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The structure of 1,4-B4S2(NMe2)4 has been determined by gas-phase electron diffraction and quantum
chemical calculations and is compared with the known solid-state structure. While these structures are
similar, with a twisted ring geometry [the dihedral angle S–B–B–S from electron diffraction is
75.4(16)◦], they are strikingly different to the solid-state structure of 1,4-B4O2(OH)4, which is planar.
Using quantum chemical calculations, the combinations of O or S in the ring and OH or NMe2 as the
substituent have been studied and it has been shown that there are two separate causes of the twisted
ring. Since the calculated (and observed) structure of 1,4-B4O2(OH)4 is planar but that of
1,4-B4S2(OH)4 is twisted, it is concluded that the inclusion of sulfur in the ring twists the structure by
approximately 40◦. By comparing the structures of 1,4-B4S2(OH)4 and 1,4-B4S2(NMe2)4 it has been
determined that the twist caused by the NMe2 groups is around 30◦.

Introduction

The compound 1,4-B4S2(NMe2)4 (1) was first described in 1964 by
Malhotra,1 who synthesised it in greater than 90% yield from the
reaction between B2(NMe2)4

2 and excess H2S in Et2O. Addition of
HCl was necessary to remove HNMe2 as [NH2Me2]Cl, as shown in
eqn (1), although HCl addition was not required when B2(NMe2)4

and H2S were reacted under pressure in an autoclave. Sublimable
colourless crystals of 1 were obtained from benzene and were
characterised by elemental analysis, melting point, molecular
weight, and 11B NMR and infrared spectroscopies.

2 B2(NMe2)4 + 2 H2S + 4 HCl → B4S2(NMe2)4 (1)
+ 4 [NH2Me2]Cl (1)

The same compound was subsequently prepared by Nöth and
coworkers3 from the reaction between B2Cl2(NMe2)2 and the
siladithiadiborolane species B2(NMe2)2S2SiMe2, and in that study,
the solid-state X-ray structure of 1 was also reported. Compound
1 is the only example of its type containing a B4S2 ring, although
examples in which a B4O2 ring is present have been characterised
and include B4O2(OH)4

4 and B4O2(NR2)4 (R = alkyl).5 Here we
report the structure of 1 as determined by gas-phase electron
diffraction, and compare it with the previously described solid-
state structure. Also presented are the results of quantum chemical
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calculations which shed light on the observed differences in ring
conformation exhibited by molecules containing sulfur as opposed
to oxygen.

Experimental

Synthesis

A sample of compound 1 for use in the gas-phase electron
diffraction experiment was prepared by a slight modification of
the published methods.1,3 Excess H2S was bubbled though a stirred
solution of B2(NMe2)4 (1.2 cm3, 5.1 mmol) in hexanes (30 cm3) for
2 hours at room temperature, during which time some colourless
precipitate formed. The supernatant liquid was separated and
combined with hexane extracts from the remaining solid and then
concentrated by vacuum and cooled to 5 ◦C, affording colourless
crystals of 1 (637 mg, 88% yield). NMR (CDCl3): 11B d 43.5; 1H
d 2.7, (d, 24H, NMe2). Anal. Calc. for B4N4S2C8H24: C, 33.85; H,
8.55; N, 19.75; Found: C, 33.55; H, 8.70; N, 19.80.

Gas-phase electron diffraction (GED)

Data were collected for 1 using the Edinburgh gas-phase electron
diffraction (GED) apparatus.6 An accelerating voltage of 40 kV
was used, resulting in an electron wavelength of approximately
6.0 pm. Scattering intensities were recorded on Kodak Electron
Image films at two nozzle-to-film distances to maximise the
scattering angle over which data were collected. In order to obtain
suitable vapour pressures, and to prevent condensation in the
nozzle, the sample and nozzle were heated to temperatures listed in
Table S1.† The photographic films were scanned using an Epson
Expression 1680 Pro flatbed scanner as part of a method that is
now used routinely in Edinburgh and described elsewhere.7 Data-
reduction and least-squares refinement processes were carried out
using the ed@ed v2.4 program8 employing the scattering factors
of Ross et al.9 The weighting points for the off-diagonal weight
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matrices, correlation parameters and scale factors are given in
Table S1.†

