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Abstract

We introduce a novel strategy to address the issue of demand estima-
tion in single-item single-period stochastic inventory optimisation prob-
lems. Our strategy analytically combines confidence interval analysis and
inventory optimisation. We assume that the decision maker is given a set
of past demand samples and we employ confidence interval analysis in or-
der to identify a range of candidate order quantities that, with prescribed
confidence probability, includes the real optimal order quantity for the
underling stochastic demand process with unknown stationary parame-
ter(s). In addition, for each candidate order quantity that is identified,
our approach can produce an upper and a lower bound for the associ-
ated cost. We apply our novel approach to three demand distribution in
the exponential family: binomial, Poisson, and exponential. For two of
these distributions we also discuss the extension to the case of unobserved
lost sales. Numerical examples are presented in which we show how our
approach complements existing frequentist — e.g. based on maximum
likelihood estimators — or Bayesian strategies.
keywords: inventory control, newsvendor problem, confidence interval
analysis, demand estimation, sampling.
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1 Introduction

We consider the problem of controlling the inventory of a single item with
stochastic demand over a single period. This problem is known as the “newsven-
dor” problem [Silver et al., 1998]. Most of the literature on the newsboy problem
has focused on the case in which the demand distribution and its parameters
are known. However, what happens in practice is that the decision maker must
estimate the order quantity from a — possibly very limited — set of past de-
mand realisations. This task is often complicated by the fact that unobserved
lost sales must be taken into account.

Existing approaches to the newsvendor under limited historical demand data
can be classified in non-parametric and parametric approaches. Non-parametric
approaches operate without any access to and assumptions on the true demand
distributions. Parametric approaches assume that demand realisations come
from a given probability distribution — of from a family of probability distribu-
tions — and make inferences about the parameters of the distribution. When
the class of the distribution is known, but its parameters must be estimated
from a set of samples, non-parametric approaches may produce conservative
results. For this reason several works in the literature investigated parametric
approaches to the newsvendor under limited historical demand data; a complete
overview on these works will be provided in Section 2. Two classical parametric
approaches for dealing with the newsvendor under limited historical demand
data are the maximum likelihood [see e.g. Scarf, 1959, Fukuda, 1970, Gupta,
1960] and the Bayesian approach [see e.g. Hill, 1997, 1999]. Both these strategies
feature a number of asymptotical properties that guarantee their convergence
towards the optimal control strategy. However, a decision maker finds herself
rarely in an asymptotic situation, since only few samples are generally available
to estimate an order quantity. This means that asymptotic properties often do
not hold in practice. Unfortunately, both the maximum likelihood estimation
and the Bayesian approaches ignore the uncertainty around the estimated or-
der quantity and its associated expected total cost or profit. Hayes [1969] and,
more recently, Akcay et al. [2011] discuss how to quantify this uncertainty by
using the concept of expected total operating cost (ETOC), which represents the
expected one-period cost associated with operating under an estimated inven-
tory policy. By minimising this performance indicator, they identify an optimal
biased order quantity that accounts for the uncertainty around the demand
parameters estimated from limited historical data. Their approach, however,
does not answer a number of fundamental questions. It does not state at what
confidence level we can claim this order quantity to be optimal within a given
margin of error; nor does it quantifies the probability of incurring an expected
total cost substantially different than the estimated one, when such an order
quantity is selected. Kevork [2010] exploits the sampling distribution of the
estimated demand parameters to study the variability of the estimated optimal
order quantity and its expected total profit under a normally distributed de-
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mand with unknown parameters. The author shows that these two estimators
asymptotically converge to normality. Based on this property, asymptotic confi-
dence intervals are derived for the true optimal order quantity and its expected
total profit. Unfortunately, these confidence intervals achieve the prescribed
confidence level only asymptotically and they represent an approximation when
one operates under finite samples. In this work, we make the following contri-
butions to the inventory management literature:

1. We analytically combine confidence interval analysis and inventory opti-
misation. By exploiting exact confidence intervals for the parameters of a
given distribution, we identify a range of candidate order quantities that,
according to a prescribed confidence probability, includes the real optimal
order quantity for the underlying stochastic demand process with unknown
stationary parameter(s). For each candidate optimal order quantity that
is identified, our approach computes an upper and a lower bound for the
associated cost. This range covers, once more according to a prescribed
confidence probability, the actual cost the decision maker will incur if she
selects that particular quantity.

