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Abstract

Since the experiments of Saffran et al. (1996a), there has been a great deal of interest in the
question of how statistical regularities in the speech stream might be used by infants to begin to
identify individual words. In this work, we use computational modeling to explore the effects of
different assumptions the learner might make regarding the nature of words — in particular, how
these assumptions affect the kinds of words that are segmented from a corpus of transcribed
child-directed speech. We develop several models within a Bayesian ideal observer framework,
and use them to examine the consequences of assuming either that words are independent
units, or units that help to predict other units. We show through empirical and theoretical
results that the assumption of independence causes the learner to undersegment the corpus,
with many two- and three-word sequences (e.g. what’s that, do you, in the house) misidentified
as individual words. In contrast, when the learner assumes that words are predictive, the
resulting segmentation is far more accurate. These results indicate that taking context into
account is important for a statistical word segmentation strategy to be successful, and raise the
possibility that even young infants may be able to exploit more subtle statistical patterns than
have usually been considered.

1 Introduction

One of the first problems infants must solve as they are acquiring language is word segmentation:
identifying word boundaries in continuous speech. About 9% of utterances directed at English-
learning infants consist of isolated words (Brent and Siskind, 2001), but there is no obvious way
for children to know from the outset which utterances these are. Since multi-word utterances
generally have no apparent pauses between words, children must be using other cues to identify
word boundaries. In fact, there is evidence that infants use a wide range of weak cues for
word segmentation. These cues include phonotactics (Mattys et al., 1999), allophonic variation
(Jusczyk et al., 1999a), metrical (stress) patterns (Morgan et al., 1995; Jusczyk et al., 1999b),
effects of coarticulation (Johnson and Jusczyk, 2001), and statistical regularities in the sequences
of syllables found in speech (Saffran et al., 1996a). This last source of information can be used
in a language-independent way, and seems to be used by infants earlier than most other cues,
by the age of 7 months (Thiessen and Saffran, 2003). These facts have caused some researchers
to propose that strategies based on statistical sequencing information are a crucial first step in
bootstrapping word segmentation (Thiessen and Saffran, 2003), and have provoked a great deal
of interest in these strategies (Saffran et al., 1996b; Saffran et al., 1996a; Aslin et al., 1998; Toro
et al., 2005). In this paper, we use computational modeling techniques to examine some of the
assumptions underlying much of the research on statistical word segmentation.

Most previous work on statistical word segmentation is based on the observation that tran-
sitions from one syllable or phoneme to the next tend to be less predictable at word boundaries
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than within words (Harris, 1955; Saffran et al., 1996a). Behavioral research has shown that
infants are indeed sensitive to this kind of predictability, as measured by statistics such as
transitional probabilities (Saffran et al., 1996a; Aslin et al., 1998). This research, however, is
agnostic as to the mechanisms by which infants use statistical patterns to perform word segmen-
tation. A number of researchers in both cognitive science and computer science have developed
algorithms based on transitional probabilities, mutual information, and similar statistics of pre-
dictability in order to clarify how these statistics can be used procedurally to identify words or
word boundaries (Swingley, 2005; Ando and Lee, 2000; Feng et al., 2004; Cohen and Adams,
2001). Here, we take a different approach: we seek to identify the assumptions the learner must
make about the nature of language in order to correctly segment natural language input.

Observations about predictability at word boundaries are consistent with two different kinds
of assumptions about what constitutes a word: either a word is a unit that is statistically inde-
pendent of other units, or it is a unit that helps to predict other units (but to a lesser degree
than the beginning of a word predicts its end). In most artificial language experiments on word
segmentation, the first assumption is adopted implicitly by creating stimuli through random
(or near-random) concatenation of nonce words. This kind of random concatenation is often
necessary for controlled experiments with human subjects, and has been useful in demonstrating
that humans are sensitive to the statistical regularities in such randomly generated sequences.
However, it obviously abstracts away from many of the complexities of natural language, where
regularities exist not only in the relationships between sub-word units, but also in the relation-
ships between words themselves. We know that humans are able to use sub-word regularities
to begin to extract words; it is natural to ask whether attending to these kinds of regularities
is sufficient for a statistical learner to succeed with word segmentation in a more naturalistic
setting. In this paper, we use computer simulations to examine learning from natural, rather
than artificial, language input. We ask what kinds of words are identified by a learner who
assumes that words are statistically independent, or (alternatively) by a learner who assumes
as well that words are predictive of later words. We investigate this question by developing
two different Bayesian models of word segmentation incorporating each of these two different
assumptions. These models can be seen as ideal learners: they are designed to behave optimally
given the available input data, in this case a corpus of phonemically transcribed child-directed
speech.

Using our ideal learning approach, we find in our first set of simulations that the learner
who assumes that words are statistically independent units tends to undersegment the corpus,
identifying commonly co-occurring sequences of words as single words. These results seem to
conflict with those of several earlier models (Brent, 1999; Venkataraman, 2001; Batchelder,
2002), where systematic undersegmentation was not found even when words were assumed to
be independent. However, we argue here that these previous results are misleading. Although
each of these learners is based on a probabilistic model that defines an optimal solution to the
segmentation problem, we provide both empirical and analytical evidence that the segmentations
found by these learners are not the optimal ones. Rather, they are the result of limitations
imposed by the particular learning algorithms employed. Further mathematical analysis shows
that undersegmentation is the optimal solution to the learning problem for any reasonably
defined model that assumes statistical independence between words.

Moving on to our second set of simulations, we find that permitting the learner to gather in-
formation about word-to-word dependencies greatly reduces the problem of undersegmentation.
The corpus is segmented in a much more accurate, adult-like way. These results indicate that,
for an ideal learner to identify words based on statistical patterns of phonemes or syllables, it
is important to take into account that frequent predictable patterns may occur either within
words or across words. This kind of dual patterning is a result of the hierarchical structure
of language, where predictable patterns occur at many different levels. A learner who consid-
ers predictability at only one level (sub-word units within words) will be less successful than



a learner who considers also the predictability of larger units (words) within their sentential
context. The second, more nuanced interpretation of the statistical patterns in the input leads
to better learning.

Our work has important implications for the understanding of human word segmentation.
We show that successful segmentation depends crucially on the assumptions that the learner
makes about the nature of words. These assumptions constrain the kinds of inferences that
are made when the learner is presented with naturalistic input. Our ideal learning analysis
allows us to examine the kinds of constraints that are needed to successfully identify words, and
suggests that infants or young children may need to account for more subtle statistical effects
than have typically been discussed in the literature. To date, there is little direct evidence that
very young language learners approximate ideal learners. Nevertheless, this suggestion is not
completely unfounded, given the accumulating evidence in favor of humans as ideal learners
in other domains or at other ages (Xu and Tenenbaum, 2007; Frank et al., 2007; Schulz et al.,
2007). In order to further examine whether infants behave as ideal learners, or the ways in which
they depart from the ideal, it is important to first understand what behavior to expect from an
ideal learner. The theoretical results presented here provide a characterization of this behavior,
and we hope that they will provide inspiration for future experimental work investigating the
relationship between human learners and ideal learners.

The remainder of this paper is organized as follows. First, we briefly review the idea of tran-
sitional probabilities and how they relate to the notion of words, and provide some background
on the probabilistic modeling approach taken here. We draw a distinction between two kinds of
probabilistic model-based systems — those based on mazrimum-likelihood and Bayesian estima-
tion — and argue in favor of the Bayesian approach. We discuss in some detail the strengths and
weaknesses of the Model-Based Dynamic Programming (MBDP-1) system, a Bayesian learner
described by Brent (1999). Next, we introduce our own Bayesian unigram model and learning
algorithm, which address some of the weaknesses of MBDP-1. We provide the results of simu-
lations using this model and compare them to the results of previously proposed models. We
then generalize our unigram modeling results using additional empirical and theoretical argu-
ments, revealing some deep mathematical similarities between our unigram model and MBDP-1.
Finally, we extend our model to incorporate bigram dependencies, present the results of this
bigram model, and conclude by discussing the implications of our work.

2 Words and transitional probabilities

The question of how infants begin to segment words from continuous speech has inspired a great
deal of research over the years (Jusczyk, 1999). While many different cues have been shown to
be important, here we focus on one particular cue: statistical regularities in the sequences of
sounds that occur in natural language. The idea that word and morpheme boundaries may be
discovered through the use of statistical information is not new, but originally these methods
were seen primarily as analytic tools for linguists (Harris, 1954; Harris, 1955). More recently,
evidence that infants are sensitive to statistical dependencies between syllables has lent weight
to the idea that this kind of information may actually be used by human learners for early
word segmentation (Saffran et al., 1996a; Thiessen and Saffran, 2003). In particular, research
on statistical word segmentation has focused on the notion of transitional probabilities between
sub-word units (e.g., segments or syllables). The transitional probability from (say) syllable x
to syllable y is simply the conditional probability of y given x. In natural language, there is a
general tendency towards lower transitional probabilities at word boundaries than within words
(Harris, 1954; Saffran et al., 1996b), a tendency which infants seem able to exploit in order
to segment word-like units from continuous speech (Saffran et al., 1996a; Aslin et al., 1998).
While other cues are also important for word segmentation, and may in fact take precedence
over transitional probabilities in older infants, transitional probabilities seem to be one of the



earliest cues that infants are able to use for this task (Johnson and Jusczyk, 2001; Thiessen and
Saffran, 2003).

Much of the experimental work devoted to studying word segmentation and related linguistic
tasks has focused on exploring the kinds of statistical information that human learners are or are
not sensitive to (e.g., transitional probabilities vs. frequencies (Aslin et al., 1998), syllables vs.
phonemes (Newport et al., in preparation), adjacent vs. non-adjacent dependencies (Newport
and Aslin, 2004), and the ways in which transitional probabilities interact with other kinds
of cues (Johnson and Jusczyk, 2001; Thiessen and Saffran, 2003; Thiessen and Saffran, 2004).
In addition, many researchers have explored the extent to which word segmentation based on
transitional probabilities can be viewed as a special case of more general pattern- or sequence-
learning mechanisms that operate over a range of cognitive domains (Fiser and Aslin, 2002; Creel
et al., 2004). A question that has received less explicit attention is how the notion of transitional
probabilities relates to the notion of words. Transitional probabilities are a property of the
boundaries between words (or units within words), but ultimately it is the words themselves,
rather than the boundaries, that are of interest to the language learner/user. It behooves us,
then, to consider what possible properties of words (or, more accurately, word sequences) could
give rise to the patterns of transitional probabilities that are typically discussed in the literature,
i.e. lower probabilities at word boundaries and higher probabilities within words.

Given a lexicon of words, one way that the standard patterns of transitional probabilities
can arise is by choosing words independently at random from the lexicon and stringing them
together to form a sequence. To a first approximation, this is the procedure that is typically
used to generate stimuli for most of the experiments mentioned above.! There are many good
reasons to generate experimental stimuli in this way, especially when the focus of research is
on transitional probabilities: choosing words at random controls for possible ordering effects
and other confounds, and leads to simple and systematic patterns of transitional probabilities.
However, there is clearly another way we could generate a sequence of words, by choosing each
word conditioned on the previous word or words. Depending on the strength of the word-to-word
dependencies, transitional probabilities between words may be low or high. In general, if the
strength of the dependencies between words is variable, then in a non-independent sequence of
words, word boundaries will still tend to be associated with lower transitional probabilities (since
many pairs of words will not be highly dependent). However, there will also be word boundaries
with relatively high transitional probabilities (where two words are highly associated, as in
rubber ducky or that’s a).

The models that we develop in this paper are designed to examine the results of making these
two different assumptions about the nature of language: that words are statistically independent
units, or that they are predictive units. In thinking about the differences between learners
making each of these two kinds of assumptions, we frame the issue in terms of the space of
linguistic hypotheses (loosely, grammars) that each learner considers. Notice that a learner
who assumes that utterances are formed from sequences of independently chosen words is more
restricted than a learner who assumes that words may predict other words. The second learner
is able to learn grammars that describe either predictive or non-predictive sequences of words,
while the first learner can only learn grammars for non-predictive sequences of words. If words
are truly independent, then the first learner may have an advantage due to the presence of the
stronger constraint, because this learner has a much smaller space of hypotheses to consider.
On the other hand, the second learner will have an advantage in the case where words are not
independent, because the learner who assumes independence will never be able to converge on
the correct hypothesis. Before describing our implementation of these two kinds of learners, we

!The words in experimental stimuli are never chosen completely independently, due to restrictions against imme-
diate repetition of words. When the lexicon is small, this leads to significant deviations from independence. However,
as the lexicon size grows, sequences without repetition will become more and more similar to truly independent
sequences.



first outline our general approach and provide a summary of related work.

2.1 Probabilistic models for word segmentation

Behavioral work in the vein of Saffran et al. (1996a) has provided a wealth of information re-
garding the kinds of statistics human learners are sensitive to, at what ages, and to what degree
relative to other kinds of segmentation cues. Computational modeling provides a complemen-
tary method of investigation that can be used to test specific hypotheses about how statistical
information might be used procedurally to identify word boundaries or what underlying com-
putational problem is being solved. Using the terminology of Marr (1982), these two kinds
of questions can be investigated by developing models at (respectively) the algorithmic level
or computational level of the acquisition system. Typically, researchers investigate algorithmic-
level questions by implementing algorithms that are believed to incorporate cognitively plausible
mechanisms of information processing. Algorithmic-level approaches to word segmentation in-
clude a variety of neural network models (Elman, 1990; Allen and Christiansen, 1996; Cairns
and Shillcock, 1997; Christiansen et al., 1998) as well as several learning algorithms based on
transitional probabilities, mutual information, and similar statistics (Swingley, 2005; Ando and
Lee, 2000; Feng et al., 2004; Cohen and Adams, 2001) (with most of the latter group coming
from the computer science literature).

In contrast to these proposals, our work provides a computational-level analysis of the word
segmentation problem. A computational-level approach focuses on identifying the problem
facing the learner and determining the logic through which it can be solved. For problems
of induction such as those facing the language learner, probability theory provides a natural
framework for developing computational-level models. A probabilistic modelis a set of declarative
mathematical statements specifying the goals of the learning process and the kinds of information
that will be used to achieve them. Of course, these declarative statements must be paired with
some algorithm that can be used to achieve the specific goal, but generally the algorithm is not
seen as the focus of research. Rather, computational-level investigations often take the form
of ideal learner analyses, examining the behavior of a learner who behaves optimally given the
assumptions of the model.?

Very generally, we can view the goal of a language learner as identifying some abstract rep-
resentation of the observed data (e.g., a grammar) that will allow novel linguistic input to be
correctly interpreted, and novel output to be correctly produced. Many different representations
are logically possible, so the learner must have some way to determine which representation is
most likely to be correct. Probabilistic models provide a natural way to make this determi-
nation, by creating a probability distribution over different hypothesized representations given
the observed data. A learner who is able to correctly identify this posterior distribution over
hypotheses can use this information to process future input and output in an optimal way (i.e.,
in a way that is as similar as possible to the correct generating process — the adult grammar).
Under this view, then, the posterior distribution over grammars is the outcome of the learning
process.

How does the learner go about identifying the posterior distribution? Bayes’ rule tells us
that the probability of a hypothesized grammar h given the observed data d can be computed

2 A note on terminology: the word model unfortunately encompasses two related but (importantly) distinct senses.
It can be used to describe either (1) a proposal about the nature of learning or its implementation (as in “connectionist
model”, “exemplar model”); or (2) a specific mathematical statement regarding the process generating a set of data
(as in “probabilistic model”, “generative model”). A probabilistic model (second sense) together with its learning
algorithm can be viewed as an instance of a learning model (first sense). To avoid confusion, we will generally use
the term “model” only for the second sense, and the terms “system” or “learner” to describe the fully implemented
combination of a probabilistic model and learning algorithm.
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where the sum in the denominator ranges over all hypotheses h’ within the hypothesis space.
Here, P(d|h) (known as the likelihood) is the probability of the observed data given a particular
hypothesis, and tells us how well that hypothesis explains the data. P(h) (the prior probability
of h) tells us how good a linguistic hypothesis h is, regardless of any data. The prior can
be viewed as a learning bias or measure of linguistic naturalness: hypotheses with high prior
probability may be adopted based on less evidence than hypotheses with low prior probability.
Bayes’ rule states that the posterior probability P(h|d) is proportional to the product of the
likelihood and the prior, with the denominator acting as a normalizing constant to ensure that
P(h|d) sums to one over all hypotheses. The learner can compute the posterior probabilities of
different hypotheses by evaluating each one according to its explanatory power (likelihood) and
the learner’s prior expectations.

