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Abstract. The presence of symmetry in constraint satisfaction prob-
lems can cause a great deal of wasted search effort, and several methods
for breaking symmetries have been reported. In this paper we describe a
new method called Symmetry Breaking by Nonstationary Optimisation,
which interleaves local search in the symmetry group with backtrack
search on the constraint problem. It can be tuned to break each sym-
metry with an arbitrarily high probability with high runtime overhead,
or as a lightweight but still powerful method with low runtime over-
head. It has negligible memory requirement, it combines well with static
lex-leader constraints, and its benefit increases with problem hardness.

1 Introduction

Many constraint satisfaction problems (CSPs) contain symmetries. For example
the N-queens problem has 8 (each solution may be rotated through 90, 180 or
270 degrees, and reflected) while other problems may have exponentially many
symmetries. The same 8 symmetries occur in some CSP models of the N-queens
problem, though other models may have different or no symmetries. The pres-
ence of symmetry implies that search effort is being wasted by exploring sym-
metrically equivalent regions of the search space. By eliminating the symmetry
(symmetry breaking) we may speed up the search significantly. Several distinct
methods have been reported for symmetry breaking in CSPs.

In principle all symmetries can be broken, but this becomes problematic when
there are very many symmetries. A common case is that of matrix symmetry
which often occurs in matrix models : constraint problems containing one or more
matrices of variables. Given a solution, some or all of the rows (or columns) can

⋆ This material is based in part upon works supported by the Science Foundation
Ireland under Grant No. 05/IN/I886. S. A. Tarim is supported by the Scientific and
Technological Research Council of Turkey (TUBITAK) under Grant No. MAG-110
K500.



often be exchanged to obtain another solution: this is called row (or column)
symmetry. When this form of symmetry occurs in matrices with more than two
dimensions it is called index symmetry. Some problems have more complex forms
of symmetry on matrices, for example it may be possible to permute elements
in one dimension independently for each value in another dimension. All these
cases give rise to vast numbers of symmetries that are hard to break completely.

Symmetry Breaking by Nonstationary Optimisation (SBNO) is a new ap-
proach to partial symmetry breaking that interleaves local search [30, 31], or
evolutionary search [29], with standard backtrack search in order to detect and
break symmetry. The local search is performed in the symmetry group associ-
ated with the constraint problem, and only limited time is devoted to it in order
to keep runtime overheads low. In this paper we define SBNO, show how to use
it to break matrix symmetries, and evaluate it on standard benchmarks alone
and in combination with another method (static lex-leader constraints). The pa-
per extends previously (informally) published work [29–31] with improved proofs
and new applications, and is organised as follows. Section 2 provides background
material and surveys related work. Section 3 describes SBNO and its application
to matrix symmetries. Section 4 evaluates it on standard benchmarks. Section 5
concludes the paper and discusses future work.

2 Background and related work

First we provide some background on symmetry and group theory, and their
application to Constraint Programming. For a more complete introduction see
[16] from which we draw much of our material.

2.1 Groups and symmetry

For this work we need only the most basic ideas of group theory, so we omit many
concepts that are normally mentioned in connection with symmetry breaking.

Group theory is essentially the study of symmetry in mathematics. A group
is a non-empty set G of elements with a composition operator ◦ and properties
called the group axioms :

– G is closed under ◦: for all g, h ∈ G, g ◦ h ∈ G.
– There is an identity element id ∈ G: for all g ∈ G, id ◦ g = g ◦ id = g.
– Every g ∈ G has an inverse g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = id.
– ◦ is associative: for all f, g, h ∈ G, (f ◦ g) ◦ h = f ◦ (g ◦ h).

An important example is the symmetric group Sn which is the group of all
permutations of n objects.

The order of a group G is the cardinality |G| of the set. A generating set for a
group is a subset H of the group G such that each element g ∈ G can be written
as a product h1 ◦ . . . ◦ hn where each hi ∈ H , denoted 〈H〉=G. The elements of
H are generators for G. Given two (or more) groups G1, G2 we can form their
direct product G1 × G2 which is also a group: the set {(x, y) |x ∈ G1, y ∈ G2}
with composition operator defined by (x, y) ◦ (x′, y′) = (x ◦ x′, y ◦ y′).



2.2 Symmetry in Constraint Programming

An important concept for symmetry in Constraint Programming is that of a
group action. A group element g can operate on the elements of G via the
composition operator, but it can also operate on another set S by permuting its
elements. We refer to the elements of S as points and denote the action of g ∈ G
on point p ∈ S by pg. So pg is the new position of p after S has been permuted
by g. We also refer to the image Sg of S under G. As mentioned above, [16]
provides a more thorough introduction to this material.

For example consider a small 3×3 chessboard. It has 9 squares which are the
points, and a symmetry group of 8 elements that permute them. The symmetries
include an element r90 that rotates the board through 90 degrees, and an element
x that reflects the board about a vertical axis; the other elements can be viewed
as compositions of these (for example r180 = r90 ◦ r90 performs rotation by 180
degrees) including the identity element id that leaves the board unchanged. Now
suppose we have a CSP whose variables correspond to squares on the chessboard,
and whose values correspond to pieces placed on the squares, with constraints to
prevent pieces from attacking each other (as the well-known N-queens problem).
Then some of the solutions to our constraint satisfaction problem are symmetric
to others: applying a group element transforms one solution into another that
looks identical. It is important to note that non-solution states may also be
symmetric to each other.

The precise meaning of symmetry in Constraint Programming has only re-
cently been formalised satisfactorily [5]. Solution symmetry is a permutation of
variable-value pairs which preserves the set of solutions, while problem symmetry
is a permutation of variable-value pairs which preserves the set of constraints.
Special cases are variable (or value) symmetry in which a set of variables (or
values) can be permuted. A special case of variable symmetry is matrix symme-
try, particularly where the variables of a matrix can be permuted row-wise and
column-wise.

A partial assignment during search is a set of variable-value pairs in which
each variable appears at most once. If the current partial assignment is sym-
metric to a previous partial assignment that has already been encountered, then
there is no need to search below the current one and backtracking can safely
occur. This fact might be detected, or prevented by constraints, in various ways.

2.3 Symmetry breaking methods

Reformulation is the ideal approach to handling symmetry in a constraint prob-
lem: if we can reformulate the problem so that the model contains no symmetry,
then there is no need to break symmetry at all. A case study in [39] uses several
reformulations of a combinatorial problem to eliminate various symmetries, and
shows that this can pay off in terms of runtime. But it is rarely practicable to
remove all symmetries by reformulation so we also require other methods.