2. To obtain the former result, when the order quantity is fixed, we establish
convexity of the newsvendor cost function in the success probability p of
a binomial demand (Theorem 3) and in the rate λ of a poisson demand
(Theorem 4); we also establish that the newsboy cost function is quasi-
convex in the expected value 1/λ of an exponential distribution (Theorem
1). These results are nontrivial and, to the best of our knowledge, they
have not been established before in the literature.

3. For the binomial and the poisson distribution we demonstrate how to
extend the discussion to account for unobserved lost sales.

Our strategy is frequentist in nature and based on the theory of statistical
estimation introduced by Neyman [1937]. In contrast to Bayesian approaches,
no prior knowledge is required to perform the computation, which is entirely
data driven. In contrast to [Hayes, 1969, Akcay et al., 2011] we do not introduce
new performance indicators, such as the ETOC, and we build our analysis on
existing and well established results from inventory theory, i.e. the expected
total cost of a policy; and from statistical analysis, i.e. confidence intervals.
Finally, in contrast to [Kevork, 2010] our results are valid both asymptotically
and under finite samples.

If the identified set of candidate optimal order quantities comprises more
than a single value, expert assessment or any existing frequentist or Bayesian
approach may be employed to select the most promising of these values ac-
cording to a given performance indicator. By using our approach, the decision
maker may then determine — at a given confidence level and from a limited
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set of available data — the exact confidence interval for the expected total cost
associated with such a decision, as well as the potential discrepancy between
the true optimal decision and the one she selected. For this reason, a further
contribution is the following.

4. We effectively complement a number of existing strategies that compute
a point estimate of the optimal order quantity and its expected total cost.
We demonstrate this fact for the Bayesian approach in [Hill, 1997] and for
the frequentist approach based on the maximum likelihood estimator of
the demand distribution parameter.

2 Literature survey

A thorough literature review on the newsvendor problem is presented by Khouja
[2000]. Among other extensions, the author surveyed those dealing with different
states of information about demand. As Silver et al. [1998] point out, in practice
demand distribution may be not known. Khouja [2000] points out that several
authors relaxed the assumptions of having a specific distribution with known
parameters.

One of the earliest approaches to dealing with different states of information
about demand is the so-called “maximin approach”, which consists in maximis-
ing the worst-case profit. Scarf et al. [1958] applied the maximin approach to
the newsvendor problem and assumed that only the mean and the variance of
demand are known. Under this assumption, they derived a closed-form expres-
sion for the optimal order quantity that maximises the expected total profit
against the worst-case demand distribution. Gallego and Moon [1993] provided
a simplified form of the rule in [Scarf et al., 1958]; beside this, they also dis-
cussed four extensions: a recourse case, a model including fixed ordering cost,
a random yield case and a multi-product case. This model was extended to
account for balking in Moon and Choi [1995]. Yue et al. [2006] assumed that
the demand distribution belongs to a certain class of probability distribution
functions with known mean and standard deviation; the authors’ aim is to com-
pute the maximum expected value of distribution information over all possible
probability distribution functions with known mean and standard deviation for
any order quantity. Perakis and Roels [2008] pointed out that the maximin
objective is, generally speaking, conservative, since it focuses on the worst-
case scenario for the demand. The authors therefore suggested adopting a less
conservative approach: the “minimax regret”, in which the firm minimises its
maximum cost discrepancy from the optimal decision. Works mentioned so far
focused on a newsvendor setting. In contrast, Notzon [1970] discuss a minimax
multi-period inventory model. Gallego et al. [2001] discuss a finite horizon in-
ventory model in which the demand distribution is discrete and partially defined
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by selected moments and/or percentiles. Bertsimas and Thiele [2006] analyse a
distribution free inventory problem for which demand in each period is a ran-
dom variable over a given support identified by two values: the lower and the
upper estimators. A comparable model is found in Bienstock and Özbay [2008].
Ahmed et al. [2007] minimise a coherent risk measure instead of the total cost in
an inventory control model and establish an equivalence between risk aversion
described as a coherent risk measure and a minimax formulation of the prob-
lem. See and Sim [2010] discuss an inventory control problem under a demand
model described by a given support, mean and standard deviation. They then
consider a second-order cone optimisation problem that minimises the expected
total cost among all distributions satisfying the demand model.