Bayes’ rule answers the question of how to determine the posterior probability of a hypothesis
if the prior probability and likelihood are known, but it does not tell us how to compute those
terms in the first place. We turn first to the calculation of the likelihood. Typically, the likelihood
is computed by defining a generative model: a probabilistic process for generating the observed
data given the hypothesis under consideration. As a simple non-linguistic example, imagine
the data d consists of the results of 10 coin flips and we wish to determine the probability of
d given hypotheses h that differ in the probability of flipping heads. We assume a generative
model in which each observation is the result of flipping the same coin, and that coin always
has probability p of landing on heads independently of any previous outcomes. The set of
hypotheses under consideration consists of all possible values for p. We therefore have P(d|h =
p) = p"# (1 —p)"T, where ny and nr are the number of heads and tails observed in a particular
sequence of flips.

P(hld) =

2.1.1 Maximum-likelihood estimation

A standard method of using a probabilistic generative model for learning is to perform maximum-
likelihood estimation, i.e., to choose the hypothesis h that maximizes the value of the likelihood
function. This is equivalent to choosing the hypothesis with maximum posterior probability,
assuming a uniform prior distribution over hypotheses with respect to the given parameteriza-
tion. In the coin flip example, it is easy to show using elementary calculus that the likelihood

is maximized when h = anfnT. Thus, if we observe a sequence consisting of four tails and six

heads, the maximum-likelihood estimate for h is h = 6.

For more complex generative models such as those typically used in language modeling, it is
usually impossible to identify the maximum-likelihood hypothesis analytically. If the number of
possible hypotheses is small, it may be feasible to explicitly compute the likelihood for each pos-
sible hypothesis and choose the best one. However, in general, it will be necessary to design some
sort, of algorithm for searching through the space of hypotheses without evaluating all of them.
The ideal algorithm would be one that is guaranteed to find the globally optimal hypothesis. In
many cases, however, approximate search algorithms are used. These algorithms generally work
by seeking the optimal hypothesis within some local region of the search space. Approximate
search algorithms may be used for practical reasons (when an exact procedure is not known, as
in Anderson (1991)) or for theoretical reasons (if the researcher wishes to incorporate partic-
ular assumptions about human learning, as in Sanborn et al. (2006b)). In either case, certain
hypotheses are excluded from consideration by the algorithm itself. Consequently, the use of
an approximate search procedure can make a purely computational-level analysis difficult. The
kinds of generalizations made by the learner are determined both by the explicit constraints




specified by the probabilistic model, and the implicit constraints specified by the search pro-
cedure. Examples of this type of learning system are described by Venkataraman (2001) and
Batchelder (2002). The models underlying these systems are very similar; we describe only
Venkataraman’s work in detail.

Venkataraman proposes a method of word segmentation based on maximum-likelihood esti-
mation. He discusses three different generative models of increasing complexity; we focus our
analysis on the simplest of these, although our argument can be extended to all three. This
model is a standard unigram model, i.e., it assumes that words are generated independently
at random. The observed data consists of a corpus of phonemically transcribed child-directed
speech, where utterance boundaries (corresponding to pauses in the input) are known, but
word boundaries are unknown (see Figure 1). The probabilistic model underlying this system
describes how to generate a corpus given U, the number of utterances in the corpus; the dis-
tinguished symbol $, which is used to mark utterance boundaries; and ¥, the phonemic symbol
alphabet (which does not include $):

Repeat U times:
Repeat until $ is generated:
1. Generate the next word, w, with probability P, (w).
2. Generate $ with probability pg.
where P, is some probability distribution over X1, the set of all possible words. As each word
is generated, it is concatenated onto the previously generated sequence of words. No boundary

marker is added unless the end-of-utterance marker, $, is generated. Under this model, the
probability of generating words wy ...w, as a single utterance is

P(wl wn$) - ]j Pw(wi)(l _p$) Pw(wn)p$
= 2T Pew)d - ) ()

and the probability of generating the unsegmented utterance v is found by summing over all
possible sequences of words that could be concatenated to form wu:

Pu) = Y Plwr...w,$)

WY ... Wp =1

The probability of the entire corpus is the product of the probabilities of the individual utter-
ances. The hypothesis space for this model consists of all the possible assignments of probability
values to words and the utterance boundary marker, i.e., possible values for pg and the param-
eters of Py,.

Notice that in the hypothesis space just defined, some choices of P, may assign non-zero
probability to only a finite subset of potential words. Different hypotheses will have different
sizes, i.e., different numbers of words will have non-zero probability. Crucially, however, no
preference is given to hypotheses of any particular size — the maximum-likelihood assumption
states that we should choose whichever hypothesis assigns the highest probability to the observed
data.

What is the maximum-likelihood hypothesis under this model? It is straightforward to show
that, in general, the maximum-likelihood solution for a model is the probability distribution that
is closest to the empirical distribution (relative frequencies) of observations in the corpus, where
the “distance” is computed by an information theoretic measure called the Kullback-Leibler
divergence (Bishop, 2006, p. 57, inter al.) In the above model, there is one hypothesis that
is able to match the empirical distribution of the corpus exactly. This hypothesis treats each



(a) yuwanttusiD6bUk (b) you want to see the book

1UkD*z6b7wIThIzh&t look there’s a boy with his hat
&nd6d0gi and a doggie
yuwanttulUk&tDIs you want to look at this
1Uk&tDIs look at this

h&v6drINk have a drink

okenQ okay now

WAtsDIs what’s this

WAtsD&t what’s that

WAtIzIt what is it
1Ukk&nyutekItQt look can you take it out
tekItQt take it out

yuwantItIn you want it in
pUtD&tan put that on

D&t that

Figure 1: An excerpt from the beginning of the corpus used as input to Venkataraman’s (2001)
word segmentation system, showing (a) the actual input corpus and (b) the corresponding standard
orthographic transcription. The corpus was originally prepared by Brent (1996) using data from
Bernstein-Ratner (1987), and was also used as input to Brent’s (1999) MBDP-1 system.

utterance as a single “word”, with probability equal to the empirical probability of that utterance
in the corpus, and assumes pg = 1. In other words, this solution memorizes the entire data set
without segmenting utterances at all, and assigns zero probability to any unobserved utterance.
Intuitively, any solution that does hypothesize word boundaries will require pg < 1, which means
that some unobserved utterances will have non-zero probability — those that can be created
by, for example, concatenating two observed utterances, or rearranging the hypothesized words
into novel orderings. Since some probability mass is allocated to these unobserved utterances,
the probability of the observed data must be lower than in the case where pg = 1 and no
generalization is possible.

For a maximume-likelihood learner using the model in Equation 1, then, only a trivial seg-
mentation will be found unless some constraint is placed on the kinds of hypotheses that are
considered. Crucially, however, this argument does not depend on the particular form of P,
used in Equation 1, where words are assumed to be generated independent of context. Many
other possible distributions over words would yield the same result. Venkataraman, for example,
presents two other models in which the unigram distribution P, is replaced with a bigram or tri-
gram distribution: rather than generating words independent of context, each word is generated
conditioned on either one or two previous words. That is, the bigram model defines

n

HP(wl\wl_l)

=2

P(w; ... w,$) = P(w:$) P($]w,).

Essentially, the reason that all of these models yield the same maximum-likelihood solution
(an unsegmented corpus) is that they are allowed to consider hypotheses with arbitrary numbers
of lexical items. When comparing hypotheses with different levels of complexity (corresponding
here to the number of word types in the hypothesis), a maximum-likelihood learner will generally
prefer a more complex hypothesis over a simple one. This leads to the problem of overfitting,



where the learner chooses a hypothesis that fits the observed data very well, but generalizes very
poorly to new data. In the case of word segmentation, the solution of complete memorization
allows the learner to fit the observed data perfectly. Since we know that this is not the solution
found by Venkataraman’s learners, we must conclude that the algorithm he proposes to search
the space of possible hypotheses must be imposing additional constraints beyond those of the
models themselves. It should be clear from the previous discussion that this is not the approach
advocated here, since it renders constraints implicit and difficult to examine. Batchelder’s (2002)
maximum-likelihood learning system uses an explicit “external constraint” to penalize lexical
items that are too long. This approach is a step in the right direction, but is less mathematically
principled than Bayesian modeling, in which a (non-uniform) prior distribution over hypotheses
is used within the model itself to constrain learning. We now review several of the Bayesian
models that served as inspiration for our own work.

2.1.2 Bayesian models

In the previous section, we argued that unconstrained maximum-likelihood estimation is a poor
way to choose between hypotheses with different complexities. In Bayesian modeling, the effect
of the likelihood can be counterbalanced by choosing a prior distribution that favors simpler
hypotheses. Simpler hypotheses will tend not to fit the observed data as well, but will tend
to generalize more successfully to novel data. By considering both the likelihood and prior in
determining the posterior probability of each hypothesis, Bayesian learners naturally avoid the
kind of overfitting that maximum-likelihood learners encounter. The trade-off between fit and
generalization will depend on exactly how the prior is defined; we now describe several methods
that have been used to define priors in previous Bayesian models.

Perhaps the most well-known framework for defining Bayesian models is known as minimum
description length (MDL) (Rissanen, 1989), and is exemplified by the work of de Marcken (1995)
and Brent and Cartwright (1996). MDL is a particular formulation of Bayesian learning that has
been used successfully in a number of other areas of language acquisition as well (Ellison, 1994;
Goldsmith, 2001; Goldwater and Johnson, 2004; Creutz and Lagus, 2002; Dowman, 2000). The
basic idea behind MDL is to define some encoding scheme that can be used to encode the corpus
into a more compact representation. In word segmentation, for example, a code might consist
of a list of lexical items along with a binary representation for each one. With appropriate
choices for the lexical items and binary representations (with shorter representations assigned
to more common words), the length of the corpus could be reduced by replacing each word
with its binary code. In this framework, the learner’s hypotheses are different possible encoding
schemes. The minimum description length principle states that the optimal hypothesis is the
one that minimizes the combined length, in bits, of the hypothesis itself (the codebook) and
the encoded corpus. Using results from information theory, it can be shown that choosing a
hypothesis using the MDL principle is equivalent to choosing the maximum a posteriori (MAP)
hypothesis — the hypothesis with the highest posterior probability — under a Bayesian model
where the prior probability of a hypothesis decreases exponentially with its length. In other
words, MDL corresponds to a particular choice of prior distribution over hypotheses, where
hypotheses are preferred if they can be described more succinctly.

Although MDL models can in principle produce good word segmentation results, there are no
standard search algorithms for these kinds of models, and it is often difficult to design efficient
model-specific algorithms. For example, Brent and Cartwright (1996) were forced to limit their
analysis to a very short corpus (about 170 utterances) due to efficiency concerns. In later
research, Brent developed another Bayesian model for word segmentation with a more efficient
search algorithm (Brent, 1999). He named this system Model-Based Dynamic Programming
(MBDP-1).% Since we will be returning to this model at various points throughout this paper,

3The 1 in MBDP-1 was intended as a version number, although Brent never developed any later versions of the



we now describe MBDP-1 in more detail.

Unlike models developed within the MDL framework, where hypotheses correspond to pos-
sible encoding methods, MBDP-1 assumes that the hypotheses under consideration are actual
sequences of words, where each word is a sequence of phonemic symbols. The input corpus
consists of phonemically transcribed utterances of child-directed speech, as in Figure 1. Some
word sequences, when concatenated together to remove word boundaries, will form exactly the
string of symbols found in the corpus, while others will not. The probability of the observed
data given a particular hypothesized sequence of words will therefore either be equal to 1 (if
the concatenated words form the corpus) or 0 (if not). Consequently, only hypotheses that are
consistent with the corpus must be considered. For each possible segmentation of the corpus, the
posterior probability of that segmentation will be directly proportional to its prior probability.
The prior probability, in turn, is computed using a generative model. This model assumes that
the sequence of words in the corpus was created in a sequence of four steps:*

Step 1 Generate the number of types that will be in the lexicon.
Step 2 Generate a token frequency for each lexical type.

Step 3 Generate the phonemic representation of each type (except for the single distinguished
“utterance boundary” type, $).

Step 4 Generate an ordering for the set of tokens.

Each step in this process is associated with a probability distribution over the possible outcomes
of that step, so together these four steps define the prior probability distribution over all possible
segmented corpora. We discuss the specific distributions used in each step in Appendix B; here
it is sufficient to note that these distributions tend to assign higher probability to segmentations
containing fewer and shorter lexical items, so that the learner will prefer to split utterances into
words.

To search the space of possible segmentations of the corpus, Brent develops an efficient online
algorithm. The algorithm makes a single pass through the corpus, segmenting one utterance
at a time based on the segmentations found for all previous utterances. The online nature of
this algorithm is intended to provide a more realistic simulation of human word segmentation
than earlier batch learning algorithms (de Marcken, 1995; Brent and Cartwright, 1996), which
assume that the entire corpus of data is available to the learner at once (i.e., the learner may
iterate over the data many times).

In the remainder of this paper, we will describe two new Bayesian models of word segmenta-
tion inspired, in part, by Brent’s work. Like Brent, we use a generative model-based Bayesian
framework to develop our learners. Moreover, as we prove in Appendix B, our first (unigram)
model is mathematically very similar to the MBDP-1 model. However, our work differs from
Brent’s in two respects. First, our models are more flexible, which allows us to more easily
investigate the effects of different modeling assumptions. In theory, each step of Brent’s model
can be individually modified, but in practice the mathematical statement of the model and the
approximations necessary for the search procedure make it difficult to modify the model in any
interesting way. In particular, the fourth step assumes a uniform distribution over orderings,
which creates a unigram constraint that cannot easily be changed. We do not suppose that
Brent was theoretically motivated in his choice of a unigram model, or that he would be op-
posed to introducing word-to-word dependencies, merely that the modeling choices available to
him were limited by the statistical techniques available at the time of his work. In this paper, we
make use of more flexible recent techniques that allows us to develop both unigram and bigram
models of word segmentation and explore the differences in learning that result.

system.

4Our presentation involves a small change from Brent (1999), switching the order of Steps 2 and 3. This change
makes no difference to the model, but provides a more natural grouping of steps for purposes of our analysis in
Appendix B.
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The second key contribution of this paper lies in our focus on analyzing the problem of word
segmentation at the computational level by ensuring, to the best of our ability, that the only
constraints on the learner are those imposed by the model itself. We have already shown that
the model-based approaches of Venkataraman (2001) and Batchelder (2002) are constrained by
their choice of search algorithms; in the following section we demonstrate that the approximate
search procedure used by Brent (1999) prevents his learner, too, from identifying the optimal
solution under his model. Although in principle one could develop a Bayesian model within the
MDL or MBDP frameworks that could account for word-to-word dependencies, the associated
search procedures would undoubtedly be even more complex than those required for the current
unigram models, and thus even less likely to identify optimal solutions. Because our own work
is based on more recent Bayesian techniques, we are able to develop search procedures using a
standard class of algorithms known as Markov chain Monte Carlo methods (Gilks et al., 1996),
which produce samples from the posterior distribution over hypotheses. We provide evidence
that the solutions identified by our algorithms are indeed optimal or near-optimal, which allows
us to draw conclusions using ideal observer arguments and to avoid the obfuscating effects of
ad hoc search procedures.

3 Unigram model

3.1 Generative model

Like MBDP-1, our models assume that the hypotheses under consideration by the learner are
possible segmentations of the corpus into sequences of words. Word sequences that are consistent
with the corpus have a likelihood of 1, while others have a likelihood of 0, so the posterior
probability of a segmentation is determined by its prior probability. Also as in MBDP-1, we
compute the prior probability of a segmentation by assuming that the sequence of words in
the segmentation was created according to a particular probabilistic generative process. Let
W = w;...wy be the words in the segmentation. Setting aside the complicating factor of
utterance boundaries, our unigram model assumes that the ¢th word in the sequence, w;, is
generated as follows:

(1) Decide if w; is a novel lexical item.
(2) a. If so, generate a phonemic form (phonemes z ...xzys) for w;.

b. If not, choose an existing lexical form ¢ for w;.

We assign probabilities to each possible choice as follows:

_n_
n+aog

(1) P(w; is novel) = =2 P(w; is not novel) =

(2)  a Plw;=x1...20 | w; is novel) = pu (1 — pu)M 1 [[IL, P(xy)
b. P(w; = £|w; is not novel) = =

where g is a parameter of the model, n is the number of previously generated words (=i — 1),
ng is the number of times lexical item ¢ has occurred in those n words, and py is the probability
of generating a word boundary. Taken together, these definitions yield the following distribution
over w; given the previous words w_; = {w; ... w;_1}:

Ty (Xopo(wize)
i—].+0£0 i—].+0¢0

Plw; = 0| w_;) = (2)

where we use Py to refer to the unigram phoneme distribution in Step 2a. (The py and 1 —py
factors in this distribution result from the process used to generate a word from constituent
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phonemes: after each phoneme is generated, a word boundary is generated with probability p
and the process ends, or else no word boundary is generated with probability 1—px and another
phoneme is generated.)