A popular approach to symmetry breaking is to add constraints to the model.
It has been shown that all symmetries can in principle be broken by this method



[32], which was developed into the lex-leader method for Boolean variables and
variable symmetries by [6], extended to non-Boolean variables and independent
variable and value symmetries by [28, 36], and to arbitrary symmetries by [40].
But in practice too many constraints might be needed if there are exponentially
many symmetries. Instead of explicitly adding lex-leader constraints to a model,
a Computational Group Theory system such as GAP [11] can be used during
search to find relevant (unposted) constraints, as in the GAPLex method [24].

Symmetry Breaking During Search (SBDS) was invented by [3] and developed
by [17]. In SBDS constraints are added during search so that, after backtracking
from a decision, future symmetrically equivalent decisions are disallowed. SBDS
has been implemented by combining a constraint solver with the GAP system,
giving GAP-SBDS [12], which allows symmetries to be specified more compactly
via group generators. SBDS can still suffer from the problem that too many
constraints might need to be added: GAP-SBDS, for example, can handle billions
of symmetries but some problems require many more. A related method to SBDS
called Symmetry Breaking Using Stabilizers (STAB) [33] only adds constraints
that do not conflict with the current partial variable assignment, and uses other
techniques to reduce the arity and number of constraints. It does not break
all symmetries but has given very good results on problems with up to 1091

symmetries.

Symmetry Breaking by Dominance Detection (SBDD) was independently in-
vented by [7, 9] (a similar algorithm was also described by [4]) and combined
with GAP to give GAP-SBDD [13]. SBDD breaks all symmetries but does not
add constraints before or during search, so it does not suffer from the space
problem of some methods: GAP-SBDD, for example, has been applied to groups
of size 1036, while another SBDD implementation has handled groups of size
1078 [34]. Instead it detects when the current search state is symmetrical to a
previously-explored “dominating” state. A potential drawback with SBDD is
that dominance detection is itself an NP-hard problem (equivalent to subgraph
isomorphism) and solving several such problems at each search node can be ex-
pensive. However, it was shown by [34] that the dominance tests can be combined
into a single auxiliary CSP then solved by standard Constraint Programming
methods. Dominance tests can also be written by the programmer for specific
problems [7] or more general classes of problem [38], or solved by Computational
Group Theory software such as GAP.

For the particular case of matrix symmetry, special symmetry breaking meth-
ods have been devised. For an n×m matrix with full row and column symmetry
the symmetry group is Sn×Sm so there are n!m! symmetries. Breaking all such
symmetries is NP-hard [6] and requires an exponential number of lex-leaders.
However, all row symmetries and all column symmetries can be broken by the
lex2 (or double-lex ) method [8], which adds constraints to the model to lexi-
cally order rows and (separately) columns. Because of its respectable power, low
memory and runtime overhead and ease of use, lex2 is a popular way of elimi-
nating many matrix symmetries, though it can leave an exponential number of
symmetries unbroken [23]. A variant of lex2 is snake-lex [18] which uses a differ-



ent variable ordering. Other methods can be used to break more or all matrix
symmetries, though sometimes with high computational cost or problem-specific
implementation effort.

Good results have been obtained by partial symmetry breaking. If the aim is
to minimise runtime then breaking only some of the symmetry can be the best
trade-off, for example lex2 and STAB are good trade-offs for matrix symmetry.
The study of partial symmetry breaking methods in general has been proposed
by [27].

2.4 Lex-leaders

We shall make use of lex-leaders so here we provide more background. [32] shows
that any form of symmetry can be broken by adding lex-leader constraints X�lex

Xg for all g∈G, where X is a vector of variable values in a total assignment on a
fixed ordering of the problem variables, and �lex is the standard lexicographical
ordering relation. These constraints prune all solutions except the canonical (lex-
least) ones. But in general exponentially many constraints are needed, making
the method impractical for problems with large symmetry groups.

Lex-leaders can also be used to derive some other symmetry breaking meth-
ods. In particular, lexn constraints can be derived by posting a lex-leader for
each possible adjacent row exchange (or exchange in another dimension), then
applying simplification rules as in [6, 10, 26]. For lexn we need only one rule:
a lex-leader of the form αXβ �lex γY δ, where α and γ have the same length
and α = γ logically implies X = Y , can be replaced by αβ �lex γδ. For ex-
ample the lex-leader ABCDEF �lex ACBDFE is transformed to the simpler
lex-constraint BE �lex CF where A,B,C,D,E, F are variables. This can be
derived as follows, where [] denotes the empty string: setting X = Y = A,
α = γ = [], β = BCDEF and δ = CBDFE gives BCDEF �lex CBDFE;
setting α = B, γ = C, X = CD, Y = BD, β = EF and δ = FE gives
BEF �lex CFE; and setting α = BE, γ = CF , X = F , Y = E and β = δ = []
gives BE �lex CF .

3 Detecting violated lex-leaders by local search

We now describe the SBNO method. Suppose that we wish to solve a CSP
using a standard constraint solver with depth-first search (DFS) and constraint
processing. Suppose also that the CSP has symmetry defined by a group G.

3.1 The detection problem

We would like to work with the full set of lex-leaders for G in order to break all
symmetries of the CSP. But for some problems this set is too large to work with,
so instead of posting them as constraints we try to detect violated lex-leaders
indirectly. At a search tree node with a vector A of variable values in the current
partial assignment, if we can find a group element g ∈ G such that Ag ≺lex A



then we can backtrack, because A violates the lex-leader A �lex Ag. We shall
call the problem of finding such a g the detection problem. This is not quite the
same as dominance detection in SBDD, which detects states that are symmetric
to the current one that have already been visited.

As an example, consider the 4-queens problem with the usual 8 symmetries
including reflection about the vertical axis: the group element denoted by x.
Suppose that we solve this problem using a constraint model in which each
square on the board corresponds to a binary variable, 1 denotes a queen and 0
no queen at that position. Suppose also that we apply DFS and assign variables
in a static row-by-row then column-by-column order. The lex-leaders follow the
same variable ordering and we assume that 0 < 1. Consider the vector A =
(1, 0, 0, 0, ?, . . .) corresponding to the board configuration in Figure 1(i), where
a space denotes no queen, “•” denotes a queen, and “?” denotes no decision.
Now Ax is the vector (0, 0, 0, 1, ?, . . .) corresponding to the board configuration
in Figure 1(ii). But Ax ≺lex A whatever values are chosen for the unassigned
variables, so A is symmetric to the lex-smaller node Ax and backtracking can
occur from A. It is also possible to reason on unassigned variables, for example
if variables x, y are unassigned but the current partial assignment reduces the
domain of y to {1} then (1, 0, x, 1, 0)≺lex (1, 0, 1, y, 1) holds.

A Ax B

•

? ? ? ?

? ? ? ?

? ? ? ?

•

? ? ? ?

? ? ? ?

? ? ? ?

•

•

• ? ?

? ? ? ?

