 is obtained from either the MD or 

lattice dynamics calculations, in agreement with the results of our previous rigid molecule MD 

simulations.2 We note further that combining the results from each of the experimental studies, as in 

Table 4, yields more than the total of nine low frequency modes that would be anticipated for the ideal 

material. We suggest therefore that the modes in the vicinity of 260 cm-1 may originate from regions of 

the crystal in which the local coordination of molecules differs from that of the perfect phase I lattice, 

due perhaps to the presence of lattice defects, or to domains of the metastable and amorphous forms that 

have manifested themselves previously.21 

 

Modes from 290 to 320 cm
-1 

 

The current study obtains a single mode in this region at approximately 320 cm-1. The experimental 

studies suggest modes at 298 and 310 cm-1,3 as did the previous rigid-molecule MD simulations.2 An 

analysis of the MD eigenvectors suggests that this mode possesses F symmetry, in contrast with the E 

(310 cm-1) assignment for the nearby experimental mode. The lattice dynamics calculations also provide 

only one band in this region (at 322 cm-1 in the B3LYP/6-311G** and B3LYP/TZP methods, and at 331 

cm-1 in B3PW91/6-311G**), and all the calculations concur upon the assignment of F symmetry to this 

mode. We note, though, that the previous rigid molecule MD simulation used a 2´2´2 supercell of 

ammonia, and that this could conceivably lead to the incorporation of some fraction of the LO-TO 

splitting if it were present. Furthermore, the two experimental peaks at 298 and 310 cm-1 were obtained 

from a Raman measurement, which would be expected to detect both optical polarizations. However, 
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the current lattice dynamics calculations suggest that there is only a very small (~0.1 cm-1) splitting of 

this mode.  

 

Modes from 350 to 500 cm
-1 

Three modes are observed in the MD spectrum in this region, with symmetry assignments of A (356 

cm-1), E (367 cm-1) and F (457 cm-1) respectively. The lattice dynamics calculations also predict three 

modes in this region, at 348, 354 and 455 cm-1 (B3LYP/6-311G**) with A, E and F symmetries 

respectively, except in the PW91/TZP method, which yields the order E (387 cm-1), A (399 cm-1) and F 

(487 cm-1). The experimental observations in this region vary. Binbrek and Anderson found one LO-TO 

split F mode in this region at 358 cm-1 (TO) and 426 cm-1 (LO).3 The current MD simulation used a 

single unit cell, which does not include any of the long-range electrostatic interactions. Turning to the 

lattice dynamics calculations, we find only one mode in the range 400–500 cm-1, namely a TO peak at 

455 cm-1. The Raman measurements produced a wide band in the range 325–375 cm-1,6 which may 

correspond to the two peaks obtained at 356 and 367 cm-1 in the present work. Given the absence of LO-

TO splitting in the MD simulations, we conclude that it is very likely that the experimental peaks 

reported by Binbrek and Anderson at 358 and 426 cm-1 are two separate modes and not a single LO-TO 

split F mode as previously assigned.  

 

Lattice mode above 500 cm
-1 

The final lattice mode is observed in experiments at 532 cm-1.3 The MD simulation shows a peak at 

605 cm-1, while the lattice dynamics results are higher still at 625 cm-1 (B3LYP/6-311G**) or 651 cm-1 

(PW91/TZP). All theoretical methods agree with the experimental assignment of F symmetry. The LO-

TO splitting calculations in the B3LYP/6-311G** method do suggest that there is an LO branch of the 

455 cm-1 mode at 512 cm-1. The peak is quite close to the experimental value for the final mode and it is 

possible that it may have been incorrectly assigned. The only experimental evidence for a higher 
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frequency lattice mode emerges from the C-INS study, in which an F band (574 cm-1) is inferred from 

the scaling of a deuteroammonia peak.5   

 

It should be noted that the comparable experimental studies have been performed at a range of 

temperatures, which will inevitably lead to some variations in peak positions as compared with our MD 

simulations obtained at 77 K. Given these limitations, we find that some of our peak positions agree 

extremely well with the experiment data, and we note that the calculations obtain the correct number of 

modes for each symmetry type (i.e. 2A + 2E + 5F).  

 

3.3. Phase I ND3 Lattice Modes. The nine lattice modes in ND3 have also been determined from MD 

and lattice dynamics calculations. The time-averaged structure determined from the MD trajectory is 

presented in Table 7. 

 

Table 7 The fractional coordinates of the asymmetric unit in ND3 averaged over the 30 ps PW-DFT MD trajectory. 