All the aforementioned works operate in a distribution free setting. The
decision maker has access to partial information about the demand distribution,
e.g. mean, variance, symmetry, unimodality etc, but does not know the class
of the demand distribution, e.g. Poisson, normal etc. In practice, it is often
the case that the decision maker can only access a set of past observations of
the demand out of which a near-optimal inventory target must be estimated.
Approaches trying to estimate a near-optimal inventory target from observed
realisations of the demands can be classified as non-parametric or parametric.

Non-parametric approaches operate without any access to and assumptions
on the true demand distributions. Levi et al. [2007] discuss a non-parametric ap-
proach which computes policies based only on observed samples of the demands.
The authors determine bounds for the number of samples that are necessary in
order to guarantee an arbitrary approximation of the optimal policy defined
with respect to the true underlying demand distributions. Huh et al. [2009] dis-
cuss an adaptive inventory policy that deals with censored observations, thus
effectively relaxing the assumption that past demand data is observable. Other
non-parametric approaches based on order statistics were proposed in [Hayes,
1971, Lordahl and Bookbinder, 1994]; approaches based on bootstrapping tech-
niques were discussed in [Bookbinder and Lordahl, 1989, Fricker and Goodhart,
2000].

Parametric approaches assume that demand realisations come from a given
probability distribution and make inferences about the parameters of the dis-
tribution. The class of the distribution may be determined, for instance, by
selecting the maximum entropy distribution that matches the structure of the
demand process at hand (see also the discussion in Perakis and Roels [2008]
p. 190). According to Jaynes’ “principle of maximum entropy”, introduced
in [Jaynes, 1957], subject to known constraints (i.e. testable information), the
probability distribution which best represents the current state of knowledge is
the one with largest entropy. When the class of the distribution is known but its
parameters must be estimated from a set of samples non-parametric approaches
such as those discussed so far are not appropriate, since they would produce
conservative results.
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According to Berk et al. [2007] there are two general approaches for dealing
with a stochastic decision making environment in which random variables follow
known distributions with unknown parameters: the Bayesian and the frequen-
tist. In the Bayesian approach a “prior” distribution is selected for the demand
distribution parameter(s). This selection may be based on collateral data and/or
subjective assessment. Subsequently, a “posterior” distribution is derived from
the prior distribution by using the demand data that is observed. This posterior
distribution is used to construct the posterior distribution of the demand and
to determine the optimal order quantity and objective function value. In the
frequentist approach a parametric demand distribution is empirically selected
and point estimates, e.g. maximum likelihood or moment estimators, for the
unknown parameters are obtained according to the observed data; these are
then used to derive the optimal order quantity and objective function value.

According to Kevork [2010] another distinction can be made between ap-
proaches assuming that demand is fully observed and approaches assuming that
demand occurring when the stock level drops to zero is lost and thus not ob-
served. In the latter case, it is necessary to adjust the estimation procedure to
account for unobserved demand. Lau and Lau [1996] further distinguish works
on estimating demand distributions with stockouts in two groups: estimating
the initial demand distribution, e.g. Conrad [1976], Lau and Lau [1996]; and
updating the demand distribution parameters Wecker [1978], Bell [1981], Hill
[1992].

Bayesian approaches under fully observed demand were proposed in Scarf
[1959, 1960], Iglehart [1964], Azoury [1985], Lovejoy [1990], Bradford and Sugrue
[1990], Hill [1997], Eppen and Iyer [1997], Hill [1999], Lee [2008], Bensoussan et al.
[2009]. Bayesian approaches under censoring induced by lost sales include
Lariviere and Porteus [1999], Ding and Puterman [1998], Berk et al. [2007], Chen
[2010], Lu et al. [2008], Mersereau [2012]. Bayesian approaches suffer from a
number of drawbacks. First, an initial “belief” about the unknown parameters
must be expressed as a prior distribution of the demand. It is often assumed that
this prior distribution is obtained from collateral data and/or subjective assess-
ment. The need of a prior distribution is structural in the Bayesian approach,
which relies on the update of the prior distribution to derive the posterior dis-
tribution of the demand given the data. When no supporting information is
available, “uninformative” priors can be used, see e.g. Hill [1999], but these
tend to introduce a strong bias expecially under limited available data to per-
form Bayesian updating. This fact is well known in the life sciences, see e.g.
van Dongen [2006], but it is often ignored in more theoretical settings. At the
end of this work, in Section 7, we will provide a practical exemplification of
this fact. A second issue that arises with existing Bayesian approaches to the
newsvendor problem is that to show that the order quantity derived via the
Bayesian approach converges to the optimal order quantity one has to consider
an infinite set of samples, see e.g. Bensoussan et al. [2009]. However, in prac-
tice it is often the case that available information is very limited. Unfortunately,
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Bayesian approaches can be shown to be often biased under small sample sets,
especially due to the fact that the choice of the prior may strongly influence the
order quantity obtained.