We now provide some intuition for the assumptions that are built into this model. First,
notice that in Step 1, when n is small, the probability of generating a novel lexical item is
relatively large. As more word tokens are generated and n increases, the relative probability of
generating a novel item decreases, but never disappears entirely. This part of the model means
that segmentations with too many different lexical items will have low probability, providing
pressure for the learner to identify a segmentation consisting of relatively few lexical items. In
Step 2a, we define the probability of a novel lexical item as the product of the probabilities of
each of its phonemes. This ensures that very long lexical items will be strongly dispreferred.
Finally, in Step 2b, we say that the probability of generating an instance of the lexical item ¢
is proportional to the number of times ¢ has already occurred. In effect, the learner assumes
that a few lexical items will tend to occur very frequently, while most will occur only once or
twice. In particular, the distribution over word frequencies produced by our model becomes a
power-law distribution for large corpora (Arratia et al., 1992), the kind of distribution that is
found in natural language (Zipf, 1932).

The model we have just described is an instance of a kind of model known in the statistical
literature as a Dirichlet process (Ferguson, 1973). The Dirichlet process is commonly used
in Bayesian statistics as a nonparametric prior for clustering models, and is closely related
to Anderson’s (1991) rational model of categorization (Sanborn et al., 2006b). The Dirichlet
process has two parameters: the concentration parameter ag and the base distribution Py. The
concentration parameter determines how many clusters will typically be found in a data set of
a particular size (here, how many word types for a particular number of tokens), and the base
distribution determines the typical characteristics of a cluster (here, the particular phonemes
in a word type). A more detailed mathematical treatment of our model and its relationship to
the Dirichlet process is provided in Appendix A, but this connection leads us to refer to our
unigram model of word segmentation as the “Dirichlet process” (DP) model.

So far, the model we have described assigns probabilities to sequences of words where there
are no utterance boundaries. However, because the input corpus contains utterance boundaries,
we need to extend the model to account for them. In the extended model, each hypothesis
consists of a sequence of words and utterance boundaries, and hypotheses are consistent with
the input if removing word boundaries (but not utterance boundaries) yields the input corpus.
To compute the probability of a sequence of words and utterance boundaries, we assume that
this sequence was generated using the model above, with the addition of an extra step: after
each word is generated, an utterance boundary marker $ is generated with probability pg (or
not, with probability 1 — pg). For simplicity, we will suppress this portion of the model in the
main body of this paper, and refer the reader to Appendix A for full details.

3.2 Inference

We have now defined a generative model that allows us to compute the probability of any seg-
mentation of the input corpus. We are left with the problem of inference, or actually identifying
the highest probability segmentation from among all possibilities. We used a method known
as Gibbs sampling (Geman and Geman, 1984), a type of Markov chain Monte Carlo algorithm
(Gilks et al., 1996) in which variables are repeatedly sampled from their conditional posterior
distribution given the current values of all other variables in the model. Gibbs sampling is an
iterative procedure in which (after a number of iterations used as a “burn-in” period to allow
the sampler to converge) each successive iteration produces a sample from the full posterior dis-
tribution P(h|d). In our sampler, the variables of interest are potential word boundaries, each of
which can take on two possible values, corresponding to a word boundary or no word boundary.
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Boundaries may be initialized at random or using any other method; initialization does not
matter since the sampler will eventually converge to sampling from the posterior distribution.®
Each iteration of the sampler consists of stepping through every possible boundary location and
resampling its value conditioned on all other current boundary placements. Since each set of
assignments to the boundary variables uniquely determines a segmentation, sampling bound-
aries is equivalent to sampling sequences of words as our hypotheses. Although Gibbs sampling
is a batch learning algorithm, where the entire data set is available to the learner at once, we
note that there are other sampling techniques known as particle filters (Doucet et al., 2000;
Sanborn et al., 2006b) that can be used to produce approximations of the posterior distribution
in an online fashion (examining each utterance in turn exactly once). We return in the General
Discussion to the question of how a particle filter might be developed for our own model in the
future. Full details of our Gibbs sampling algorithm are provided in Appendix A.

3.3 Simulations

3.3.1 Data

To facilitate comparison to previous models of word segmentation, we report results on the
same corpus used by Brent (1999) and Venkataraman (2001). The data is derived from the
Bernstein-Ratner corpus (Bernstein-Ratner, 1987) of the CHILDES database (MacWhinney
and Snow, 1985), which contains orthographic transcriptions of utterances directed at 13- to 23-
month-olds. The data was post-processed by Brent, who removed disfluencies and non-words,
discarded parental utterances not directed at the children, and converted the rest of the words
into a phonemic representation using a phonemic dictionary (i.e. each orthographic form was
always given the same phonemic form). The resulting corpus contains 9790 utterances, with
33399 word tokens and 1321 unique types. The average number of words per utterance is 3.41
and the average word length (in phonemes) is 2.87. The word boundaries in the corpus are used
as the gold standard for evaluation, but are not provided in the input to the system (except for
word boundaries that are also utterance boundaries).

The process used to create this corpus means that it is missing many of the complexities of
real child-directed speech. Not the least of these is the acoustic variability with which different
tokens of the same word are produced, a factor which presumably makes word segmentation
more difficult. On the other hand, the corpus is also missing many cues which could aid in
segmentation, such as coarticulation information, stress, and duration. While this idealization
of child-directed speech is somewhat unrealistic, the corpus does provide a way to investigate
the use of purely distributional cues for segmentation, and permits direct comparison to other
word segmentation systems.

3.3.2 Evaluation procedure

For quantitative evaluation, we adopt the same measures used by Brent (1999) and Venkatara-
man (2001): precision (number of correct items found out of all items found) and recall (number
of correct items found out of all correct items). These measures are widespread in the computa-
tional linguistics community; the same measures are often known as accuracy and completeness
in the cognitive science community (Brent and Cartwright, 1996; Christiansen et al., 1998). We
also report results in terms of Fy (another common metric used in computational linguistics, also
known as F-measure or F-score). Fy is the geometric average of precision and recall, defined as

50Of course, our point that initialization does not matter is a theoretical one; in practice, some initializations may
lead to faster convergence than others, and checking that different initializations lead to the same results is one way
of testing for convergence of the sampler, as we do in Appendix A.
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2xprecisionsrecall
precision+recall ’
the following scores for each model we propose:

and penalizes results where precision and recall are very different. We report

e P R, F: precision, recall, and Fy on words: both boundaries must be correctly identified
to count as correct.

e LP, LR, LF: precision, recall, and F( on the lexicon, i.e. word types.

e BP, BR, BF: precision, recall, and Fy on potentially ambiguous boundaries (i.e. utterance
boundaries are not included in the counts).

As an example, imagine a one-utterance corpus whose correct segmentation is look at the big
dog there, where instead we find the segmentation look at the bigdo g the re. There
are seven words in the found segmentation, and six in the true segmentation; three of these
words match. We report all scores as percentages, so P = 42.9% (3/7), R= 50.0% (3/6), and
F=46.2%. Similarly, BP = 66.7% (4/6), BR = 80.0% (4/5), BF = 72.7%, LP= 50.0% (3/6), LR=
50.0% (3/6), and LF= 50.0%. Note that if the learner correctly identifies all of the boundaries
in the true solution, but also proposes extra boundaries (oversegmentation), then boundary
recall will reach 100%, but boundary precision and boundary Fy will be lower. Conversely, if
the learner proposes no incorrect boundaries, but fails to identify all of the true boundaries
(undersegmentation), then boundary precision will be 100%, but boundary recall and Fy will be
lower. In either case, scores for word tokens and lexical items will be below 100%.

For comparison, we report scores as well for Brent’s MBDP-1 system (Brent, 1999) and
Venkataraman’s n-gram segmentation systems (Venkataraman, 2001), which we will refer to as
NGS-u and NGS-b (for the unigram and bigram models). Both Brent and Venkataraman use
online search procedures (i.e., their systems make a single pass through the data, segmenting
each utterance in turn), so in their papers they calculate precision and recall separately on each
500-utterance block of the corpus and graph the results to show how scores change as more data
is processed. They do not report lexicon recall or boundary precision and recall. Their results
are rather noisy, but performance seems to stabilize rapidly, after about 1500 utterances. To
facilitate comparison with our own results, we calculated scores for MBDP-1 and NGS over the
whole corpus, using Venkataraman’s implementations of these algorithms.®

Since our algorithm produces random segmentations sampled from the posterior distribution
rather than a single optimal solution, there are several possible ways to evaluate its performance.
For most of our simulations, we evaluated a single sample taken after 20,000 iterations. We used
a method known as simulated annealing (Aarts and Korst, 1989) to speed convergence of the
sampler, and in some cases (noted below) to obtain an approximation of the MAP solution by
concentrating samples around the mode of the posterior. This allowed us to examine possible
differences between a random sample of the posterior and a sample more closely approximating
the MAP segmentation. Details of the annealing and MAP approximation procedures can be
found in Appendix A.

3.3.3 Results and Discussion

The DP model we have described has two free parameters: py (the prior probability of a word
boundary), and g (which affects the number of word types proposed).” Figure 2 shows the
effects of varying of px and . Lower values of py result in more long words, which tends to
improve recall (and thus Fy) in the lexicon. The accompanying decrease in token accuracy is due
to an increasing tendency for the model to concatenate short words together, a phenomenon

5The implementations are available at http://www.speech.sri.com/people/anand/.

"The DP model actually contains a third free parameter, p, used as a prior over the probability of an utterance
boundary (see Appendix A). Given the large number of known utterance boundaries, the value of p should have little
effect on results, so we simply fixed p = 2 for all simulations.
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Figure 2: Fy for words (F) and lexical items (LF) in the DP model (a) as a function of py, with
ap = 20 and (b) as a function of o, with py = .5.

we discuss further below. Higher values of o allow more novel words, which also improves
lexicon recall, but begins to degrade precision after a point. Due to the negative correlation
between token accuracy and lexicon accuracy, there is no single best value for either px or ag.
In the remainder of this section, we focus on the results for py = .5, a9 = 20 (though others are
qualitatively similar — we discuss these briefly below).

In Table 1, we compare the results of our system to those of MBDP-1 and NGS-u. Although
our system has higher lexicon accuracy than the others, its token accuracy is much worse.
Performance does not vary a great deal between different samples, since calculating the score for
a single sample already involves averaging over many random choices — the choices of whether to
place a boundary at each location or not. Table 2 shows the mean and standard deviation in Fy
scores and posterior probabilities over samples taken from 10 independent runs of the algorithm
with different random initializations. The same statistics are also provided for ten samples
obtained from a single run of the sampler. Samples from a single run are not independent,
so to reduce the amount of correlation between these samples they were taken at 100-iteration
intervals (at iterations 19100, 19200, . ..20000). Nevertheless, they show less variability than the
truly independent samples. In both cases, lexicon accuracy is more variable than token accuracy,
probably because there are far fewer lexical items to average over within a single sample. Finally,
Table 2 provides results for the approximate MAP evaluation procedure. This procedure is
clearly imperfect, since if it were able to identify the true MAP solution, there would be no
difference in results across multiple runs of the algorithm. In fact, compared to the standard
sampling procedure, there is only slightly less variation in Fg scores, and greater variation
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Table 1: Word segmentation accuracy of unigram systems

Performance measure
Model P R F BP BR BF LP LR LF
NGS-u 67.7 70.2 68.9 80.6 84.8 82.6 529 513 520
MBDP-1 67.0 694 682 80.3 843 823 53.6 513 524
DP 61.9 476 53.8 924 622 743 57.0 57.5 57.2

Note: P, R, and F are precision, recall, and Fy for word tokens; BP, LP, etc. are the corresponding
scores for ambiguous boundaries and lexical items. Best scores are shown in bold. DP results are
with p» = .5 and ag = 20.

Table 2: Results of the DP model, averaged over multiple samples

F LF —log P(w)
Samples (10 runs)  53.9 (.32) 57.8 (.60) 200587 (192)
Samples (1 run) 53.5 (.07) 57.7 (.43) 200493 (25)
MAP approx. 53.7 (.26) 58.7 (.56) 199853 (228)

Note: Token Fy (F), lexicon Fy (LF), and negative log posterior probability were averaged over 10
samples from independent runs of our Gibbs sampler, over 10 samples from a single run, and over
10 samples from independent runs of our MAP approximation (see text). Standard deviations are
shown in parentheses.

in probability.® Nevertheless, the MAP approximation does succeed in finding solutions with
significantly higher probabilities. These solutions also have higher lexicon accuracy, although
token accuracy remains low.

The reason that token accuracy is so low with the DP model is that it often mis-analyzes
frequently occurring words. Many instances of these words occur in common collocations such
as what’s that and do you, which the system interprets as a single words. This pattern of errors
is apparent in the boundary scores: boundary precision is very high, indicating that when the
system proposes a boundary, it is almost always correct. Boundary recall is low, indicating
undersegmentation.

We analyzed the behavior of the system more carefully by examining the segmented corpus
and lexicon. A full 30% of the proposed lexicon and nearly 30% of tokens consist of underseg-
mentation (collocation) errors, while only 12% of types and 5% of tokens are other non-words.
(Some additional token errors, under 4%, are caused by proposing a correct word in an incorrect
location.) About 85% of collocations (both types and tokens) are composed of two words, nearly
all the rest are three words. To illustrate the phenomenon, we provide the system’s segmentation
of the first 40 utterances in the corpus in Figure 3, and the 35 most frequently found lexical
items in Figure 4. The 70 most frequent collocations identified as single words by the system
are shown in Figure 5.

It is interesting to examine the collocations listed in Figure 5 with reference to the existing
literature on children’s early representation of words. Peters (1983), in particular, provides a
number of examples of children’s undersegmentation errors (using their productions as evidence).

8The large standard deviation in the probabilities of the approximate MAP solutions is due to a single outlier.
The standard deviation among the remaining nine solutions is 160, well below the standard deviation in the sample
solutions, where there are no outliers.
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youwant to see thebook
look there’s aboy with his hat
and adoggie

you wantto lookatthis
lookatthis

havea drink

okay now

what’sthis

what’sthat

whatisit

look canyou take itout
take itout

youwant it in

put that on

that

yes

okay

open itup

take thedoggie out
ithink it will comeout

let’ssee

yeah

pull itout

what’s it

look

look

what’sthat

get it

getit

getit

isthat for thedoggie
canyou feed it to thedoggie

feed it
putit in okay
okay

whatareyou gonna do

I’11 let her playwith this fora while
what

what

what’sthis

Figure 3: The first 40 utterances in the corpus as segmented by the DP model (represented ortho-
graphically for readability), illustrating that the model undersegments the corpus. The stochastic
nature of the Gibbs sampling procedure is apparent: some sequences, such as youwantto and getit,

receive two different analyses.
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+ 396 what 1704 you

+ 383 you 1291 the

+ 360 okay 895 a

+ 351 to/too/two 798 that

+ 340 and 783 what

+ 337 yeah 653 is

+ 313 the 632 it

+ 295 it 588 this

+ 293 look 569 what’s
- 275 [z] 528 to/too/two
- 258 what’sthat 463 do

+ 248 that 429 look
+ 235 a 412 can

+ 217 no 399 that’s
+ 196 that’s 389 see

+ 193 there/their 389 there/their
+ 189 this 382 1

+ 188 see 378 and

- 184 canyou 375 in

+ 178 in 363 your/you’re
+ 177 your/you’re 362 are

+ 172 here 360 okay

+ 160 what’s 337 yeah

+ 147 it’s 301 no

- 141 ing 268 like

- 138 isthat 266 it’s

- 135 what’sthis 250 on

+ 123 is 246 here

+ 117 do 246 one

+ 116 now 244 want

- 112 [s] 239 put

+ 104 for 227 he

- 102 thedoggie 226 wanna
- 101 that’sa 221 right
+ 101 book 217 book

Figure 4: The 35 most frequent items in the lexicon found by the DP model (left) and in the correct
lexicon (right). Except for the phonemes z and s, lexical items are represented orthographically
for readability. Different possible spellings of a single phonemic form are separated by slashes. The
frequency of each lexical item is shown to its left. Items in the segmented lexicon are indicated as
correct (+) or incorrect (-). Frequencies of correct items in the segmented lexicon are lower than
in the true lexicon because many occurrences of these items are accounted for by collocations.

