
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phylogenetic surveillance of viral genetic diversity and the
evolving molecular epidemiology of human immunodeficiency
virus type 1

Citation for published version:
Gifford, RJ, de Oliveira, T, Rambaut, A, Pybus, OG, Dunn, D, Vandamme, A-M, Kellam, P, Pillay, D & UK
Collaborative Grp HIV Drug 2007, 'Phylogenetic surveillance of viral genetic diversity and the evolving
molecular epidemiology of human immunodeficiency virus type 1' Journal of Virology, vol 81, no. 23, pp.
13050-13056., 10.1128/JVI.00889-07

Digital Object Identifier (DOI):
10.1128/JVI.00889-07

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher final version (usually the publisher pdf)

Published In:
Journal of Virology

Publisher Rights Statement:
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial
License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1128/JVI.00889-07
http://www.research.ed.ac.uk/portal/en/publications/phylogenetic-surveillance-of-viral-genetic-diversity-and-the-evolving-molecular-epidemiology-of-human-immunodeficiency-virus-type-1(8a9f5f3f-8f95-4a00-962d-21b11ad7fb3e).html


Vol. 24 no. 1 2008, pages 34–41
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm540

Sequence analysis

Estimation of an in vivo fitness landscape experienced by

HIV-1 under drug selective pressure useful for prediction of

drug resistance evolution during treatment
K. Deforche1, R. Camacho2, K. Van Laethem1, P. Lemey1,3, A. Rambaut4,
Y. Moreau5 and A.-M. Vandamme1,*
1Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium, 2Centro Hospitalar de Lisboa
Ocidental, Lisbon, Portugal, 3Department of Zoology, Oxford University, Oxford, 4Institute for Evolutionary Biology,
University of Edinburgh, Edinburgh, UK and 5ESAT, Katholieke Universiteit Leuven, Leuven, Belgium

Received on January 4, 2007; revised on October 19, 2007; accepted on October 22, 2007

Advance Access publication November 17, 2007

Associate Editor: Burkhard Rost

ABSTRACT

Motivation: HIV-1 antiviral resistance is a major cause of antiviral

treatment failure. The in vivo fitness landscape experienced by the

virus in presence of treatment could in principle be used to determine

both the susceptibility of the virus to the treatment and the genetic

barrier to resistance. We propose a method to estimate this fitness

landscape from cross-sectional clinical genetic sequence data of

different subtypes, by reverse engineering the required selective

pressure for HIV-1 sequences obtained from treatment naive patients,

to evolve towards sequences obtained from treated patients. The

method was evaluated for recovering 10 random fictive selective

pressures in simulation experiments, and for modeling the selective

pressure under treatment with the protease inhibitor nelfinavir.

Results: The estimated fitness function under nelfinavir treatment

considered fitness contributions of 114 mutations at 48 sites. Estimated

fitness correlated significantly with the in vitro resistance phenotype in

519 matched genotype-phenotype pairs (R2
¼0.47 (0.41�0.54)) and

variation in predicted evolution under nelfinavir selective pressure

correlated significantly with observed in vivo evolution during nelfinavir

treatment for 39 mutations (with FDR ¼ 0.05).

Availability: The software is available on request from the authors,

and data sets are available from http://jose.med.kuleuven.be/
�kdforc0/nfv-fitness-data/.

Contact: annemie.vandamme@uz.kuleuven.be

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

HIV antiviral drugs interfere with viral proteins resulting in the

inhibition of HIV replication. In many cases, HIV escapes the

inhibition of these drugs by selection of drug resistance

mutations, leading to treatment failure (Vandamme, 1999). To

combine drugs in an effective treatment therefore requires taking

into account the presence of resistance mutations, and resistance

testing has become a standard of care (Vandamme et al., 2004).

Different viral mechanisms may be distinguished that affect

short-term versus long-term response to antiviral treatment.

In addition to the impact of other factors such as adherence,

potency of therapy and pharmacokinetics, the short-term

response to treatment is mainly determined by the susceptibility

of the virus to the drugs. In the long-term, susceptible virus may

evolve to acquire resistance mutations, and the expected time

needed for the virus to evolve the necessary resistance mutations

is related to the number of nucleotide substitutions required,

which can be quantified as the genetic barrier. Several

bioinformatics methods have been used successfully in the field

of antiviral drug resistance, including methods that predict

in vitro phenotypic resistance from the genetic sequence, and

methods that describe qualitative relationships between different

mutations selected during treatment (Beerenwinkel et al.,

2005b). Recently, these techniques were combined to compare

the genetic barrier for individual drugs versus drug combinations

(Beerenwinkel et al., 2005c).