Two early frequentist approaches are Nahmias [1994] and Agrawal and Smith
[1996]. Nahmias [1994] analyzed the censored demand case under a normally
distributed demand. Agrawal and Smith [1996] considered the estimation of
a negative binomial demand under censoring induced by lost sales. However,
these two studies consider the stock level as given and thus do not address
the associated optimization problem of finding the optimum stock level. More
recently, Liyanage and Shanthikumar [2005] introduced the “operational statis-
tics” framework, in which an optimal order quantity, rather than the param-
eters of the distribution, is directly estimated from the data. The authors
consider the case in which it is known that the demand distribution function
belongs to a parameterised family of distribution functions. In contrast to the
Bayesian approach, they do not assume any prior knowledge on the parame-
ter values. They demonstrate that by combining demand parameter estimation
and inventory-target optimisation a higher expected total profit can be achieved
with respect to traditional approaches that separate estimation and optimisa-
tion. Klabjan et al. [2013] integrate distribution fitting and robust optimisation
by identifying a set of demand distributions that fit historical data according
a given criterion; they then characterise an optimal policy that minimises the
maximum expected total cost against such set of demand distributions.

There is an important limitation that is common to all approaches sur-
veyed so far. Consider a possibly very limited set of past demand observations;
strategies based on frequentist analysis, e.g. maximum likelihood estimators
and distribution fitting; or on Bayesian analysis, e.g. Hill [1999], would analyze
these data and provide a single most-promising order quantity and an estimated
cost associated with it. However, given the available data, they do not answer
a number of fundamental questions: we do now know at what confidence level
we can claim the quantity selected to be optimal within a given margin of error;
and we also do not know the probability of incurring a cost substantially higher
than the estimated one, when such an order quantity is selected.

To the best of our knowledge Kevork [2010] was the first to exploit the sam-
pling distribution of the estimated demand parameters in order to study the
variability of the estimates for the optimal order quantity and associated ex-
pected total profit. The author adopts a frequentist approach in which demand
is fully observed in each period. By incorporating maximum likelihood esti-
mators for mean and variance of demand into expressions that determine the
optimal order quantity and associated expected total profit, the author devel-
ops estimators for these latter two variables. These estimators are shown to be
consistent and to asymptotically converge to normality. Based on these proper-
ties, the author derives confidence intervals for the true optimal order quantity
and associated expected total profit. Unfortunately, these estimators are biased
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in finite samples and the associated confidence intervals achieve the prescribed
confidence level only asymptotically.

As pointed out in [Akcay et al., 2011], the inventory manager finds rarely
herself in an asymptotic situation, since an inventory target must be typically es-
timated from a small sample size. To quantify the uncertainty about distribution
parameter estimates and thus about the estimated order quantity, Akcay et al.
[2011] adopt the ETOC, originally introduced in [Hayes, 1969], which we re-
call represents the expected one-period cost associated with operating under an
estimated inventory policy. Originally, Hayes [1969] discussed applications of
ETOC to exponentially and normally distributed demands. More specifically,
they identified the optimal biased order quantity that minimises the ETOC in
presence of limited historical demand data. This was one of the first works
blending statistical estimation with inventory optimisation. Akcay et al. [2011]
extended this analysis to a parameterised family of distributions — the Johnson
translation system — that has the ability to match any finite first four moments
of a random variable and to capture a broad range of distributional shapes. The
authors quantify the inaccuracy in the order quantity estimation by using the
expected value of perfect information about the sampling distribution of the de-
mand parameters for the estimated order quantity. By using this interpretation
of the ETOC, they seek an order quantity that minimises the ETOC within a
class of inventory target-estimators implied by the Johnson translation system.
Despite its ability to quantify the inaccuracy in the inventory-target estimation
as a function of the length of the historical data via the ETOC, the approach
in [Akcay et al., 2011] does not identify a confidence interval that, with pre-
scribed confidence probability, includes the real optimal order quantity for the
underlying stochastic demand process with unknown parameter(s); neither it is
able to produce a confidence interval for the expected total cost associated with
ordering decisions in this interval.

