
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Covalency in CeIV and UIV Halide and N-Heterocyclic Carbene
Bonds

Citation for published version:
Arnold, PL, Turner, ZR, Kaltsoyannis, N, Pelekanaki, P, Bellabarba, RM & Tooze, RP 2010, 'Covalency in
CeIV and UIV Halide and N-Heterocyclic Carbene Bonds' Chemistry - A European Journal, vol. 16, no. 31,
pp. 9623-9629. DOI: 10.1002/chem.201001471

Digital Object Identifier (DOI):
10.1002/chem.201001471

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Chemistry - A European Journal

Publisher Rights Statement:
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/chem.201001471
https://www.research.ed.ac.uk/portal/en/publications/covalency-in-ceiv-and-uiv-halide-and-nheterocyclic-carbene-bonds(f2cf3e77-6693-44dd-a9a0-ad2bfbaf422f).html


 

Covalency in Ce
IV

 and U
IV

 Halide and N-Heterocyclic Carbene Bonds** 

Polly L. Arnold,
1,
*

 
Zoë R. Turner,

1
 Nikolas Kaltsoyannis,

2,
*

 
Panagiota Pelekanaki,

2
 Ronan M. Bellabarba,

3
 

and Robert P. Tooze
3
 

 

[1]
EaStCHEM, School of Chemistry, Joseph Black Building, University of Edinburgh, West Mains Road, 

Edinburgh, EH9 3JJ, UK. 

[2]
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK. 

[3]
Sasol Technology UK, Purdie Building, North Haugh, St Andrews, KY16 9SR, UK. 

[
*

]
Corresponding authors; PLA e-mail: Polly.arnold@ed.ac.uk, fax: (+44) 1316506453; NK e-mail: 

n.kaltsoyannis@ucl.ac.uk, fax: (+44) 2076 797463 

[
**

]
We are grateful to the UK EPSRC, Sasol Technology UK, and the University of Edinburgh for funding. 

Supporting information: 
Supporting information for this article is available online at http://dx.doi.org/10.1002/chem.201001471 

Keywords: 

actinides; computational chemistry; covalency; lanthanides; N-heterocyclic carbenes 

Graphical abstract: 

  

This is the peer-reviewed version of the following article: 

 

Arnold, P. L., Turner, Z. R., Kaltsoyannis, N., Pelekanaki, P., Bellabarba, R. M., & Tooze, R. P. 

(2010). Covalency in CeIV and UIV Halide and N-Heterocyclic Carbene Bonds. Chemistry - A 

European Journal, 16(31), 9623-9629. 

 

which has been published in final form at http://dx.doi.org/10.1002/chem.201001471 

This article may be used for non-commercial purposes in accordance with Wiley Terms and 

Conditions for self-archiving (http://olabout.wiley.com/WileyCDA/Section/id-817011.html). 

 

Manuscript received: 27/05/2010; Article published: 23/07/2010 

Synopsis: 

The tetravalent oxidation state of cerium is unusual, and 

often associated with multiconfigurational behaviour. 

Analysis of the bonding in tetravalent rather than more 

conventional trivalent f-block complexes shows the 5f 

metal bonds to softer ligands are stronger and more 

covalent than 4f analogues. The use of trityl chloride as a 

simple oxidant to access Ce
IV

 is also shown. 
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Abstract 

Oxidative halogenation with trityl chloride provides convenient access to Ce
IV

 and U
IV

 chloroamides 

[M(N{SiMe3}2)3Cl] and their N-heterocyclic carbene derivatives, [M(L)(N{SiMe3}2)2Cl] 

(L=OCMe2CH2(CNCH2CH2NDipp) Dipp=2,6-iPr2C6H3). Computational analysis of the bonding in these and 

a fluoro analogue, [U(L)(N{SiMe3}2)2F], provides new information on the covalency in this relative rare 

oxidation state for molecular cerium complexes. Computational studies reveal increased Mayer bond orders in 

the actinide carbene bond compared with the lanthanide carbene bond, and natural and atoms-in-molecules 

analyses suggest greater overall ionicity in the cerium complexes than in the uranium analogues. 

