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Abstract 

We describe a novel surface enhanced Raman spectroscopy (SERS) sensing approach utilizing 

Auroshell
TM

 gold Nanoshells and demonstrate its application to analysis of critical redox-potential 

dependent changes in antigen structure that are implicated in the initiation of a human autoimmune 

disease. In Goodpasture's disease, an autoimmune reaction is thought to arise from incomplete 

proteolysis of the autoantigen, α3(IV)NC1(67-85) by proteases including Cathepsin D. We have used 

SERS to study conformational changes in the antigen that correlate with its oxidation state and to 

show that the antigen must be in the reduced state in order to undergo proteolysis. Our approach 

determined that an intracellular redox-potential of  ~-200 mV was sufficient for reduction, pre-

requisite for productive processing, of the intratramolecular disulfide bond within the antigenic 

fragment α3(IV)NC167-85. Moreover we demonstrate that interaction of the antigenic fragment with 

Cathepsisn D, is vastly facilitated by reduction of this disulfide bond and that the peptide bonds 

subsequently cleaved by Cathepsisn D can be identified by consultation of a SERS library of short 

synthetic peptides. 

 

Introduction 

The investigation of a wide range of diseases is currently limited by a lack of suitably specific and 

versatile bioanalytical tools. Recently, Surface enhanced Raman spectroscopy (SERS) has been used 

for a large variety of bioanalytical applications, including single molecule studies,
1
 oligonucleotide 

sequencing
2
 and for probing peptide and protein structure.

3–6 
SERS can also be used for imaging the 

intracellular environment of cells and has been demonstrated using a variety of noble metal particles 

which are readily delivered to mammalian cells.
4,7,8 

Gold nanoshells (NS) are engineered 

nanoparticles and we have recently demonstrated that their characteristics make them ideal for 

intracellular SERS studies.
5,9–13 

We have also recently demonstrated that NS are ideal substrates for 

the measurement of conformational changes in biomolecules and that this property can be used for 

direct measurement of biomolecular interactions.
14

 

Goodpasture’s Disease is a rare autoimmune condition of the kidneys and lungs in which there is a B-

cell and T-cell response to a non-collagenous domain of the alpha-3 chain of type IV collagen 

(a3(IV)NC1). It is thought that in the course of usual α3(IV)NC1 processing within the antigen 

presenting cells of healthy individuals, certain α3(IV)NC1 peptides are not processed for presentation 

to T cells because of their consistent destruction in the course of processing (destructive processing).
15

 

As a result, T-cells specific for the destroyed self-peptides might avoid mechanisms that usually 

control the activation of potentially autoreactive T cells. In support of this hypothesis, T-cells specific 

for certain α3(IV)NC1 peptides (epitopes) can be detected in healthy individuals as well as patients 
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with Goodpasture’s disease, and at least one of the major T cell epitopes, α3(IV)NC167-85 , has been 

shown to be consistently destroyed in the course of α3(IV)NC1 processing by B cell lysosomes: 

α3(IV)NC1 processing was initiated by an ’unlocking’ step that required the 3(IV)NC167-85 peptide 

first undergo reduction of a disulfide bridge that holds it in a hairpin-like conformation, and second be 

cleaved by an aspartate protease, probably Cathepsin D.
16,17

 This finding suggests that the redox 

environment during 3(IV)NC1 processing may be important in determining whether processing 

proceeds as described with destruction of α3(IV)NC167-85, or some other route in which 

α33(IV)NC167-85 is preserved and autoreactive T cells are activated. It is important to measure the 

standard redox potential of the disulfide bond of the peptide. 

In this work we sought to use SERS to investigate the conformational changes undergone by a 

fragment of the Goodpasture’s antigen in response to different redox potentials. By correlating 

conformational heterogeneity with potential we were able to estimate the standard potential for the 

dithiol bond. Furthermore we have used SERS to study the interaction between the peptide and 

Cathepsin D (its cognate protease) and have investigated the redox dependent digestion of the peptide. 