(i) (ii) (iii)

Fig. 1. Search states in 4-queens

Detecting violated lex-leaders does not depend on the details of the constraint
solver (for example its value and variable ordering heuristics, or its filtering al-
gorithms) and applies to all variable symmetries. If we fail to detect a violation
then we waste some search effort but do not lose correctness, so we can spend a
limited time on detection. However, our method, like all static lex-leader meth-
ods, does not respect search heuristics. It will tend to break most symmetry if
variables are labelled in the same ordering used to define the lex-leaders, and it
might make first-solution search less efficient. We return to this point in Section
5.

3.2 Detection as nonstationary optimisation

We can treat the detection problem as an optimisation problem with G as the
search space, so that each g∈G is a search state. The objective function on G to
be minimised is the lex ranking of Ag. On finding an element g with sufficiently



small objective value such that Ag ≺lex A (if such a g exists) we have solved
the detection problem. This opens up the field of symmetry breaking to a wide
range of metaheuristic algorithms.

A practical question here is: how much effort should we devote to detection
at each DFS node? If an incomplete search algorithm fails to find an appropriate
g, this might be because there is no such element or because the algorithm has
not searched hard enough. Too little search might miss important symmetries
while too much will slow down DFS. Our solution is to expend limited effort at
each search node to ensure reasonable computational overhead. For example if
we apply local search then we might apply one or a few local moves per search
tree node, or only at some nodes. The optimisation problem now has an objective
function that changes in time: as DFS changes variable assignment vectors A,
the objective value of any given g changes because it depends on Ag. This is
called nonstationary optimisation in the optimisation literature, so we call our
framework Symmetry Breaking by Nonstationary Optimisation (SBNO).

Note that even if detection fails at a node, it might succeed a few nodes later.
DFS can then backtrack, possibly jumping many levels in the search tree. For
example consider the 4-queens problem again. Suppose we did not manage to
find group element x at search state A, but instead continued with DFS and only
discovered x on reaching search state B shown in Figure 1(iii). Now Bx≺lexB
so we can backtrack from B. On successful detection we backtrack until we
reach a partial assignment vector A such that A �lex Ax is no longer violated.
Apart from some wasted DFS effort (during which we might find additional non-
canonical solutions) the effect on the solutions found is the same as if we had
detected the symmetry immediately. Thus SBNO effectively continues to try to
break symmetry at a node until DFS backtracks past that node. This gives it an
interesting property: a symmetry that would only save a small amount of DFS
effort is unlikely to be detected, because DFS might backtrack past A before an
appropriate g is discovered; in contrast, one that would save a great deal of DFS
effort has a long time in which to be detected by local search. So SBNO should
tend to detect and break the important symmetries, which we define to be those
that make a significant difference to the total execution time. Whether it detects
them, and how long it takes to do so, depends on the heuristics we use to solve
the detection problem.

3.3 Detection by local search

To make SBNO more concrete we now show how to use local search for detection,
though in principle any metaheuristic algorithm can be used. We have already
defined the search space (G) and objective function (the lex ranking of Ag).
Local search also requires a neighbourhood structure defining the possible local
moves from each search state. To impose a neighbourhood structure on G we
choose some subset H⊂G: from any search state g the possible local moves are
the elements of H leading to neighbouring states g ◦H (the set {g ◦ h |h ∈ H}).
Thus all G elements are potentially local search states, and some of them (H )
are also local moves. To apply hill climbing, from each state g we try to find



a local move h such that the objective function is reduced (Ag◦h ≺lex A
g). If a

series of moves (h1, h2, . . .) reduces the lex ranking sufficiently then we will find
that Ag◦h1◦h2◦...≺lexA and can backtrack from A.

There is a relationship between group generators and local search in a group.
A local search space is connected if there exists a series of local moves from
any state to any other state. Connectedness is an important property for local
search, because a disconnected space may prevent it from finding an optimal
solution. It is easy to show that the search space induced by H is connected
if and only if H is a generating set for G, as follows. Suppose that H is a
generating set for G. We can move from any g to any g′ via element g−1 ◦ g′

because g ◦ (g−1 ◦g′) = (g ◦g−1)◦g′ = g′. H is a generating set so we can always
find a series of elements h1, h2, . . . such that h1 ◦ h2 ◦ . . . = g−1 ◦ g′. Therefore
g ◦ h1 ◦ h2 ◦ . . . = g′ and the space is connected. Conversely, suppose that H
is not a generating set for G. Then there exists a g∗ ∈G such that no series of
elements satisfies h1, h2, . . . = g∗. But for any g it holds that g∗ = g−1 ◦ g′ for
some unique g′. Therefore there exists an unreachable state g′ from any state g.

If a non-generating set H is used then the local search can become trapped
in a subspace that does not contain an appropriate g, but random moves from
G−H can be used to compensate. Random restarts are a well-known technique
for both local and backtrack search, but ifH is not a generating set then they are
necessary not only for heuristic reasons but because the space is disconnected.
In our initial experiments we used a generating set H . This is a natural ap-
proach which can yield neighbourhoods of manageable size, because any group
G has a generating set of size log

2
(|G|) or smaller [21]. However, we found better

results using a non-generating set H (which varies dynamically) and restoring
connectedness by allowing occasional random moves, as described below.

We use a form of Iterated Local Search [22]. Initialise g to be any group
element (we use the identity element). At each search tree node A call the DE-
TECT function shown in Figure 2 which returns another group element g′ and a
truth value: if the truth value is T then detection has occurred with g′ and back-
tracking occurs; if it is F then tree search proceeds as usual, but with the new
group element g′. DETECT first checks whether Ag≺lexA: if so then a violated
lex-leader has been detected using g. In this case DETECT does not change g,
so that backtracking is enforced until reaching a node at which the lex-leader is
no longer violated. Otherwise DETECT performs a hill-climbing move g → g′

where possible, via the IMPROVE function. The IMPROVE function searches
for an improving local move to g, that is a move h such that Ag◦h≺lexA

g. The
neighbourhood is explored in random order to find these moves. If no such move
exists then the state is a local minimum and g is returned, then DETECT calls
the INITIAL function which returns a random group element. INITIAL starts
from the identity group element and applies a random move with probability 0.5,
a second random move with probability 0.25, a third with probability 0.125, and
so on. In this way it is biased toward the identity element but may in principle
return any group element. Because we use an unbounded number of random
moves at each local minimum, the local search algorithm is probabilistically ap-



proximately complete [22]: it is guaranteed to find a solution given sufficient time.
We will return to this property in Section 3.5.

function DETECT(g,A)
if Ag

≺lexA return (g, T )
g′ ← IMPROVE(g,A)

if Ag′
≺lexA

g return (g′, F )
return (INITIAL, F )

function IMPROVE(g,A)
for each local move h taken in random order

if Ag◦h
≺lexA

g return g ◦ h

return g

Fig. 2. A detection algorithm based on Iterated Local Search

3.4 Application to symmetry in matrix models

The SBNO scheme can be applied to the particular case of row and column sym-
metry. The current group element g is represented by two lists, one representing
a row permutation and the other a column permutation. Any combination of two
permutations is possible, so the symmetry group is the direct product Sn × Sm

for an n×m matrix. Choosing a random move g in INITIAL (see Figure 2) might
not be practicable for all problems as it is not always possible to efficiently gen-
erate a random group element [21]. But in the case of row and column symmetry
it is easy: we simply exchange a randomly selected pair of values in the row or
column permutation. The local move neighbourhood explored in IMPROVE is
the set of row or column exchanges involving the matrix entry corresponding to
the variable at which the last ≺lex test failed. This heuristic is inspired by the
conflict-directed heuristics used in many local search algorithms, which focus
search effort on the source of failure. We extend SBNO to other forms of matrix
symmetry in Sections 4.4 and 4.5.

