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Abstract 

The application of gold nanoshells (NS) as a surface enhanced Raman (SER) platform for intracellular 

sensing in NIH-3T3 fibroblast cells was studied by using a near infrared Raman system. To show the 

feasibility of using these 151±5 nm sized solution-stable nanoparticles inside living cells, we 

investigated the uptake, cellular response and the health of the cell population. We show that NS are 

taken up voluntarily and can be found in the cytosol by transmission electron microscopy (TEM) 

which also provides detailed information about location and immediate surrounding of the NS. The 

internalization into cells has been found to be independent of active cellular mechanisms such as 

endocytosis and can be suggested to be of passive nature. Uptake of NS into cells can be controlled 

and cells show no increase in necrosis or apoptosis as a result and we show that NS based intra-

cytosolic SER spectra can be measured on biological samples using short acquisition times and low 

laser powers. We demonstrate its application using 4-mercapto benzoicacid (4-MBA) functionalized 

nanoshells as a pH sensor. 

 

Main text 

Nanoparticles have found various applications in biomedical research.
1-5

 They are used, for example, 

in drug delivery,
3, 6

 intracellular sensing,
7, 8

 and diagnosis and treatment of cancer.
9-14

 In addition, the 

ubiquitous use of nanomaterials in everyday applications such as waterproofing formulations, sun 

creams, and detergents means that a thorough knowledge about their possible toxic effects is crucial.
15

 

For example studies on long carbon nanotubes show that the hazardous potential on inhalation is 

comparable to asbestos;
16, 17

 a fibrous silicate material which was banned due to its toxicity over a 

decade ago. However shorter (100nm), conjugated carbon nanotubes have been shown to have no 

serious cytotoxicity in mammalian cells.
18

 

Since our ultimate goal is to perform surface enhanced Raman spectroscopic (SERS) studies to 

understand cellular behavior, we have started by investigating the effects of nano-particle exposure on 

our biological model systems. Most studies on intracellular SERS have focused on collecting spectra 

and have stopped short of a thorough examination of the cellular response to the nanomaterial.
2, 19, 20

 

Furthermore, very few publications have taken the next step and examined the actual mechanism of 

particle uptake,
6, 21-23

 even though the impact on the disturbance caused inside the cells and therefore 

the applicability of the method is dependent on where, and in which state, we find the particles after 

internalization.
 

We report here the results of an investigation in the cellular uptake and response of cells to Nanoshells 

(NS).
24, 25

 These core shell particles consisting of a silica core of around 120 nm in diameter 
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encapsulated in a thin and stable layer of gold exhibit absorbance which can be tuned to a necessary 

optical wavelength by the core-shell diameter ratio.
26

 NS exhibit surface plasmon resonance (SPR) 

which can be excited by illumination with light of a suitable wavelength.
25, 27-32

 The SPR of NS 

enhances the inherently weak Raman signal of molecules in the near vicinity of the particle surface,
33, 

34
 and has been shown to enhances the Raman signal by a factor of 10

12
.
35

 Investigating the cell 

viability of murine 3T3/NIH fibroblasts in culture after NS incubation shows that the cells are viable, 

an observation which is supported by measuring markers of apoptosis and necrosis. Further, we have 

examined the fate of the NS inside the cells using transmission electron microscopy (TEM),
36

 

allowing us to locate and study the immediate surroundings of the particles. Finally we show the 

difference in Raman measurements taken of whole cells and the SER spectra with NS probing 

different locations in the cytosol and demonstrate the use of functionalized NS for intracellular pH 

measurement.
35

 

 

Results & Discussion 

Cellular uptake of NS 

The absorbance maximum and size of the NS used in this study was determined to be at 778 nm and 

151 ± 5 nm as measured by UV-Vis and scanning electron microscopy, respectively (Figure 1a,b). 

Before bringing in contact with cells, the particles were sterilized by autoclaving and the absorbance 

was checked and compared to non-sterilized NS. Autoclaving caused no changes to the absorbance of 

the NS solution as shown in Figure 1a, confirming that the particles are still intact and their plasmon 

resonance remains unaltered. The sterile particles with a concentration of 6.9 pM were diluted to a 

concentration of 10 fM in DMEM growth media supplemented with 10% calf serum directly before 

incubation with NIH/3T3 fibroblast cells for 5h. To the best of our knowledge the uptake, toxicity and 

fate of NS taken up into cells has not been studied. Firstly, we investigated the uptake of NS in 3T3s 

in standard growth conditions and confirmed the inclusion of the bare gold NS by TEM microscopy 

(Figure 1c) in the vicinity of the nuclear membrane.
36, 37

 This proves that NS are taken up voluntarily 

inside the cells without the use of a transfecting agent.  