We have found that the potentials required for reduction of the dithiol bond correlate extremely well 

with those required for digestion. Furthermore, we have used SERS to estimate the site of digestion of 

the peptide. Finally, we have used SERS to detect digestion and protein binding in live cells. 

 

Results and discussion 

In order to measure SERS spectra from the peptide, we assembled gold nanoshell aggregates using an 

established protocol,
14

 and attached the peptide to the gold via a free thiol at its C-terminus. The 

peptide solution (Clonestar Peptide Services, CZ), 1 mM peptide in pH 7.0 Tris-HCl buffer, 100 mM 

NaCl and 10 mM MgCl2) was incubated on the gold aggregates for three days prior to washing, 

unreacted surface sites were then blocked by incubation with mercaptohexanol (10 mM, 0.5 h) 

followed by washing in pH 7.0 Tris-HCl buffer, 100 mM NaCl and 10 mM MgCl2 (supporting 

information). We measured SERS spectra at a range of defined potentials at pH 3.2,where the 

protease is known to possess optimal activity.
18

 The potential was defined through control of the 

relative amounts of oxidized and reduced glutathione in accordance with the Nernst Equation.
19 

All Raman spectra were collected using a Renishaw InVia Raman system with a 785 nm diode laser 

illuminating the sample with a power of 30 mW through a 50x Leica water objective (NA 0.8) on a 

heat controlled stage at 25 
o
C and 37 

o
C. 
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Scheme 1. Diagonal cross-correlation factors Г calculated with Pearson function correlating 25 

spectra at GSH/GSSG adjusted redoxpotentials from -100 mV to -300 mV. Values close to 1 describe 

conformational stability, and decreasing Г values depict a dynamic conformational change. The dip at 

-200 mV suggests the dynamic breaking and formation of the internal disulfide bond of AS35. The 

error bars describe a single standard deviation over 3 independent experiments. 

 

At oxidizing potentials we expect the peptide attached to the nanoshells to be a homogeneous 

population of stably oxidized molecules. As the potential becomes progressively reducing, an 

increasing proportion of the population should become reduced - at the standard potential half of the 

population will be reduced and half oxidized and these two sub-populations will be in a dynamic 

equilibrium. At this potential we therefore expect to see the greatest degree of heterogeneity in the 

sample and also the greatest degree of dynamic switching between conformers. As the potential is 

then taken to more strongly reducing conditions, the population again becomes progressively more 

uniformly reduced and homogeneous. In order to look for potential dependent conformational changes 

of the type described above, we carried out cross-correlation analysis of 25 individual SERS spectra 

collected at the same potential. Cross-correlation was calculated using the Pearson cross-correlation 

factor, standardly used for SERS reproducibility determination,
5
 values from 0-1 show the qualitiy of 

spectral agreement. By carrying out this analysis we expect to be able to measure the degree of 

heterogeneity of the population and also the degree of dynamism within the population - a high cross-

correlation should indicate a stable homogeneous population and a low cross-correlation should 

indicate a dynamic heterogeneous population. 
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When we analyzed the results of these experiments ( Scheme 1) we indeed found a high 

crosscorrelation in oxidizing conditions with a pronounced dip at approximately -200 mV vs NHE, 

which is followed by a gradual increase as we moved towards increasingly reducing conditions. At -

200 mV the peptide is in a dynamic equilibrium between the oxidised (closed) and reduced (linear). 