Due to technical shortcomings, problems with the interpreta-

tion of the results, and the lack of a genetic barrier concept, in

vitro phenotypic assays display limitations in their capacity of

predicting therapy outcome (Van Laethem and Vandamme,

2006). Therefore, the usefulness of machine-learning

approaches to predict resistance phenotype from genotype

may be limited. On the other hand, the success of attempts to

directly learn genotypic patterns responsible for reduced

treatment response from clinical data has been limited by the

lack of sufficient data, and the confounding effect of many other

factors (DiRienzo and DeGruttola, 2002). The in vivo fitness of

the virus in presence of treatment, which reflects both effects

of drug resistance and replication capacity,1 determines the

immediate treatment response, but cannot be measured directly.

*To whom correspondence should be addressed.

1In this article, the universal meaning of fitness as the capacity to
replicate in a given environment is used, rather than as a synonym for
replication capacity in a drug-free environment as is often the case in
the HIV drug resistance community.

� 2007 The Author(s)
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However, HIV tries to recover its ability to replicate
efficiently in presence of treatment by accumulating resistance

mutations, thus exploring sequence space in the immediate
neighborhood of the current sequence. Therefore, observed

evolution in clinical sequences at treatment failure provides

information about the fitness landscape, but only in the
immediate neighborhood of the current sequence. In this

article, we present a method to reverse engineer this fitness

landscape experienced by HIV-1 in presence of treatment as a
function of the genetic sequence, from observed selection

during treatment in clinical sequences. The method searches for

a fitness landscape, which explains how an observed population
of treated sequences could have evolved from a population of

untreated sequences under selective pressure. After showing

that random, but known fitness functions could be successfully
estimated in this way, we applied the method to model the

fitness landscape of HIV-1 in presence of the protease inhibitor

(PI) nelfinavir (NFV).

2 MATERIALS AND METHODS

2.1 Clinical data set

To estimate the fitness function under NFV selective pressure, clinical

data was pooled from the Stanford HIV Drug Resistance Database

(Kantor et al., 2001), from the University Hospitals, Leuven, Belgium,

and from Hospital Egas Monis, Lisbon, Portugal, to create a treated

population P
T of 1026 sequences from patients with experience to NFV

as sole PI, and a naive population P
N of 7774 sequences from PI naive

patients. At most one treated and one naive sequence per patient was

used, and duplicate sequences (that were present in the hospital

database but also published in the Stanford database) were identified

and removed. The treated population consisted mostly of HIV-1

subtype B sequences, but included also a large number of subtype G

and subtype C sequences (Fig. 1), as determined from the protease and

partial reverse transcriptase sequences using the REGA HIV-1 Subtype

tool v2.0 (de Oliveira et al., 2005). Nucleotide ambiguities that occur

commonly in the population sequences were resolved by randomly

substituting the mixture with a suitable pure nucleotide. Using a

threshold of 0.5% prevalence at variable sites, 114 mutations at 48

protease positions were included in the fitness function models, and are

listed in Supplementary Material A. To remove redundancy, the most

prevalent mutation at each position was considered the ‘wild type’ and

was omitted from the fitness function model, as its presence was implied

in the absence of any mutation.

2.2 Method to estimate a fitness function

We present a method with objective to learn a function F(A1, . . . , An),

where Ai presents presence or absence of a mutation, that represents the

fitness landscape of HIV under drug selective pressure. To learn F, we

find a function that fits with the evolution of the virus in a naive

population of patients PN to a treated population P
T, and is closest to

neutrality (minimizing |F� 1|). The fitness function F incorporates

interactions indicated using Bayesian Network (BN) learning, and its

parameters are estimated using an iterative procedure where evolution

for P
N over the current fitness function estimate is simulated, and

compared to P
T.

2.2.1 Fitness function structure The protease amino acid sequen-

ces from the treated population P
T were used to learn interactions

between mutations as described before (Deforche et al., 2006).

Briefly, a data set was created where a boolean variable indicated the

presence of each included mutation. BN structure learning (Myllymäki

et al., 2002) on this boolean data was used to discover relationships

between these mutations that may indicate epistatic fitness effects. By

assuming conditional independencies, the Bayesian Network refactors

the Joint Probability Distribution (JPD) in a product of Conditional

Probability Distributions (CPD), leading to a reduction in number of

parameters to model the JPD. Formally, for n variables A1, . . . ,An

(representing amino acid mutations), we would write:

PðA1; . . . ;AnÞ ¼
Yn

i

PðAi j parents ðAiÞÞ

with P(A |B) the conditional probability of A given B, and parents (Ai)

the parents in the BN structure of variable Ai. We denote the most

probable network of the amino acid sequences of the treated population

P
T with structure ST and CPD parameters �T as BNT(�T, ST).