 

Introduction 

Understanding the nature of bonding and the roles of the electrons in 4f and 5f metal complexes is of 

fundamental academic interest and has important implications in nuclear waste management,
[1, 2] 

and the 

debate over the extent of covalency in 5f-element chemistry that started decades ago is ongoing.
[3, 4]

 

In the high-level waste streams arising from nuclear-fuel reprocessing the common oxidation state for the f-

block cations encountered is +III, and the close chemical similarity of the trivalent lanthanide and actinide 

elements renders their separation difficult. Experimental observations that a 5f metal cation exhibits enhanced 

binding with a softer ligand (containing N, S, Cl, rather than O donors) than a 4f metal cation of similar size 

have been used as the basis for the development of chemical separators of lanthanides and actinides from 

these complex mixtures of cations. Trivalent 4f Ce and 5f U cations have similar ionic radii
[5] 

and thus the 

ligand affinities and bonding characteristics of pairs of their chelate complexes are often directly compared.
[6–

13]
 

Recently, chlorine K-Edge X-ray absorption spectroscopic studies on the bonding in the series of complexes 

[M(Cp*)2Cl2] (M=Ti, Zr, Hf, Th, U; Cp*=C5Me5) have been used to provide direct experimental measure of 

the covalency in the M Cl bond, which is significant, even for U
IV

 (at least 9 % of the Cl 3p orbital shows 

mixing with 6d and 5f metal-based orbitals).
[14]

 

By contrast to the early actinides, cerium is the only lanthanide with a chemically accessible +4 oxidation 

state. Indeed, due to a similar charge-to-radius ratio and solution chemistry, Ce
IV

 is often cited as a potentially 

useful model for Pu
IV

 complexes, which are very radioactive and difficult to manipulate.
[15, 16] 

Unfortunately, 

the synthesis of such Ce
IV

 complexes is highly dependent on the choice of solvent, reaction temperature and 

oxidant and is often low yielding. There are only a small number of reported Ce
IV

 amide complexes, some of 

which are in fact Ce
III

 with ligand-centred radicals.
[17–27] 

Scott and co-workers reported the oxidation of the 

triamidoamine complex [Ce(NN′)3] (NN′=[N(CH2CH2NR)3]3, R=SitBuMe2) with molecular halogens to afford 

[Ce(NN′)3X] (X=I, A) and the mixed valence [{Ce(NN′)3}2(μ-X)] (X=Br or Cl, B).
[18] 

Lappert and co-workers 
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described the preparation of [Ce(N′′)3X] (N′′=N(SiMe3)2 X=Cl or Br, C) in low (24–30 %) yield by oxidation 

of the common silylamido reagent [Ce(N′′)3] with TeX4 (X=Cl or Br) or PBr2Ph3, molecular halogens 

resulting in no reaction. 

 

 

 

Examples of organometallic Ce
IV

 complexes are also rare. The synthesis of 

[Ce(cot)2]
[28] 

(cot=cyclooctatetraenyl) and related complexes,
[29–31] 

combining a highly oxidising metal cation 

with a reducing anionic ligand, has led to intensive study and debate into assignment of the metal oxidation 

state.
[32–37] 

The first Ce
IV

 cyclopentadienyl complex
[38] 

was the tris(cyclopentadienyl)-supported 

Ce
IV

isopropoxide (D) reported by Marks et al.,
[39] 

closely followed by the crystallographically 

characterised tert-butoxide analogue reported by Evans et al.
[40] 

We have demonstrated the synthesis of [CeL4] 

(L=OCMe2CH2(CNCHCHNiPr); E).
[41, 42] 

The Ce
IV

 ion is supported by two bound and two unbound 

unsaturated backbone NHC ligands and is the only example of a Ce
IV

C two-electron σ bond. 