Figure 3 illustrates the effect of SBNO on an all-solution search tree for a
Balanced Incomplete Block Design (see Section 4.3). The first search tree uses
lex2 alone while the second also uses SBNO. Note that it is safe to combine
lex2 and SBNO as long as they are based on the same lex-leaders. The triangles
in the latter tree indicate where SBNO caused backtracking. The search tree
for this problem shows two main branches after an initial fixed assignment. On
the left SBNO dramatically reduces the size of the tree, while on the right only
a few nodes are removed, reflecting SBNO’s nondeterministic nature. Most of
the removed nodes on the right are solutions, which are cut off only when all
variables have been assigned. In contrast, on the left large subtrees are cut off,



containing the majority of the removed solutions. We can also observe some
chains of failure, in which a useful symmetry group element discovered at a
lower level in the tree is immediately applied to prune higher nodes.

3.5 Symmetry breaking power

The runtime overhead of SBNO depends on how much local search effort we
permit at each search tree node. We now investigate the trade-off between local
search effort, broken symmetries and runtime. Using the first 10 instances of a
benchmark set for the Balanced Incomplete Block Design problem (see Section
4.3) we compare the number of solutions found in an all-solution search with
symmetry breaking, as a function of the number of local moves at each search
tree node. Table 1 shows the results, along with the actual number of non-
symmetrical solutions (“asym”) and the number of solutions found by lex2 and
the leading partial symmetry breaking method STAB+lex2.

SBNO

instance asym lex2 STAB 1 3 10 30 100 300 1000

6 3 2 1 1 1 11 4 1 1 1 1 1
7 3 1 1 1 1 10 3 1 1 1 1 1
6 3 4 4 21 4 265 109 20 8 4 4 4
9 3 1 1 2 1 29 5 3 1 1 1 1
7 3 2 4 12 7 116 32 17 10 5 4 4
8 4 3 4 92 6 103 33 8 5 4 5 4
6 3 6 6 134 7 1306 601 140 51 20 9 6

11 5 2 1 2 1 74 27 3 2 1 1 1
10 4 2 3 38 4 229 56 9 5 3 4 3
7 3 3 10 220 24 1237 344 111 38 20 12 11

Table 1. Symmetry breaking as a function of local moves (number of solutions found)

The probabilistic approximate completeness property of our local search algo-
rithm (see Section 3.3) implies that SBNO has a nonzero probability of breaking
any given symmetry, so if it spends enough time at a search tree node then
it will almost certainly detect and break any symmetry. This theoretical result
is supported by the experiments, which show that SBNO’s symmetry breaking
power can be made arbitrarily close to complete simply by performing more local
search at each node, to the point that it breaks more symmetry than the best
known partial symmetry breaking method for this problem; in fact almost all
symmetries.

3.6 Runtime overhead

We use profiling to estimate the proportion of time spent on SBNO processing
at each search tree node. Table 2 shows the results expressed as a percentage
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Fig. 3. Effect of SBNO on a BIBD search tree



(we omit the first two instances because their lex2 runtimes are too small to
measure). They show that with one local move per search tree node SBNO takes
between 1

3
and 2

3
of the execution time. Thus even if SBNO detects and breaks

no symmetries, it will only approximately double the runtime. This indicates
that SBNO is a lightweight symmetry breaking method compared to complete
methods such as SBDS and SBDD, which can spend an arbitrarily high propor-
tion of runtime on symmetry detection. The overhead might be higher on other
problems, but if we only apply a small number of local moves at each search tree
node it should not become excessive.

SBNO

instance 1 3 10

6 3 4 65% 85% 94%
9 3 1 67% 86% 89%
7 3 2 60% 82% 92%
8 4 3 53% 76% 91%
6 3 6 73% 88% 96%

11 5 2 33% 75% 87%
10 4 2 53% 74% 90%
7 3 3 65% 85% 94%

Table 2. Time spent on SBNO processing as a function of local moves

The runtime overhead of SBNO is more than compensated for by the gains
achieved by breaking symmetry, as shown in Table 3 which shows the runtime for
each case. It is clear that performing many local search moves at each node is not
worthwhile if our goal is simply to reduce execution time, but that performing
a few moves is worthwhile (and we shall show that the advantage of SBNO
increases with problem hardness). In the rest of this paper we shall use just
one local move per node, as making more moves often increases runtime when
SBNO is combined with static symmetry breaking methods such as lex2. Table
3 also shows lex2 runtimes, which are uniformly smaller than those for SBNO.
This indicates that lex2 is much more efficient than SBNO on easy problems,
but we shall show that SBNO pays off on some harder problems and that their
combination is even better.

3.7 Memory requirement

SBNO has a negligible memory requirement: it maintains just one dynamically
changing group element g representing the current local search state. For matrix
symmetry with an n × m matrix, g is simply a pair of lists using O(n + m)
memory. If a population-based metaheuristic is used then this requirement must
be multiplied by the population size.



SBNO

instance lex2 1 3 10 30 100 300 1000

6 3 2 0.01 0.08 0.06 0.07 0.2 0.4 1.1 3.5
7 3 1 0.01 0.03 0.02 0.04 0.08 0.2 0.6 1.9
6 3 4 0.06 1.1 1.0 1.1 1.6 3.7 9.2 28
9 3 1 0.01 0.3 0.2 0.3 0.4 1.0 2.7 8.3
7 3 2 0.01 0.4 0.4 0.5 0.8 2.0 5.0 16
8 4 3 0.2 1.1 0.9 1.1 1.8 4.2 11 35
6 3 6 0.5 7.5 6.5 6.7 9.5 19 44 129

11 5 2 0.03 0.7 0.5 0.6 1.1 2.3 5.8 17
10 4 2 0.2 2.7 2.1 2.7 4.6 10 24 71
7 3 3 0.2 3.4 3.1 3.6 5.4 11 28 84

Table 3. Runtime as a function of local moves (sec)

3.8 Non-determinism

An unusual property of SBNO as a symmetry breaking method is its non-
determinism. This explains its behaviour on instance (10,4,2) in Table 1: with
100 and 1000 local moves per node SBNO finds 3 solutions, but with 300 moves
it finds 4 solutions. More local search effort usually breaks more symmetry but
this is not guaranteed. We believe that non-determinism in backtrack search is
an undesirable feature that would merely annoy users.