Computational methods

All calculations were performed using the resources of the
NSCCS10 and the EaStCHEM Research Computing Facility11

running the Gaussian 03 suite of programs.12 Imagining the B4S2

ring in 1 to have structural similarities to a C6 saturated ring,
several possible geometries were investigated. Real structures were
obtained for both a chair conformer (Cs symmetry) and for a
conformer with a twisted ring structure (D2 symmetry). In both
the Cs- and D2-symmetric structures the sums of the angles around
N and B atoms indicate that these fragments are planar. This
greatly reduces the complexity of determining the geometries as
there is no distinction between axial and equatorial conformations.
With symmetry fixed, geometries were optimised first at the spin-
restricted Hartree–Fock (RHF) level of theory with the 3-21G*
basis set13 on all atoms followed by the 6-31G* basis set14 and
then using MP2(full)15 to include the energy due to electron
correlation. At this level the 6-311G* and 6-311++G** basis sets16

were also used. Force constants calculated at the RHF/6-31G*
level were subsequently used along with the program SHRINK17

to obtain initial amplitudes of vibration, and third derivatives of
the energy (giving cubic anharmonicity terms) were used to give
curvilinear perpendicular distance correction terms for use in the
GED refinement. The structure obtained from the refinement is
thus of the type ra3,1. For a full discussion of the a3,1 nomenclature
see reference 18.

Results and discussion

Calculations

Two conformers of 1 were studied, the Cs-symmetric chair
structure and the D2-symmetric twisted structure. Although both
structures were real, at the RHF/6-31G* level, the twisted
structure was more than 38 kJ mol-1 lower in energy and so
for this reason no further calculations were performed for the
Cs conformer. Table 1 contains parameters calculated at the
MP2(full)/6-311++G** level.

GED study

Although ab initio calculations for the D2-symmetric twisted
structure showed the sums of the angles around N and B to
be exactly 360◦, the model for the GED refinement included
parameters that allowed these groups to become pyramidal. The
atom numbering used in the descriptions of the parameters is
shown in Fig. 1.

Five distance parameters were required, namely rS ◊ ◊ ◊ S,
rS–B, rB–N, rC–N and rC–H (p1–5). Five bond angle parameters
were also employed. These included ∠S–B–N (p6), ∠B(3)–N(7)–
C(11) and ∠B(3)–N(7)–C(12) (p7–8), which together create the
basic heavy-atom structure of the molecule. As they describe very
similar angles, parameters 7 and 8 could have been, but were not,
included in the model as the average of the two parameters and
the difference between them. However, if when performing the
refinement these parameters appear to be very closely correlated, a

Table 1 Refined (ra3,1) and calculated (re) geometric parameters for 1,4-
B4S2(NMe2)4 (1) from the GED studya

Parameter ra3,1 re
b Restraint

Independent
p1 rS ◊ ◊ ◊ S 389.9(9) 391.2 —
p2 rS–B 185.9(2) 185.2 —
p3 rB–N 140.7(5) 140.6 —
p4 rC–N mean 146.3(2) 145.5 —
p5 rC–H mean 109.7(3) 109.5 109.5(5)
p6 ∠S–B–N 118.9(5) 119.0 —
p7 ∠B(3)–N(7)–C(11) 126.4(4) 125.8 —
p8 ∠B(3)–N(7)–C(12) 121.4(4) 122.1 —
p9 ∠C–C–H mean 110.3(5) 110.2 110.2(10)
p10 ∠B–S–B 98.4(3) 98.1 —
p11 fN–B–S ◊ ◊ ◊ S 153.7(16) 150.3 150.3(20)
p12 fC(11)–N–B–S -12.4(22) -2.3 —
p13 fB(3)–S ◊ ◊ ◊ S–B(4) 37.9(10) 34.5 —
p14 fH–C(11)–N–B(3) -4.6(11) -5.2 -5.2(10)
p15 fH–C(12)–N–B(3) 2.9(11) 2.4 2.4(10)

