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The molecular structure of 1-thia-closo-decaborane(9), 1-SB9H9, has been determined by the concerted
use of gas electron diffraction and quantum-chemical calculations. Assuming C4v symmetry, the cage
structure was distorted from a symmetrically bicapped square antiprism (D4d symmetry) mainly
through substantial expansion of the tetragonal belt of boron atoms adjacent to sulfur. The S–B and
(B–B)mean distances are well determined with rh1 = 193.86(14) and 182.14(8) pm, respectively.
Geometrical parameters calculated using the MP2(full)/6-311++G** method and at levels reported
earlier [MP2(full)/6-311G**, B3LYP/6-311G** and B3LYP/cc-pVQZ], as well as calculated
vibrational amplitudes and 11B NMR chemical shifts, are in good agreement with the experimental
findings. In particular, the so-called antipodal chemical shift of apical B(10) (71.8 ppm) is reproduced
well by the GIAO-MP2 calculations and its large magnitude is schematically accounted for, as is the
analogous antipodal chemical shift of B(12) in the twelve-vertex closo-1-SB11H11.

Introduction

In the same way that an icosahedron represents the fundamental
building block for twelve-vertex closo systems, the so-called
Archimedes bicapped antiprism is known to be the building
block for ten-vertex closo species. By replacing (BH)2- vertices
in the archetypal ten-vertex closo species, B10H10

2-, with various
isoelectronic moieties, a number of ten-vertex closo heteroboranes
are formed in accordance with Wade’s rules.1 For instance,
S is isoelectronic with (BH)2- and its incorporation into this
antiprismatic structure yields 1-thia-closo-decaborane(9), 1-SB9H9

(1), a molecule that was first synthesized many years ago.1

This C4v-symmetrical thiaborane has also been the subject of
several structural studies. Its PES spectrum was recorded and
interpreted using semiempirical quantum-chemical methods.2,3

Molecular geometries calculated using Hartree–Fock theory have
subsequently been reported,4 as well as calculations carried out
at higher levels of theory (MP2, B3LYP).5 These last calculations
were performed in conjunction with microwave spectroscopy to
determine the molecular structure of the thiaborane in the gas
phase. Gas electron diffraction (GED) is similarly able to derive
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structures in the vapour phase and the availability of rotational
constants5 for various isotopomers of 1-SB9H9 might allow these
data to be introduced as restraints into the GED refinement, with
the aim of enabling the determination of a particularly accurate
experimental geometry. Here we determine this experimental
geometry in the gas phase and compare it with that established
for the dimeric derivative of the thiaborane, 2,2¢-(1-SB9H8)2, in the
solid state by X-ray diffraction.2

Because the molecule possesses C4v symmetry there are three
signals in the 11B NMR spectrum of 1. The most striking feature
of these resonances is the 11B NMR chemical shift of atom B(10)
at 71.8 ppm.5 To the best of our knowledge, this is the highest
frequency 11B chemical shift, this atom being antipodally coupled
with sulfur.2 The apical boron atom in the icosahedral analogue
of 1, 1-SB11H11, which is also antipodally coupled with sulfur,
resonates at ca. 19 ppm.2 As well as determining the molecular
structure of 1 using a combination of GED and quantum-
chemical calculations, we have outlined a possible explanation
of the difference between the d(11B) values associated with the
antipodally coupled boron and sulfur atoms in 1 and in 1-SB11H11.

Results and discussion

GED study

On the basis of the calculations described above, C4v symmetry
was assumed when writing the model describing 1-SB9H9. The
geometry was described in terms of ten refinable parameters,
comprising eight bond lengths and differences and two angles
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Table 1 Refined (rh1) and calculated (re) geometric parameters for 1-
SB9H9 from the combined GED and ab initio refinementa ,b