18



Full S or socialization: Det + N: Pronoun + Aux/V:
258 what’s that 84 the doggie 94 you want

135 what’s this 57 the dragon 84 you can

65 thank you 47 this one 65 you wanna

61 that’s right 42 the book 55 I think

57 bye bye 39 the dog 48 you like

53 what is it 35 the boy 34 you’re gonna
41 look at this 35 the bunny 33 you don’t

38 what are those 36 this book 31 I see

38 what else 31 a book 28 you know what
36 who’s that 30 the door 28 I don’t

33 tpat oné 29 your hand Other:

31 night night 29 another one

30 let me out 29 that one 100 that’s a

30 sit down 87 look at

30 close the door Aux + NP (+ V): 75 it’s a

29 good girl 183 can you 69 in there

28 look at that 138 is that 51 this is

91 do you 48 on the

Wh + X: 56 do you want 42 those are

44 where’s the 53 would you like 40 is for
39 how many 50 is it 39 put it
34 what are you 48 did you 38 do it
30 what do you 39 do you see 36 see the
30 are you 36 in the
29 is he 32 play with
30 put him
28 kind of
27 wanna see

Figure 5: The 70 most frequently occurring items in the segmented lexicon that consist of multiple
words from the true lexicon. These items are all identified as single words; the true word boundaries
have been inserted for readability. The frequency of each item is shown to its left.
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Several of the full sentences and social conventions in Figure 5 (e.g., thank you, that’s right, bye
bye, look at this) are included among her examples. In addition, some of the other collocation
errors found by our unigram system match the examples of “formulaic frames” given by Peters:
the “verb introducer” can you and “noun introducers” it’s a, this is, those are, and see the.
Phonological reductions in adult speech also suggest that a few of the collocations found by
the system (e.g., did you, what do you) may even be treated as single units by adults in some
circumstances. However, the extent and variety of collocations found by the system is certainly
much broader than what researchers have so far found evidence for in young children.

We will defer for the moment any further discussion of whether children’s early word repre-
sentations are similar to those found by our DP model (we return to this issue in the General
Discussion), and instead turn to the question of why these units are found. The answer seems
clear: groups of words that frequently co-occur violate the unigram assumption in the model,
since they exhibit strong word-to-word dependencies. The only way the learner can capture
these dependencies is by assuming that these collocations are in fact words themselves. As
an example, consider the word that. In our corpus, the empirical probability of the word that
is 798/33399 ~ .024. However, the empirical probability of that following the word what’s is
far higher: 263/569 ~ .46. Since the strong correlation between what’s and that violates the
independence assumption of the model, the learner concludes that what’sthat must be a single
word.

Note that by changing the values of the parameters ag and py, it is possible to reduce the
level of undersegmentation, but only slightly, and at the cost of introducing other errors. For
example, raising the value of px to 0.9 strongly increases the model’s preference for short lexical
items, but collocations still make up 24% of both types and tokens in this case. Measures of
token accuracy increase by a few points, but are still well below those of previous systems.
The main qualitative difference between results with px = .5 and py = .9 is that with the
higher value, infrequent words are more likely to be oversegmented into very short one- or two-
phoneme chunks (reflected in a drop in lexicon accuracy). However, frequent words still tend to
be undersegmented as before.

It is also worth noting that, although the proportion of collocations in the lexicons found by
MBDP-1 and NGS-u is comparable to the proportion found by our own model (24%), only 6% of
tokens found by these systems are collocation errors. This fact seems to contradict our analysis
of the failures of our own unigram model, and raises a number of questions. Why don’t these
other unigram models exhibit the same problems as our own? Is there some other weakness
in our model that might be causing or compounding the problems with undersegmentation?
Is it possible to design a successful unigram model for word segmentation? We address these
questions in the following section.

4 Other unigram models

4.1 MBDP-1 and search

In the previous section, we showed that the optimal segmentation under our unigram model is
one that identifies common collocations as individual words. Our earlier discussion of Venkatara-
man’s (2001) NGS models demonstrated that the optimal solution under those models is a com-
pletely unsegmented corpus. What about Brent’s (1999) MBDP-1 model? While the definition
of this unigram model makes it difficult to determine what the optimal solution is, our main
concern was whether it exhibits the same problems with undersegmentation as our own unigram
model. The results presented by Brent do not indicate undersegmentation, but it turns out that
these results, like Venkataraman’s, are influenced by the approximate search procedure used.
We determined this by calculating the probability of various segmentations of the corpus under
each model, as shown in Table 3. The results indicate that the MBDP-1 model assigns higher
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Table 3: Negative log probabilities of various segmentations under each unigram model

Segmentation
Model True None MBDP-1 NGS-u DP
NGS-u 204.5 90.9 210.7 210.8 183.0
MBDP-1 208.2 321.7 217.0 218.0 189.8
DP 222.4  393.6 231.2 231.6 200.6

Note: Row headings identify the models used to evaluate each segmentation. Column headings
identify the different segmentations: the true segmentation, the segmentation with no utterance-
internal boundaries, and the segmentation found by each system. Actual log probabilities are 1000x
those shown.

Table 4: Accuracy of the various systems on the permuted corpus

Performance measure
Model P R F BP BR BF LP LR LF
NGS-u 76.6 85.8 81.0 83.5 97.6 90.0 60.0 524 559
MBDP-1  77.0 86.1 81.3 837 97.7 90.2 60.8 53.0 56.6
DP 94.2 97.1 95.6 95.7 99.8 97.7 86.5 62.2 72.4

Note: P, R, and F are precision, recall, and Fy for word tokens; BP, LP, etc. are the corresponding
scores for ambiguous boundaries and lexical items. Best scores are shown in bold. DP results are
with py = .5 and oy = 20.

probability to the solution found by our Gibbs sampler than to the solution found by Brent’s
own incremental search algorithm. In other words, the model underlying MBDP-1 does favor the
lower-accuracy collocation solution, but Brent’s approximate search algorithm finds a different
solution that has higher accuracy but lower probability under the model.

We performed two simulations suggesting that our own inference procedure does not suffer
from similar problems. First, we initialized the Gibbs sampler in three different ways: with
no utterance-internal boundaries, with a boundary after every character, and with random
boundaries. The results were virtually the same regardless of initialization (see Appendix A for
details). Second, we created an artificial corpus by randomly permuting all the words in the true
corpus and arranging them into utterances with the same number of words as in the true corpus.
This manipulation creates a corpus where the unigram assumption is correct. If our inference
procedure works properly, the unigram system should be able to correctly identify the words in
the permuted corpus. This is exactly what we found, as shown in Table 4. The performance of
the DP model jumps dramatically, and most errors occur on infrequent words (as evidenced by
the fact that token accuracy is much higher than lexicon accuracy). In contrast, MBDP-1 and
NGS-u receive a much smaller benefit from the permuted corpus, again indicating the influence
of search.

These results imply that the DP model itself, rather than the Gibbs sampling procedure we
used for inference, is responsible for the poor segmentation performance on the natural language
corpus. In particular, the unigram assumption of the model seems to be at fault. In the following
section we present some additional simulations designed to further test this hypothesis. In these
simulations, we change the model of lexical items used in Step 2a of the model, which has so far
assumed that lexical items are created by choosing phonemes independently at random. If the
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original poor lexical model is responsible for the DP model’s undersegmentation of the corpus,
then improving the lexical model should improve performance. However, if the problem is that
the unigram assumption fails to account for sequential dependencies in the corpus, then a better
lexical model will not make much difference.

4.2 The impact of the lexical model on word segmentation

One possible improvement to the lexical model is to replace the assumption of a uniform dis-
tribution over phonemes with the more realistic assumption that phonemes have different prob-
abilities of occurrence. This assumption is more in line with the MBDP-1 and NGS models.
In NGS, phoneme probabilities are estimated online according to their empirical distribution
in the corpus. In MBDP-1, phoneme probabilities are also estimated online, but according to
their empirical distribution in the current lexicon. For models like MBDP-1 and the DP model,
where the phoneme distribution is used to generate lexicon items rather than word tokens, the
latter approach makes more sense. It is relatively straightforward to extend the DP model to
infer the phoneme distribution in the lexicon simultaneously with inferring the lexicon itself.
Before implementing this extension, however, we tried simply fixing the phoneme distribution
to the empirical distribution in the true lexicon. This procedure gives an upper bound on the
performance that could be expected if the distribution were learned. We found that this change
improved lexicon Fy somewhat (to 60.5, with a = 20 and px = .5), but made almost no differ-
ence on token Fy (53.6). Inference of the phoneme distribution was therefore not implemented.

Other changes could be made to the lexical model in order to create a better model of word
shapes. For example, using a bigram or trigram phoneme model would allow the learner to
acquire some notion of phonotactics. Basing the model on syllables rather than phonemes could
incorporate constraints on the presence of vowels or syllable weight. Rather than testing all
these different possibilities, we designed a simulation to determine an approximate upper bound
on performance in the unigram DP model. In this simulation, we provided the model with
information that no infant would actually have access to: the set of word types that occur in
the correctly segmented corpus. The lexical model is defined as follows:

{ (L—€) +ePo(wi=¢) Lel

Ptrue (wz - E) —

where L is the true set of lexical items in the data, and € is some small mixing constant. In
other words, this model is a mixture between a uniform distribution over the true lexical items
and the basic model Py. If € = 0, the model is constrained so that segmentations may only
contain words from the true lexicon. If € > 0, a small amount of noise is introduced so that
new lexical items are possible, but have much lower probability than the true lexical items. If
the model still postulates collocations when € is very small, we have evidence that the unigram
assumption, rather than any failure in the lexicon model, is responsible for the problem.

The results from this model are shown in Table 5. Not surprisingly, the lexicon Fy scores in
this model are very high, and there is a large improvement in token Fy scores against previous
models. However, considering the amount of information provided to the model, its scores are
still surprisingly low, and collocations remain a problem, especially for frequent items.

Considering the case where ¢ = 1079 yields some insight into the performance of these
models with improved lexical models. The solution found, with a lexicon consisting of 13.1%
collocations, has higher probability than the true solution. This is despite the fact that the
most probable incorrect lexical items are about five orders of magnitude less probable than
the true lexical items.” These incorrect lexical items are proposed despite their extremely low

9There are 1321 lexical items in the corpus, so under the lexical model, the probability of each of these is ap-
proximately 1072, There are 50 phonemes and py = .5, so a single-character word has probability .01 under Pp.
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Table 5: Results of the DP model using Py,

Mixing Accuracy % Collocations
constant F LF tokens lexicon
e=10"7 60.5 81.7 27.7 21.6
e=10"3 62.7 83.4 25.8 19.1
e=10"4 64.5 84.8 24.6 16.9
e=10"° 65.5 85.3 23.7 15.5
e=10"6 68.2 85.6 21.4 13.1

Note: Shown, for each value of €, is token Fy (F), lexicon Fy (LF), and the percentage of tokens
and lexical items that are multiword collocations.

probability because only the first occurrence of each word is accounted for by the lexical model.
Subsequent occurrences are accounted for by the part of the model that generates repeated
words, where probabilities are proportional to the number of previous occurrences. Therefore,
low-probability lexical items incur no penalty (beyond that of any other word) after the first
occurrence. This is why the collocations remaining in the DP model using Py, are the highest-
frequency collocations: over many occurrences, the probability mass gained by modeling these
collocations as single words outweighs the mass lost in generating the first occurrence.

The results of this simulation suggest that the large number of collocations found by the
unigram DP model are not due to the weakness of the lexical model. Regardless of how good
the lexical model is, it will not be able to completely overcome the influence of the unigram
assumption governing word tokens when modeling the full corpus. In order to reduce the number
of collocations, it is necessary to account for sequential dependencies between words. Before
showing how to do so, however, we first present theoretical results regarding the generality of
our conclusions about unigram models.

4.3 MBDP-1, the DP model, and other unigram models

The probabilistic models used in MBDP-1 and our Dirichlet process model appeal to quite
different generative processes. To generate a corpus using MBDP, the number of word types is
sampled, then the token frequencies, then the forms of the words in the lexicon, and finally an
ordering for the set of tokens. Using the DP model, the length of the corpus (number of word
tokens) must be chosen, and then the sequence of words is generated, implicitly determining the
number of word types and the lexicon. Although these two approaches to generating a corpus
are very different, it is possible to show that, by varying the specific distributions assumed at
each step of the MBDP-1 generative process, the two approaches can result in exactly the same
distribution over word sequences. In Appendix B we show that by changing how the size of
the lexicon and the token frequencies are chosen in Steps 1 and 2 of the MBDP model, we can
produce distributions over words that are equivalent to the distribution given by the DP model
when conditioned on the total number of words.

This formal correspondence between MBDP-1 and the DP model suggests that the two
models might express similar preferences about segmentations of corpora. In particular, the
generative processes behind the two models share two components — the distributions over the
lexicon and ordering of tokens — and differ only in the way that word frequencies are assigned. We
can see the consequences of these shared components by comparing the probabilities that MBDP-

Multiplying by the discount factor e = 107° yields Pyye = 1072 for one-character words not in the true lexicon.
Longer incorrect words will have much lower probability.

23



x 10° All steps Steps 1 and 2 x 10° During annealing

-6300
-1.823 P
L.t o —6320
a i [a) .. a
m X3 2] L DEng e o
S -1.824 - t S g3a0| - .p.uEE § g
= = o =
B v z -3
& -1.825 T —6360 T
g 2 g
= ] o
.. -6380 i
-1.826
-6400
-2.005 -2.004 -2.003 -2.002 -2.43 —2.425 -2.42 -4 -3 -2
Log P(w), DP x 10° Log P(K,n), DP x 10" Log P(w), DP x 10°

Figure 6: Left: Probabilities of 500 segmentations sampled from the posterior distribution of the
DP model, computed under both that model and MBDP-1. Middle: Probabilities of the non-
shared components of the same samples — the number of word types and their frequencies. Right:
Probabilities under the two models of 500 segmentations obtained during annealing (to exhibit a
wider range of quality).

1 and the DP model assign to different segmentations. We compared the probabilities that the
models assigned to 500 samples of a full segmentation w taken from the last 1000 iterations
of a 20,000-iteration simulation like the ones described in our unigram model simulations. As
shown in Figure 6, these probabilities were highly correlated, with the linear correlation between
the values of log P(w) under the two models being r» = .95. This correlation is almost entirely
due to the shared components of the generative processes: if we remove the shared factors
corresponding to the probability of the word forms in the lexicon and the ordering of the tokens,
the correlation is significantly reduced, becoming just r = .30.

This analysis indicates that MBDP-1 and the nonparametric Bayesian model show a very
close correspondence in their preferences for different segmentations. The probability of a seg-
mentation under the two models is highly correlated, despite the fact that they define quite
different distributions over word frequencies. This effect is even more pronounced if we look at
the relationship between the probabilities assigned by the two models to segmentations ranging
in quality from very poor to very good. Using simulated annealing, we generated 500 segmen-
tations of varying quality as defined by the DP model (details of the method are provided in
Appendix A) and evaluated their probability under each model. As shown in Figure 6, the mod-
els agree strongly about the relative quality of those results. The dominant term in log P(w)
for both models is that used in the fourth step: the distribution over orderings of word tokens.

The dominance of the distribution over the orderings of word tokens in determining the
probability of the segmentation suggests a further conclusion. The distribution used in this step
in both MBDP-1 and the DP model is uniform over all permutations of the word tokens in
the corpus. Intuitively, this uniform distribution indicates that the order of the words does not
matter, and expresses the unigram assumption that underlies these models. In Appendix B, we
show that any unigram model has to make this assumption. Thus, all unigram models can be
expected to be highly correlated with MBDP-1 and the DP model in their preferences regarding
segmentations. This suggests that the problems that we have identified with the segmentations
produced by the DP model generalize not just to MBDP-1, but also to other models that assume
that words are independent units.
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5 Bigram model

5.1 The hierarchical Dirichlet process model

In the previous section, we discussed empirical and theoretical evidence that defining words as
statistically independent units leads to undersegmentation of natural language. We now ask
whether modifying this assumption can lead to better segmentation. We address this question
by developing a different model in which words are assumed to help predict other words. Recent
work has suggested that children may be sensitive to statistical dependencies that range over
several words (Mintz, 2002; Gémez and Maye, 2005). As a first step towards exploring the
effects of such dependencies on word segmentation, we will define a model that considers only
dependencies between adjacent words. This model assumes that the probability of a word
depends on a single previous word of context, so the unit of dependency is a pair of words, or
bigram.

Like our unigram model, our bigram model defines the probability of a segmentation by
assuming that it was generated as a sequence of words w = w;...wy using a probabilistic
process. Unlike the unigram model, w; is generated using a process that takes into account the
previous (already generated) word in the sequence, w;_1:

(1) Decide whether the pair (w;_1,w;) will be a novel bigram type.
(2) a. If so,
i. Decide whether w; will be a novel unigram type.
ii. a. If so, generate a phonemic form (phonemes z; ...x57) for w;.
b. If not, choose an existing lexical form ¢ for w;.

b. If not, choose a lexical form ¢ for w; from among those that have previously been
generated following w;_1.

Notice that Step 2a, which creates the second word of a novel bigram, uses the same steps we
used in our unigram model. The unigram process in Step 2a generates a set of word types which
the bigram process in Steps 1-2 assembles into bigrams.