Dependent
p16 rB(3)–B(4) 173.3(8) 170.0 —
p17 ∠B(3)–B(4)–N(8) 125.6(6) 123.3 —
p18 ∠S(2)–B(3)–B(4) 115.1(5) 117.6 —
p19 fB(5)–S(1)–B(4)–B(3) 33.5(5) 31.7 —
p20 fS(2)–B(3)–B(4)–S(1) 75.4(16) 71.1 —

a Distances (r) are in pm, angles (∠) and dihedral angles (f) in degrees.
See text for parameter definitions and Fig. 1 for the atom numbering. The
figures in parentheses are the estimated standard deviations of the last
digits. b Refers to an MP2(full)/6-311++G** calculation.

restraint can then be applied to the difference between them, which
would reduce or remove the correlation. The methyl groups were
calculated to have approximate C3v symmetry and this symmetry
was retained in the model by using a single C–C–H angle (p9) to
position the hydrogen atoms. The final bond-angle used in the
model was ∠B–S–B (p10), which creates the angle at the sulfur
atoms. fN–B–S ◊ ◊ ◊ S (p11) defines the position of the NMe2 group,
where a value of 180◦ would mean that the N(7)B(3)S(2)B(6)N(10)
moiety was planar and w-shaped. fC(11)–N–B–S (p12) dictates
the degree of pyramidality of the BNMe2 group by moving one
methyl group. A negative value for p12 moves the methyl group
away from the B4S2 ring. fB(3)–S–S–B(4) (p13) controls the degree
to which the ring is twisted. Finally, each of the symmetry-unique
methyl groups has a torsion angle associated with it (p14–15). For
both C(11)H3 and C(12)H3 a value of 0◦ represents one C–H
bond eclipsing the B–N bond. In both cases a positive value
relates to an anticlockwise rotation of the group about the
C–N bond when viewed from the methyl group. All independent
geometric parameters were refined by least-squares and restraints
were applied, using the SARACEN method,19 to parameters that
could otherwise not be refined (Table 1). The restraints were based
on values calculated at the MP2(full)/6-311++G** level and the
uncertainties were derived from the changes in value of each
parameter during the series of calculations that were performed.
Additionally, 15 amplitudes or groups of amplitudes of vibration
were refined. (See Table S2 in the supplementary material for a list
of amplitudes of vibration.†) The success of the refinement can
be assessed numerically using the final R factor, which was RG =
0.092 (RD = 0.050), and visually using the goodness of fit of the
radial-distribution and difference curves as seen in Fig. 2, and the
molecular-scattering intensity curves (Fig. S1†). The least-squares
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Fig. 1 (a) The twisted molecular structure, including numbering scheme,
of 1,4-B4S2(NMe2)4 (1) and (b) a view of the same molecule from above
the ring.

correlation matrix is given in Table S3 and coordinates for the
final GED structure and for the calculated structure [MP2(full)/6-
311++G**] are in Tables S4 and S5, respectively.†

Fig. 2 Experimental and theoretical-minus-experimental difference radi-
al-distribution curves for 1,4-B4S2(NMe2)4, (1). Before Fourier inversion,
the data were multiplied by s · exp(-0.00002s2)/(ZC - f C)(ZS - f S), and
theoretical intensity values were added below s = 20 nm-1.

Comparison of structures

Comparison of the structures of 1 in the gas and solid3 phases
reveals that they are very similar. Table 2 contains selected pa-
rameters for the gas-phase experimental and calculated structures
[MP2(full)/6-311++G**] and for the crystal structure of 1, as well
as for the crystal structures of B4O2(OH)4

4 and B4O2(NiPr2)4,5 and
for the calculated single molecules of B4O2(OH)4, B4O2(NMe2)4

and B4S2(OH)4.
The first obvious point of note is that B4O2(OH)4 is planar both

in the solid state4 and in the calculated gas-phase structure. In
order to identify the cause of the twisting in some of the molecules
studied it was then pertinent to compare the calculated structure
of B4O2(OH)4 with that of the sulfur derivative B4S2(OH)4,
whereupon it was observed that the B4Y2 ring twists by 40.7◦

for the case when Y is sulfur. This twisting is probably due to the
increased propensity of the atomic orbitals on sulfur to form sp3-
hybridised orbitals, while those on oxygen will form sp2 hybrids.