To examine how much variation SBNO’s non-determinism causes, Figure 4
plots 20 runs of 6 different Balanced Incomplete Block Design problem instances
(see Section 4.3). The scatter plot shows that there is significant variation in
both the number of solutions found and the runtime, but less in the runtime;
and as problem hardness increases both become less significant. For the easiest
instance (13,4,1) the standard deviation of the number of solutions found is
40.8%, and that for the runtime 22.7%; for the hardest instance (7,3,6) the
standard deviations are 11.3% and 6.2% respectively.

Harder problems are most interesting so non-determinism does not make the
performance of SBNO unreliable, and we are justified in using a single run per
instance in our experiments below. We therefore use a built-in pseudo-random
number generator to make SBNO deterministic, and use single runs in all our
experiments.

4 Experiments

We now test SBNO on problems with different forms of variable symmetry,
starting with row and column symmetry. SBNO is implemented in the ECLiPSe
Constraint Logic Programming system [2]. For each problem we use a static
variable ordering (ordering by rows then columns for matrix symmetry) and a
static 0/1 value ordering. With SBNO and lex2 we constrain each problem so
that the rows and columns are both in decreasing lexical order, starting from the
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Fig. 4. Variation between SBNO runs

top and left of the matrix. All our experiments are performed on a Dell Optiplex
980 mini tower containing an Intel Core i5-650 3.20 GHz processor with 4M
cache running Ubuntu Linux.

4.1 Error correcting codes

A Hamming code with distance d and length l is a set of l-bit codewords such
that each pair of codewords has at least d different bits. The variation considered
here has w bits set in each word and we must find a maximal code, that is n
words with greatest n. We use a simple constraint model with a matrix of binary
variables mij (i = 1 . . . n, j = 1 . . . l) and constraints

∑l

j=1
mij = w (1 ≤ i ≤ n)

∑l

j=1
reify(mij = mi′j) ≤ d (1 ≤ i < i′ ≤ n)

To obtain a set of benchmarks we increase n until the problem is only just
satisfiable, so a benchmark is characterised by the 4 numbers n, l, d, w. There
are 11 hard instances taken from [37]; 4 of these were too hard for our approach
but we show results for the remaining 7 in Table 4.

The results clearly show that SBNO scales better than lex2 and the combi-
nation scales better still: the harder the problem the greater the advantage of
using SBNO+lex2, with speedups of up to 120. Our results are also very com-
petitive with published results. The best results we know of are those of [41] who
use set variable methods with a special representation, and were faster than the
ROBDD-based methods of other researchers. Though we cannot directly com-
pare execution times with [41] they are generally of similar magnitude and we



n l d w lex2 SBNO SBNO+lex2

proof of optimality

15 8 4 4 6.0 3.8 1.6
13 9 4 3 2.9 3.5 1.3
19 9 4 4 24,243 4,449 798
13 9 4 6 17 5.4 1.2
14 10 4 3 129 64 15
14 10 4 7 3,002 141 25
7 10 6 5 0.03 0.11 0.05

first optimal solution

14 8 4 4 5.2 2.9 1.5
12 9 4 3 2.2 2.5 1.0
18 9 4 4 2,840 536 186
12 9 4 6 2.8 3.1 0.9
13 10 4 3 28 22 9.1
13 10 4 7 104 14 11
6 10 6 5 0.02 0.09 0.04

Table 4. Error correcting code results (sec)

are able to solve the same instances, with some exceptions: they solve instance
(14,10,4,7) very quickly (2 sec) while we found it hard; we appear to be faster
on instance (14,10,4,3) (they took 359 sec); and we solve (19,9,4,4) which they
did not (though they do not report their cutoff time). Ours is the only method
we know of that has solved 7 of the 11 hard benchmarks.

4.2 Steiner systems

A Steiner system S(t, k, n) is a set X of n points , and a collection of subsets
of X of size k called blocks , such that any t points of X are in exactly one
block. A Steiner system must have exactly m =

(

n
t

)

/
(

k
t

)

blocks. The special case
(t = 2, k = 3) is a Steiner triple system and the case (t = 3, k = 4) is a Steiner
quadruple system. A Steiner triple (or quadruple) system has a solution if and
only if nmod 6 is 1 or 3 (or 2 or 4).

We use a constraint model with a binary matrix xij (i = 1 . . . n, j = 1 . . .m)
and constraints

∑n

j=1
xij = k (1 ≤ i ≤ m)

∑n

j=1
xijxi′j ≤ t− 1 (1 ≤ i < i′ ≤ m)

This model has row and column symmetry. Table 5 shows the results. SBNO
scales better than lex2 while SBNO+lex2 scales better than both: again, the
harder the problem the greater the advantage of SBNO+lex2 over lex2 alone,
with a speedup of 52 for the hardest instance. On these problems we are not
competitive with the results of [41], who solve several instances that we can-
not. However, they only give results for solvable problems, and they use special
labeling strategies whereas we use a simple static strategy.



t k n lex2 SBNO SBNO+lex2

all-solution

2 3 6 0.01 0.02 0.02
2 3 7 0.02 0.07 0.05
2 3 8 0.1 0.3 0.1
2 3 9 5.0 4.3 1.5
2 3 10 283 86 21
2 4 13 36 9.8 4.4
3 4 7 0.04 0.07 0.05
3 4 8 9.3 5.8 1.7
3 4 9 52327 8510 1007

first-solution

2 3 7 0.03 0.07 0.04
2 3 9 4.5 3.3 1.5
2 4 13 36 8.1 4.4
3 4 8 9.3 4.5 1.7

Table 5. Steiner system results (sec)

4.3 Balanced incomplete block designs

Balanced Incomplete Block Designs (BIBDs) have been used to test several sym-
metry breaking methods. They were originally used in the statistical design of
experiments but find other applications such as cryptography. A BIBD is defined
as an arrangement of v distinct objects into b blocks such that each block con-
tains exactly k distinct objects, each object occurs in exactly r different blocks,
and every two distinct objects occur together in exactly λ blocks. Another way
of defining a BIBD is in terms of its incidence matrix , which is a binary matrix
with v rows, b columns, r ones per row, k ones per column, and scalar product
λ between any pair of distinct rows. A BIBD is therefore characterised by its
parameters (v, b, r, k, λ).