Computational studies comparing the extent of covalency in analogous lanthanide and actinide complexes are 

becoming increasingly common. Examples include studies of the bonding in 2,6-di(5,6-dipropyl-1,2,4-triazin-

3-yl)pyridine complexes of Cm
III

 and Eu
III

,
[43] 

backbonding in the Nd
III

 and U
III

 carbonyl complexes 

F3MCO,
[44] 

and our own work assessing both the extent and origin (f vs. d) of covalency in 

imidodiphosphinochalcogenide complexes.
[4, 12]

 

We have previously described the synthesis of saturated backbone NHC proligands, 

OCMe2CH2(CHNCH2CH2NR) (R=iPr, 2,6-iPrC6H3, 2,4,6-MeC6H2), and their complexes with both low- and 
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high-valent f-block cations.
[45, 46] 

Herein we report a new one-electron oxidation route to the synthesis of 

Ce
IV

 and U
IV

 starting materials and halide complexes, and the DFT computational comparison of the bonding 

in these two M
IV

 complexes supported by an NHC ligand. 

 

Results and Discussion 

Metal(IV) chlorides 

Straightforward syntheses of [Ce(N′′)3Cl] and [U(N′′)3Cl] by one-electron oxidation using trityl 

chloride: The difficulty in isolating high yields of pure Ce
IV

 amide starting materials described above led us to 

investigate a range of other potential oxidants. In our hands, trityl chloride, a simple, commercially available 

reagent, reacts with [Ce(N′′)3] to afford [Ce(N′′)3Cl] in quantitative yield before isolation [Eq. (Spiel um Platz 

drei)]. The yields stated in the equation are measured by integration of the NMR spectra against an internal 

standard, the isolated preparative scale yields are 81 (Ce) and 50 % (U). Likewise, [U(N′′)3] is readily and 

quantitatively converted to [U(N′′)3Cl], although the literature route to [U(N′′)3Cl] (by the reaction between 

UCl4 and three equivalents of NaN′′) proceeds in excellent yield.
[47] 

It should be noted that the use of trityl 

fluoride has been used previously to oxidise [U(Cp′)3] to [U(Cp′)3F] in good (45 %) yield 

(Cp′=C5Me4(SiMe3)).
[48] 

The pure [M(N′′)3Cl] complexes may be readily isolated from the dimer of [
.
CPh3] 

(Gomberg’s dimer, Ph3CCH(C6H4)CPh2)
[49] 

which is the only byproduct, by recrystallisation from a 

THF/hexanes mixture. 

 

   (1) 

 

Syntheses of Ce
IV

and U
IV

carbene complexes [Ce(L)(N′′)2Cl], [U(L)(N′′)2Cl] and [U(L)(N′′)2F] 

(L=OCMe2CH2(CNCH2CH2NDipp) Dipp=2,6-iPr2C6H3): In the same manner as for the metal 

tris(silylamido) complexes above, the yellow Ce
III

 and dark blue U
III

 complexes [M(L)(N′′)2] can be oxidised 

cleanly by one equivalent of Ph3CCl in toluene, Scheme 1, to afford dark red [Ce
IV

(L)(N′′)2Cl] and brown 

[U
IV

(L)(N′′)2Cl], respectively (see the Supporting Information for full characterising data). Attempts to 

oxidise [Ce(L)(N′′)2] using TeCl4 did not yield [Ce
IV

(L)(N′′)2Cl]. We note that it is possible to convert both 

[M(N′′)3Cl] complexes into the [M
IV

(L)(N′′)2Cl] carbene complexes by treatment with the proligand HL (with 

concomitant elimination of HN′′). This suggests that now a high-yielding route to cerium(IV) amides is 

available, much more coordination chemistry of this strongly Lewis acidic metal cation should be accessible. 
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The Ce
IV

 complex is diamagnetic: the 
1
H NMR spectrum is straightforward to interpret, and the carbene 

carbon resonance is observed at 237.4 ppm in the 
13

C NMR spectrum, a particularly high chemical shift. 

Single crystals of both chloride complexes were grown; the molecular structures are discussed below. 