We model the relative fitness function F(A1, . . . , An) in the same way

as BNT(�T, ST) refactors the JPD:

FðA1; . . . ;AnÞ ¼
Yn

i

FðAi j parents ðAiÞÞ

with parents (Ai) the parents in ST, and F(A |B) the Conditional Fitness

Contribution (CFC) of the presence of A, depending on the presence of

B. The assumption here is that if two mutations are synergistic for

example, they would occur more often together than not, and a

dependency should be visible in the JPD too. See Supplementary

Material B for an example.

The CPDs are modeled by specifying the probability for a mutation

Ai given any pattern of parent mutations k, in Conditional Probability

Tables (CPTs): �i,k ¼ P(Ai ¼ 1| parents(Ai) ¼ k). Similarly, we used

Conditional Fitness Tables (CFTs) to model the CFCs for each

mutation Ai, which specify a different fitness contribution of the

presence of a mutation Ai for every pattern of parent mutations: �i,k ¼

F(Ai ¼ 1| parents(Ai) ¼ k).

2.2.2 Model of evolution Both for estimating the fitness function

parameters, and for prediction of sequence evolution during treatment,

the same stochastic model of HIV evolution was used. Evolution was

considered as an accumulation of fixations of nucleotide mutations in

the HIV intra-host population, as reflected in the consensus sequence,

under the selective pressure of an arbitrarily complex fitness function.

This corresponds roughly to how HIV resistance evolution is observed

in population sequences obtained by genotypic resistance tests (Van

Laethem and Vandamme, 2006).

The HIV intra-host population was modeled by a finite ideal Wright–

Fisher population with selection andmutation, using empirical estimates

of the HIV intra-host effective population size, mutation rate and

B

G
C

Other

Unknown

Fig. 1. HIV-1 subtype distribution of NFV treated population. Other

subtypes were mostly CRFs. Sequences whose subtype could not be

determined either because they were recombinant, or because only the

protease was available were classified as Unknown.

In vivo fitness landscape modeling HIV-1 drug resistance
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mutation rate biases derived from literature, and selection coefficients

derived from the fitness function F. Analytical results lack for fixation

time distributions of mutations in the Wright–Fisher model for all but

the simplest cases (Ewens, 1979). Therefore, to sample from these distri-

butions, for a Wright–Fisher model with multiple loci and a complex

fitness function with epistatic interactions, an approximate simulation of

this model was implemented. For a detailed description of the imple-

mented model and approximations see Supplementary Material C.

2.2.3 Fitness function parameters The parameters �i, k of the

function F are estimated so that evolution over the fitness landscape of a

naive population P
N resembles the treated population P

T. Therefore,

evolution is simulated for sequences sampled from the naive population

P
N using the fitness function, to obtain an evolved population P

E. The

difference between the sequence populationsPE andPT, whichmust thus

be minimized, is measured by comparing the parameters of BNT(�T, ST)

of the treated data set, with BNE(�E, ST), a BN estimated from the

simulated population using the structure that was learned from the

treated data set. Thus, we measure and minimize the difference in

prevalence of eachmutational pattern that is modeled by the BN, and for

which the fitness function specifies a separate fitness contribution.

Given this minimization objective, the parameters �i, k are not

necessarily unique, since we cannot quantify how unfit unobserved

mutational patterns are. Indeed, we can only determine how unfit these

patterns must be at least to explain their lack of evolution. We constrain

the search to a unique solution by minimizing |�i, k � 1 | for each

parameter �i, k, as a secondary objective (with a low weight compared to

the first objective).

An iterative algorithm was used to estimate the parameters. The

algorithm starts initially from a flat fitness function (i.e. F(A1, . . . , An)

¼ 1), and in each iteration this function is updated in a step-wise

fashion. A population P
E is computed using the current estimate of the

fitness function F. The fitness function parameters �i,k are subsequently

adjusted based on the difference in the sufficient statistics (which reflect

the counts) related to the BN parameters �Ei; k and �Ti; k: �i, k is increased

with a small multiplicative factor (1þ �i,k) when there is too few of

mutation Ai for parent combination k in the evolved versus treated

population, or vice versa if there is too much of mutation Ai. By using

the sufficient statistics instead of the actual CPD parameters, uncer-

tainty on these parameters is taken into account. The step sizes �i, k are

dynamically adjusted depending on the convergence of the correspond-

ing �i, k. Details, pseudo-code, and convergence properties of the

algorithm are presented in Supplementary Material D.