The probabilities associated with the bigram generative process are

o

(1) P({w;—1,w;) is a novel bigram |w;—1 = ¢') =

Ny +oy
P((w;_1,w;) is not a novel bigram |w;_; = {') = n;ﬁ’m
(2) a. i P(w; is a novel word | (w;—1,w;) is a novel bigram) = ;72
P(w; is not a novel word | (w;_1,w;) is a novel bigram) = ﬁ

ii. a. P(w;=x1...2p | w; is a novel word) = Py(x1...2)

b. P(w; = {|w; is not a novel word) = bf

n(l’,l)

b. P(w; = £|{w;_1,w;) is not a novel bigram and w;_1 = ¢') = o

where ap and «; are parameters of the model, Py is the lexical model defined as part of our
unigram model, ¢ is the lexical form of w;_1, ny and n gy are the number of occurrences in
the first ¢ — 1 words of the unigram ¢’ and the bigram (¢, ¢), b is the number of bigram types in
the first ¢ — 1 words, and by is the number of those types whose second word is /.

The intuition behind this model is similar to that of the unigram model. Step 1 says that the
more times ¢’ has been generated, the less likely a new word will be generated following it; this
limits the number of bigram types. Step 2a is like the unigram generative process, except that
the probabilities are defined in terms of bigram types instead of unigram tokens. The idea is
that some words combine more promiscuously into bigrams than others: If £ has been generated
in many different contexts already, it is more likely to be generated in this new context. Finally,
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in Step 2b, the probability of generating ¢ following ¢ is proportional to the number of times
this pair has been generated already, which leads to a preference for power-law distributions
over the second item in each bigram.

The bigram model we have just defined is known as a hierarchical Dirichlet process (HDP)
(Teh et al., 2005). The HDP is an extension of the DP, and is typically used to model data in
which there are multiple distributions over similar sets of outcomes, and the distributions are
believed to be similar. For language modeling, we can define a bigram model by assuming that
each word has a different distribution over the words that follow it, but all these distributions
are linked by sharing a common set of unigrams. Again, we will use this formal connection to
name the model, making our bigram model the “hierarchical Dirichlet process” or HDP model.
Our HDP language model is similar to previously proposed n-gram models using hierarchical
Pitman-Yor processes (Goldwater et al., 2006b; Teh, 2006). For further discussion and a more
detailed presentation of the model, including a treatment of utterance boundaries, see Appendix
A.

5.2 Simulations
5.2.1 Method

For our simulations with the bigram model, we used the same input corpus and evaluation
measures as in our unigram model simulations. To identify a high-probability solution, we
implemented a Gibbs sampler that is conceptually similar to the unigram sampler. Details
can be found in Appendix A.'® The sampler was initialized by assigning word boundaries at
random in each utterance, although, as in the unigram model, other initialization methods yield
results similar to those presented below. We experimented with various values for the three free
parameters of the model, ap, a1, and py.!!

5.2.2 Results and discussion

Figure 7 plots the accuracy of our bigram model for various values of o, a1, and p4 based on a
single sample taken after 20,000 iterations. What we see from Figure 7 is that p4 (the probability
of generating the word boundary marker when producing a novel word) has relatively little
effect on results: lexicon accuracy is slightly higher for the lower value of p4, but segmentation
accuracy is the same. «ag (which determines the probability of generating a novel word) also
primarily affects lexicon accuracy. Since higher values of ag lead to more novel words (i.e.,
lexical items), lexicon recall increases for higher values of ag. Lexicon precision drops slightly,
but the overall effect is that F for lexical items increases.

The final parameter of the bigram model, oy, has the greatest effect on results. Recall that
this parameter determines the probability of generating a novel bigram. Since this is the only
parameter that deals with word context, it is not surprising that it has such a strong effect on
segmentation accuracy. Small values of «; lead to solutions with fewer novel bigrams, which
is achieved by oversegmenting words into smaller units. As «j rises, the number of proposed
boundaries falls, which lowers boundary recall but increases precision. The lexicon becomes
both larger and more correct. For moderate values of «y, a good balance is achieved between
oversegmentation and undersegmentation of the corpus, and both token accuracy and lexicon

00ur implementation is slightly different than in the original presentation of this model (Goldwater et al., 2006a),
and also fixes a small bug in that implementation. Thus, the results presented here are quantitatively (though not
qualitatively) different from those presented in previous papers.

"1n the full model including utterance boundaries described in Appendix A, there is a fourth free parameter, psg.
However, we found that this parameter had almost no effect on results, and kept it fixed at 0.5 for all simulations
reported here.
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Figure 7: Fy for words (F) and lexical items (LF) in the HDP model as a function of the different
model parameters. Each plot varies either o (plots (a) and (c)) or a; (plots (b) and (d)), while
holding the other parameters fixed.
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Table 6: Word segmentation accuracy of unigram and bigram systems

Performance measure
Model P R F BP BR BF LP LR LF
NGS-u 67.7 70.2 689 80.6 84.8 826 529 513 520
MBDP-1 67.0 694 682 803 843 823 53.6 513 524

DP 61.9 476 53.8 924 622 743 570 57.5 572
NGS-b 68.1 68.6 683 81.7 825 821 545 57.0 557
HDP 75.2 69.6 72.3 903 80.8 85.2 63.5 552 59.1

Note: Unigram scores are from Table 1, repeated here for convenience. P, R, and F are precision,
recall, and Fg for word tokens; BP, LP, etc. are the corresponding scores for ambiguous boundaries
and lexical items. Best scores are shown in bold. HDP results are with pg = .5,p4 = .2, a9 = 3000,
and a7 = 100.

accuracy are high. Token accuracy in particular is dramatically higher than in the unigram
model, and high-frequency words are correctly segmented far more often.

Table 6 presents the results of the HDP model using the parameter settings with highest
token Fy (o = 3000, 7 = 100, and py = 0.2), as well as results from the only previously
published model incorporating bigram dependencies, NGS-b. Results from the three unigram
models in Table 1 are replicated here for comparison. Due to search, the performance of the NGS-
b model is not much different from that of the NGS-u. In contrast, the HDP model performs far
better than the DP model on several measures and achieves the highest segmentation accuracy
of all the models tested here.!? As illustrated in Figure 8, the segmentation found by our
bigram model contains far fewer errors than the segmentation found by our unigram model, and
undersegmentation is much less prevalent. Table 6 shows that our bigram model outperforms
the other models on several measures, and is very close to best performance on the others. This
improvement can be attributed to a large increase in boundary recall relative to the DP model,
with little loss in precision. In other words, the bigram model proposes more word boundaries
and is almost as accurate with those proposals.

Not only are the results of the bigram model much better than those of the basic unigram
model DP(«, ), they are qualitatively different. In the unigram model, type accuracy is
higher than token accuracy, indicating many errors on frequent words. In the bigram model,
the opposite is true: frequent words are much more likely to be segmented correctly, so token
accuracy is higher than type accuracy. As Table 7 shows, the bigram model does make some
collocation errors, but they are far less common than in the unigram model. Other kinds of
errors make up a larger proportion of the errors in the bigram model. A particularly interesting
kind of error is the segmentation of suffixes as individual words. The top 100 most frequent
lexical items proposed by the bigram model include z, s, IN, d, and t, which correspond to
plural, progressive, and past tense endings. Together, these items account for 2.4% of the seg-
mented tokens. Interestingly, this is the same percentage as in the unigram model (although it
is a larger proportion of incorrect tokens, due to the reduction of other errors). This suggests
that incorporating word-to-word dependencies may not help to account for morphological de-
pendencies. Incorporating a notion of morphology or syllable structure into the model (similar
to the models presented by Johnson (2008)) could improve results.

12 At the time we developed the HDP model, it outperformed all published results on the corpus used here. Since
then, higher accuracy has been achieved by another Bayesian model based on similar principles (Johnson, 2008).
Gambell and Yang (2006) also report much higher accuracy using a non-statistical method, but these results are
based on a different corpus and input representation. See the Discussion section for further details.
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you want to see the book + 974 what
look there’s a boy with his hat + 847 you
and a doggie + 839 the
you want to lookat this + 815 a
lookat this + 455 that
have a d rink + 418 to/too/two
okay now + 399 that’s
what’s this + 389 it
what’s that + 380 this
what isit + 360 okay
look canyou take itout + 359 and
take itout + 357 see
you want itin + 337 yeah
put that on + 336 what’s
that + 336 I

yes - 308 [z]
okay + 289 look
open itup + 270 it’s
take thedoggie out - 268 doyou
i think it will comeout + 268 no
let’ssee + 267 your/you’re
yeah + 267 there/their
pull itout + 249 put
what’s it + 247 want
look - 229 canyou
look + 228 in
what’s that + 226 wanna
get it + 193 one
get it + 191 like
get it + 187 here
isthat for thedoggie + 171 book
canyou feed itto thedoggie - 167 sthat
feed it + 166 his
put itin okay + 165 is
okay + 160 do

Figure 8: Results for the HDP model with px = .2, ag = 3000, and oy = 100: the first 35 segmented
utterances (left) and the 35 most frequent lexical items (right). Fewer collocations appear than
in the DP model, there are fewer errors on high-frequency words, and word frequencies match the
true frequencies (Figure 4) more closely.
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Table 7: Error analysis for two unigram models and the HDP bigram model

Token errors Lexicon errors
Model # Toks Collocs Non-wds Placmt # Types Collocs Non-wds
DP (g, Po) 25677  29.3% 5.3% 3.5% 1331 30.8% 12.2%
DP(ao, Pirue) 27503  21.4% 1.4% 1.3% 1325  13.1% 1.4%
HDP 30914 12.0% 8.0% 4.8% 1148 14.7% 21.8%

Note: Shown are the number of tokens and lexical items found by each system, and the percentage
of those consisting of collocations, other items not in the true lexicon, and placement errors (words
belonging to the true lexicon, but proposed in the wrong location). Parameters for the DP models
were py = .5, ap = 20. The mixing constant in the DP(cv, Pye) model was € = 1076, Parameters
for the HDP model were py = .2, ag = 3000, and o = 100.

Table 8: Results of the HDP model, averaged over multiple samples

F LF —log P(w)
Samples (10 runs) 717 (.56) 57.1 (.85) 199370 (653)
Samples (1 run) 71.0 (.12) 56.3 (.75) 199500 (400)
MAP approx. 717 (67) 58.8 (.87) 182450 (155)

Note: Token Fy (F), lexicon Fy (LF), and negative log posterior probability were averaged over 10
samples from independent runs of our Gibbs sampler, over 10 samples from a single run, and over
10 samples from independent runs of our MAP approximation (see text). Standard deviations are
shown in parentheses.

Comparison of the bigram model to the DP(aq, Pyye) model is particularly enlightening.
Access to the true word types gives the unigram model much higher accuracy on lexical items,
but frequent items are still analyzed as collocations at a much higher rate than in the bigram
model. The net result is that the bigram model scores better on token accuracy, even though
it is completely unsupervised. This difference between type accuracy and token accuracy is not
surprising: the contextual dependencies built into the bigram model primarily encode infor-
mation about the behavior of word tokens. With even a small amount of uncertainty in the
contents of the lexicon, a model that doesn’t take word usage into account will have difficulty
segmenting natural language. On the other hand, incorporating contextual dependencies allows
the model to learn about likely sequences of words, greatly improving segmentation while also
building a fairly accurate lexicon.

As in the unigram model, we performed additional simulations to examine the amount of
variability in the results produced by a single sample of the bigram model and determine whether
the MAP approximation would improve segmentation. Average results over ten samples are
shown in Table 8. Again we find that taking samples from a single run yields less variability than
taking samples from independent runs. Unlike our unigram results, the MAP approximation
does seem to reduce variability, and yields significantly higher lexicon Fy than the standard
sampler (p < .002 according to a Wilcoxon sum-rank test). The average log posterior probability
of the MAP approximation is also lower than that of the standard sampler (p < .0005), although
segmentation accuracy is not significantly different.
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6 General discussion

In this paper we have developed several computational models based on Bayesian statistics in
order to explore the effects of context on word segmentation. Unlike previous work investigating
how transitional probabilities or similar statistics might be used to identify boundaries, our
modeling effort focuses on the problem of learning words. Changing the focus in this way brings
to light the distinction between two possible assumptions about the behavior of words in natural
language: the assumption that words are statistically independent units, and the assumption
that words are predictive units. Our empirical and analytic results show that, for an ideal learner,
adopting the first assumption will lead to undersegmentation of natural language, with many
common collocations identified as single words. Assuming instead that words are predictive of
each other, an ideal learner can produce far more accurate segmentations.

These results raise a number of questions about the consequences of the assumptions that
were made in defining our models. In this section, we briefly discuss these assumptions, identify
connections to other models, and point out ways in which our work could be extended. We
close by considering the implications of our results for behavioral experiments exploring human
statistical learning.

6.1 Ideal observer models of statistical learning

Our models indicate how an ideal learner provided with all the information contained in a corpus
and able to evaluate all possible segmentations would choose to segment child-directed speech.
There are those who would argue that human infants are in no way ideal learners — either because
they are not seeking to optimize any particular objective function, or because they simply do
not have the means to do so (or even come close). If that is the case, then our conclusions
may be interesting from a theoretical perspective, but have little to say about human language
acquisition. However, we feel that the question of whether (or in what situations) humans
behave as ideal learners is still very much unresolved, and indeed is an active and growing
research topic. Developing explicit ideal learner models with testable predictions, as we have
done here, provides a way to investigate this question more fully in the future. In fact, we
are currently engaged in research comparing the predictions of our Bayesian word segmentation
models with the predictions of a number of previously proposed models in several human word
segmentation experiments (Frank et al., 2007; Frank et al., in preparation)

While the issue of whether infants are ideal learners affects the extent to which the models
we have presented should be taken as making predictions about infant behavior, our results are
still informative as an indication of the best a learner might be expected to do with a particular
corpus and set of assumptions about the structure of language. In this way, the model plays a
simlar role to ideal observer analyses in visual perception, which tell us what an observer would
see if they were able to optimally extract information from a stimulus (Yuille and Kersten, 2006).
Indeed, the approach that we have taken here is complemented by a recent model of statistical
learning for visual stimuli which was directly motivated by this kind of ideal observer analysis
(Orbén et al., 2008).

Orbédn et al. (2008) developed an ideal observer model to explain how people learn regular-
ities in patterns of shapes appearing in a two-dimensional visual array. The motivation for this
work was discovering how people learn the “chunks” that should be used in encoding visual
scenes. The paradigm is a visual analogue of the statistical learning experiments with speech
sounds that have been the focus of our analysis, with each chunk consisting of several lower-level
visual features in the same way that words consist of speech sounds, and the goal of learning
being the identification of these regularities through exposure. The model that Orban et al. de-
veloped assumes that each image is generated by first activating some number of chunks, and
then sampling the locations of the visual features that comprise those chunks. The total number
of chunks expressed in a set of images is left free to vary, being chosen from a prior distribu-
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tion. Applying probabilistic inference makes it possible to identify the chunks that were used
to generate a set of images, as well as how many such chunks are necessary.

There are two basic differences between the model proposed by Orban et al. and the model
that we have presented here. The first is that the features that comprise chunks are allowed
to appear in variable locations in two-dimensional space, while the sounds that comprise words
need to appear in fixed order in a speech stream. The second is that an image is encoded simply
through the presence or absence of these features, while a segmentation of a stream of speech
sounds also carries information about the order in which the words appear, which is particularly
important for our bigram model. These differences reflect the differences between the kind of
stimuli that the models are designed to process, and the kinds of regularities they are intended
to detect. As a consequence, the two models are not directly comparable, each being specialized
to its own domain. However, the models have several similarities, including their ability to
determine how many chunks or words are needed to explain a set of images or a corpus, and
their foundation in the principles of Bayesian statistics. In particular, both models are based
on defining a procedure for generating stimuli (either images or utterances) that is inverted by
applying Bayes’ rule to recover latent structure.

6.2 Online inference in word segmentation

When discussing ideal learning in relation to humans, questions about learning algorithms in-
evitably arise. There are two questions we are often asked with regard to the work presented
here. First, are there algorithms that could be used to optimize the kinds of objective functions
we propose in a more cognitively plausible way? Second, what is it about the algorithms used
by Brent and Venkataraman that allows their systems to succeed despite problems with the un-
derlying models? The algorithm we have used here assumes that the entire data set is available
in memory for the learner to iterate over during learning, while Brent’s and Venkataraman’s
algorithms operate in an online fashion, observing (and learning from) each utterance in the
data set exactly once. It is worth noting that the two online algorithms are very similar, but
beyond that, we have no special insight at present into why they perform as well as they do.
However, in future work we may begin to address this question as we examine possible online
learning algorithms for our own models.