 

 

Scheme 1. Synthetic routes to the Ce
IV

 and U
IV

 carbene-alkoxide halide complexes. 

 

During our investigations on the reactivity of the U
III

 complex, we treated [U(L)(N′′)2] with Ruppert’s reagent, 

SiMe3CF3, a molecule generally used to introduce a CF3 group.
[50] 

However, in our hands the only product 

isolable is the uranium fluoride [U
IV

(L)(N′′)2F], which was isolated as a red-brown solid in 69 % yield after 

toluene workup, Scheme 1. An X-ray diffraction study of single crystals of the fluoride [U
IV

(L)(N′′)2F] was 

also undertaken, see below. 

The iodide [U
IV

(L)(N′′)2I] is also accessible from the reaction of [U(L)(N′′)2] with tert-butyl iodide and has 

similar spectroscopic characteristics to the chloride and fluoride, but difficulties in the isolation of pure 

material led us to focus on the lighter halides. 

 

Molecular structures of Ce
IV

and U
IV

carbene complexes [Ce(L)(N′′)2Cl], [U(L)(N′′)2Cl] and 

[U(L)(N′′)2F]: Single crystals of [Ce(L)(N′′)2Cl], [U(L)(N′′)2Cl] and [U(L)(N′′)2F] were grown from cooled 
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solutions of the complexes in toluene. The molecular structures are shown in Figure 1, and selected distances 

and angles are collated in Table 1. 

(a) 

(b) 

(c) 

Figure 1. Displacement ellipsoid drawings of the molecular structures of a) [Ce(L)(N′′)2Cl], b) [U(L)(N′′)2Cl], 

and c) [U(L)(N′′)2F]. Lattice solvent molecules, hydrogen atoms and silyl methyl groups are omitted for 

clarity. 
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Table 1. Selected experimental distances [Å] and angles [°] for [Ce(L)(N′′)2Cl], [U(L)(N′′)2Cl] and 

[U(L)(N′′)2F], and computational data (in square brackets) on models for these systems and the Ce–F 

analogue. 

  [Ce(L)(N′′)2F] [U(L)(N′′)2F] [Ce(L)(N′′)2Cl] [U(L)(N′′)2Cl] 

M O [2.121] 2.082(4) [2.101] 2.061(2) [2.103] 2.072(2) [2.093] 

M N3 [2.308] 2.287(4) [2.308] 2.259(2) [2.282] 2.289(2) [2.279] 

M X (X=Cl, 

F) 

[2.102] 2.087(3) [2.113] 2.643(7) [2.641] 2.641(6) [2.636] 

M C [2.696] 2.654(6) [2.614] 2.692(3) [2.694] 2.668(2) [2.631] 

C-M-X [81.09] 79.90(16) [85.97] 79.87(6) [85.23] 81.83(5) [89.07] 

O-M-C [70.00] 71.59(17) [71.67] 72.18(8) [69.63] 72.89(7) [70.71] 

In all three molecular structures the metal cation is five-coordinate, and the arrangement of the ligands is very 

similar between complexes, allowing detailed comparisons to be made. The alkoxy–carbene ligand bite angle 

is small in all three complexes (72.18(8)° in Ce Cl, 72.89(7)° in U Cl and 71.59(17)° in the U F 

complex). 

 

Inspection of the differences between the Ce and U bonds to the softer ligands should provide an initial 

indication of the differences in covalency between the two metal cations. The five-coordinate radius for 

Ce
IV

 is not recorded in the Shannon radii lists, but the six-coordinate covalent radius is 1.01 Å, whilst six-

coordinate U
IV

 has a covalent radius of 1.03 Å, only 0.02 Å larger. Here, the Ce
IV

Ccarbene bond length is 

2.692(3) Å. Allowing for a 0.02 Å larger metal radius, the U
IV

Ccarbene lengths of 2.668(2) and 2.654(6) Å 

are not significantly (within the 3 σ criterion) shorter. 