Parameter rh1 re Restraint

Independent
p1 rS–B 193.86(14) 193.5 —
p2 rB–B average 182.14(8) 181.0 —
p3 rB–B difference 1 15.5(2) 14.0 14.0(5)
p4 rB–B difference 2 8.9(3) 9.2 9.2(5)
p5 rB–B difference 3 -6.4(4) -6.3 -6.3(5)
p6 rB–H mean 121.3(3) 118.4 —
p7 rB–H difference 1 –0.5(5) –0.4 –0.4(5)
p8 rB–H difference 2 –0.2(5) –0.3 –0.3(5)
p9 ∠SB(2)H 110.7(9) 110.6 110.6(10)
p10 ∠B(10)B(8)H 119.3(8) 120.3 120.3(10)
Dependent
p11 B(2)–B(3) 194.50(15) 192.2 —
p12 B(2)–B(6) 179.0(2) 178.0 —
p13 B(6)–B(7) 185.7(3) 185.1 —
p14 B(6)–B(10) 172.6(3) 171.7 —

a Refers to an MP2(full)/6-311++G** calculation. b Distances (r) are in
pm, and angles (∠) are in degrees. See text for parameter definitions and
Fig. 1 for atom numbering. The figures in parentheses are the estimated
standard deviations of the last digits.

(Table 1). The atom numbering used in the descriptions of the
parameters is shown in Fig. 1. The S–B bond lengths were
identical and described using p1. Four different B–B bonds were
identified in the structure [B(2)–B(3), B(2)–B(6), B(6)–B(7) and
B(6)–B(10)] and these were described using the weighted average
of the distances [to account for the fact that symmetry equivalents
of B(2)–B(6) occur twice as often as the others] and differences
between them. The formal definitions of p2 to p5 were as follows

Fig. 1 The molecular structure, including numbering scheme, for
1-SB9H9. Hydrogen atoms are given the same number as the boron to
which they are attached [e.g. H(2) is bonded to B(2)].

p2 = {[B(2)–B(3)] + 2¥[B(2)–B(6)] + [B(6)–B(7)] + [B(6)–
B(10)]}/5

p3 = [B(2)–B(3)] - {2¥[B(2)–B(6)] + [B(6)–B(7)] + [B(6)–
B(10)]}/4

p4 = [B(6)–B(7)] - {2¥[B(2)–B(6)] + [B(6)–B(10)]}/3
p5 = [B(6)–B(10)] - [B(2)–B(6)]
The four different B–B bond lengths were then described using

p2 to p5 as follows:
B(2)–B(3) = p2 + 4¥p3/5
B(2)–B(6) = p2 - p3/5 - p4/4 - p5/3

B(6)–B(7) = p2 - p3/5 + 3¥p4/4
B(6)–B(10) = p2 - p3/5 - p4/4 + 2¥p5/3
An average B–H bond length and two differences (p6–8) were

defined as follows:
p6 = {[B(10)–H] + 4¥[B(6)–H] + 4¥[B(2)–H]}/9
p7 = [B(10)–H] - {[B(6)–H] + [B(2)–H]}/2
p8 = [B(6)–H] - [B(2)–H]
The angles defining the positions of the different hydrogen

atoms were described by S–B(2)–H (p9) and B(10)–B(8)–H (p10).
All ten independent geometric parameters were refined by least

squares with restraints applied to several parameters (Table 1).
Additionally, six amplitudes of vibration (or groups of amplitudes
tied to one refining amplitude) were refined. See Table S2† for a list
of amplitudes of vibration. No amplitude restraints were required.
The success of the refinement can be assessed numerically using
the final R factor, which was RG = 0.048 (RD = 0.038), and visually
using the goodness of fit of the radial-distribution and difference
curves as seen in Fig. 2, and the molecular-scattering intensity
curves (Fig. S1†). The least-squares correlation matrix is given in
Table S3† and coordinates for the final GED structure and for the
calculated MP2(full)/6-311++G** structure are given in Tables
S4 and S5,† respectively.

Fig. 2 Experimental radial-distribution curve and theoretical-minus-ex-
perimental difference curve for the refinement of 1-SB9H9. Before Fourier
inversion the data were multiplied by s·exp(-0.00002s2)/(ZS - f S)(ZB - f B).