The amount of evolution experienced by HIV under treatment

depends on many factors such as the baseline viral load, the potency of

the combination therapy to suppress residual replication (which

depends on the amount of resistance), patient adherence and duration

of the therapy. The probability distribution for the effective number of

generations under drug pressure between sequences from drug naive

and treated patients P(GT), which is used to create P
E, is in general

unknown and was assumed to be uniform in the interval [0, Gmax], with

Gmax a maximum limit for the number of generations. Variation of Gmax

does not affect the shape of the landscape, but its steepness (lower

values result in a steeper landscape).

2.2.4 Phylogenetic guide tree The sampling of sequences from

P
N was guided by a phylogenetic tree, and more weight was given to

sequences from the naive population that were epidemiologically linked

to the treated population. This assures that the sampled population had

a similar epidemiological background to the treated population

avoiding that mutations linked to epidemiologies with a different

distribution among these population were assigned as arising during

treatment [an improvement compared to stratifying according to

epidemiology (Deforche et al., 2006; Kantor et al., 2006)]. The protease

and partial reverse transcriptase nucleotide sequences were used to

reconstruct a neighbor-joining phylogenetic tree including all naive and

treated isolates used in the training data. The tree was built using PAUP

(Swofford, 2000) using the HKY-� substitution model, and codons

representing IAS resistance associated positions (Johnson et al., 2005)

were excluded to avoid problems of convergent evolution.

Each sequence nT from the treated population P
T added a

contribution k e� r d(nT, nN) to the sampling weight of a sequence nN,

with d (n1, n2) the tree distance between two taxa n1 and n2, r a decay

factor and k a normalizing coefficient so that
P

nN ke�rd ðnT; nNÞ ¼ jPTj�1.

2.2.5 Constants For the HIV simulation model, a constant intra-

patient effective population size Ne¼ 104 was assumed, a value

previously estimated from in vivo observations during treatment

(Nijhuis et al., 1998; Rouzine and Coffin, 1999), and an average

mutation rate � ¼ 2.17�10�5 mutations/site/generation (Mansky and

Temin, 1995) was used. Furthermore, we used base-dependent mutation

rates �i ¼ �(bfrom, bto) that were estimated from in vivo longitudinal

data (Deforche et al., 2007). For the estimation, we used Gmax ¼ 200,

corresponding to about a year of evolution, given an estimated

generation turnover time of � 1.5 days; LE
¼ |PE | ¼ 10 � |PT |

and � ¼ 10� 7.

2.3 Validation experiments

2.3.1 Correlation with nelfinavir resistance phenotype Using a

public data set of matched genotype–phenotype pairs for subtype B

sequences [from the Stanford HIV Drug Database (Kantor et al.,

2001)], estimated fitness was compared to in vitro resistance fold change

phenotype. Sequences with unknown amino acid mutations (‘Z’ or ‘X’)

were removed, as were sequences with a fold change at the upper

detection range of the assay. For each of the remaining 519 amino acid

sequences j, fitness f̂j was estimated from resistance fold change Rj,

using (Holford and Sheiner, 1982):

f̂j ¼
ej

1þ D
Rj

with ej the replication capacity of the virus and D the effective drug

concentration. The values ej are generally unknown, and ej ¼ 1 was

assumed for all strains when computing f̂j. The fitness estimated from

the phenotypes was then compared with the fitness computed using the

estimated fitness landscape by computing the correlation coefficient,

which was indifferent to the value of D.

2.3.2 Correlation with observed nelfinavir resistance
evolution In 404 patients for which a baseline and consecutive

follow-up sequence during NFV treatment was available, the accuracy

of the model to predict observed resistance evolution was evaluated.

These pairs were independent from the cross-sectional training data. For

each wild type and mutation included in the fitness function, correlation

of observed evolution (0 or 1) with predicted evolution (05p51) was

evaluated. Correlation with observed evolution was analyzed with a

linear model, which included next to the predicted evolution a non-linear

correction for the number of observed substitutions for each sequence.

Correction for multiple testing was done using the Benjamini and

Hochberg method with FDR = 0.05. An observed mixture (such as

L63LPA) was evaluated against predicting evolution of the mutations

(for this example L63P or L63A). Prediction of loss of mutations in

mixtures (such as LPA63P) was not considered.