It had been suggested that the short distance between the carbene carbon and a cis-coordinated π-donor ligand 

is due to the donation of electron density to the formally empty (but high-energy) carbene π orbital,
[51, 52] 

but 

we,
[53] 

and now others,
[54] 

have found no evidence for this in d
0
 metal halide/NHC complexes. Again in these 

three complexes, the halide is close to the carbene carbon atom, but this is apparently due to packing effects 

once again. 

 

Computational analysis 

Molecular structures of Ce
IV

and U
IV

carbene complexes [Ce(L)(N′′)2Cl], [U(L)(N′′)2Cl] and 

[U(L)(N′′)2F]: [Ce(L)(N′′)2Cl], [Ce(L)(N′′)2F], [U(L)(N′′)2Cl] and [U(L)(N′′)2F] were studied computationally 

by using DFT, with the SiMe3 groups replaced with SiH3 and Dipp by Me. Although it is known that formally 

Ce
IV

 organometallics may possess multiconfigurational ground states,
[32, 34, 35] 

we believe that a DFT approach 

is warranted in the present study as our principal aim is to assess differences in covalency between Ce
IV

 and 
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U
IV

, for which DFT should be adequate. Furthermore, multiconfigurational calculations of the present low-

symmetry targets are very likely intractable. 

To determine if the shorter M C bond lengths in the actinide molecules reflect increased covalency, we have 

probed the electronic structures at the optimised geometries using Mayer and natural analyses, and key results 

are collected in Table 2. Mayer bond orders (MBOs) contain all of the contributions to a bond between two 

atoms, that is, they take account of all bonding and antibonding interactions in a single number.
[55]

 It can be 

seen from Table 2 that the Ce C MBOs are very similar in the F and Cl compounds, as is the case for the U

C in the analogous 5f systems. However, comparison of the Ce systems with the U shows a significantly 

larger MBOs in the latter, consistent with the shorter M C bonds in 5f compounds. 

 

Table 2. M C Mayer bond orders, natural charges and populations (above formal values) for computational 

models of [Ce(L)(N′′)2F], [U(L)(N′′)2F], [Ce(L)(N′′)2Cl] and [U(L)(N′′)2Cl]. 

  Ce/F U/F Ce/Cl U/Cl 

M C MBO 0.33 0.46 0.34 0.44 

qM 2.60 2.48 2.53 2.35 

qC 0.10 0.08 0.10 0.09 

qX −0.65 −0.61 −0.65 −0.57 

M s population 0.12 0.17 0.16 0.21 

M d population 0.35 0.33 0.36 0.34 

M f population 0.93 0.90 0.95 0.98 

 

The natural charges indicate that the partial charge on the carbon atom of the NHC varies very little across the 

four systems studied. The charges on the halogen are the same in the two Ce compounds, while that on Cl is 

less negative than that for F in the U systems. Comparison of analogous Ce and U compounds reveals a less 

negative charge on the halogen in the latter. The metal charges vary the most across the target systems and 

show that the fluoride complexes have larger positive metal charges than the chloride and also that the Ce 

compounds have larger metal charges than the U. These data are consistent with greater ionicity in the Ce 

compounds. 

Table 2 also presents the natural atomic populations of the metals, given as the number of electrons above the 

formal value expected for M
IV

 (p populations were very close to the formal value in all cases and are omitted). 

Such enhanced populations may be taken as evidence of participation of the orbitals in covalent bonding, and 

it is clear that the f orbitals have much the largest populations. Comparison between the different systems 

yields a mixed picture. There are larger s populations in the U compounds versus the Ce analogues, while for 

the d orbitals there is a slight reduction from Ce to U. The f population increases from Ce to U for the Cl 

compounds, but decreases slightly for the F systems. The total M population (s+d+f) decreases in the order 
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[U(L)(N′′)2Cl]>[Ce(L)(N′′)2Cl]>[U(L)(N′′)2F]=[Ce(L)(N′′)2F], and this may be taken as evidence that 

covalency decreases in the same manner. 