The more we increase the potential towards more oxidizing values the more we push the equilibrium 

to a stable linearized conformation. These data confirm that at the most oxidizing and reducing 

potentials tested, there is a static, homogeneous population of molecules and that between these 

extremes we observe a heterogeneous, dynamic population - on this basis we can estimate the 

standard (breaking) potential for the peptide under these conditions to be approximately -200 mV vs 

NHE. While these data provide an approximate value for the standard reduction potential of the 

peptide, it raises the question - how well do these conformational changes correlate with the ability of 

the protease Cathepsin D to recognize and to digest the peptide16 In order to investigate this we 

measured the SERS spectrum of the peptide bound on NS as before, during and after incubation with 

Cathepsin D at -250mV. Scheme 2b shows these spectra: before digestion the spectrum exhibits 

strong sharp peaks; on incubation with Cathepsin D the spectrum maintains its features and actually 

gains some new sharp, intense peaks; after 30 minutes while the spectrum still contains some defined 

spectral features its intensity is greatly reduced and the area under the spectrum is reduced ~70%. 

When the activity of Cathepsin D is blocked by co-incubation with pepstatin A (a known inhibitor) 

we find no increase in signal due to Cathepsin binding and no decrease in intensity as a result of 

digestion - this confirms that the spectral changes observed are caused by interaction between the 

peptide and Cathepsin D. We attribute increase in signal as a result of Cathepsin D binding to 

conformational changes in the peptide or contributions to the spectrum from vibrational modes of the 

protease. While further investigation is certainly required to confirm the origin of these features, we 

and others have previously demonstrated that conformational changes in aptamer structure as a result 

of protein binding cause changes in the intensity and position of peaks in its spectrum.
14

 Furthermore, 

several of the new peaks which arise during incubation with Cathepsin D correlate well with 

vibrational modes of amino acids at the entrance to the Cathepsin D binding site which are not 

represented in the peptide (Assignment of the extremely strong feature at 1258 cm
-1

 and strong and 

sharp features at 670 cm
-1

, 854 cm
-1

, 1002 cm
-1

 or 1425 cm
-1

 in the "bound" correlates well with the 

spectra of Tyr and of Phe.
5,20,21

). Importantly, the quantifiable decrease in spectral intensity (measured 

as the difference between the integral under the curve before and after digestion) is an ideal way in 

which to compare the extent of digestion at different potentials. Scheme 2c shows the change in 

spectral area caused by digestion as a function of potential and clearly shows that there is only a 

measurable change in intensity as a result of digestion at potentials more negative than -200 mV vs 

NHE with the extent of digestion increasing towards more reducing conditions. When the digestion 

was carried out at -300 mV in the presence of pepstatin (an inhibitor of Cathepsin D) there was no 

measurable change in spectral intensity. The results of digestion at different potentials agree with 
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those measured on the basis of population heterogeneity in (Scheme 1) and confirm that the increase 

in extent of digestion correlates well with the transition from oxidized to reduced peptide. 

While the above data gives quantitative information about the potential at which peptide cleavage 

occurs, it does not give any information about the site of cleavage or the chemical composition of the 

residual peptide on the nanoshell surface. While it is clear that the Raman spectrum of the residual 

peptide on the nanoshell contains well defined features it is not trivial to either predict their 

assignments or to assign them by comparison to existing literature values. Therefore, in order to try to 

understand the spectrum of the residual peptide better, we first measured spectra of each of its 

individual amino acids. We measured these spectra by attaching homo-trimers of each amino acid to 

the surface of the nanoshells so that each molecule could experience an element of the conformational 

freedom available which would be available to it in the peptide. Using this library of spectra we 

constructed model spectra of each of the possible residual cleavage products by simply adding 

together the spectra of the component amino-acids. Each of these "model" spectra were then 

compared to the spectrum of the post-digest residual peptide using a Spearman correlation. In order to 

aid comparison of spectra on the basis of peak position, the first derivative of the spectra were 

calculated after averaging and background subtraction, and correlation was calculated using the 

correlation coefficient function in Equation (1). The advantage in the use of the Spearman rank 

correlation factor lies in its ability to compare curved features better, with significant values of 0.01 

and the possibility to determine anti-correlation. 