Further, we examined whether NS are taken up via an active endocytotic uptake mechanism as has 

been reported by Rejman et al who found that 50 - 200 nm fluorescent latex beads were taken up by a 

clathrin-mediated process,
38

 or by an unknown alternative mechanism. Therefore we pre-incubated 

the cells with different buffers leading to the inhibition of different endocytotic mechanisms and 

incubated the cells with NS at a concentration of 10 fM in standard growth conditions with media 

containing 10% CS. The 3 pre-incubations cause cells to be either ATP, cholesterol or potassium 

depleted, allowing us to investigate the energy dependence of an active mechanism, inhibition of the 
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formation of lipid rafts and the interruption of clathrin mediated uptake respectively.
39, 40

 The NS 

incubations were conducted for 5 h, (because we found this to be sufficient for introduction of small 

numbers of NS), before fixation and preparation for TEM sectioning and measurement. To obtain 

information about the differences of particle uptake 100 sectioned cells were checked and particles 

counted. The thickness of the cell sections was 120 nm and therefore it was estimated that around 100 

cell sections would statistically account for one NIH/3T3 cell of an average diameter of around 10 μm 

± 20 %. The NS amount per cell was then determined in accordance with these assumptions. We 

expected to find a decrease in particle uptake in one or more cases where fibroblast cells were 

deficient in compounds crucial for endocytotic uptake,
22

 compared to the control experiment without 

separate treatment. The uptake of NS did not decrease at all (Fig 2a) and seems to be slightly 

increased for the cases where cells were depleted of ATP, cholesterol and potassium. These findings 

indicate that these established endocytosis mechanisms are not solely responsible for NS 

internalization.  

Previous reports have implicated serum protein adsorption in nano particle uptake,
1
 further incubation 

with NS in serum free media over the same duration actually shows a large increase in NS uptake 

(Figure 2a), in the range of up to 6-fold. This observation rules out an endocytosis mechanism 

mediated by adsorption of serum proteins and suggests that the absence of serum proteins makes NS 

uptake more efficient.  

In order to try and understand the NS uptake in more detail, we made further investigations with TEM 

to gain information about the uptake, fate and localization of NS inside the cells. A magnification up 

to 33000x allowed us to observe the close surrounding of the particles inside the cells. Of 67 sections 

with NS which we examined, we always found NS localized in the cytosol and observed that while 

the particles can be found near the nuclear membrane, they are never present in the nucleus. We show 

in Figure 3a,b and c particles which were incorporated in the presence of serum in the media, 3d is an 

representative image of a particle taken up in the absence of serum in the media. Figure 3a shows NS 

which were found free (not incorporated in a vesicle) in the cytosol - about 50 % of the particles taken 

up in conditions with serum in the media can be found free inside the cells. NS can be also found in 

vesicles, probably lysosomes (Fig. 3b) or coated by a layer (Fig 3c), 5-10 nm thick and of high 

density, similar to surrounding cytosolic proteins. We suspected that this might be a layer of serum 

proteins adsorbed to the particle, but when we examined NS which were incubated solely in growth 

media with serum after several hours a similar coating could not be found (supporting information). 

On the basis of this evidence, it appears that the coating forms during or after entry to the cell, perhaps 

as a reaction to the foreign particle. In the case where NS were taken up by cells in serum-free media, 

TEM images show uncoated NS without vesicles (Figure 3d). This information is crucial for selecting 

the best condition for intracellular sensor development, where a free particle surface is desirable. It 



Page 4 of 19 

appears that the uptake mechanism allows the particles to merge with the membrane and pass through 

it without encapsulation. This explanation can be partly backed up by the findings of Roiter et al., 

who reported that the curvature of lipid bilayers dropped onto smooth nanoparticles between 22 and 

200 nm diameter does not promote membrane brakes.
41

 As particles of sizes up to 100nm are known 

to be taken up by active endocytosis,
1, 21, 42

 we speculate a mechanism in which the particles merge 

with and pass through the membrane at areas of high membrane fluidity.
43

 This would also explain the 

increased uptake in the cases of cholesterol depletion, since cholesterol leads to increased membrane 

rigidity, and also the increased uptake in serum free media, where the particles display no adsorbed 

serum proteins and are therefore not led to protein receptors found in rigid lipid rafts.
39

 We intend to 

carry out tracking experiments in live cells in order to further investigate the uptake mechanism.  