3 The newsvendor problem

In this section, we shall summarize the key features of the newsvendor problem.
For more details, the reader may refer to Silver et al. [1998]. Consider a one-
period random demand d with mean µ and variance σ2. Let h be the unit
overage cost, paid for each item left in stock after demand is realized, and let
p be the unit underage cost, paid for each unit of unmet demand; we assume
p, h > 0. Let g(x) = hx+ + px−, where x+ = max(x, 0) and x− = −min(x, 0).
The expected total cost can be written as G(Q) = E[g(Q − d)], where E[·]
denotes the expected value.
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It is a well-known fact that, for a continuous demand d,

F (Q) = Pr{d ≤ Q} = p

p+ h
= β. (1)

If F is continuous there is at least one Q satisfying Eq. 1, that is

Q∗ = inf{Q ≥ 0 : F (Q) = β}.

For F strictly increasing, there is a unique optimal solution given by

Q∗ = F−1(β). (2)

In practice, the probability distribution of the random demand d often has
finite support over the set N0 = {0, 1, 2, . . .}. In this case it is useful to work
with the forward difference ∆G(Q) = G(Q + 1) −G(Q), Q ∈ N0. It is easy to
see that

∆G(Q) = h− (h+ p) Pr{d > j}
is non-decreasing in Q, and that limQ→∞ ∆G(Q) = h > 0, so an optimal solu-
tion is given by Q∗ = min{Q ∈ N0 : ∆G(Q) ≥ 0} or equivalently

Q∗ = min{Q ∈ N0 : F (Q) ≥ β}. (3)

3.1 A frequentist and a Bayesian approach

Let us now consider the situation in which the decision maker knows the type of
the random demand distribution (e.g. binomial), but in which he does not know
the actual values of some or all the (stationary) parameters of such a distribu-
tion. Nonetheless, the decision maker is given a set of M past realizations of
the demand. From these realizations he has to infer the optimal order quantity
and, possibly, he has to estimate the cost associated with the optimal Q∗ he has
selected.

In what follows, we detail the functioning of a frequentist approach, i.e. the
maximum likelihood approach, and of a Bayesian approach from the literature
Hill [1997]. In the rest of this work we will make ample use of these two ap-
proaches, especially to discuss how our approach can be used to complement the
results obtained by frequentist or Bayesian approaches. For the sake of brevity,
in this work we will focus only on these two strategies from the literature. How-
ever, this choice is made without loss of generality. Our approach may in fact
also complement any of the other frequentist or Bayesian approaches previously
surveyed.
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3.1.1 Maximum likelihood approach

A commonly adopted heuristic strategy for order quantity selection under sam-
pled demand information consists in computing, from the available sample set,
a point estimate for the unknown demand distribution parameter(s). This may
be done by using the maximum likelihood estimator [Le Cam, 1990], thus ob-
taining the so-called maximum likelihood policy [see e.g. Scarf, 1959, Fukuda,
1970, Gupta, 1960], or the method of moments [Newey and McFadden, 1986].
For instance, assume that the available sample set comprises M observed past
demand data, d1, . . . , dM , and that the demand is assumed to follow a binomial
distribution. The binomial distribution comprises two parameters: the number
of trials N and the success probability q. In the context of the newsvendor prob-
lem, N may be interpreted as the non-variant number of customers that enter
the shop in a given day i ∈ {1, . . . ,M}, and q may be interpreted as the proba-
bility that a customer makes a purchase. Then, by assuming that N is known,
the maximum likelihood estimator for parameter q is q̂ =

∑M

i=1 di/(MN). After
computing q̂, the decision maker employs the random variable bin(N ; q̂) in place
of the actual unknown demand distribution in Eq. 3 to compute the estimated
optimal order quantity Q̂∗ and expected total cost G(Q̂∗).