(1) 

ρ = 1 –  

 

 

ρ    Spearman Rank correlation 

di   difference between the ranks of corresponding values (yi - xi) 

n    number of values in each data set 

Comparison of the post-digest residual peptide with all the possible model spectra gives a gradual 

increase in correlation up until the first Phe as seen in Scheme 3. After this point there is a gradual 

loss in correlation as the model peptide grows in length. This data suggests that the closest site of 

peptide cleavage to the surface of the particle is between Phe and Asn and this finding correlates well 

with the known restriction sites for Cathepsin D digestion of this peptide.16 When the model spectra 

are compared with the spectrum of the peptide which was treated with Cathepsin D at -100 mV, 

where there was no loss in spectral intensity there is a gradual increase in correlation until the ninth 

position where the bend in the peptide could be predicted with slight decrease in the correlation factor 

after this point and might be caused by some digestion at the N-terminal. 

6Ʃd
2

i 

-------------------------- 

n(n
2
 – 1) 
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Scheme 2. a) Sketch showing the closed form of the peptide bound with its C-terminus (Asp) to the 

NS surface with Cathepsin D restriction sites in red. b) Average of 25 spectra of digestion experiment 

with Cathepsin D at -250 mV. Shown spectra are after preincubation with buffer at -250 mV (black), 

directly after the incubation with Cathepsin D (red) and after incubation, denaturation and wash of the 

sensor (blue). c) Integrals of digestion experiments at redoxpotentials of -100, -250, -300 mV and 

control experiments with non-AS35 specific protease Cathepsin C and pepstatin inhibited Cathepsin 

D at -300 mV, comparing before, during and after the incubation with Cathepsin. 
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Scheme 3a compares the experimentally measured spectrum of the digested peptide, at -250 mV with 

the Raman model obtained from the AA-library for to possible fragments Ala-Ser-Arg-Asn-Asp 

(ASRND) and Phe-Ala-Ser-Arg-Asn-Asp (FASRND). We have focussed on these fragments because 

the FASRND bond is the shortest residual peptide predicted on the basis of known restriction sites 

and should correlate better than ASRND.
16

 The first notable observation here is that while the spectra 

of ASRND and FASRND show many similarities with the Raman features of the measured spectrum 

there are significant differences as between 440 cm
-1

 and 560 cm
-1

 or in the range between 600 cm
-1

 

and 700 cm
-1

 where peak positions and intensities match between the experimental and the model 

data. Furthermore when comparing the spectra of the model peptides with the experimental it is clear 

that vibrational modes from phenylanaline are represented in the experimental spectrum. Examples 

for this are the features at 1220 cm
-1

 and 1540 cm
-1

, which can be assigned to the aromatic ring 

stretches of the Phe as shown in Scheme 3a.
20,22

 A comparison between correlation coefficients he 

sum of the model differential AA-spectra of the protease restriction experiments at -250 mV and -100 

mV vs NHE gives further indication as shown in Scheme 3b. At -250 mV the G value rises to a 

maximum at the predicted restriction site with an abrupt decrease after the corresponding Phe. 

Furthermore, at -100 mV no similar feature can be found. That means that the construction of AA-

chain modelspectra can be used to determine residuals peptide fragments by SER spectroscopy. 

(turn to next page →) 
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Scheme 3. a) Spectral comparison between constructed peptides ASRND and FASRND and the 

spectrum acquired after digest at -250 mV, including the difference spectrum between the models 

FASRND-ASRND. b) Spearman cross correlation comparison between constructed peptides of AS35 

up to Proline and the same digestion experiment. 
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In summary, we have shown that SERS can be used to investigate the electrochemistry of a peptide. 

Further, we have shown that the pseudo-standard reduction potential of the peptide correlates with the 

reactivity of this peptide with its cognate protease. Finally we have shown that SERS can be used to 

give information on the products of digestion. These findings open exciting possibilities for 

investigating the redox control of protein/protein interactions and the measurement of conformational 

states of biomolecules. 
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