Dx  0.3520 

Dy 0.2697 

Dz 0.0965 

Nx 0.1974 

 

 Table 8 compares the NH3 and ND3 lattice modes obtained from the MD and lattice dynamics 

calculations and tabulates the ratios of their frequencies. The LO-TO splittings obtained from B3LYP/6-

311G** calculations are presented in Table 9. We can see that the trend in the values is similar to that 

observed in the protonated material, although the sizes of the splittings are generally reduced, 

particularly for the librational modes. The general reduction in the IR intensities is in keeping with the 

smaller amplitudes of motion expected for vibrations in the deuterated material.  
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Table 8 NH3 and ND3 lattice mode frequencies (cm-1) and ratios of frequencies as determined from the MD velocity 
autocorrelation function and lattice dynamics calculations at the B3LYP/TZP level of theory. 

NH3 lattice mode  ND3 lattice mode  Ratio of frequencies 

MD Lattice Dynamics MD Lattice Dynamics MD Lattice Dynamics 

98 98 88 89 1.11 1.10 

125 121 114 110 1.09 1.10 

136 130 122 120 1.11 1.09 

175 174 164 163 1.07 1.08 

320 322 225 228 1.42 1.41 

356 353 260 257 1.36 1.37 

367 355 266 260 1.38 1.37 

457 449 326 323 1.40 1.39 

605 616 445 448 1.36 1.38 

 

Table 9 The character, C (T = translational, L = librational), irreducible representation, I, IR and Raman activities (ü = 
active, × = inactive), frequencies, ω(cm

-1) and IR absorption intensities, Int (km mol-1) of the external modes in the ND3 
B3LYP/6–311G** calculation. Frequencies and intensities of the LO and TO components are presented separately, where 
appropriate.  

Mode C I IR Ram ω(LO) ω(TO) Int(LO) Int(TO) 

1 T F ü ü -8.2 0.31 

2 T E × ü 90.5 0.0 

3 T A × ü 103.1 0.0 

4 T F ü ü 123.2 121.6 (4.5)  9.3 

5 T F ü ü  165.4 164.6 (3.1) 6.2 

6 L F ü ü 228.3  228.1  (0.7) 1.7 

7 L A × ü 253.4 0.0 

8 L E × ü 259.3 0.0 

9 L F ü ü  365.6 326.3 (385.0)  494.2 

10 L F ü ü 457.3  450.6 (126.9) 76.0 
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The effects of deuteration on the translational mode frequencies can be rationalized within a simple 

intermolecular bond-stretching model, assuming that the molecules undergo rigid displacements. The 

total masses of the protonated and deuterated molecules at 17.024 and 20.045 amu, respectively, leading 

to reduced masses for stretching motions, mp and md, of 8.512 and 10.022 amu, respectively, and a ratio 

of protonated (wp) and deuterated (wd) harmonic frequencies given by 

 

085.1
p

d

d

p

==
m

m

w

w
, (1) 

 

in good agreement with the ranges of 1.08–1.10 and 1.07–1.11 obtained from B3LYP/TZP lattice 

dynamics and MD calculations respectively. Similarly, the effects of deuteration upon the librational-

mode frequencies can be modelled within an approximation in which these modes are assumed to 

involve small torsional oscillations of rigid molecules. In this case the harmonic frequencies vary as I -½, 

where the moment of inertia, å= 2
iirmI , clearly scales linearly with the mass of the rotating particles. 

Thus the frequency ratio depends directly upon the proton and deuteron masses, mp and md respectively, 

and varies as 

 

414.1
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d
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m

w

w
, (2) 

 

which is also in good agreement with the ranges 1.37–1.41 and 1.36–1.42 obtained from the 

B3LYP/TZP lattice dynamics and MD calculations, respectively. We conclude that the first four modes 

possess translational character, while the remaining five modes are librational. The small range in the 

frequency ratios is likely due to deviations from purely rigid molecule motion. 

 



 

20 

3.4 NH3 and ND3 Internal Modes. The lattice dynamics calculations also allow us to define 

unambiguously a set of symmetry coordinates with which to describe the internal motions of the system. 

These modes can be envisaged as being composed of various in-phase and out-of-phase combinations of 

the A and E symmetry vibrations that are obtained for the isolated molecule. The symmetry coordinates 

are presented in Table 10 together with the lattice dynamics frequencies determined at the B3LYP/TZP 

level. The normal modes are described in terms of the nine symmetry coordinates (R1-3, β1-3 and α1-3) of 

the NH3 molecule, as defined in Figure 2. The four molecules in the phase I unit cell are labeled A-D 

and occupy the positions shown in Figure 3. The corresponding internal mode region of the NH3 MD 

phonon spectrum is show in Figure 4. We note in particular the Davydov (or factor group) splittings of 

the modes; these are the small differences in frequency that separate vibrations in which the individual 

molecules undergo essentially identical internal motions.  

Table 10 Frequencies (cm-1), symmetry coordinates, type of motion and irreducible representation, I, for the Γ-point internal 
vibrations in NH3 as determined from lattice dynamics calculations. See Figs. 3 and 4 for descriptions of the coordinates 
used. 