For a BIBD to exist its parameters must satisfy the conditions rv = bk,
λ(v − 1) = r(k − 1) and b ≥ v, so we can also characterise a BIBD by (v, k, λ),
but these are not sufficient conditions. Constructive methods can be used to
design BIBDs of special forms, but the general case is very challenging and
there are surprisingly small open problems, the smallest being (22,33,12,8,4).

We use the most direct CSP model for BIBD generation, which represents
each matrix element by a binary variable mij and has constraints:

∑b

j=1
mij = r (1 ≤ i ≤ v}

∑v

i=1
mij = k (1 ≤ j ≤ b}

∑b

j=1
mijmi′j = λ (1 ≤ i < i′ ≤ v)

This model also has row and column symmetry. Different researchers use different
BIBD instances to test their algorithms. We use the instances of [33] which are
the hardest used for all-solution search in the literature, and contain most other



problem sets. Table 6 compares lex2 alone, SBNO alone and SBNO+lex2, in
terms of the number of solutions found and the time for all-solution search. We
also show the number of solutions found by SBDD+lex2 and STAB+lex2 from
[33]. Results unreported in [33] are denoted “—” while results taking longer than
200,000 seconds on our machine are denoted “?”.

On BIBD instances SBNO alone turns out to be weaker than lex2, usually
breaking fewer symmetries and taking longer. However, SBNO+lex2 beats both
lex2 and SBNO alone, with a speedup of up to 64 with respect to lex2 alone,
and on the hardest problems it overtakes STAB+lex2 in symmetry breaking. As
shown by [33] SBDD+lex2 is much slower than the partial methods, which is
the price paid for complete symmetry breaking.

4.4 Equidistant frequency permutation arrays

The problem of finding equidistant frequency permutation arrays (EFPAs) was
recently attacked with Constraint Programming by Gent et al. [15]. An instance
with parameters (d, λ, q, v) is the problem of finding v codewords of length qλ
with an alphabet {1, . . . , q}, each symbol occurring λ times in each codeword,
and a Hamming distance of d between each pair of codewords.

We use the Boolean model of Gent et al. (though they obtained better re-
sults using a more complex model). The variables form a 3-dimensional Boolean
matrix mijk (i = 1 . . . v, j = 1 . . . q, k = 1 . . . qλ) and mijk = 1 means that code-
word i has symbol j at position k. The constraints are as follows. Each position
contains one symbol:

q
∑

j=1

mijk = 1

for all i, k. Each symbol occurs λ times per codeword:

qλ
∑

k=1

mijk = λ

for all i, j. Hamming distances:

q
∑

j=1

qλ
∑

k=1

reify(mijk 6= mi′jk) = 2d

for all i, i′ such that i < i′. This model has 3-dimensional index symmetry, which
is a straightforward generalisation of row and column symmetry to 3-dimensional
matrices, so we can use lex3 instead of lex2 as do Gent et al. We generated these
constraints as follows: for each pair of adjacent indices in each dimension we
generate a lex-leader with those indices exchanged, then apply the simplification
rule described in Section 2.4.

It is easy to extend SBNO to index symmetry in n dimensions by maintaining
n permutation lists. As for 2-dimensional matrices, the symmetry group is the



SBDD+lex2 STAB+lex2 lex2 SBNO SBNO+lex2

v k λ solns solns solns sec solns sec solns sec

6 3 2 1 1 1 0.01 11 0.08 1 0.02
7 3 1 1 1 1 0.0 10 0.03 1 0.01
6 3 4 4 4 21 0.06 265 1.1 8 0.1
9 3 1 1 1 2 0.01 29 0.3 2 0.03
7 3 2 4 7 12 0.02 116 0.4 11 0.05
8 4 3 4 6 92 0.2 103 1.1 17 0.09
6 3 6 6 7 134 0.5 1,306 7.5 16 0.6

11 5 2 1 1 2 0.03 74 0.7 2 0.07
10 4 2 3 4 38 0.2 229 2.7 14 0.2
7 3 3 10 24 220 0.3 1,237 3.4 83 0.4

13 4 1 1 1 2 0.03 143 1.7 1 0.09
6 3 8 13 15 494 2.6 6,254 33 36 2.1
9 4 3 11 41 2,600 9.4 839 15 97 1.1

16 4 1 1 1 12 0.6 1,858 34 2 0.4
7 3 4 35 116 3,209 4.1 9,868 24 412 2.4
6 3 10 19 26 1,366 10 20,546 129 73 7.0
9 3 2 36 344 5,987 5.7 20,266 50 1,499 5.0

16 6 2 3 3 46 1.9 4,753 103 11 1.0
15 5 2 0 0 0 76 0 1,867 0 5.0
13 3 1 2 21 12,800 44 15,572 104 403 5.1
7 3 5 109 542 33,304 52 63,331 160 1,482 13

15 7 3 5 19 118 3.2 3,157 152 18 1.5
21 5 1 1 1 12 1.4 11,803 217 2 0.7
25 5 1 1 1 864 220 718,637 41,425 15 15
10 5 4 21 302 8,031 104 4,105 114 301 7.7
7 3 6 418 2,334 250,878 490 365,435 964 6,057 72

22 7 2 0 0 0 122 0 10,654 0 9.6
7 3 7 1,508 8,821 1,460,332 3,604 1,741,472 4897 20,753 330
8 4 6 2,310 17,890 2,058,523 4,399 255,445 1,767 33,649 233

19 9 4 6 71 6,520 5,092 27,386 100,368 38 97
10 3 2 960 24,563 724,662 689 763,852 1,994 45,083 154
31 6 1 1 1 864 522 ? ? 4 17
7 3 8 — 32,038 6,941,124 21,136 8,284,396 24,634 66,136 1,438
9 3 3 — 315,531 14,843,772 14,639 6,301,776 18,987 382,891 1,636
7 3 9 — 105,955 28,079,394 105,737 33,806,558 103,471 192,446 5,472

15 3 1 80 6,782 32,127,296 138,230 2,876,638 26,608 84,161 1,296
21 6 2 — 0 0 ? ? ? 0 4,774
13 4 2 — 83,337 3,664,243 ? ? ? 72,133 2,719
11 5 4 — 106,522 6,143,408 ? ? ? 67,494 3,455
12 6 5 — 228,146 ? ? ? ? 155,638 26,360
25 9 3 — 17,016 ? ? ? ? 1,428 16,156
16 6 3 — 769,482 ? ? ? ? 265,792 91,478

Table 6. BIBD results



direct product of the symmetric groups in each dimension. To apply a random
local move we exchange two randomly-chosen positions in a randomly-chosen
permutation. The local move neighbourhood explored in IMPROVE (see Figure
2) is again the set of exchanges involving the matrix entry corresponding to the
variable at which the last ≺lex test failed.