Rotational constants are available for several different iso-
topomers of 1-SB9H9, with both sulfur and boron having been
isotopically substituted.5 For each of the symmetric tops 32S11B9H9

(1), 33S11B9H9 (2), 34S11B9H9 (3) and 32S10B(10)11B8H9 (4), one
rotation constant has been determined. Attempts were made to use
these rotation constants as extra data in the refinements. However,
it proved impossible to use the rotation constants without severely
distorting the structure. This was gauged by the GIAO/MP2
calculations performed for that experimental geometry, which give
for B(10) an 11B chemical shift of 80.4 ppm. Such a discrepancy
between the theoretical and experimental 11B NMR chemical shifts
might lead one to doubt the experimental geometry.6 In addition to
that, the value is itself very close to a much less reliable GIAO/HF
value (82.5 ppm) calculated for the final geometry we report. The
GIAO/MP2 calculations showed that the chemical shift of the
B(10) atom is very heavily reliant on the positions of the hydrogen
atoms, which were not determined in the original microwave
spectroscopy experiment. As a consequence, the final refinement
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was therefore performed using only GED data, supplemented with
ab initio SARACEN restraints.7

There is a substantial expansion of the square of boron
atoms adjoining sulfur, with r[B(2)–B(3)] = 194.60(23) pm. (In
the original MW study this parameter was determined to be
193.7(1) pm5 and in the dimeric derivative 2,2¢-(1-SB9H8)2 it is
193 pm.2) This expansion is more pronounced than that of the
pentagonal belt of boron atoms in 1-SB11H11,4 where the B–B
distance determined using GED was 190.5(4) pm. The opposite
trend applies to the S–B distance: 193.13(14) pm (MW: 194.4(2);
the dimer: 192 pm) vs. 201.0(5) pm in 1-SB11H11.4 There are slight
discrepancies between GED and MW values of the B(2)–B(6)
and B(6)–B(10) nearest-neighbour separations, the MW values
being 176.5(3) and 170.7(1) pm, respectively. It should be noted
the B(2)–B(6) and equivalent bonds connect boron atoms that are
bonded to a total of eight hydrogen atoms. As these hydrogen-atom
positions were not determined using the MW data this adds weight
to our decision not to use the rotation constants as extra data. This
speculation applies to a lesser extent to the B(6)–B(10)-type bonds
[five hydrogen atoms are bonded to B(6) and its equivalent atoms
and to B(10)].

Previous gas-phase studies of boron clusters with closo struc-
tures have determined that amplitudes of vibration both for
adjacent atom pairs and for those more widely separated have
remarkably similar values. For example, vibrational amplitudes
associated with S–B and with the icosahedral body diagonal S ◊ ◊ ◊ B
in 1-SB11H11 were determined to be 7.1(4) and 5.8(3) pm.4 This
similarity is also found for 1, for which u(S–B) and u[S ◊ ◊ ◊ B(10)]
refined to 7.1(3) and 6.5(3) pm, respectively. This shows that closo
systems are quite rigid and the fact that the lowest calculated
vibrational frequencies for 1 are higher than 300 cm-1 confirms
this rigidity.

The final experimental geometry of 1 was computed to be
10.4 kJ mol-1 higher in energy than that of the theoretical structure
[MP2(full)/6-311++G**]. However, a major part of this excess
energy may be ascribed to the hydrogen placements; the difference
in relative energy was reduced to 1.5 kJ mol-1 when the structure
of the SB9 skeleton was fixed at its experimental geometry and the
hydrogen positions were optimized at the MP2(full)/6-311++G**
level. Both the similarity in energy and the NMR fit (as revealed
in Table 2) indicate that the SARACEN electron-diffraction
refinement affords a very good representation of the molecular
structure of free 1-SB9H9.

The chemical shifts calculated using coordinates that were them-
selves calculated at the MP2(full)/6-311++G** are considered
to be the best that we have calculated and they agree extremely
well with chemical shifts calculated from the final GED geometry.
Two sets of experimental chemical shifts are also available for
comparison.5,8 The values from these two NMR experiments are
quite different and the reason for this difference might be based on
entirely different solvents used: benzene is an aromatic solvent with
magnetic anisotropy and a quadrupole moment, whereas CDCl3

is a polar solvent with a dipole moment. Upon moving from the
aliphatic to the aromatic solvent, not negligible changes in NMR
patters were observed for some borane cages.9

The 11B NMR chemical shift for B(10) of 74.5 ppm8 (shown
in Table 2) and the corresponding calculated value [76.2 ppm
calculated with GIAO-MP2/II using MP2(full)/6-311++G**
coordinates] is the highest frequency chemical shift observed for

Table 2 Calculated and experimental 11B NMR chemical shifts for 1-
SB9H9

d(11B)/ppm

B(2–5) B(6–9) B(10)