 Frequency Symmetry Coordinates Motion I 

1 3539 A(R2 + R3 – R1) + B(R3 + R1 – R2) + C(R3 – (R1  + R2)) + D(R1 – (R2 + 
R3))  

Asym. 
Stretch 

F 

2 3539 A(R3 – (R1 + R2)) + B(R1 + R2 – R3) + C(R1 – (R2 + R3)) + D(R1 + R3 – 
R2)   

Asym. 
Stretch 

F 

3 3539 A(R1 + R3 – R2) + B(R1 – (R2 + R3)) + C(R2 – (R1 + R3)) + D(R1 + R2 – 
R3) 

Asym. 
Stretch 

F 

4 3524 A(R1 – (R2 + R3)) + B(R2 – (R1 + R3)) + C(R3 – (R1 + R2)) + D(R1 – (R2 
+ R3)) 

Asym. 
Stretch 

E 

5 3524 A(R2 – (R1 + R3)) + B(R1 – (R2 + R3)) + C(R2 – (R1 + R3)) + D(R3 – (R1 
+ R2)) 

Asym. 
Stretch 

E 

6 3522 A(R1 – R3) + B(R3 – R2) + C(R1 – R3) + D(R1 – R2) Asym. 
Stretch 

F 

7 3522 A(R1 – R2) + B(R1 – R2) + C(R3 – R2) + D(R3 – R1) Asym. 
Stretch 

F 

8 3522 A(R3 – R2) + B(R3 – R1) + C(R2 – R1) + D(R3 – R2) Asym. 
Stretch 

F 

9 3416 [A – B – C + D](R1 + R2 + R3) Sym. 
Stretch 

F 
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10 3416 [A – B + C – D](R1 + R2 + R3) Sym. 
Stretch 

F 

11 3416 [A + B – C – D](R1 + R2 + R3) Sym. 
Stretch 

F 

12  3403 [A + B + C + D](R1 + R2 + R3) Sym. 
Stretch 

A 

13 1732 A(β3 – (β1 + β2) + α2 – (α1 + α3)) + B(β2 – (β1 + β3) + α1 – (α2 + α3)) + 
C(β1 + β2 – β3 + α1 + α3 – α2) + D(β3 + β2 – β1 + α1 + α2 – α3) 

Asym. 
Bend 

F 

14 1732 A(β1 + β3 – β2 + α3 + α2 – α1) + B(β3 – (β1 + β2) + α2 – (α1 + α3)) + C(β2 + 
β3 – β1 + α1 + α2 – α3) + D(β3 – (β1 + β2) + α1 – (α2 + α3)) 

Asym. 
Bend 

F 

15 1732 A(β1 – (β2 + β3) + α3 – (α2 – α1)) + B(β2 + β3 – β1 + α1 + α2 – α3) + C(β1 + 
β3 – β2 + α2 + α3 – α1) + D(β1 + β2 – β3 + α2 – (α1 + α3)) 

Asym. 
Bend 

F 

16 1699 A(β1 – β3 + α3 – α2) + B(β2 – β1 + α1 – α3) + C(β2 – β1 + α1 – α2) + D(β1 – 
β3 + α3 – α2) 

Asym. 
Bend 

F 

17 1699 A(β1 – β2 + α3 – α1) + B(β1 – β3 + α3 – α2) + C(β1 – β2 + α3 – α1) + D(β2 – 
β3 + α1 – α3) 

Asym. 
Bend 

F 

18 1699 A(β2 – β3 + α1 – α2) + B(β2 – β3 + α1 – α2) + C(β3 – β2 + α2 – α3) + D(β2 – 
β1 + α1 – α3) 

Asym. 
Bend 

F 

19 1679 A(β2 + β3 – β1 + α2 – α3) + B(β2 + β3 – β1
 
+ α1 – α3) + C(β1 + β3 – β2 + α2 – 

α1) + D(β1 + β2 – β3 + α3 – α2) 
Asym. 
Bend 

E 

20 1679 A(β2 – (β1 + β3) + α1 – (α2 + α3)) + B(β3 – (β1 + β2) + α2 – (α1 + α3)) + 
C(β1 – (β2 + β3) + α3 – (α1 + α2))  + D(β2 – (β1 + β3) + α2 – (α2 + α3)) 

Asym. 
Bend 

E 

21 1210 [A + B + C + D](α1 + α2 + α3) Inversion A 

22 1170 [A – B – C + D](α1 + α2 + α3) Inversion F 

23 1170 [A – B + C – D](α1 + α2 + α3) Inversion F 

24 1170 [A + B – C – D](α1 + α2 + α3) Inversion F 
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Figure 2 The symmetry coordinates of a single NH3 molecule. Black and white spheres represent nitrogen and hydrogen 
atoms respectively. 