Gent et al. choose 10 sets of parameters d, λ, q and for each set choose v to
be just small enough for a satisfiable problem. They then take a pair of instances
(d, λ, q, v) and (d, λ, q, v + 1), the latter problem being unsatisfiable. They use
the Minion constraint solver [14] on one processor of an Intel Core 2 Duo P8400
2.26GHz. We consider only the 10 unsatisfiable instances.

Table 7 shows our lex3 and SBNO+lex3 results. We use the canonical variable
ordering i, j, k on the matrix mijk. The results show that adding SBNO to lex3

always improves runtimes, with the greatest (known) improvement of 10 times on
the hardest problem solved by both (6,4,3,13). This agrees with our earlier results
showing that the improvement due to SBNO tends to increase with problem
hardness.

d λ q v lex3 SBNO+lex3

3 7 7 7 3048 404
3 8 8 8 8321 1377
4 3 4 7 541 129
4 4 3 8 19 16
4 4 4 9 3011 519
4 4 5 11 ? 10585
4 5 4 11 28813 1937
5 4 3 8 119 35
5 4 4 9 ? 27406
6 4 3 13 122623 11697

Table 7. EFPA results (sec)

Better results were reported by Gent et al. on the same Boolean model, but
we believe that this is because Minion is faster than ECLiPSe, especially on
matrix models. The authors report that on BIBDs Minion is up to 128 times
faster than ILOG Solver [1], and Solver is often more efficient than ECLiPSe.
Whether adding SBNO to Minion would produce similar speedups is an open
question but we see no reason for pessimism.

4.5 The social golfer problem

The Social Golfer Problem (SGP) is a commonly used benchmark for symmetry
breaking techniques. A group of n golfers wish to play golf each week, arranged
into g groups of s golfers, where n = gs. The problem is to find the maximum
number of weeks w such that no two golfers play in the same group more than
once.



We use a pure Boolean model with a w× g × n Boolean matrix mijk, where
mijk = 1 means that golfer k plays in group j in week i. The constraints are as
follows. Each group contains s golfers:

n
∑

k=1

mijk = s

for all i, j. Each golfer plays in one group per week:

g
∑

j=1

mijk = 1

for all i, k. No two golfers plays in the same group more than once:

w
∑

i=1

g
∑

j=1

mijkmijk′ ≤ 1

for all k, k′ such that k < k′. There are three forms of symmetry in this model:

– weeks can be permuted;
– players can be permuted;
– groups can be independently permuted for each week.

The latter symmetry means that we can perform permutations in the group
dimension for every value in the week dimension, so there is more symmetry
than 3-dimensional index symmetry. Yet we would like to add some form of lex-
leader to the model. Recall from Section 2.4 that lexn constraints can be derived
by posting a lex-leader for each possible adjacent row exchange (or exchange
in another dimension) then applying a simplification rule. We apply the same
strategy to the SGP: for each exchange of adjacent weeks or players, and for
each exchange of adjacent groups within each week, we generate a lex-leader
then apply the simplification rule.

We extend SBNO to handle this form of symmetry by maintaining as many
permutations as required: one for the weeks, one for the players, and a group
permutation for each week. The symmetry group is then the direct product of
the week and player symmetric groups, and a symmetric group for each week. As
for lexn, to apply a random local move we exchange two randomly-chosen values
in a randomly-chosen permutation, and the local move neighbourhood explored
in IMPROVE (see Figure 2) is the set of exchanges involving the matrix entry
corresponding to the variable at which the last ≺lex test failed.

We label mijk with dimensions ordered weeks-groups-golfers. Results on a
set of benchmarks are shown in Table 8. The simplified lex-leaders are denoted
by “lex”. WH is the model of Harvey [19], JFP1 is Puget’s first model in [34]
using set variables and SBDD (so the number of solutions is optimal), JFP2 is
Puget’s improved model called “top” in [34] with only partial symmetry breaking
to reduce overhead, LL is the “int-set” model of Law and Lee [25] which was



the best of several integer and set variable models. We do not list the number
of solutions for WH as they are the same as for JFP1. The number of solutions
for LL were not reported in [25]. Empty entries denote unreported results, “—”
means timed out, and “?” indicates a probable typo (Puget wrote “0” here but
(5,5,6) is solvable). Even taking into account different machine speeds our results
are better than all others except JFP2, again showing the effectiveness of SBNO
combined with (simplified) lex-leaders: either we break more symmetries or have
smaller overheads than most other approaches.

WH JFP1 JFP2 LL lex SBNO+lex
g s w sec solns sec solns sec sec solns sec solns sec

4 3 2 0.7 1 0.03 1 0.02 2 0.0 1 0.01
4 3 3 15 4 0.2 14 0.05 112 0.07 48 0.1
4 3 4 49 3 0.4 15 0.06 0.8 82 0.2 34 0.3
4 3 5 29 0 0.5 0 0.03 0 0.1 0 0.2
4 4 2 2.2 1 0.04 1 0.07 1 0.0 1 0.0
4 4 3 8.5 2 0.07 8 0.1 24 0.03 24 0.08
4 4 4 8.5 1 0.1 5 0.1 8.1 6 0.04 4 0.1
4 4 5 12 1 0.1 4 0.2 5.6 2 0.04 2 0.1
4 4 6 21 0 0.2 0 0.03 0 0.1
5 3 2 17 2 0.2 2 0.1 24 0.08 7 0.1
5 3 3 — 251 199 1493 15 140 197440 116 9868 18
5 3 4 — 353812 105 659406 2216
5 3 5 — 528980 298 596765 10468
5 3 6 — 3765 100 2479 14869
5 3 7 — 102 7.8 52 18520
5 4 2 17 1 0.3 1 0.6 6 0.1 1 0.2
5 4 3 2502 40 33 182 5 98 56448 86 5768 24
5 4 4 — 524 8.1 4771 5953 512
5 4 5 — 147 7.5 684 495
5 4 6 — 0 3.6 0 495
5 5 2 52 1 0.4 1 6.5 1 0.02 1 0.04
5 5 3 249 2 0.7 18 12 0.5 1344 2.7 707 4.5
5 5 4 1304 1 1.5 5 22 2.1 216 12 47 11
5 5 5 4027 1 3.5 4 23 144 12 28 13
5 5 6 — ? 6.2 12 38 36 8 5 9
6 4 2 605 4 7 1.0 351 8.2 42 3.1
6 5 6 — 30 42811 — —
6 5 7 — 0 5657 — —

Table 8. SGP results

Why is JFP2 better? It uses a different model with a set variable for each
week denoting which of the possible groups play that week. This requires all
possible groups to be precomputed, which is a large number (for instance (8,4,10)
has 35960 groups), breaking all group symmetries and leaving only player and



week symmetries. This is a very significant reduction in symmetry but we do
not think that it fully explains the results. A more compact model by Smith
[39] breaks the same symmetries by reformulation but does not give results as
good as those of JFP2. We conjecture that JFP2’s higher-level variables lead to
stronger constraint filtering.