It is notable, however, that in the solid state, the structure of
the amido derivative B4O2(NiPr2)4

5 is twisted in contrast to the
planar B4O2(OH)4.4 To investigate whether this is a consequence
of the different substituents on the boron atoms, and whether
the same is true for isolated molecules as for those in the solid
state, the calculated structures of B4O2(OH)4 and B4O2(NMe2)4

were compared with the structures of B4S2(OH)4 and B4S2(NMe2)4.
[B4O2(NMe2)4 was chosen instead of B4O2(NiPr2)4 because of the

Table 2 Selected B4Y2 geometric ring parameters for the GED, calculated and crystal structures of 1 (Y = S), the calculated structures of B4S2(OH)4

(Y = S) and B4O2(NMe2)4 (Y = O), the crystal and calculated structures of B4O2(OH)4 (Y = O) and the crystal structure of B4O2(NiPr2)4 (Y = O)a

B4S2(NMe2)4 (1) B4S2(OH)4 B4O2(NMe2)4 B4O2(OH)4 B4O2(NiPr2)4

GED MP2b X-Rayc MP2b MP2b X-Rayd MP2b X-Raye

rB–B 173.3(8) 170.0 166.2(14), 169.7(12) 171.1 172.9 173.2(3) 172.2 172.9(4)
rB–Y 185.9(2) 185.2 185.4(9), 186.1(11) 183.4 141.5 137.8(3)–138.5(3) 139.3 140.8(3) mean
∠Y–B–B 115.1(5) 117.6 117.25(62)–118.16(62) 124.8 113.7 120.0(2)–119.1(2) 120.1 112.2(2)
∠B–Y–B 98.4(3) 98.1 100.50(43), 100.77(45) 102.5 124.8 120.5(2) 119.8 117.3(3) mean
fB–Y–B–B 33.5(5) 31.7 30.8f 18.6 16.8 3.8f 0.0 24.5f

fY–B–B–Y 75.4(16) 71.1 66.6f 40.7 36.1 3.8f 0.0 55.9f

a Distances (r) are in pm, angles (∠) and dihedral angles (f) in degrees. The figures in parentheses are the estimated standard deviations of the last digits.
b MP2(full)/6-311++G**. c Reference 3. d Reference 4. e Reference 5. f ESDs unknown.
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complications caused by numerous conformers of B4O2(NiPr2)4

produced by rotation of the isopropyl groups.] On replacing the
OH groups with NMe2 groups in the B4O2 species it can be seen
that the degree of twist (as measured by the O–B–B–O dihedral
angle) increases from 0 to 36.1◦. The twisting observed for B4S2

species is also more pronounced when the substituents on boron
are NMe2. In this case the increase in the twist dihedral angle is
30.4◦, perhaps slightly less than in the previous example because
the molecule was already twisted due to the presence of sulfur
atoms in the ring. That these rings are twisted when there are
amino groups on the boron atoms most probably arises as a
consequence of achieving maximum overlap of the nitrogen lone
pairs of electrons with the boron p orbitals, i.e. the adjacent
nitrogen and boron trigonal planes need to be coplanar causing
unfavourable steric interactions between methyl groups which are
relieved by twisting.

Conclusions

In conclusion, we have shown that there is little apparent difference
in the solid and observed or calculated structures of compounds
containing the B4S2 ring and that the same is true for B4O2

compounds. It has further been demonstrated that, in the absence
of significant intramolecular steric interactions, B4O2 rings are
planar whereas B4S2 rings are twisted. B4O2 rings adopt twisted
conformations when amido substituents are placed on the boron
atoms and B4S2 rings twist even more.
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