3 RESULTS

3.1 Simulation experiments

To illustrate convergence properties of the method, the method

was tested in two series of simulation experiments: (i) to recover

K.Deforche et al.
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10 random but known fitness functions for HIV, each

corresponding to a random fictive selective pressure on

protease, and (ii) to re-estimate the fitness function that was

estimated for HIV in presence of NFV, from four training data

sets of varying size.
Each of the 10 random fitness functions used the same 114

mutations as those considered for the NFV fitness function

(listed in Supplementary Material A), and was generated with

100 random interactions (BN arcs), and random fitness

contributions for presence of different mutations and patterns

of mutations sampled from the distribution 1þU(0, 1)6. For

each random fitness function, a training data set of 1000

sequences was generated by evolving PI naive sequences using

the fitness function for g generations, sampled from distribu-

tion P(GT). Similarly, the estimated NFV fitness function was

used to create training data sets of size 513, 1026, 2052 and

10 260. The generated training sequences together with the PI

naive sequences were then used to estimate the original

(random or estimated NFV) fitness function.
A weight w was defined for each arc in a random BN as the

change in likelihood of that BN in the corresponding generated

data set, when removing the arc, and reflects the strength of the

interaction in the generated sequences. For around 60% of

arcs, a value of w51 indicated that the implied interaction was

not considered during evolution. These arcs were in general not

present in the learned BN. Of arcs with w41, over 60% were

present in the learned BN, with higher probability for arcs with

higher w. Around 12% of arcs in the learned BNs indicated the

obvious antagonism between different mutations at a single

position (a consequence of the chosen data representation), and

other artefact arcs mostly indicated associations between

polymorphisms. The accuracy of the estimated fitness functions

was evaluated by correlation of known and estimated fitness for

1000 independent validation sequences that were generated in

the same way as the training data. Results were similar for the

random and estimated NFV fitness functions. Correlation

coefficients showed considerable variation with values for R2

between 0.47 and 0.84 (see Supplementary Material E). Low

correlation values were associated with a banding pattern in the

scatter plots. When adding subtype as an explanatory variable

to the linear regression, these banding patterns disappeared,

and correlation improved with R2 ranging between 0.79 and

0.94. This indicates that the estimated fitness landscapes

performed well to explain intra-subtype variation of fitness

under treatment, but not inter-subtype variation, which is

indeed not related to fitness changes under treatment.

3.2 Nelfinavir fitness function

3.2.1 Nelfinavir Bayesian network A BN was estimated

from the treated sequences to estimate epistatic fitness

interactions between the included mutations. The network

with highest a posteriori probability, that served as a blueprint

for the fitness function, included 271 arcs (of which 33 indicated

antagonisms between different mutations at a single position,

which is an artifact caused by the boolean data representation),

and the corresponding fitness interactions were included in the

fitness model. The network was similar to the one described

previously (Deforche et al., 2006), but here we allowed for more

putative interactions because no bootstrap procedure was run
to reduce the entire model. Bootstrap support for an arc reflects

the robustness of the arc against sampling effects in the data set,

and is only important when inferring conclusions from the

presence or absence of arcs.

3.2.2 Nelfinavir fitness function By comparing the PI naive
population with the NFV treated population, the parameters

for the fitness function during NFV treatment were estimated

using the iterative procedure described in Methods section, and
using a phylogenetic guide tree to correct for different

epidemiology of naive and treated viruses.
The fitness function modeled contributions and epistatic

interactions of well-described resistance mutations. For exam-

ple, in absence of the well-described D30N major resistance

mutation, the model predicted no contribution of the N88D

mutation to fitness under NFV selective pressure. In presence
of a D30N mutation, the model predicted a contribution of

58% for N88D, and in presence of both D30N and V77I, a

contribution of 75%.

3.2.3 Correlation with in vitro resistance phenotype Correla-
tion with in vitro resistance fold change data for NFV was

investigated for 519 sequences (not included in the training data

set), assuming no effects of replication capacity and a constant

drug concentration. The log estimated in vitro fitness showed a
reasonable correlation with the log estimated in vitro fitness

(R2
¼ 0.47 (0.41� 0.54), p510� 15, Fig. 2) with no clear trend

in the differences.

3.2.4 Correlation with observed evolution The ability of the
model for evolution using the estimated fitness function, to

predict observed evolution during NFV treatment, was evalu-

ated by comparing predicted evolution with observed evolution

in 404 patients treated with NFV. In Figures 3–6 the predicted
evolution is shown for some examples of sequences from patients

for which the prediction was in agreement with observed

evolution, meaning the observed sequence after NFV failure

was the sequence with the highest predicted probability
compared to the other probable sequences of the same

generation. These graphs illustrate variation in prediction,

caused by variability in baseline sequence. In Table 1, the

mutations were listed for which variation in predicted evolution

showed a significant positive correlation with observed evolu-
tion, after correcting for multiple testing. Negative correlations

were not found for any mutation, and thus we made no overall

wrong predictions. For some patients under NFV treatment,

only minor (or secondary mutations) (Shafer, 2002) were
predicted and observed in the virus, in absence of any major

mutation. This may provide an explanation why the initial

classification of primary and secondary mutations were unten-

able (now major and minor) since in reality for some patients

secondary mutations were observed first.