4.6 Covering arrays

Finally, a problem that appears unrelated to the SGP but has similar symmetry.
A covering array CA(t, k, g) of size b is an b× k array consisting of b vectors of
length k with entries from {0, 1, . . . , g − 1} (g is the size of the alphabet) such
that every one of the gt possible vectors of size t occurs at least once in every
possible selection of t elements from the vectors. The parameter t is referred to
as the covering strength. The objective is to find the minimum b for which a
CA(t, k, g) of size b exists.

Several constraint models were described and compared by Hnich et al. [20]
and we now review their best model. First, the obvious model has a b×k matrix
of integer variables xri for 1 ≤ r ≤ b and 1 ≤ i ≤ k, such that xri = m if
the value of element i in test vector r is m. However, it is hard to express the
coverage constraints (every subset of t elements must be combined in all possible
gt ways). A different viewpoint of the problem can concisely express the cover-
ing constraints: an alternative matrix of integer variables, each of whose b rows
represents a possible set of elements, as before. But there are now

(

k

t

)

columns,
each representing one of the possible t-combinations. So each variable represents
a tuple of t variables in the obvious model. Now the coverage constraints can
easily be expressed via global cardinality constraints: every number in the range
0 to 2t − 1 should be present at least once and at most b− 2t + 1 times in the b
test vectors in the column corresponding to the t-tuple. But the values assigned
to two compound variables must be consistent in terms of the values they imply
for the covering array, and these intersection constraints are harder to express
in the new matrix. Best results were found by using both the original and al-
ternative matrices. The coverage constraints can be expressed on the alternative
matrix. Linear channelling constraints associate each compound variable in the
alternative matrix with the t corresponding variables in the original matrix. The
intersection constraints are now redundant. The alternative matrix is used for
variable labelling, by column then by row. There is a great deal of symmetry in
the original matrix: rows and columns can both be permuted and there is also
a value symmetry: the values in each column can be permuted. To break some
of this symmetry, lex2 was applied to the original matrix, and the number of
occurrences of each value in each column was ordered. The values in the first
row of the matrix were set to 0.

We use the same model but without lex2 or constraints to order value occur-
rences, instead channelling the original matrix into a new 3-dimensional binary
matrix to break symmetries. As in the SGP, one dimension has a permutation
for every value of another dimension. We generate simplified lex-leaders and
extend SBNO in the same way as for the SGP. We use the binary matrix for



variable labelling with the canonical variable ordering with dimensions ordered
column-row-value. Because our version of ECLiPSe does not have an efficient
implementation of the global cardinality constraint, we use linear constraints on
the alternative matrix instead.

Results are shown in Table 9, where “Solver” denotes the ILOG Solver results
of Hnich et al., “lex2+ord” an ECLiPSe recreation of that model but with linear
cardinality constraints, “lex” our new model with lex-leaders on the binary ma-
trix, and “SBNO+lex” the same with SBNO added. Only unsatisfiable instances
are used. Comparing the Solver and lex2+ord results shows that ECLiPSe is
less efficient than Solver on this problem. Experiments with a newer version of
ECLiPSe indicate that this is only partly due to the lack of a global cardinality
constraint, so Solver must have some other advantage. But the lex results are
better than the lex2+ord results, showing that our use of lex-leaders is more
efficient than the symmetry breaking method of Hnich et al. The SBNO+lex
results are better still and similar to the (un-normalised) times for Solver. We
conjecture that implementing SBNO+lex in Solver will give even better results.

t k g b Solver lex2+ord lex SBNO+lex

3 5 2 8 0.01 0.0 0.0 0.02
3 5 2 9 0.01 0.05 0.02 0.06
3 6 2 10 0.02 0.4 0.1 0.2
3 6 2 11 0.09 0.8 0.5 0.5
3 12 2 12 5.8 177 41 10
3 12 2 13 270 922 1145 69
4 6 2 16 0.01 0.3 0.5 0.8
4 6 2 17 0.02 34 1.5 2.4
4 6 2 18 0.06 325 2.6 3.6
4 6 2 19 0.4 1126 6.0 6.4
4 6 2 20 20 2448 27 15
4 7 2 21 35 10792 374 62
4 7 2 22 247 19537 2663 261
4 7 2 23 1505 39008 17053 1138

Table 9. CAN results (sec)

5 Conclusion

This paper described SBNO, a framework for applying metaheuristic search
to symmetry breaking during backtrack search, and an implementation using
local search for various symmetries in matrix models. On six classes of highly
symmetric problem SBNO was shown to be a powerful technique, especially in
combination with lex2 and other lex-leaders. Interestingly, the benefit of SBNO
is greatest on the hardest problems. Though methods such as lex2 are fast and



use good filtering algorithms, they break only a limited (though significant) set
of symmetries. In contrast, SBNO may break each symmetry with arbitrarily
high probability, and the harder the problem the longer it has to detect them so
the more likely this is. Adding lex-leaders to the model and applying SBNO are
complementary techniques that work well together.

The negligible memory requirement and modest computational overhead of
SBNO make it suitable for problems with arbitrarily large symmetry groups.
Other symmetry breaking methods have used Constraint Programming or Com-
putational Group Theory algorithms to solve auxiliary problems arising in sym-
metry breaking, but as far as we know SBNO is the first use of metaheuristics
for this purpose. This connection between symmetry breaking and metaheuris-
tics is likely to be fruitful for Constraint Programming. An obvious way to try
to improve SBNO is to use more sophisticated metaheuristics than the simple
Iterated Local Search algorithm used in this paper.

An issue unexplored in this paper is that of combining SBNO with dynamic
variable ordering heuristics. It breaks most symmetry when used with the canon-
ical (static) variable ordering but this might not always give the best runtimes.
Another way in which SBNO might be improved is to make it dynamic, pos-
sibly using techniques from [35]: though SBNO dynamically detects violated
lex-leaders, the set of lex-leaders it uses is statically determined by the cho-
sen canonical variable ordering, so it is classed as a static symmetry breaking
method. SBNO can also be generalised to arbitrary variable symmetry in a
straightforward way, and it may be possible to generalise it to value symmetry
(directly instead of via binary matrices) and conditional symmetry by using the
results of [40] on generalised lex-leaders . We also hope to combine it with other
partial symmetry breaking methods such as STAB and snake-lex. We conjecture
that SBNO will boost the performance of any partial symmetry breaking method
for variable symmetry, as it can potentially discover any violated lex-leader.

Acknowledgement Thanks to Kish Shen for help with ECLiPSe, including
performing experiments with a new version of the global cardinality constraint.
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