As we mentioned earlier, there exist online algorithms for similar types of models which
can be made to approximate the optimal posterior distribution with varying levels of accuracy,
depending on the amount of memory they are allowed to use. The most promising kind of
algorithm for online inference in our model is the particle filter (Doucet et al., 2000; Doucet et
al., 2001), in which the posterior distribution is approximated by a set of samples from that
distribution. These samples are then updated as new observations are made. In our model, each
sample would consist of a segmentation of the corpus and samples would be updated on hearing
a new utterance. The new utterance would be segmented using the lexicon associated with each
sample, and those samples that produce good segmentations would be assigned higher weight.
This procedure allows a good segmentation and lexicon to be inferred in an online fashion.
Particle filters are becoming increasingly widespread as a means of translating Bayesian models
into process models capable of making trial-by-trial predictions (Sanborn et al., 2006a; Daw
and Courville, 2008; Brown and Steyvers, in press), along with other approximate methods for
performing Bayesian inference (Kruschke, 2006, for example).

We plan to implement a particle filter for this model in the future and investigate how
differing memory capacity, reflected in the number of samples maintained, might affect the
results of segmentation under this regime. By comparing the results of our own online algorithm
to those of Brent and Venkataraman, we may also gain insight into the success of those previous
algorithms. In any case, we emphasize that the results presented in this paper, which assume
that the learner is able to correctly identify the posterior distribution, are an important first step
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in teasing apart how the outcome of learning is affected (on the one hand) by the underlying
goals and assumptions of the learner, and (on the other hand) by whatever procedures are used
to achieve those goals. Our analysis shows how making different assumptions about language
influences the conclusions that an ideal learner should reach, and do not depend on the particular
learning algorithm we used, only on the assumption that some algorithm is available to the
learner that can closely approximate the optimal posterior distribution of the models presented.

6.3 Representational assumptions

Every computational model must make some assumptions about how the input data is to be
represented. Following Brent (1999) and Venkataraman (2001), we have used an input corpus
consisting of phonemically transcribed words. This choice allows us to compare our results
directly to theirs, but does present some potential problems. First, it has been argued that
syllables, not phonemes, are the basic sub-word level of representation from which infants begin
to construct words (Swingley, 2005). While this may be the case, it is worth noting that a
relatively small proportion of errors made by our models consist of proposing a boundary intra-
syllabically, which indicates that assuming syllable structure as given may not be crucial. In
fact, recent work suggests that learners may be able to acquire the structure of both syllables
and words simultaneously, assuming a Bayesian model similar to those proposed here (Johnson,
2008). More importantly, we have shown that the kinds of errors we are most concerned about
in this paper — collocation errors — cannot be solved by improving the learner’s lexical model,
which is essentially what a syllable-based input representation might do.

Another representational issue raised in recent computational work is how stress (or other
prosodic information) might play a role in word segmentation. Gambell and Yang (2006), for
example, suggest that when the input representation (in their case, syllables) is augmented
with stress marks (with a single syllable in each word labeled “strong” and the others labeled
“weak”), a simple rule-based segmentation strategy is sufficient. Their accuracy scores are
certainly impressive (95% Fo on word tokens), but may reflect an overly optimistic view of
the information available to the learner. In particular, because the learner postulates word
boundaries between any two strong syllables, and most monosyllabic words in their corpus
(including function words) are labeled “strong”, and English is a heavily monosyllabic language,
many word boundaries are available essentially for free. It is not clear how performance would
be affected under the more realistic assumption that most common monosyllabic words are in
fact unstressed.'3 If stress is as easy to extract and use for segmentation as Gambell and Yang
suggest, then infants’ initial preference to segment via statistical cues (Thiessen and Saffran,
2003) remains a puzzle. Nevertheless, we have no doubt that stress serves as an important
additional source of information for segmentation, and it is worth examining how the availability
of stress cues might shed new light on the results we present here. For example, perhaps the
kind of undersegmented solution found by our unigram model is sufficient to allow the learner
to identify dominant stress patterns in the language, which could then be used to improve later
segmentation.

While addressing such questions of cue combination is clearly important, we believe that a
thorough understanding of the computational aspects of the word segmentation problem must
begin with the simplest possible input before moving on to models combining multiple cues.

13Stress marks in Gambell and Yang’s work were determined using the CMU pronouncing dictionary, with the first
pronunciation used in case of ambiguity. Examining the dictionary reveals that, of the 20 most frequent words in
our input corpus (you, the, a, that, what, is, it, this, what’s, to, do, look, can, that’s, see, there, I, and, in, your),
all except the and a would be assigned “strong” stress marks according to this method. However, in actual usage,
the remaining words except for that, this, look, and see are likely unstressed in nearly all circumstances. These words
alone account for 24% of the tokens in our corpus, so changing their representation could have a large impact on
results. Although Gambell and Yang used a different corpus, we imagine that the general pattern would be similar.
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This progression is analogous to work in the behavioral study of statistical word segmentation,
which began with stimuli containing only a single cue (the probabilistic relationships between
syllables) and only later expanded to include complex stimuli containing multiple cues. The
models presented here are developed within a flexible Bayesian framework that allows different
components of the model (e.g., the model of lexical items or the model of context) to be indepen-
dently modified. This flexibility will enable us to incorporate additional sources of information
into our models in the future in order to examine some of the questions of representation and
cue combination mentioned here.

A related issue of representation is the fact that we have completely abstracted away from
the acoustic and phonetic variability in the input that human learners receive. While criticizing
Gambell and Yang for their use of citation stress patterns, we have permitted ourselves the
luxury of normalized phonemic representations. However, we emphasize two points. First, our
theoretical results regarding the problem of undersegmentation in any unigram model do not
depend on the particular choice of input representation, and suggest that in order to overcome
this tendency, any additional cues extracted from the input would have to be overwhelmingly
strong. Second, although our current system uses an idealized noise-free input corpus, a major
advantage of statistical methods is their ability to handle noisy input in a robust way. In future
work, we plan to extend the models presented here to account for variability and noise in the
input, and investigate how this affects the resulting segmentation.

Finally, some readers might wonder about the effect of our choice to use a corpus in which
utterance boundaries are given. While this is probably a reasonable assumption (since such
boundaries can generally be determined based on pauses in the input), it is fair to ask how
important the utterance boundaries are to our results. Experimental evidence suggests that
human subjects’ segmentation accuracy improves as utterances become shorter (i.e., as more
utterance boundaries are provided) (Frank et al., 2007; Frank et al., in preparation), and very
short utterances consisting of isolated words seem to be important in children’s early word
learning (Brent and Siskind, 2001). On the other hand, it has also been shown that word
segmentation is possible even without the presence of utterance boundaries (Saffran et al.,
1996a, inter alia). While we have not performed extensive tests of the effects of utterance
boundaries in our models, we did run some preliminary simulations using the same corpus
as in our reported results, but with all utterance boundaries removed. The results of these
simulations revealed that for both the DP and HDP models, segmentation accuracy was similar
to or perhaps slightly worse than the accuracy on the original corpus. (Due to randomness
in the results, more extensive testing would be required to determine whether the results with
and without utterance boundaries were significantly different.) The lack of much difference in
results with and without utterance boundaries is somewhat surprising, given that utterance
boundaries provide a certain number of word boundaries for free. However, our models do not
explicitly incorporate any notion of phonotactics, which could be where much of the benefit
lies in knowing utterance boundaries (i.e., because utterance boundaries allow the learner to
identify phone sequences that commonly occur at word edges). It is also worth noting that
the behavior of our models on continuous input is very different from that of MBDP-1 (Brent,
1999): when presented with a continuous stream of phonemes, Brent’s learner will fail to find any
segmentation at all. As with many of the other differences between our learners and MBDP-1,
this difference is not due to differences in the probabilistic models underlying the systems, but
rather to Brent’s online search procedure, which requires the presence of utterance boundaries
in order to begin to identify words. Other computational models, including Venkataraman’s
(2001), the recent phonotactic-based model of Fleck (2008), and the connectionist models of
Christiansen et al. (1998) and Aslin et al. (1996), also crucially require utterance boundaries
in the training corpus in order to predict word boundaries. (We note, however, that similar
connectionist models could in principle perform segmentation of continuous input, given an
appropriate interpretation of the output.) All of these models differ from our own in this
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respect, and fail to explain how infants are able to segment words from the continuous streams
of input used in experiments such as those of Saffran et al. (1996a).

6.4 Implications for behavioral research

To date, behavioral experiments of the sort exemplified by Saffran et al. (1996a) have typically
used stimuli that are constructed according to a unigram model. Thus, transitions between
words are random, while transitions within words are predictable and occur with higher proba-
bility. This assumption is, of course, a simplification of natural language, but has been useful for
demonstrating that human learners are able to segment speech-like input on the basis of statis-
tical regularities alone. Continuing work has examined how these kinds of statistical regularities
interact with other kinds of cues such as stress and phonetic variability. However, nearly all
this work is based on stimuli in which statistical regularities exist at only a single level, usually
the level of syllables. (One exception is Newport et al. (in preparation), in which regularities
at both the phoneme level and syllable level are considered.) Our simulations indicate that
a learner who is only able to track regularities at the sub-word level faces a severe handicap
when trying to segment natural language based on purely statistical information. This is be-
cause regularities in sub-word units may occur as a result of these units being grouped within
words, or as a result of the words themselves being grouped within utterances. Without taking
into account the larger (word-level) context, the learner must assume that all regularities are a
result of groupings within words. This assumption causes undersegmentation of the input, as
word-level groupings are analyzed as individual words.

The fact that regularities exist at many different levels in natural language should come
as no surprise to anyone, yet our results are a reminder that it is important to consider the
consequences of this hierarchical structure even for very early language acquisition tasks. Based
on existing behavioral studies, we do not know whether humans are able to track and use
bigram or other higher-level statistics for word segmentation; our work indicates that this would
certainly be helpful, and suggests that the question is an important one to pursue. Unfortunately,
designing experimental stimuli that move beyond unigrams could be too complex to be feasible
within typical statistical learning paradigms. However, it might be possible to investigate this
question less directly by probing adults’ sensitivity to bigram frequencies, or by more thoroughly
examining the nature of undersegmentation errors in young children. Peters’ (1983) work on
children’s production errors provides a good starting point, but is necessarily limited to children
who have already begun to talk, which is well beyond the age at which word segmentation
begins. Our findings suggest an important role for experimental studies that would examine
the possibility of widespread undersegmentation errors in the perception and representation of
natural speech in preverbal infants.

7 Conclusion

In this paper, we have presented two computational models of word segmentation developed
within a Bayesian ideal learner framework. The first model, which makes the assumption that
words are statistically independent units, was found to severely undersegment the input corpus.
Moreover, our analytical results show that this kind of undersegmentation is unavoidable for
any ideal learner making the same assumption of independence between words. In contrast,
our second model demonstrates that a more sophisticated statistical learner that takes into
account dependencies both at the sub-word and word level is able to produce much more ac-
curate (adult-like) segmentations. These results do not yet provide direct evidence of whether
infants are able to take context into account during early segmentation, but do provide specific
predictions that can be tested in future research. In particular, we envision three competing
hypotheses that these models may help to tease apart. First, infant learners may bear no re-
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semblance to ideal learners in this task. If this is the case, then we would expect the predictions
of our models to differ from human performance even on simple stimuli where words are inde-
pendent. This hypothesis can therefore be tested using standard statistical learning paradigms,
as we are currently engaged in doing. Second, infants may approximate ideal learners, but be
unable to process statistical information at multiple levels early on. We would then expect to
find widespread undersegmentation in early speech perception, a phenomenon which has yet to
be examined. If this hypothesis is correct, we would also need to complete a developmental story
explaining how additional cues (including perhaps word-level dependencies) are later incorpo-
rated to correct the initial undersegmentation. Finally, infants may be best modeled as ideal
learners who are able to process sophisticated statistical information, including contextual cues,
even very early in learning. In this case, early word representations would be more adult-like,
and might require less modification after stress and other cues become more important later in
infancy. Our work helps to clarify the differences between these three positions, and we hope
that it will provide a source of inspiration for future experimental and computational studies
examining the evidence for each.
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Figure 9: The Chinese restaurant process. Black dots indicate the seating arrangement of the first
nine customers. Below each table is P(z19 = k|z_19).

A Model definitions

A.1 Unigram model

Recall that our unigram model generates the ¢th word in the corpus, w;, according to the
following distribution:

(1) P(w; is novel) = 29—, P(w; is not novel) = -

. I M
(2) a. P(w;=z1...25 |w; is novel) = py (1 — py)M—1 [T~ P(x)
b. P(w; = £|wj; is not novel) = ¢
In this section, we first show how this model can be viewed in terms of two models that are
well-known in the nonparametric Bayesian statistical literature: the Chinese restaurant process
(Aldous, 1985) and the Dirichlet process (Ferguson, 1973). We then provide full details of the
model we used to account for utterance boundaries, and describe our Gibbs sampling algorithm.

A.1.1 The Chinese restaurant process

The Chinese restaurant process (CRP) is a stochastic process that creates a partition of items
into groups. Imagine a restaurant containing an infinite number of tables, each with infinite
seating capacity. Customers enter the restaurant and seat themselves. Each customer sits at an
occupied table with probability proportional to the number of people already seated there, and
at an unoccupied table with probability proportional to some constant «. That is, if z; is the
number of the table chosen by the ith customer and z_; are the tables chosen by the customers
preceding the ith customer, then

(z—;)
M 1<k<K(z_;
Plsi=k|z_)={ v 'SFsKE) 3)
i b= K1
where n,(f’i) is the number of customers already sitting at table k, K(z_;) is the total number

of occupied tables in z_;, and « > 0 is a parameter of the process determining how “spread out”
the customers become. Higher values of o mean that more new tables will be occupied relative
to the number of customers, leading to a more uniform distribution of customers across tables.
The first customer by definition sits at the first table, so this distribution is well-defined even
when « = 0. See Figure 9 for an illustration.

Under the Chinese restaurant process model, the probability of a particular sequence of table
assignments for n customers is (for a > 0)

K(z)
P(z) = F(I;(j‘_)a).aK<z>-]}‘[l(n;z>_1)! (4)



The Gamma function appearing in Equation 4 is defined as I'(z) = fooo u®~te~"du for x > 0, and
is a generalized factorial function: T'(x) = (z—1)! for positive integer z, and I'(x) = (z—1)'(x—1)
for any x > 0.

Note that this distribution is the same as the distribution defined by Steps 1 and 2b of our
unigram model. It assigns each outcome to a group, but does not distinguish the groups in any
interesting way. However, we can extend the Chinese restaurant metaphor by imagining that the
first customer to sit at each table opens a fortune cookie containing a single word, and this word
then provides a label for the table. The words in the cookies are generated by the distribution
Py, and the number of customers at each table corresponds to the number of occurrences of that
word in the corpus. Thus, this model can be viewed as a two-stage restaurant (Goldwater et al.,
2006b; Goldwater, 2006), where Py generates word types and the CRP generates frequencies for
those types.

In the two-stage restaurant, the probability of the ith word in a sequence, given the previous
labels and table assignments, can be found by summing over all the tables labeled with that
word:

K(z_;)+1
Plw;="0|z_;,€(z_;),a) = Z Plw; =0z =k, €(z_;))P(z; = k|z_;,)
k=1
K(z—;)
= > Pwi=L|z=k)P(z="klz_;a)
k=1

+P(w; =0z, =K(z_;))+ 1)P(zi =K(z_;) + 1) |z2_;, @)
K(z—i) nl(cZﬂ.) a
= Z I(szg)m-ﬁ-]jo(g)i
k=1
_ nEW—i) + OzPO(E) (5)

1—1+a
where £(z_;) are the labels of all the tables in z_; (with ¢; being the label of table k), I(.) is an

indicator function taking on the value 1 when its argument is true and 0 otherwise, and new”')
is the number of previous occurrences of ¢ in w_; (i.e. the number of assignments in z_; to
tables labeled with ¢). The probability of w; conditioned only on the previously observed words

(and the hyperparameter «) is also given by Equation 5, because

Pwi=f|w_ia) = 3 Plwi={|z_.£(z_.),0)P(z_;, £(z_;) |a)
{zfiq,E(Z—i)}
(w—3)
_ Z Mp(z_i,ﬂ(z—i) |a)
i— 1+«

{z_i,z(z—i)}

(w_3)
oy + aPy(l)
= iTiva 2 Pl

{z,i,E(Zfi)}

_ mroR() )
- 1 — 14+«

Computing the distribution over words in this way makes it clear that the probability of
observing a particular word is a sum over the probability of generating that word as an old
word or as a new word. That is, even words that have been observed before may be generated
again by Py (although, in general, this probability will be low compared to the probability of
generating a repeated word by sitting at a previously occupied table).
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Figure 10: The two-stage restaurant.
cate the number of occurrences of each label in w_jg.