We also conducted an experiment aimed at controlling the number of particles per cell by adjusting 

the concentration of NS as can be seen in Figure 2b. Here we show in a very basic experiment the 

amount of particles taken up at 10, 150 and 300 fM NS concentrations in the growth media. Particle 

amounts were found to be taken up with linear behavior in the range of the observed concentrations. 

This leads to a very easy way to control particle loading into the cells and also confirms that around 1 

out of 60 particles are taken up from solution in these particular conditions (although this ratio is 

likely to differ with different nanoparticles and cell types).  

 

Cell viability during NS incubation 

A range of 11 NS dilutions between 0 and 300 fM were prepared in growth media with serum. The 

NS were added to cells in 96 well plates seeded at 50% confluence the previous day and washed with 

PBS prior to NS treatment. The CellTiter-Blue fluorescence assay was used according to protocol at 

different time points up to 96h after incubation.  

The results of the cell viability test in Figure 4 show that there is no difference between growth of 

NIH/3T3 cells at standard conditions without NS or incubated with different NS concentrations of up 

to 300 fM correlating to1800 NS/cell. Figure 4 shows that fibroblast cells exhibit the same growth 

behavior, reaching the static phase after two to three days regardless of the presence of NS in the 

media. Hence, we assume that there are no detrimental effects on cell growth when cells are incubated 

with NS at the described conditions. In order to further ensure that there are no detrimental effects of 

NS incubation we also assayed for molecular markers of cell death. We did this by measuring markers 

of apoptosis and necrosis at the lowest and highest NS concentrations detailed above. For the 

apoptosis test an assay for caspases 3 and 7 was chosen as these proteases are among the first signals 

in the apoptosis cascade leading to imminent death of the cell. Figure 5a shows the results of this 

assay at 10 fM and 300 fM NS. The tests were conducted at intervals of 3, 6, 9, 12 and 24 hours after 
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the start of incubation and in addition a positive control was run incubating cells for 3 hours with 

staurosporine which has a known cytotoxic effect leading to apoptosis. It can be seen that the 

incubation with NS did not promote apoptosis at any time up to 24h compared to the negative control 

of untreated NIH/3T3 fibroblasts. Therefore we can assume that cells which have taken up NS do not 

undergo apoptosis on the timescale measured.  

In order to investigate the possibility of NS induced necrosis (potentially due to membrane 

disruption), an assay was used to probe for free lactase in the extracellular environment which would 

appear as a result of the release of intracellular components. For this assay, cells were incubated with 

the same two NS concentrations as above and tested at 6 and 24 hours after the start of incubation. In 

this case the positive control was a sample of cells treated for 30 min with lysis buffer which leads to 

disintegration of the cells. Incubation with NS concentrations after 6 h and 24 h did not show any 

increase in signal compared to the negative control with untreated cells. This supports the result that, 

as in the case of gold nanorods,
44

 gold Nanoshells have no cytotoxic effect on fibroblast cells. 

 

Intracellular Surface enhanced Raman spectroscopy with Nanoshells 

The NS we have used in this work are designed to be excited with lasers in the NIR region, which 

have excellent transmittance through tissue. To date these NS have been added to cells as a potential 

cancer therapy,
29, 45

 however they also have potential use as transducer elements for surface enhanced 

Raman spectroscopy.
35, 46, 47

 We therefore demonstrate here the use of NS to acquire spectra from the 

intracellular environment of living and viable NIH/3T3s cells.  