GIAO-MP2/IIa -4.2 -19.3 78.5
GIAO-MP2/IIb -3.7 -19.7 78.7
GIAO-MP2/IIc -5.2 -20.0 76.2
GIAO-MP2/IId -4.5 -19.6 76.9
Exp. (in CDCl3)5 -7.6 -20.9 71.8
Exp. (in C6D6)8 -4.8 -17.6 74.5

a B3LYP/cc-pVTZ. b B3LYP/6-311++G**. c MP2(full)/6-311+G**.
d GED.

this class of materials. To explain why the antipodal effect in the
ten-vertex species is larger than in the twelve-vertex one (i.e. in
1-SB11H11)4 we might speculate that the mechanism is the same in
both cases: the occurrence of paramagnetic contributions to the
magnetic shielding constants. These contributions arise from the
coupling of suitable occupied and unoccupied molecular orbitals
with large coefficients on the antipodal atom. The heteroatom
leads to a better overlap due to polarization of the occupied
MO (HOMO for 1-SB9H9 and HOMO-2 for 1-SB11H11, Fig. 3)
towards the antipodal atom. The energetic separation between
these coupled pairs of occupied and virtual MOs is larger in 1-
SB11H11 (13.8 eV at 6-31G*) than in 1-SB9H9 (12.3 eV at the same
level), which is consistent with much larger deshielding for the
latter.

Fig. 3 Key molecular orbitals for paramagnetic contributions to the
shielding tensor of the antipodal boron atom: HOMO and LUMO for
1-SB9H9 (1a and 1b, respectively) and HOMO-1 and LUMO for 1-SB11H11

(2a and 2b, respectively). Only one of each degenerate pair is shown.

The calculated nucleus-independent chemical shift (NICS)10

for 1-SB9H9 is -22.9 ppm (GIAO-MP2/II). Such a value could
mean that this species belongs to the group of the so-called three-
dimensional aromatic systems,11 as was the case with, for example,
closo-2,1- and 6,1-PCB8H9.12 Molecular structure determinations
of other three-dimensional aromatics are in progress.
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Experimental

Synthesis and NMR measurements

In a typical experiment, freshly sublimed nido-thiaborane 6-
SB9H11 (2.80 g, 20 mmol) was placed under an argon atmosphere
into a stainless autoclave and heated at 400 ◦C overnight. After
cooling down, the autoclave was connected to a dry-ice finger
sublimator and the reaction mixture was sublimed at 50 ◦C. Col-
umn chromatography on silica using hexane as the eluent led to
the isolation of one main colourless product, identified as the
closo-thiaborane 1-SB9H9. The yield was 1.87 g (68%). 11B NMR
measurements are described in a great detail in ref. 5

Gas electron diffraction (GED)

Electron-diffraction data were recorded using the Balzers Eldi-
graph KD-G2 instrument at the University of Oslo13,14 on Kodak
electron image plates with nozzle-tip temperatures of between
65 and 68 ◦C for the middle camera data and between 68 and
73 ◦C for the long camera data. The accelerating voltage of the
electron beam was 42 kV and the voltage/distance calibration was
performed using benzene as a reference. The weighting points for
the off-diagonal weight matrices, correlation parameters and scale
factors for both camera distances are given in Table S1.† The least-
squares refinement process was carried out using the ed@ed v3.0
program15 employing the scattering factors of Ross et al.16

Computational methods

Along with the microwave study5 of 1-SB9H9 a series of high-level
calculations were reported. These calculations at the MP2(full)/6-
311G**, B3LYP/6-311G** and B3LYP/cc-pVQZ levels found
the structure to have C4v symmetry. Using the resources of the
UK National Service for Computational Chemistry Software
(NSCCS)17 running the Gaussian 03 suite of programs,18 we
extended these calculations to the MP2(full)/6-311++G** and
B3LYP/6-311++G** levels.

Force constants were calculated at the B3LYP/aug-cc-pVTZ
level and subsequently used, along with the program SHRINK,19

to obtain initial amplitudes of vibration and curvilinear distance
correction terms for use in the GED refinement.

NMR chemical shifts were calculated using the GIAO-MP2
method,20 which is incorporated in the Gaussian 03 program. The
individual gauge for localized orbitals (IGLO-II) basis sets were
used for all atoms.21
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