‘the’,z_10,£€(z_10),w). Under this seating arrangement, P(wiy = ‘the’) =
4d0g7) —

QQ@QQ

OZP(] the
6+aP0(the) 6+aPy (the) 6+aP0(the)

9+«

Italy(dog) p — Z+ah(a)

ora s Plwig =‘a’) = =372, and for any other word £, P(wio = ¢) = afo(f)

94a -

In the models described in this paper, we define Py as a distribution over an infinite number
of outcomes (all possible strings over a fixed alphabet). However, we note that it is also possible
to define P, as a finite distribution. In the case where Py is a K-dimensional multinomial distri-
bution with parameters w, Equation 5 reduces to a K-dimensional Dirichlet(aw)-multinomial
model. When F, is a distribution over an infinite set, as in this paper, the number of different
word types that will be observed in a corpus is not fixed in advance. Rather, new word types
can be generated “on the fly” from an infinite supply. In general, the number of different word
types observed in a corpus will slowly grow as the size of the corpus grows.

A.1.2 The Dirichlet process

Models whose complexity grows with the size of the data are referred to in the statistical
literature as infinite or nonparametric, having the property that, as the data size grows to
infinity, they are able to model any arbitrary probability distribution. In this section we show
that the two-stage CRP model is equivalent to a standard nonparametric statistical model known
as the Dirichlet process (DP).

Rather than providing a rigorous definition of the Dirichlet process here, we only attempt
to give some intuition. The interested reader may refer to one of several recent papers for
further exposition (Neal, 2000; Navarro et al., 2006; Teh et al., 2005). The DP is a distribution
over distributions: each sample G from a DP is a distribution over a countably infinite set of
outcomes. The set of outcomes over which G is defined (the support of G), and the relative
probabilities of those outcomes, are determined by the two parameters of the DP, Gy and a.. Gy
(the base distribution) is a probability distribution whose support (of up to uncountably infinite
size) is a superset of the support of G. For example, G could be a normal distribution (over the
uncountably infinite set of real numbers) or Py (the distribution over the countably infinite set
of possible strings =T defined as part of our unigram model). The probability of any particular
outcome under Gy is the probability of that outcome being in the support of G. So, if Gg is
normal, most of the possible outcomes of GG will be numbers near the mean of Go. If Gy = P,
most of the possible outcomes of G will be relatively short strings. Given a set of outcomes for
G determined by G, the concentration parameter o of the DP determines the variance of G:
how uniform (or skewed) is the distribution over its possible outcomes.

It is straightforward to define a unigram language model using the DP:

G‘aaPO ~ DP(Q,Po) (7)

where the ~ should be read as “is distributed according to”. This formulation makes the
distribution G sampled from the DP explicit. Implementing such a model is not possible since
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G is an infinite distribution. However, what we really want is the conditional distribution
P(w; |w—;, a, Py), which can be found by integrating over all possible values of G:

P(wi ‘W—i7a7PO) = /P(wi|G)P(G|W_i,(X,P0) dG

This integration results in the following conditional distribution (Blackwell and MacQueen,
1973):

1 o

ilWoiyo, Py~ ———— ) d(w;) + —F—H 8
w; | Wi, a, Py z—1+a;(w])+ 0 (8)
where §(w,) is a distribution with all its mass at w;. Rewriting this distribution as a probability
mass function makes clear the equivalence between the DP language model and the two-stage
CRP language model in (5):

Pw;,=l|w_;,a,Py) = %Zf(ijE)—i—

nEw’i) + aPy(0)
1 — 14«

The use of the Dirichlet process for learning linguistic structure, as described here, is a very
recent development. More typically, the DP has been used as a prior in infinite mixture models
(Lo, 1984; Escobar and West, 1995; Neal, 2000), where each table represents a mixture compo-
nent, and the data points at each table are assumed to be generated from some parameterized
distribution. Technically, our DP language model can be viewed as a mixture model where each
table is parameterized by its label ¢, and P(w;|¢,,) = I(w; = {£.,), so every data point in a
single mixture component is identical. Previous applications of DP mixture models use more
complex distributions to permit variation in the data within components. Usually Gaussians are
used for continuous data (Rasmussen, 2000; Wood et al., 2006) and multinomials for discrete
data (Blei et al., 2002; Navarro et al., 2006). In the area of language modeling, a number of
researchers have described models similar to our DP model but with a fixed finite model size
(MacKay and Peto, 1994; Elkan, 2006; Madsen et al., 2005). Some of the earliest work using
DPs and their extensions for language-related tasks focused on modeling semantic content rather
than linguistic structure (Blei et al., 2004). Our own earlier publications describing the models
in this paper (Goldwater et al., 2006a; Goldwater, 2006; Goldwater et al., 2007) are, to our
knowledge, the first to describe the application of DPs to the problem of structure induction.
More recently, a number of papers have been published showing how to use DPs and hierarchical
DPs (see below) for learning syntax (Johnson et al., 2007; Liang et al., 2007; Finkel et al., 2007).

A.1.3 Modeling utterance boundaries

Our model as described so far accounts for the number of times each word appears in the data.
Since the input corpus used in our experiments also includes utterance boundaries, these must
be accounted for in the model as well. This is done by assuming that each utterance is generated
as follows:

1. Decide whether the next word will end the utterance or not.
2. Choose the identity of that word according to the DP model.

3. If the current word is not utterance-final, return to Step 1.
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The proportion of words that are utterance-final is determined by a binomial distribution with
parameter pg. Of course, we do not know in advance what the value of pg should be, so we
assume that this parameter is drawn from a symmetric Beta(§) prior (Gelman et al., 2004). The
predictive distribution of u; (the binary variable determining whether the ith word is utterance-
final or not) can be found by integrating over pg:

P(ui=1u_s,p) = /P(Uz‘ =1|pg)P(ps|u_i,p) dps

ng + 2

1—1+p
where ng is the number of utterance-final words (i.e., the number of utterances) in the first ¢ — 1
words. We do not show the derivation of this integral here; it is a standard result in Bayesian

statistics (Gelman et al., 2004; Bernardo and Smith, 1994).

A.1.4 Inference

Our inference procedure is a Gibbs sampler that repeatedly resamples the value of each possible
word boundary location in the corpus, conditioned on the current values of all other boundary
locations. In a single iteration, each possible boundary is considered exactly once. It is possible
to show that as the number of iterations through the training data increases, the distribution of
samples (i.e., segmentations) approaches the model’s posterior distribution, no matter what the
initial sample was. Thus, when we run the Gibbs sampler, we discard the first several thousand
iterations through the training data (this is called the “burn in” period) to allow the sampler
time to begin producing samples that are approximately distributed according to the posterior
distribution. Details of the burn-in procedure and other practical issues are described below;
we first provide a formal description of the sampler.

Our Gibbs sampler considers a single possible word boundary location b; at a time, so each
sample is from a set of two hypotheses (sequences of words with utterance boundaries), h; and
ho, as illustrated in Figure 11. These hypotheses contain all the same word boundaries except at
the one position under consideration, where hs has a boundary and h; does not. We can write
hy = Pwyy and hy = [fwowsy, where w; = ws.ws, and [ and « are the sequences of words to
the left and right of the area under consideration. We sample the value of b; using the following
equations:

Pb;=0|h",d) = P(hth,(Z)thl;kZZM,d) o P(hi|h™,d) (11)
P(b;=1|h",d) = Plha |1 d) o« Plha|h,d) (12)

P(hl ‘h_7d) +P(h2|h_ad)

where d is the observed (unsegmented) data and h~ consists of all of the words shared by the
two hypotheses (i.e., the words in 3 and 7). Since we only care about the relative probabilities
of the two outcomes, we can ignore the denominators and compute only the quantities in the
numerators. Note that
P(d| by, h)P(ha | h7)
P(d|h™)

P(hy|h™

P(d[h™)

for any h; that is consistent with the observed data, and similarly for hs. Substituting into
Equations 11 and 12 yields

P(hi|h™,d) =

P(b;=0|h~,d) o P(hy|h") (14)
P(b;=1|h",d) o P(hy|h™) (15)
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Current segmentation

Hypothesis 1

Hypothesis 2

1) |
yuw.anttu.si.D6bUk
1Uk.D*z6b7.w.IThIz.h.&t
&nd.6d0gi
yu.wanttu.lUk.&t.DIs

yuw.anttu.si.D6bUk
1Uk.D*z6b7.w.IThIz.h.&t
&nd.6d0gi
yu.wanttu.lUk.&t.DIs

P(hy|h™) = @R ()

y.uw.anttu.si.D6bUk
1Uk.D*z6b7.w.IThIz.h.&t
&nd.6d0gi
yu.wanttu.lUk.&t.DIs

Py (uw)
194+ap

_ ap P
P(h2|h ): 108—:9:) ’

2 |
yuw.anttu.si.D6bUk
1Uk.D*z6b7.w.IThIz.h.&t
&nd.6d0gi
yu.wanttu.lUk.&t.DIs

yuw.anttu.si.D6bUk
1Uk.D*z6b7.w.IThIz.h.&t
&nd.6d0gi
yu.wanttu.lUk.&t.DIs

_ aopPo(yuw
P(hy|h™) = 2o

yu.w.anttu.si.D6bUk
1Uk.D*z6b7.w.IThIz.h.&t
&nd.6d0gi
yu.wanttu.lUk.&t.DIs

_ 1+ao P u 14+agPy(W
P(hs|h~) = 55U . Liao o) ()

3) !
yu.w.anttu.si.D6bUk
1Uk.D*z6b7.w.IThIz.h.&t
&nd.6d0gi
yu.wanttu.lUk.&t.DIs

yu.wanttu.si.D6bUk
1Uk.D*z6b7.w.IThIz.h.&t
&nd.6d0gi
yu.wanttu.lUk.&t.DIs

P«hlvf,)::1+aoﬂmwanttu)

184

(%)

yu.w.anttu.si.D6bUk
1Uk.D*z6b7.w.IThIz.h.&t
&nd.6d0gi
yu.wanttu.lUk.&t.DIs

aog Py (anttu)

P(ha|h™) = Ltaob(E) 19+ oo

184

Figure 11: An example illustrating our Gibbs sampling algorithm.

In each of the three steps

shown, a single potential boundary location (indicated with |) is considered. The probabilities of
the words that differ (shown in bold) are computed conditioned on the remaining words in each
hypothesis according to Equation 9. Then, one of the two hypotheses is chosen at random, with
probability proportional to the ratio of these probabilities. We indicate the hypothesis chosen at
each step in this example by (x). Note that in the probability computation for the hypotheses in
which a boundary is proposed, the denominator for the factor corresponding to the second word is
incremented by one to take into account the fact that the first word is now part of the conditioning

environment.
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where the conditioning on d has disappeared. Calculating these quantities is now straightfor-
ward. We have

P(hi|h™) = P(wi|h7) P(uw, [h7)
_ ng() + onPO(wl) ) ni(,l‘hi) + g (16)
n- + «p n-+p
where n~ is the number of words in A~ and m(jf) = néhi) if w; is utterance-final and n— —ngf)

otherwise. The first factor in the second line follows from Equation 9 and the fact that the DP
model is exchangeable: the probability of a particular sequence of words does not depend on
the order of the words in that sequence (Aldous, 1985). In other words, all permutations of the
sequence have equal probability. We can therefore compute the probability of any word in the
sequence conditioned on all the other words by treating the word in question as if it were the
last word to be generated, and applying Equation 9. The second factor similarly follows from
Equation 10, since the Beta-binomial model is also exchangeable.
The posterior probability of hy can be computed in a similar fashion, as

P(ha|h7)
P(’wg, ws | hi)
P(wa | h7) P(ta, | h7) P(ws | wa, h7) Pty | Uy, h7)
’I”ng;h;) + OéoPo(’LUz) ] n- — néh_) + g
n- + oo n- +p
.ngl;) + I(we = ws) + apPy(ws) . nq(lh_) I (U = Uny) + 5
n-+1+a n~+1+p

(17)

where I(.) is an indicator function taking on the value 1 when its argument is true, and 0
otherwise. The I(.) terms, and the extra 1 in the denominators of the third and fourth factors,
account for the fact that when generating ws, the conditioning context consists of h~ plus one
additional word and boundary location.

After initializing word boundaries at random (or non-randomly; see experiments below),
the Gibbs sampler iterates over the entire data set multiple times. On each iteration, every
potential boundary point is sampled once using Equations 16 and 17. After the burn-in period,
these samples will be approximately distributed according to the posterior distribution P(h|d).

Our Gibbs sampler has the advantage of being straightforward to implement, but it also has
the disadvantage that modifications to the current hypothesis are small and local. Consequently,
mobility through the hypothesis space may be low, because movement from one hypothesis to
another very different one may require transitions through many low-probability intermediate
hypotheses. Since the initial random segmentation is unlikely to be near the high-probability
part of the solution space, it may take a very long time for the algorithm to reach that part of
the space.

To alleviate this problem and reduce convergence time, we modified the Gibbs sampler to
use simulated annealing (Aarts and Korst, 1989). Annealing the sampler causes it to make
low-probability choices more frequently early in search, which allows it to more rapidly explore
a larger area of the search space. Annealing is achieved by using a temperature parameter -y
that starts high and is gradually reduced to 1. Annealing with a temperature of v corresponds
to raising the probabilities in the distribution under consideration (in this case, hy and hg)
to the power of % prior to sampling. Thus, when v > 1, the sampled distribution becomes
more uniform, with low-probability transitions becoming more probable. As the temperature is
reduced, samples become more and more concentrated in the high-probability areas of the search
space. Notice also that if the temperature is reduced below 1, the sampled distribution becomes
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Figure 12: Trace plots of the posterior probabilities of samples from simulations for the DP model
initialized with a boundary after every phoneme (‘pho’), with random boundaries (‘ran’), and with
a boundary only at the end of each utterance (‘utt’). Top: trace plot for the entire run of the
algorithm, plotted every 10 iterations. The initial probabilities of each run (circles at x = 0) are
very different, but within a few iterations the plots are barely distinguishable. Steep drops in the
plots occur when the temperature is lowered. Bottom: detail of the final part of the plot, showing
the overlap between the three simulations.

even more peaked, so that in the limit as v — 0, all probability mass will be concentrated on
the mode of the distribution. This means that, by reducing the temperature to almost zero, we
can obtain an approximation to the MAP solution.

All of the results in this paper are based on one of three possible annealing regimes. For
most of our simulations, we ran the sampler for 20,000 iterations, annealing in 10 increments of
2000 iterations each, with % =(.1,.2,...,.9,1). Trace plots of three simulations using different
initializations can be found in Figure 12, illustrating the effects of the annealing process on the
posterior and the fact that different initializations make no difference to the final results. For
simulations in which we wished to evaluate using the MAP approximation, we extended the
run of the sampler for an additional 40,000 iterations, multiplying the temperature by 5/6 after
every 2000 of these iterations.

Our third annealing regime was used to compare the probabilities assigned by the DP model
and MBDP to a wide range of segmentations. These segmentations were generated by running
the sampler for 50,000 iterations, slowly decrementing the temperature in 500 increments, with
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% = (.002,.004,...,.998,1)). A single sample was taken at each temperature.

A.2 Bigram model
A.2.1 The hierarchical Dirichlet process

To extend our model to include bigram dependencies, we use a hierarchical Dirichlet process
(HDP) (Teh et al., 2005). This approach is similar to previously proposed n-gram models
using hierarchical Pitman-Yor processes (Goldwater et al., 2006b; Teh, 2006). The HDP is a
model that can be used in situations in which there are multiple distributions over similar sets
of outcomes, and the distributions are believed to be similar. For language modeling, we can
define a bigram model by assuming each word has a different distribution over the words that
follow it, but all these distributions are linked. The definition of the HDP bigram language
model (disregarding utterance boundaries for the moment) is

wi|wi,1:€7 HZNHZ A/
Hg|0£1,G ~ DP(Ozl,G) A2
G|Ozo,P0 ~ DP(Ozo,PQ)

That is, P(w; | w;—1 = ) is distributed according to Hy, a DP specific to lexical item ¢. Hp is
linked to the DPs for all other words by the fact that they share a common base distribution
G, which is generated from another DP.

As in the unigram model, H; and G are never represented explicitly. By integrating over
them, we get a distribution over bigram frequencies that can be understood in terms of the
CRP, as illustrated in Figure 13. Each lexical item / is associated with its own restaurant, which
represents the distribution over words that follow ¢. Different restaurants are not completely
independent, however: the labels on the tables in the restaurants are all chosen from a common
base distribution, which is represented by another CRP. A word ¢ that has high probability in
the base distribution will tend to appear in many different bigram types (i.e. following many
other word types). However, P(¢ |{) may be very different for different ¢, since each ¢ has its
own restaurant for bigram counts.