First we have compared the differences between unenhanced Raman measurements collected using 

detached living NIH/3T3 cells and SERS spectra enhanced by intracellular NS of NIH/3T3 cells 

grown on quartz coverslips (UQG Ltd., Cambridge). In order to obtain a detectable bulk Raman 

spectrum we measured 50 surface detached single cells using a laser power of 50 mW for a 180 sec 

acquisition time on each cell. SERS spectra were collected after locating the gold nanoparticle light 

scattering pattern and acquiring spectra for 5 seconds with 3 mW laser power at the sample. The 

SERS spectra were taken in several single living cells at different locations (Fig. 6). Comparing the 

two different kinds of Raman measurements some features are clearly visible in the bulk Raman as in 

the SERS spectra, such as the peak at around 1005 cm
-1

 for phenylalanine or the Amide-III: beta sheet 

band at 1215 cm
-1

. However, we see no DNA related peaks in the SERS spectra; this is expected if, as 

shown above, NS are only found in the cytosol. Other peak assignments can be found in Table 1. We 

estimate the enhancement of the Raman signal of cytosolic compounds with NS to be 10
10

 compared 

to the single cell Raman measurements (supporting info).  
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Although a much higher signal can clearly be acquired with NS inside the cells, the lack of specific 

information from the complex mix of biomolecules found in the cytoplasm would make it difficult to 

extract biologically relevant data using this technique. It is our opinion that the value of this technique 

lies in the development of SERS NS sensors that are made sensitive to intracellular conditions, like 

pH, redox potential, or specific protein concentrations by the addition of signaling probes. The use of 

4-MBA functionalized Au particles for intracellular pH determination has been shown by Kneipp et 

al. where the particles were “probably located in lyzosomes“.
42

 For the use of a nano sensor it is of 

high importance, that surface functionalities remain intact whilst inside the cell and the spectra are not 

disturbed by signals originating from foreign molecules adhering to the sensor surface. We use 4-

MBA functionalized NS for this simple test as it is known to easily form self assembled monolayers 

on Au surfaces.
35, 48

 The spectra (Fig. 7a) of 4-MBA-NS inside cells and free in media do not show 

any obvious differences. The dominant features in the spectra are the aromatic ring breathing modes 

at 1081 and 1590 cm
-1

. Other less intense features describe the S-C stretching mode of the thiol 

function at 527 cm
-1

 , different carboxyl modes at 860 cm
-1 

(d(COO-)), 1150 cm
-1 

(C-COOH) and 

1430 cm
-1 

(-COO
-
),

35, 48
 which are all dependent on the pH of the surrounding solution. In the above 

shown spectra the pH can be determined to be pH 7.4 for the particles in the growth media and pH 6.5 

for the NS-4MBA inside the cell (pH calibration data in supporting info) calculated from the peak 

ratios between the peak intensities at 1430 cm
-1 

and 1700 cm
-1

.  

 

Conclusions 

We have reported here the voluntary, controllable cellular uptake of single gold Nanoshells which is 

independent of the known endocytotic mechanisms investigated. We also demonstrated that cell 

viability is maintained in these conditions and that molecular markers of apoptosis or necrosis show 

no difference to control samples and therefore no detrimental effects on cellular metabolism. Further 

we also demonstrated that the SPR properties of the gold nanoparticles can be used to acquire SER 

spectra probing the intracellular environment and we have shown that SERS chemo-sensor signals can 

be obtained without interfering signals from intracellular compounds. Overall we have shown that NS 

can be used as a viable and versatile platform for intracellular SERS-nanosensors.  

 

Experimental Section 

All reagents were ordered from Sigma Aldrich if not stated otherwise and used without further 

purification. 
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Cell Culture: NIH/3T3 mouse fibroblast cells were cultured in Dulbeco’s modified eagle medium 

DMEM (Invitrogen, UK) supplemented with penicillin/streptomycin (10000 units/ml), L-gluthamine 

(200 mM) and 10 % heat inactivated calf serum. Cells were seeded at around 50 % confluence for the 

different experiments and incubated overnight at 37 ºC and 5 % CO2. 

NS incubation: Before incubation with NS cells were washed with PBS three times and afterwards 

media with the required NS concentration was put on the cells. Incubations (if not otherwise stated) 

were conducted for 5 h at standard incubation conditions.  

For the following fluorescence assays the signal was normalized to the background signal of cells 

grown over the same length of time covered in growth media. Errors were estimated by taking the 

standard deviation of 5 replicates 

For the cell viability test the CellTiter-Blue (CTB) assay (Promega, UK) was used in a 96 well format. 