4 DISCUSSION

4.1 Estimating in vivo fitness during treatment

In this study, we presented a computational method to estimate

the in vivo fitness function of HIV-1 during treatment. The

In vivo fitness landscape modeling HIV-1 drug resistance
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estimated fitness landscape reflects the selective pressures on

HIV to evolve the necessary mutations to explain the change in

prevalence of single mutations or patterns of mutations in HIV

isolated from patients failing a specific treatment, compared to

treatment naive sequence data. The estimation follows two

consecutive steps. First, epistatic fitness interactions between

mutations are estimated. Since an interaction between two

mutations is expected to lead to a different observed prevalence

of one mutation depending on the presence of the other,

observed associations in prevalence may indicate such fitness

interactions. BN learning was used to search for interactions

between mutations as described in Deforche et al. (2006). These

interactions were included in a multiplicative fitness function

(Sanjuan et al., 2004), which describes fitness as a product of

independent contributions of presence of amino mutations,

augmented with independent contributions for combinations of

interacting mutations. Second, the fitness contributions were

estimated using an iterative procedure so that simulated

evolution over the fitness landscape of treatment naive

sequences resulted in sequences comparable to the sequences

from treated patients. Therefore, the fitness function models the

part of sequence space bounded by these circulating sequences

and does not extrapolate to sequences that are not observed in

the epidemic, and for which there is little interest in an

improved resistance interpretation.
The estimation was not based on in vitro experimental data,

such as resistance fold change assays and fitness assays, or on

in vivo correlates of viral fitness such as viral load, but instead

was estimated from observed evolution in clinical sequences.

Fitness was estimated based on the evolutionary principle that

substitutions observed in the consensus sequence of a popula-

tion under strong selective pressure are mostly fixed to increase

the fitness of the population. As such, the increase in prevalence

of a particular mutation in the population of sequences after

NFV failure, compared to the population of sequences that

were NFV naive, reflects the consecutive fixation of mutations

in a population that acquires increased fitness under NFV

selective pressure. Not only increase in prevalence of individual

mutations was considered, but also of patterns of mutations,

since epistatic fitness interactions alter the fitness impact of

mutations depending on a context of other mutations. The

fitness model included n-ary epistatic effects, which were

estimated using BN structure learning that has demonstrated

its ability to learn epistatic interactions between different

protein residues in general (Klingler and Brutlag, 1994) and

applied to HIV drug resistance mutations in particular

(Deforche et al., 2006).
Experiments with random fitness landscapes showed that the

method, at least within the assumptions of the model, could be

used to accurately estimate intra-subtype variation in fitness,

but in general does not allow learning of inter-subtype

variation. This may be explained by the fact that the method

relies on observed evolution to distinguish less fit and more fit

mutational patterns. Even if, for example, subtype C viruses

I15V E35D M36I
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0.24
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Fig. 3. Predicted evolution graph for a subtype B sequence (bold). Each

node corresponds to a sequence that is predicted to evolve from the

baseline sequence with the estimated probability given. An arc from

sequence X to sequence Y corresponds to a mutation with given

probability to evolve sequence X into sequence Y. Only sequences with

predicted probability p40.05 are shown. For this baseline sequence,

evolution of mutations D30N M36I was observed during NFV

treatment, corresponding to the predicted sequence with two mutations

with highest probability (dashed).
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Fig. 2. Estimating the in vivo fitness of HIV-1 during NFV treatment.

Comparison of estimated fitness from in vitro phenotypic resistance

data for 519 matched genotype–phenotype pairs, assuming no effects of

replication capacity and effective drug concentration D¼ 100.
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Fig. 4. Predicted evolution graph for a subtype B sequence (bold), for

which evolution of mutation V77I was observed during NFV treatment

(dashed). Legend as in Figure 3.
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would be less susceptible to NFV treatment, and therefore more

fit under treatment, a subtype B virus will never evolve to

become subtype C. Since only intra-subtype evolution under

drug selective pressure is observed, the method cannot estimate

the fitness impact of conserved patterns of polymorphisms in

different subtypes that are responsible for the fitness difference.