  

 

Figure 3 The unit cell of phase I ammonia, showing the labels of hydrogen atoms (1 to 3) and molecules (A to D). 
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Figure 4 Internal mode region of the NH3 phonon spectrum as determined from the MD velocity autocorrelation function. 

 

The resolution in this region of the MD phonon spectrum and of the experimental results is too low to 

enable us to discriminate each separate mode, though we note that some separate peaks are visible in 

Figure 4. We can easily assign the peaks in the various regions of the MD phonon spectrum, and these 

data are presented in Table 11 for ND3 and NH3, along with the comparable experimental results. The 

frequencies of the bending and inversion modes are in good agreement with the experimental values, 

whereas the stretching frequencies are consistently overestimated. It is common practice to scale 

theoretical bond-stretching frequencies by a factor that depends upon the Hamiltonian used, but which is 

typically in the range 0.90 – 0.99.22 We note that a scaling of this magnitude would bring our values into 

close agreement with experiment. The lattice dynamics stretching frequencies greatly overestimate the 

experimental values, but this is to be expected given that they are obtained within a harmonic 

approximation. We can attempt to treat the anharmonicity of these modes by first obtaining the potential 
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energy curve for a representative N–H stretching motion, and then solving the associated one-

dimensional Schrödinger equation by numerical integration.23,24 The totally symmetric stretch (mode 12 

in Table 10) is a particularly convenient choice, for it can be modeled without reduction in lattice 

symmetry.  The potential was determined as a sixth-order polynomial fit to the total energies obtained at 

seven N–H bond lengths, yielding a fundamental anharmonic absorption that is much closer to 

experiment at 3304 cm-1, and a first overtone band at 6445 cm-1. A comparison of this result with the 

frequencies in Table 10 yields an anharmonic correction for the symmetric stretching modes of the order 

100 cm-1. It is reasonable to assume that all the harmonic asymmetric stretching frequencies are in error 

by similar amounts.          

 

Table 11 Assignments and frequencies (cm-1) of the internal modes of NH3 and ND3 as determined from MD simulations 
together with experimental results. 

 NH3 ND3 

Assignment MD simulation  Experimentala MD simulation  Experimentala 

Asymmetric Stretches 3506 3375 2602 2511 

Symmetric Stretches 3384 3210 2424 2342 

Angle Bends 1612–1646 1650 1191 1195 

Inversions 1087–1117 1057 820 813 

a Ref. 21. 
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4. Conclusions. The complete zone-center phonon spectrum of ammonia has been obtained from a 

combined MD and lattice dynamics approach. The symmetry of each peak has been assigned using both 

methods, resulting in significant changes to the previous experimental and theoretical assignments of the 

lattice mode region. The frequencies of the internal modes have also been calculated, and are found to 

be in good agreement with experiment. 

The work highlights the benefits of applying a combination of theoretical approaches to the 

calculation of the vibrational properties of a material. The lattice-mode eigenvalues obtained from the 

PW-DFT MD simulations are in excellent agreement with experimental frequencies, despite the fact that 

the trajectories were limited to 30 ps length. The lattice dynamics calculations also provide a reasonably 

accurate estimate of the eigenvalues, but we observe that the values are shifted to high frequencies with 

respect to the MD and previous experimental results. In general, though, the two methods provide mode 

assignments that are in good agreement. The inclusion of the LO-TO splittings obtained from the lattice 

dynamics approach is shown to be necessary if a full comparison with the experimental spectra is 

sought, and we note that MD simulations cannot easily access these values. The methods are also shown 

to complement each other in the high frequency internal mode region of the spectrum. Again, the MD 

eigenvalues are generally closer to experiment, but the ability of the lattice dynamics calculations to 

resolve the closely spaced frequencies of the Davydov-split modes is extremely useful, and allows us to 

make an unambiguous assignment of each internal mode in terms of a set of symmetry coordinates. 

Acknowledgments. The computational resources of the EPSRC National Service for Computational 

Chemistry Software (http://www.nsccs.ac.uk) are acknowledged. This work has also made use of 

resources provided by the EaStCHEM Research Computing Facility (http://www.eastchem.ac.uk/rcf). 

This facility is partially supported by the eDIKT initiative (http://www.edikt.org). CAM acknowledges 

the award of a Royal Society University Research fellowship. AMR acknowledges the School of 

Chemistry, University of Edinburgh for the award of a research studentship. DSM, CAM and CCW 

acknowledge the financial support of the UK EPSRC under grant GR/T21615. 



 

26 

 

Supporting Information Available: XYZ format movie files of the eigenvectors for each of the NH3 

and ND3 lattice modes. Graphs of temperature and energy for the MD runs. 
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