Cells were incubated with above stated growth media supplemented with NS (auto-claved after 

delivery, Nanospectra, US) at concentrations from 0 - 300 fM (approximately 0 - 1800 NS/cell, 

respectively). The CTB assay was conducted after 3, 6, 24, 48, 72 and 96 hours according to protocol.  

Apo-ONE
®
 Homogeneous Caspase-3/7 Assay and CytoTox-ONE™ Homogeneous Membrane 

Integrity Assay (Promega, UK) were used to detect possible apoptosis and necrosis signals after 

incubation with 10 and 300 fM NS in culture media. Positive controls for apoptosis were incubated 

for 3h with 1 μM of Staurosporine in growth media. 

For investigations of cellular uptake mechanism, cells were grown at standard conditions on resin 

beads and then pre-incubated for 1h with PBS buffer containing NaN3 (10 mM) and glucose (50 mM) 

for ATP depletion. A second buffer with methyl-β-cyclodextrin (10 mM) and a potassium free buffer 

made up of HEPES (50 mM), NaCl (100 mM) and MgCl2 (1mM) were used for cholesterol depletion 

and potassium depletion respectively. Buffers were sterile filtered and cells were incubated in separate 

flasks for 1h. Subsequently the cells were washed with PBS and incubated with NS in media at a 

concentration of 10 fM. After 5h of incubation the media was taken of, the cells washed with PBS and 

fixed in 1% Glutaraldehyde in PBS. For TEM measurements, the samples were dehydrated in acetone 

and stained with osmium tetroxide.  

SERS measurements were done with cells grown on quartz coverslips (0.2 mm, UQG Ltd., England) 

and incubated with media containing 300 fM of either bare or functionalized NS incubated in serum 

free media for 5h. 

Fluorescence Measurements: Assays were run in 96 well plates, measured with a POLARstar 

OPTIMA microplate reader and signals were normalized to the intensity of wells containing untreated 

cells. The appropriate filter and light source setups recommended in the Protocols were used.  
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Transmission Electron Microscopy: Processed cells on resin beads were transferred into resin for 

sectioning. Sections of 120 nm thickness were taken and put on a TEM grid for measurement. Each 

section contained between 50 and 100 cells. Acquistions were made with a CM120 Biotwin (Philips) 

transmission electron microscope connected to a digital camera. 

Nanoshell functionalisation: For the functionalisation of sterile NS with 4-mercaptobenzoic acid 300 

uL of a NS solution of 6.9 pM was added to 1 uM 4-MBA in (10 uL) and incubated overnight at RT. 

Excess 4-MBA was washed off by centrifugation, and the sample washed a further two times in 

double distilled H20.  

Surface enhanced Raman Spectroscopy: An inverted Raman system built around a self constructed 

microscope was used to evaluate the cellular samples. Briefly, a temperature-stabilised diode laser 

operating at 785 nm (a circularized laser Diode, Sanyo DL-7140-201s up to 80 mW power) is 

expanded and introduced via a holographic notch filter (HNF, Tydex notch-4) into an inverted 

microscope and passed to the sample via a 350 NA 0.9 oil immersion objective. The backscattered 

Raman light is collected by the same objective and passed through the HNF. The Raman signal is then 

reflected by the dichroic mirror and imaged onto a 200-lm confocal aperture. Finally the beam is 

imaged onto the spectrograph (Triax 550 Jobin Yvon). This spectrograph employs a 300 lines/mm 

grating and is equipped with a CCD camera (Symphony OE STE Jobin Yvon) for detection of the 

Raman spectrum. The Raman signal is imaged onto the CCD by making use of a lens placed at a 

distance equal to its focal length (f = 80 mm) from the slit of the spectrograph. Laser power used 

during the measurements for bulk Raman studies on detached single cells was 50 mW and 180 

seconds acquisition time. Spectra of 50 cells were averaged and waterbackground corrected. Bare and 

4-MBA functionalized NS inside cells were detected by looking out for bright scattering events whilst 

moving the laser beam through the cells and NS based SERS measurements were obtained with 3 mW 

laser power at the sample and 5 sec acquisition time.  
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Figures 

 

a) 

 

 

 

 

 

 

 

b) 

 

 

 

  

 

 