We have recently begun to use analysis of electron density topology, in the form of atoms-in-molecules (AIM) 

calculations, to gauge the extent of covalency in actinide systems,
[56] 

and have applied this approach to the 

current targets. Table 3 collects electron (ρ) and energy density (H) data at the metal–carbon and metal–

halogen bond critical points. These data are indicative of largely ionic bonding in all four molecules,
[57] 

but it 

is noticeable that the values for the U systems are uniformly larger (in an absolute sense) than the Ce 

analogues. Given that, for both ρ and H, larger absolute values are associated with increased covalency, the 

present AIM results are entirely consistent with the conclusions from the Mayer and natural analyses in 

finding larger covalency in the 5f compounds. 

 

Table 3. Characteristics of the metal–carbon and metal–halogen bond critical points for computational models 

of [Ce(L)(N′′)2F], [U(L)(N′′)2F], [Ce(L)(N′′)2Cl] and [U(L)(N′′)2Cl]. 

  Ce/F U/F Ce/Cl U/Cl 

M C ρ 0.045 0.055 0.045 0.053 

M X ρ 0.105 0.110 0.059 0.064 

M C H −0.003 −0.007 −0.004 −0.007 

M X H −0.011 −0.013 −0.007 −0.009 

 

 

Conclusion 

Complexes of tetravalent Ce and U, [Ce(L)(N′′)2Cl], [U(L)(N′′)2Cl] and [U(L)(N′′)2F] have been made and 

characterised by single-crystal diffraction studies. Computational models of these, and the cerium fluoride 

analogue, have also been studied in order to assess the degree of covalency present within the complexes. 

The crystal structure data show very little difference between the complexes, within experimental error, but 

the slight shortening of the M C bond in [U(L)(N′′)2Cl] versus [Ce(L)(N′′)2Cl] is replicated, and indeed 

exaggerated, computationally. A significantly larger Mayer bond order is found in the uranium–carbene bond 

than the cerium–carbene bond, and greater ionicity in the cerium complexes than the uranium complexes 

overall is supported by natural and AIM analyses. 

Finally, we have also demonstrated that trityl chloride is an effective oxidant for Ce
III

 and U
III

 to make mixed 

ligand and organometallic Ce
IV

 and U
IV

 complexes. 
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Experimental Section 

All manipulations were carried out under a dry, oxygen-free dinitrogen atmosphere using standard Schlenk 

techniques, or in an MBraun Unilab or Vacuum Atmospheres OMNI-lab glovebox. 

Synthesis of [Ce(N′′)3Cl]: Toluene (10 mL) was added to a mixture of [Ce(N′′)3] (0.64 g, 1.0 mmol) and 

Ph3CCl (0.36 g, 1.3 mmol) to immediately afford a dark purple solution. The reaction mixture was stirred for 

1 h. The volatiles were removed in vacuo and recrystallisation from THF/hexanes (1/2) at −30 °C afforded 

[Ce(N′′)3Cl] as a dark purple microcrystalline solid. Yield 0.54 g (81 %); 
1
H NMR (C6D6, 400 MHz, 298 

K): δ=0.44 ppm (s, 54 H; SiMe). 

Synthesis of [U(N′′)3Cl]: A solution of Ph3CCl (0.25 g, 0.89 mmol) in toluene (5 mL) was added to a slurry 

of purple [U(N′′)3] (0.51 g, 0.71 mmol) in toluene (10 mL) to immediately afford a brown solution. The 

reaction mixture was stirred for 1 h before the volatiles were removed in vacuo. Recrystallisation from 

THF/hexanes (1/2) at −30 °C afforded [U(N′′)3Cl] as a brown microcrystalline solid. Yield 0.27 g (50 %); 
1
H 

NMR (C6D6, 400 MHz, 298 K): δ=−2.33 ppm (s, 54 H; SiMe). 