3.1.2 Hill’s Bayesian approach

A Bayesian approach to the Newsvendor problem under partial information is
presented by Hill [1997]. Hill’s approach considers a “prior” distribution, based
on collateral data and/or subjective assessment, for the unknown parameter(s)
of the demand distribution. As new data are observed, the prior distribution is
updated and a “posterior” distribution is generated. Hill then uses the posterior
distribution of the unknown parameter(s) for estimating the posterior distribu-
tion of the demand. Finally, the posterior distribution of the demand is used to
estimate the order quantity that optimizes the Newsvendor cost function. More
formally, we recall that Bayes’ theorem tells us that

Pr{aj|b} =
Pr{b|aj} · Pr{aj}∑k

i=1 Pr{b|ai} · Pr{ai}
,

where {a1, . . . , ak} is a partition of the sample space and b is an observed event.
Bayes actually discusses also the natural extension of the above theorem when
a is continuous and b is discrete or continuous,

f(a|b) = f(b|a) · g(a)∫
f(b|u) · g(u)du.

The denominator is, of course, independent of a, therefore f(a|b) ∝ f(b|a) ·g(a).
In the context of the Newsvendor problem, a represents the unknown parameter
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of the demand distribution, b represents the actual set of observed demand sam-
ples. According to Hill, the prior distribution of a, g(a), describes an estimate
of the likely value that a might take, without considering the observed sam-
ples. This estimation is based on subjective assessment and/or collateral data.
f(b|a), also known as the likelihood, represents the probability of observing a
set of samples b given a. The posterior distribution of a, f(a|b), is an updated
estimate of the values a is likely to take based on the prior distribution and
the observed information. Hill uses an uninformative, also known as objective,
prior to express “an initial state of complete ignorance of the likely values that
the parameter a might take.” By employing the conjugate prior for the partic-
ular distribution under analysis, he constructs the posterior distribution for the
Newsvendor demand as follows,

f(d|b) =
∫

f(d|a)f(a|b)db,

where the integral is computed over all permitted values of a. The Bayesian
approach proposed by Hill then consists in using this posterior distribution
in place of the unknown true distribution for the demand in Eq. 2. This
immediately produces a candidate order quantity Q̂∗.

4 Binomial demand

Consider a discrete random variable that follows a Bernoulli distribution. Ac-
cordingly, such a variable may produce only two possible outcomes, i.e. “yes”
and “no”, with probability q and 1− q, respectively. This class of random vari-
ables is particularly useful in representing so called “Bernoulli trials”, which
are experiments that can have one of two possible outcomes. These events can
be phrased into “yes or no” questions, such as “did the customer purchase the
newspaper?”

Consider the following situation: a Newsvendor has a pool of N customers
that come every day to the stand. Each customer may buy a newspaper with
probability q. It is a well-known fact that any experiment comprising a sequence
ofN Bernoulli trials, each having the same “yes” (respectively, “no”) probability
q (respectively, 1 − q), can be represented by a random variable bin(N ; q) that
follows a binomial distribution [Jeffreys, 1961] with probability mass function

Pr{bin(N ; q) = k} =
(
N

k

)
qk(1− q)N−k,

where k = 0, . . . , N .

According to our previous discussion it is fairly easy to find the optimal
order quantity Q∗ for a given random demand bin(N ; q). We shall now give
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a running example. Consider a random demand bin(50, 0.5). Let h = 1 and
p = 3, therefore β = 0.75. From Eq. 3 we compute Q∗ = 27 and the respective
expected total cost G(Q∗) = 4.4946.

Let us now consider the situation in which the parameter q is not known.
The decision maker is given a set of M past realizations of the demand. From
these realizations he has to infer the optimal order quantity and, possibly, he
has to estimate the cost associated with the optimal Q∗ he has selected.

Since we operate under partial information it may not be possible to uniquely
determine “the” optimal order quantity and the exact cost associated with it.
Therefore, we argue that a possible approach consists in determining a range
of “candidate” optimal order quantities and upper and lower bounds for the
cost associated with these quantities. This range will contain the real optimum
according to a prescribed confidence probability.