Figure 1. a) Absorbance spectrum of NS with Absorbance maximum in the NIR at 778 nm. b) TEM 

images of NS inside NIH/3T3, image on the left showing a NS pair in the cytoplasm near the nuclear 

membrane (scalebar 0.2 μm). 
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Figure 2. a) Estimated amount of NS per cell according to particles found in 100 TEM sections. NS 

incubations for this test were conducted for 5h with 10 fM NS in 10% CS containing media, except 

the condition with no CS on the right. The bars show the amount of NS (monomers, dimers) found in 

100 cell sections b) Shows the increase of NS in cells is proportional to the NS concentration during 

the incubation at normal growth conditions with 10% CS. 
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Figure 3. Set of TEM images of NS inside cells. Images a, b, c are all of NS which were incubated in 

media containing 10% CS and can be found either a) free suspended in the cytosol (scalebar 0.2 

μm),or b) taken up in oversized vesicles or as in c) surrounded by what might possibly be a dense 

coating of protein. d) shows a representative NS which has been taken up during incubation without 

any CS in the growth media. None of the NS found in these conditions were surrounded by any kind 

of coating or vesicles inside the cells. 

 

 

Figure 4. CellTiter-Blue Cell viability test showing fluorescence signal strengths of cells incubated 

with varying NS concentrations of 0-300 fM at different time points up to 96 h. The intensity is 

normalized to the control and proportional to the cell population per well. Error bars depict single 

standard deviations of 5 replicates.  
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Figure 5. a) Results of ApoONE homogenous Caspases 3/7 test for 10 fM (low) and 300 fM (high) 

NS concentrations incubated for up to 24h. Positive control was incubated with 2 mM Staurosporine 

for 24h, negative controls were untreated cells b) fluorescence results for CytoTox-ONE kit, positive 

control was obtained by lysing cells with provided buffer solution, negative controls were untreated 

cells. Error bars in both measurements were standard deviations of 5 replicates.  
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Figure 6. a) Averaged Raman spectrum of 50 different NIH/3T3 fibroblast cells measured at a 785.32 

nm excitation wavelength, 50 mW laser power at the sample for 180 sec. b-e) SER spectra taken by 

excitation of NS in different cells at the same wavelength with 5 sec acquisition time and 3 mW laser 

power at the sample.  
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Figure 7. SER spectra of 4 mercaptobenzoic-acid functionalized NS in NIH/3T3 fibroblast. Overlying 

spectra depict NS-4MBA in solution (black) and inside NIH/3T3 cells determining the pH to be 7.4 

and 6.5, respectively.  
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NS in different cells 

b)     c)     d)    e) 

640 C-C twist in Tyrosine 646  642 644 

675 C-S stretch in Cysteine 678 684   

720 C-N stretch in lipid/adenine  736  737 

783 DNA: O-P-O backbone stretch in thymine/cytosine     

825 DNA: O-P-O backbone stretch/ out of plane ring breath in 

tyrosine 

   825 

856 In plane ring breathing mode in tyrosine/ C-C 848  850  

893 C-C skeletal stretch in protein  900 905 896 

941 C-C skeletal stretch in protein  967  972 

1008 Symmetric ring breathing mode of phenylalanine 1005 1005 1007 1428 

1036 C-H in plane bending mode of phenylalanine  1037 1038 1036 

1100 DNA: O-P-O backbone stretching     

1109 DNA: O-P-O backbone stretching     

 C-N stretch in polypeptide chains  1133 1138 1139 

1166 C-C stretching in proteins 1174 1174   

1217 Amide III: beta-sheet 1216 1209 1214 1214 

1266 Amide III: beta-sheet/adenine/cytosine    1275 

1329 Guanine   1323 1329 

1354 Polynucleotide chain (DNA bases)     

 Possible porphyrin stretches   1375 1366 

1465 (v (C = C) + v (C- C) + v (C = O .-. H)), Chromophore   1485 1475 

 Aromatic ring stretches  1516  1511 

1543 Lipid stretches 1535  1528 1534 

 Tyrosine stretch 1570  1593 1570 

1595 Ring mode (Adenine/guanine)     

1619 C=C bending in phenylalanine and tyrosine 1616    

1677 Amide I: alpha-helix     

 

Table 1. Raman assignment for peaks of bulk Raman spectra of single cells a), and the SERS features 

of NS inside cells (b, c, d, e) of the spectra in Figure 6. 
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