Synthesis of [Ce(L)(N′′)2Cl]: A solution of Ph3CCl (0.22 g, 0.81 mmol) in toluene (5 mL) was added to a 

slurry of [Ce(L)(N′′)2] (0.62 g, 0.81 mmol) in toluene (5 mL). The reaction mixture was stirred for 12 h, 

during which time it turned deep orange-red. Concentration to 5 mL and cooling to −30 °C yielded red-orange 

microcrystalline material. This was isolated by filtration and the volatiles were then removed in vacuo to 

afford [Ce(L)(N′′)2Cl] as a red-orange solid. X-ray diffraction quality crystals were grown from a saturated 

solution of the complex in toluene at −20 °C. Yield 0.22 g (34 %); 
1
H NMR (C6D6, 600 MHz, 298 K): δ=7.17 

(t, 
3
J=7.2 Hz, 1 H; 4-C6H3), 7.12 (t, 

3
J=7.2 Hz, 1 H; 3,5-C6H3), 3.29 (t, 

3
J=10.6 Hz, 2 H; NCH2CH2N), 3.24 

(sept, 
3
J=6.8 Hz, 2 H; HCMe2), 3.01 (s, 2 H; OCMe2CH2), 2.83 (t, 

3
J=10.6 Hz, 2 H; NCH2CH2N), 1.52 and 

1.16 (2 d, 
3
J=6.8 Hz, 2×6 H; HCMe2), 1.16 (s, 6 H; CMe2), 0.55 ppm (s, 36 H; SiMe). 

Alternative synthesis of [Ce(L)(N′′)2Cl]: A solution of HL (0.031 g, 0.10 mmol) in toluene (1 mL) was 

added to a dark red slurry of [Ce(N′′)3Cl] (0.068 g, 0.10 mmol) in toluene (2 mL). The reaction mixture 

immediately became dark purple in colour and was stirred for 2 h at room temperature. Recrystallisation from 

toluene (1 mL) at −30 °C afforded [Ce(L)(N′′)2Cl] as a red-orange solid. Yield 0.055 g (67 %). 

Synthesis of [U(L)(N′′)2F]: F3CSiMe3 (14 μL, 0.094 mmol) was added to a dark blue solution of [U(L)(N′′)2] 

(0.081 g, 0.094 mmol) in toluene (2 mL). The reaction mixture was heated to 80 °C for 24 h to afford a dark 

brown solution. Recrystallisation from toluene (1 mL) at −20 °C afforded [U(L)(N′′)2F] as a red-brown solid. 

X-ray diffraction quality crystals were grown from a solution of the complex in toluene at −30 °C. Yield 0.057 

g (69 %); 
1
H NMR (C6D6, 360 MHz, 298 K): δ=76.40 (s, 6 H; CMe2), 11.71 (s, 2 H; OCMe2CH2, NCH2CH2N 

or HCMe2), 3.21 (t, 
3
J=7.4 Hz, 1 H; 4-C6H3), 0.9 and 0.03 (2 d, 

3
J=7.4 Hz, 2×1 H; 3,5-C6H3), −4.64 (s, 12 H; 
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HCMe2) −11.38 (s, 36 H; SiMe), −24.1 and −31.2 (s, 2 H; OCMe2CH2, NCH2CH2N or HCMe2), −47.64 ppm 

(s, 2 H; OCMe2CH2, NCH2CH2N or HCMe2). 

Synthesis of [U(L)(N′′)2Cl]: [U(N′′)3Cl] (0.10 g, 0.13 mmol) and HL (0.040 g, 0.13 mmol) were combined in 

C6D6 (1 mL) to afford a brown solution. After 2 h, the volatiles were removed in vacuo. Recrystallisation from 

toluene afforded [U(L)(N′′)2Cl] as a brown solid. X-ray diffraction quality crystals were grown from a 

saturated solution of the complex in toluene at −20 °C. Yield 0.043 g (36 %); 
1
H NMR (C6D6, 500 MHz, 298 

K): δ=77.39 (s, 6 H; CMe2 or HCMe2), 31.67 (s, 2 H; OCMe2CH2, NCH2CH2N, HCMe2 or 3,5-C6H3), 12.93 