To understand how our bigram model accounts for utterance boundaries, it is easiest if we
consider the utterance boundary marker $ as a special word type, so that w; ranges over XTU{$}.
To generate an utterance, each word is chosen in sequence, conditioned on the previous word,
until an utterance boundary is generated. The predictive probability distribution over the ith
word is

Po(w; | w_i,2) = / Plw; | Hyy ) P(Ho,_, |W_i.2_;) dH,,_,

_ My T Pr(wi[wo,z) (18)
N, _, + Q1

where 7, , w,) is the number of occurrences of the bigram (w;_1,w;) in w_; (we suppress the
superscript w_; notation) and Py (w; |w_;,z_;) is defined as
Pl(wi|w—i7z—i) = /P(’LU1|G)P(G|W_Z,Z_Z) dG

t+ ap

where t,,, is the total number of bigram tables (across all words) labeled with w;, ¢ is the total
number of bigram tables, and P} is defined to allow generation of either an utterance boundary
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Figure 13: Bigrams are modeled using a hierarchical Chinese restaurant process. Fach lexical item
¢ has its own restaurant to represent the distribution of tokens following ¢ in the data. The labels
on the tables in these bigram restaurants are drawn from the distribution in the backoff or “master”
restaurant (top). Each customer (black dot) in the bigram restaurants represents a bigram token;
each customer in the backoff restaurant represents a label on some bigram table.

or a string of phonemes 7 ... x;:

Py(w) = {m v (20)
o B (1—p$)P0(wi) ’wi62+

where pg is a parameter of the model, and Py is the lexical model used in the unigram model.**

In the model just defined, P; is the posterior estimate of the base distribution shared by all
bigrams, and can be viewed as a unigram backoff. In P;, words are generated from the DP G.
Since G determines the probability that a word type appears on a bigram table, P; is estimated
from the number of tables on which each type appears. In other words, when a particular bigram
sequence (w;_1,w;) is never observed in w_;, the probability of w; following w;_; is estimated
using the number of different word types that have been observed to precede w;. If this number
is high, then P(w;|w;_1) will be higher than if this number is low.'®

A.2.2 Inference

Inference can be performed on the HDP bigram model using a Gibbs sampler similar to the
sampler used for the unigram model. Our unigram sampler relied on the fact that words in

4 Technically, allowing Py to generate utterance boundaries regardless of context permits our model to generate
two consecutive utterance boundaries (i.e., an utterance with no words). An earlier version of the model (Goldwater
et al., 2006a; Goldwater, 2006) disallowed empty utterances, but was slightly more complicated. Since we use the
model for inference only, we have adopted the simpler assumption here.

5Many standard n-gram smoothing methods use similar kinds of estimates based on both type and token counts. In
fact, Kneser-Ney smoothing (Kneser and Ney, 1995), a particularly effective smoothing technique for n-gram models
(Chen and Goodman, 1998), has been shown to fall out naturally as the posterior estimate in a hierarchical Bayesian
language model similar to the one described here, with the DPs replaced by Pitman-Yor processes (Goldwater et al.,
2006b; Teh, 2006).
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the unigram model were exchangeable, so that (for example) P(w;)P(ws | wq)P(ws | w1, ws) =
P(w3)P(wy |ws3)P(ws | ws, wy). While our bigram model is clearly not exchangeable at the level
of words, it is exchangeable at the level of bigrams. To generate a sequence of words such as
wiwows, four bigrams must be generated: ($,w;), (wi,ws), (ws,ws), and (ws,$). Under the
HDP model, the order in which those bigrams is generated does not affect their joint probability.
This property allows us to sample one boundary at a time in much the same way we did in the
unigram model. Since we must now consider context during sampling, we write the two possible
segmentations as s; = fwwiw,y and so = fwjwswsw,y, with w; and w, being the left and
right context words for the area under consideration, and 8 and v being the remaining words. A
complicating factor that did not arise in the unigram model is the fact that bigram probabilities
depend on the seating assignment of the words under consideration. (The seating assignment
affects the the number of tables assigned to each word, which is used to compute the unigram
probability P;.) Each hypothesis h therefore consists of a segmentation of the data, along with
an assignment to tables of the words in that segmentation. We use H; to refer to the set of
hypotheses consistent with s;, Ha to refer to the set of hypotheses consistent with so, and h™
to refer to the set of bigrams and table assignments shared by H; and Hs (i.e., the bigrams
covering fw; and w,~, plus the table assignments for those words). Then we have

P(h|h7)
P({wr,w1) [h7) - P({wr, wy) [ (wr, w1), k™) - P21 | (wi, wi), h7) heH

P(<wlvw2> | h_) : P(<’LU2,’U)3> | <wlvw2>7h_) . P(<’LU3,’U}7-> | <wl7w2>a <w25w3>’ h_)
- P22 | (wi, we), h7) - P(z3 | 22, (w2, w3), h™) h € Hsy

where 21, zo, and z3 are random variables representing the table numbers of wy, wy, and ws.

Using these equations, we could compute the probability of every hypothesis in the set
‘H1UH>, and sample from this set. Instead, we implemented a simpler and more efficient sampler
by adopting the following approximations (which are exact provided there are no repeated
unigrams or bigrams in either {w;, wy,w,} or {w;, we, w3, w, }):16

P({wp,wy) |h7) - P({(wy,wy) |h7) - P(z1 | {wy,w1),h”) h € H
PR = Plwi, wa) | ) - P((ws, ws) | h) - P{ws, w,) | h)
- P(zo | (wy,wa),h7) - P(z3 | (wa,ws), h"7) h € Ha

These approximations allow us to sample a hypothesis from H; U Hs in two steps. First, we
decide whether our hypothesis will be from H; or Hs (i.e., whether the segmentation will be
s1 or s2). Then, we sample table assignments for either w; or we and ws, as appropriate. By
assumption of the approximation, the assignments for ws and w3 can be sampled independently.

More precisely, we sample a segmentation s using the following equations:

R _ B _
P _ ho) = ng"i’l)-,wﬁ + alpl (wl ‘h ) . ngwl)ﬂi’r) + alPl (U/f,« | h )
(s=s1[h7) ) )
zn + aq Ty + aq

(21)

R~ _ h~ — h~ =

P(s = h™) = nng?wz) toh (w2 ‘ h ) . nng)ﬂUS) toh (w3 ‘ h ) . ngws)ﬂ“v-) toh (w,« | ﬁf)f?

(s =s2|h7) = =) ) (h") €22)
N, ~ + Q1 Ny " + Ny~ +

181t would be straightforward to add a Metropolis-Hastings correction step (Metropolis et al., 1953; Hastings,
1970; Neal, 1993) to correct for the slight discrepancy between our approximation and the true distribution P(h|h7).
However, we expect the number of cases in which our approximation is incorrect to be small, and the difference

between the approximate and true distributions to be slight, so we did not implement the correction step.
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Figure 14: Trace plots of the posterior probabilities of samples from samplers for the HDP model
initialized with a boundary after every phoneme (‘pho’), with random boundaries (‘ran’), and with
a boundary only at the end of each utterance (‘utt’). Top: trace plot for the entire run of the
algorithm, plotted every 10 iterations, with the initial probabilities of each run circled at x = 0.
Bottom: detail of the final part of the plot.

Given w; and h~, z; has the following distribution:
el ik K@)
Pz =k|w;, h™) o« = (23)
aP(w;) k= K(wgh )) +1
where K (wz(h )) is the number of tables assigned to w; in h™. After sampling s, we use Equation
23 to sample values for either z; or each of 29 and z3.

We used the same annealing regimes described above to encourage faster convergence of our
bigram sampler and obtain an approximation to the MAP segmentation. Figure 14 illustrates
that, as in the unigram sampler, three different simulations with different initializations end up
producing samples with similar posterior probabilities. We plot the joint probability P(w,z)
since each sample is an assignment to both words and tables; the column labeled —log P(w)
in Table 8 in the main text actually gives —log P(w,z) as well, but we omitted the z from the
label since there is no mention of table assignments in our exposition of the model there.

Note that our sampler differs somewhat from the original sampler described for this model
(Goldwater et al., 2006a), which used an approximation that did not explicitly track assignments
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to bigram tables. The difference in performance between the approximate version and the version
presented here is minimal; results reported here are different from previously reported results
primarily due to fixing a small bug that was discovered while making the other modifications to
our sampler.

B Proofs

This Appendix presents two proofs. First, we show that there is a generative procedure for the
DP model that is in the same form as that of MBDP-1, allowing us to show that these procedures
make identical assumptions about two of the distributions used in generating segmented corpora,
and then we show that one of these distributions — the distribution on orderings — has to be
used in the generative procedure assumed by any unigram model.

B.1 Connecting MBDP-1 and the DP model

The probabilistic model behind MBDP-1 is based on a sequence of four steps that are intended
to generate a segmented corpus. The steps are as follows:

Step 1 Sample the number of word types, K, from a distribution P(K).

Step 2 Sample a vector of frequencies n = (nq,...,ng) for these words from a distribution
P(ni|K).

Step 3 Sample the lexicon £ = (¢4, ..., k) from a distribution P(£|K).

Step 4 With n = > 5T being the total number of word tokens, sample an ordering s :
{1,...,n} — {1,..., K}, constrained to map exactly n; positions to word ¢;, from a
distribution P(s|n). The words in the corpus are w = (w1, ..., wn) = (Ls1), -+ Lsim))-

If we follow this procedure, the probability of a particular segmented corpus, w, is

P(w)= > P(wl|s,n,£ K)P(sin)P(n|K)P(£K)P(K) (24)
K7£,n,s

where P(w|s,n, £, K) = 1 if the other variables generate w and 0 otherwise. If all frequencies in
n are non-zero, then for any given value of w, only one set of (lexical item, frequency) pairs is
consistent with w, so the sum in Equation 24 simply counts the K! permutations of the indices
of those (¢;,n;) pairs, each of which has the same probability under the generative process.

MBDP-1 uses a particular distribution in each of the four steps. In Step 1, the number of
word types is drawn from P(K) o 1/K?. In Step 2, frequencies are assumed to be independent,
with P(n|K) = Hszl P(n;) where P(n;) oc 1/n3. In Step 3, words are generated by choosing
1*120#
in ¢, xj is the kth phoneme (which might be the end marker, #) and P(z) is a probability
distribution over phonemes. The words in the lexicon are required to be unique, otherwise the
possible configurations of K, £, n and s that could have produced w proliferate.!” In Step 4,
P(s|n) is taken to be uniform over all (,,, ", ) valid mappings.

The probabilistic model used in MBDP has the unusual property of generating a corpus as a
single object, without specifying how a sequence of words might be generated one after another.
This property makes it difficult to form predictions about what the next word or utterance might
be, and to compute conditional distributions. Indeed, in the description of MBDP-1 it is noted,

phonemes independently, with P(¢) = [17_, P(z), where ¢ is the number of phonemes

1"We maintain the unique lexicon requirement for the models discussed in this appendix since it avoids having to
sum over many solutions in computing P(w). However, our equivalence results hold provided the distribution from
which the lexicon is drawn, P(£|K), is exchangeable, with the probability of £ not depending on the indices of the
Z;. A relatively complex (but exchangeable) distribution based on P({) was used in Brent (1999).
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when referring to the ratio of the probability of one corpus to another that “...the semantics
of the model are not consistent with a conditional probability interpretation. The sequence
w1, ..., Wy is not a conjunction of events from the probability space but rather a single event
that is determined by the joint outcomes of steps 1-4 above. Thus, wy, ..., w1 and wq,..., wk
are actually distinct, mutually exclusive events from the probability space.” (Brent (1999),
p. 104). In contrast, the DP model is defined in terms of a series of conditional distributions,
with each word being sampled conditioned on the previous words. In the remainder of this
section, we will show that the DP model can nonetheless be specified by a procedure similar to
that used in MBDP-1.

We will start by assuming that in Step 1 we fix the number of word types, K. In Step
2, we draw each n; from a Poisson()) distribution where X is generated from a Gamma(, 3)
distribution. Integrating over A, this gives

P(n)) = /Oooijmp(A) ix (25)

1 ﬂ% > nj+ﬁ71
iy “)/o exp{—=A(1 + B)}ANTE"" dA

i
1 R T+ %
n! T(%) (1+B)+

. (26

where the neat result is due to conjugacy between the Gamma and Poisson. As a result, we
have

Ko px  T(nj+2)
Pn|K) = — K/
(Il‘ ) Jl;[lnj;r(%) (1+6)nJ+?
_ (a8 11 I+
= (K) <1—|—ﬁ) {j|7lz:[>0} nj!(1+5)nj F(l—}—%) (27)

where the notation on the product indicates that only words with non-zero frequencies should be
included, and K is the size of this set. We can expand out the factorial and Gamma functions,

to give
K n;j—1
CranEs B\ [ 1 1 A -
Pl = ()" (5) 5o L=~ 2

where we simplify the constraint on j by assuming that the first K indices over which j
quantifies correspond to words that have frequencies greater than zero. Steps 3 and 4 can
proceed as in MBDP.

Applying Equation 24, the probability of a segmented corpus w results from summing over
all configurations of £, n, and s that produce w. We can marginalize out the words ¢; for which
nj = 0, so P(£) = P(€,), where £, is the set of words with non-zero frequencies. There are
then II{(O!! configurations of £ and n that yield the same same corpus w, where Ko = K — K
is the number of words for which n; = 0. This corresponds to the ( Klg ) ways of allocating Kj
zeros across the K words, multiplied by the K ! permutations of the indices of (¢;,n;) pairs
with n; > 0. Finally, P(s|n) = 1/(,, ", ). Putting all of this together with Equation 28, we

.."I’L}(+
obtain
K K n;—1
K!'ILZ2in! ranNEs B 1 [ 1 1 e
P =Pl )—=—I= -~ (— —_— — K. 2
(w) ( +)KO! n! (K) <1—|—ﬁ> JEl n; (1+ 3)m JEl j (29)
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We are now in a position to generalize this distribution to the case where K — oo, with

Ky o Kt
Jim P(w) = P(£+)MQK+( s ) 1 11

n! 1+p j=1 n; (1+3)m
OéK+ ﬂa K+
= Plly)———— F—1)!
where the result follows from the fact that ﬁ = H;:rl +(K—j—1) and limKHoo(HJK:l +(K—

= AL T 5 = 1.

Equation 30 gives a distribution over segmented corpora derived via the MBDP-1 scheme
of generating a corpus as a single object. However, we can also ask what the distribution over
word sequences would be if we conditioned on the total number of words. To do this, we need to
divide P(w) by the probability of a particular value of n, P(n), under this model. Fortunately,
P(n) is easy to compute. We chose P(n;) to be a Poisson distribution with rate set by a gamma
distribution, and n = Z;’;l n;. The sum of a set of Poisson random variables is Poisson with
rate equal to the sum of the rates of the original variables. The gamma distribution has a similar
property, meaning that the sum of the rates of our Poisson distributions follows a Gamma(c, [3)
distribution. Summing out this variable as we did for the individual frequencies, we obtain

1 B T(n+a)
TWt e (o)

P(n) (31)

Dividing Equation 30 by P(n) gives the conditional distribution over corpora given their length

'« K+
P(w|n) = P(£+)OLK+F(n(_’_)a)E(nj —1)! (32)

which is exactly the distribution over word sequences yielded by the DP model.

B.2 Relationship to other unigram models

The result in the previous section implies that the DP model can be specified in a way such that
it uses exactly the same distributions as MBDP-1 in Steps 3 and 4. We can now generalize this
result, showing that any unigram model has to use the same distribution in Step 4, taking a
uniform distribution over orderings of word tokens. We do this by showing that exchangeability
— assigning the same probability to all sequences of words in which the words occur with the same
frequencies — implies the existence of a generative procedure in which we first choose frequencies
according to some distribution, P(n), and then choose an ordering of words uniformly at random.
Exchangeability is the essence of the assumption behind a unigram model, since it indicates that
we are completely indifferent to the ordering of the words, and must be a property of all unigram
models.

For any distribution over segmented corpora w, we can compute P(n) by summing over all
w in which the frequencies are n. Exchangeability means that all permutations of the indices of
words in the corpus have the same value, and permutation of indices does not affect n. There
is also a unique n for any sequence. Consequently, P(n) will be the probability of any single
sequence with frequencies corresponding to n (which will be the same for all such sequences),
multiplied by the number of such sequences. Let m, represent the number of unique sequences
yielded by frequencies n and w}, be an arbitrary sequence with these frequencies. We then have
P(n) = myP(w},). Now, we can compute P(w|n), the distribution over segmented corpora
given frequencies. This will just be P(w) divided by P(n). Since P(w) is the same as P(w},) by
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exchangeability, this reduces to 1/my, for any corpus w. This is equivalent to simply choosing

uniformly at random from all valid permutations, as my is just (,,," . )-
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