This explains the nature of the shifted bands in the scatter plots

(Figs 1 and 3 in Supplementary Material E), which disappear

when adding subtype into the linear regression model (Figs 2

and 4 in Supplementary Material E). Still, the method will use

differences in observed evolution under treatment in different

subtypes, to model fitness interactions between some of these

polymorphisms and certain resistance pathways.
Since fitness during treatment depends on the susceptibility of

the virus to the drug, the fitness estimate can be considered an

in vivo resistance phenotype, and should therefore correlate with

the in vitro resistance phenotype. While the correlation was

found to be highly significant (Fig. 2), discordance was higher

than with the random fitness landscapes. Uncertainty about

parameters, assumptions and simplifications made by the model

may explain part of the observed discordance. However, in this

evaluation we may question which one is the better estimate, our

computational approach taking into account only in vivo

parameters, or the in vitro phenotypic data. One could argue in

favor of the in vivo estimate, since the in vitro data suffers from

problems with the in vitro resistance assays, such as the

reproducibility at low fold changes, recombination artifacts

intrinsic for the recombinant virus assays used, replication
capacity of the recombinant virus, and other possible artifacts

from the in vitro test environment. The in vivo estimate on the
other hand, while based on indirect information, does take into

account the influence of replication capacity, and interaction
with the immune system through epitopes.
As a model for evolution in the HIV intra-host population, an

ideal Wright–Fisher model was assumed, seeded with empirical
parameters for HIV intra-host evolution from literature. The

model however did not include recombination, assumed a
constant population size and no other effects of selection besides

the treatment-related fitness function. Each of these assumptions
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Fig. 5. Predicted evolution graph for a subtype G sequence (bold), for which evolution of mutations M89I L90M was observed during NFV

treatment (dashed). Legend as in Figure 3.

Table 1. Predicted mutations during NFV treatment

m N n p m N n p

10F 390 17 1.11E–04 57R 50 7 1.28E–09

10V 388 11 2.21E–02 62V 322 42 4.56E–07

13V 283 34 8.89E–14 63P 133 27 4.38E–03

15V 331 18 4.68E–02 64V 329 22 5.30E–07

20I 356 13 2.56E–08 70R 390 7 1.75E–04

20R 388 12 2.37E–07 71T 366 27 7.45E–03

20T 387 15 8.92E–07 71V 332 37 6.37E–07

20V 402 4 2.53E–09 74S 378 21 7.68E–04

30N 317 55 5.01E–07 77I 277 31 1.27E–05

33F 396 5 3.12E–02 82A 369 11 1.45E–07

33I 400 5 5.30E–17 85V 395 6 6.67E–07

35D 254 29 1.26E–04 88D 355 39 8.95E–12

35N 398 6 9.29E–16 88S 391 16 3.20E–02

36I 262 32 2.78E–04 89I 394 7 1.08E–11

36V 390 7 7.68E–03 89L 74 2 1.15E–02

39S 396 2 8.12E–10 89V 397 3 4.73E–03

45R 389 9 3.00E–02 90M 325 59 1.14E–07

46I 361 41 4.73E–04 92K 400 5 3.98E–02

46L 376 15 1.29E–02 93L 262 23 1.50E–04

54V 369 10 2.37E–03

Mutations for which predicted variation in rate of selection, based on the genetic

context, correlated significantly with observed selection in patients during NFV

treatment (FDR = 0.05). N: the number of baseline sequences without the

mutation, of which n developed the mutation during treatment. p: P-value for

correlation between predicted probability for selection of the mutation and

observed selection, after correcting for multiple comparison with Benjamini and

Hochberg.

T12S M36I S37N R41K
H69K L89M I93L

0.08

E35D M36I S37N R41K
H69K L89M I93L

0.11

E35D M36I S37N R41K
L63P H69K L89M I93L

0.07

L63P
(0.22)

M36I S37N R41K H69K
L89M I93L

T12S
(0.08)

E35D
(0.11)

M36I S37N R41K L63P
H69K L89M I93L

0.28

L63P
(0.28)

M36I S37N R41K I62V
H69K L89M I93L

0.05

I62V
(0.05)

E35D
(0.15)

M36I S37N R41K I62V
L63P H69K L89M I93L

0.05

I62V
(0.13)

L63P
(0.34)

Fig. 6. Predicted evolution graph for a subtype C sequence (bold),

for which evolution of mutations E35D L63P was observed during

NFV treatment (dashed). Legend as in Figure 3.
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are unlikely for HIV and this will impact the accuracy of the

estimated fitness landscape.Moreover, analytical results lack for

fixation time distributions in a Wright–Fisher model. An

accurate implementation of this model therefore requires a full

simulation, which was avoided because of the high computa-

tional cost, through several approximations that are detailed in

Supplementary Material C. Because the estimate was optimized

to predict evolution, however, the accuracy of predicted

evolution should be less affected (since the fitness function will

be distorted to predict observed evolution with an approximate

evolutionary model). These simplifications and approximations,

including the lack of recombination in the model, may be

avoided with availability of a more accurate, but also more

computationally demanding simulator.

4.2 Predicting evolution during treatment

The fitness landscape together with the evolution simulator

were used to predict evolution during treatment, and depending

on variation in the baseline sequences (presence of polymorphic

and resistance mutations), variation in rate of selection of

mutations was predicted that correlated significantly with

observed variation in selection for 39 mutations (Table 1).