(s, 1 H; 4-C6H3), 7.47 (s, 2 H; OCMe2CH2, NCH2CH2N, HCMe2 or 3,5-C6H3), −11.05 (s, 6 H; CMe2 or 

HCMe2), −12.69 (s, 2 H; OCMe2CH2, NCH2CH2N,HCMe2 or 3,5-C6H3), −14.11 (s, 6 H; CMe2 or HCMe2), 

−17.61 (s, 36 H; SiMe), −27.71 ppm (s, 2 H; OCMe2CH2, NCH2CH2N, HCMe2 or 3,5-C6H3). 

Synthesis of [U(L)(N′′)2I]: tBuI (22 μL, 0.19 mmol) was added to a solution of [U(L)(N′′)2] (0.16 g, 0.19 

mmol) in toluene (10 mL). The reaction mixture immediately became pale brown in colour. The volatiles 

were removed in vacuo and a pale pink solid containing [U(L)(N′′)2I] as the major product was isolated from a 

toluene solution cooled to −20 °C. Yield 0.085 g (47 %); 
1
H NMR (C6D6, 360 MHz, 298 K):δ=64.83 (s, 6 H; 

CMe2), 43.16 (s, 2 H; OCMe2CH2, NCH2CH2N or HCMe2), 8.31 (s, 2 H; OCMe2CH2, NCH2CH2N 

or HCMe2), 7.08 (t,
3
J=6.9 Hz, 1 H; 4-C6H3), 6.99 (d, 

3
J=6.9 Hz, 1 H; 3,5-C6H3), 3.75 (s, 2 H; OCMe2CH2, 

NCH2CH2N or HCMe2), −10.77 (s, 12 H; HCMe2), −11.23 (s, 12 H; CMe2), −17.19 (s, 36 H; SiMe), −17.22 

ppm (s, 2 H; OCMe2CH2, NCH2CH2N or HCMe2). 

CCDC-778656 ([Ce(L)(N′′)2Cl]), 778657 ([U(L)(N′′)2Cl]) and 778658 ([U(L)(N′′)2F]) contain the 

supplementary crystallographic data for this paper. These data can be obtained free of charge from The 

Cambridge Crystallographic Data Centre viawww.ccdc.cam.ac.uk/data_request/cif. 

Computational details: Gradient-corrected density functional theory calculations were carried out using the 

TPSS
[58] 

functional, as implemented in the Gaussian 03 Rev D.02 (G03),
[59] 

Gaussian 09 Rev. A.02 

(G09)
[60]

 and Amsterdam Density Functional 2009 (ADF)
[61, 62] 

quantum chemistry codes. Spin-restricted 

calculations were performed on the Ce target molecules, and the spin-unrestricted formalism was employed 

for the U systems (5f
2
). Default values for integration grids, and scf and geometry convergence criteria, were 

used in all cases. 

Atoms-in-molecules analyses were performed using the AIMALL programme, version 09.10.24,
[63] 

using 

formatted G09 checkpoint files as input. 

In the G03 calculations, (14s 13p 10d 8f)/[10s 9p 5d 4f] segmented valence basis sets with Stuttgart-Bonn 

variety relativistic effective core potentials (RECPs) were used for U,
[64] 

while an RECP plus (14s 13p 10d 

8f)/[10s 8p 5d 4f] valence basis was employed for Ce.
[65] 

Dunning’s cc-pVDZ basis sets were employed for 

the non f-elements. 
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Natural charge and population analyses
[66, 67] 

were carried out on all G03-optimized structures by using NBO 

version 3.1. We have used the default partitioning scheme, in which the actinide 6d orbitals are placed in the 

Rydberg basis. While there is some evidence that the 6d orbitals may be more appropriately considered as 

valence in the NPA scheme,
[68] 

we have no direct experience with such a partitioning and have decided to 

retain the default approach so as to better facilitate comparison with our previous studies of related 

systems.
[4, 12, 56]
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