The predictability of selection of a mutation that is more

prevalent in isolates after treatment implies the involvement of

that mutation in improving fitness in the presence of treatment.

However, a mutation whose selection does not depend on

genetic context may equally well be an important resistance

mutation, while such a mutation would not yield any predictable

variation of selection for thatmutation. Therefore, predictability

should not be interpreted as a quantification of the fitness gain.

For example, a common polymorphism such as I64V for which

there were 22 occurrences was about as significantly predicted as

L90M (which is non-polymorphic) for which there were 59

occurrences. This only indicates that selection of I64V is more

dependent on the genetic background than L90M. The 39

mutations included most of the described NFV resistance

mutations (Johnson et al., 2005): 10F, 30N, 36I, 46I/L, 71T/V,

77I, 82A, 88D/S and 90M. In addition, there were a number of

resistance mutations that have not been associated with NFV

but with other protease inhibitors: 10V, 13V, 20I/R, 33I/F, 36V,

54V, 62V, 63P, 85V and 93L, including mutations that have been

described only for the more recently introduced PIs atazanavir

or tipranavir (such as 13V, 20I, 33I/F, 36V, 62V, 85V and 93L).

These novel protease inhibitors may require more mutations

before losing clinical utility, but seem to be affected by the same

set of mutations that are selected by older inhibitors such as

NFV, and therefore cross-resistance may be underestimated.

For these novel mutations that are often selected and well

predicted, such as 13V, 35D, 62V, 64V or 93L, the fitness

landscape contains knowledge about the genetic context that

influences the fitness contributions of these mutations. This

knowledge could be used for further investigation of the

biological role and mechanism through in vitro mutagenesis

experiments.
A convenient representation of HIV resistance evolution is as

a probabilistic-ordered accumulation of resistance mutations.

Such models has been inferred previously from cross-sectional

data (Beerenwinkel et al., 2005), describing evolution starting

from a ‘wild-type’ sequence. We extended this approach by

creating individualized evolution graphs that predict evolution

for any sequence (Figs 3–6), wild type of whatever subtype or

recombinant, or partially resistant sequences that just enter

higher in the landscape. The examples illustrate how variation

in wild-type HIV-1 sequences influences the predicted evolu-

tion, for some sequences major or primary mutations arising

first, and for other sequences first minor or secondary

mutations, all in an ordered stochastic but predictable fashion.

Our predictions imply that resistance evolution is highly

individual, depending on the baseline sequence of the virus,

and thus could be used for guiding individualized treatment

choices. For example, the evolution graph in Figure 6 implies

a higher predicted genetic barrier, in expected number of

mutations before becoming resistant, than the evolution graph

in Figure 5, under the assumption that mutations E35D and

L63P do not cause resistance to NFV (Van Laethem et al.,

2002).
The technique presented here was developed to particularly

take into account the large natural diversity of HIV-1, and

estimates a fitness landscape that may be used across subtypes.

As further discussed in Supplementary Material F, no assump-

tions were made about wild type and mutation (a common

source for a subtype bias when using the subtype B reference

strain), and the method deals in a natural way with sequences

from other subtypes that have polymorphisms that are

considered resistance mutations in a subtype B genetic environ-

ment (such as M36I in subtype C). Since access to antiviral

medication is expanding beyond patients infected with HIV-1

subtype B, which is the most prevalent subtype in the Western

World but almost absent in other parts of the world, resistance

development in other subtypes requires more attention.

4.3 Related work and other applications

Beerenwinkel et al. (2005c) used a combination of phenotypic

data and a model of ordered resistance evolution learned from

cross-sectional data to estimate the genetic barrier against

zidovudine and lamivudine. A Poisson process for selection

of mutations was assumed to derive the expected selection

time from the observed selection probabilities along the

branches of mutagenic trees. Each mutagenic tree defines

possible evolutionary pathways on a lattice structure

(Beerenwinkel et al., 2005a) and the informative trees in the

mixture therefore constrain evolution a priori. In contrast, we

did not constrain evolution according to a limited number of

pathways, but let an evolutionary model, using the shape of the

fitness landscape, decide the probabilities of selecting particular

mutations.
While the method for estimating a fitness function was

developed to obtain a better understanding in HIV drug resis-

tance evolution with the objective of improving prediction of

treatment response, it could be applied to other selective pre-

ssures for HIV (such as adaptation to immune response) or

other organisms. The main requirement is that convergent

evolution is observed in a number of isolated populations exp-

eriencing the same selective pressure. This makes the technique

particularly well suited for fast evolving viruses, which by

their nature form relatively isolated intra-host populations.
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Other than genotypic sequence data, the method requires
estimates of effective population size and mutation rates.
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