4.1 Confidence intervals for the binomial distribution

Confidence interval analysis [Neyman, 1937, 1941] is a well established technique
in statistics for computing, from a given set of experimental results, a range of
values that, with a certain confidence level (or confidence probability), will cover
the actual value of a parameter that is being estimated. Several techniques
[Clopper and Pearson, 1934, Garwood, 1936, Trivedi, 2001, etc.] for building
confidence intervals for a given sample set have been proposed.

Approximate techniques for building confidence intervals [see e.g. Agresti and Coull,
1998] become relevant because, especially with small sample sizes, an exact con-
fidence interval may be unnecessarily conservative. In this work, we focus on
the exact interval and we leave the analysis of the benefits brought by the use
of approximate intervals as future research.

A method to compute “exact confidence intervals” for the binomial distri-
bution has been introduced by Clopper and Pearson [1934]. This method uses
the binomial cumulative distribution function in order to build the interval from
the data observed. The Clopper-Pearson interval can be written as (qlb, qub),
where

qlb = min{q|Pr{bin(N ; q) ≥ X} ≥ (1− α)/2},
qub = max{q|Pr{bin(N ; q) ≤ X} ≥ (1− α)/2},

X is the number of successes (or “yes” events) observed in the sample and α is
the confidence probability. Note that we assume qlb = 0 when X = 0 and qub =
N when X = N . As discussed by Agresti and Coull [1998], this interval can
be also expressed using quantiles from the beta distribution. More specifically,
the lower endpoint is the (1 − α)/2-quantile of a beta distribution with shape
parametersX and N−X+1, and the upper endpoint is the (1+α)/2-quantile of
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a beta distribution with shape parameters X +1 and N −X . Furthermore, the
beta distribution is, in turn, related to the F-distribution so a third formulation
of the Clopper-Pearson interval, also discussed by Agresti and Coull [1998], uses
quantiles from the F distribution.

It is intuitively clear that the “quality” of a given confidence interval is
directly related to its size. The smaller the interval, the better the estimate.
In general, confidence intervals that have symmetric tails (i.e. with associated
probability (1 − α)/2) are not the smallest possible ones. A large literature
exists on the topic of determining the smallest possible intervals for a given
parameter/distribution combination [see e.g. Zieliński, 2010]. The discussion
that follows is independent of the particular interval adopted. For the sake of
simplicity, we will adopt intervals having symmetric tails.

4.2 Solution method employing statistical estimation based

on classical theory of probability

We shall now employ the Clopper-Pearson interval for computing an upper and
a lower bound for the optimal order quantity Q∗ in a Newsvendor problem under
partial information. The confidence interval for the unknown parameter q of the
binomial demand bin(N ; q) is simply (qlb, qub) where

qlb = min{q|Pr{bin(MN ; q) ≥ X} ≥ (1− α)/2},
qub = max{q|Pr{bin(MN ; q) ≤ X} ≥ (1− α)/2},

and X =
∑M

i=1 di. Let Q∗
lb be the optimal order quantity for the Newsvendor

problem under a bin(N, qlb) demand and Q∗
ub be the optimal order quantity for

the Newsvendor problem under a bin(N, qub) demand. Since ∆G(Q) is non-
decreasing in Q, according to the available information with confidence proba-
bility α the optimal order quantity Q∗ is a member of the set {Q∗

lb, . . . , Q
∗
ub}.

We shall now compute upper (cub) and lower (clb) bounds for the cost
associated with a solution that sets the order quantity to a value in the set
{Q∗

lb, . . . , Q
∗
ub}. Let us write the cost associated with an order quantity Q,

G(Q) = h

Q∑

i=0

Pr{bin(N ; q) = i}(Q− i) + p

N∑

i=Q

Pr{bin(N ; q) = i}(i−Q).

Then, consider the function

GQ(q) = h

Q∑

i=0

Pr{bin(N ; q) = i}(Q− i) + p

N∑

i=Q

Pr{bin(N ; q) = i}(i−Q), (4)

in which the order quantity Q is fixed and in which we vary the “success”
probability q ∈ (0, 1). It can be proved that GQ(q) is convex in the continuous
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parameter q; this is trivially true when Q = N . The proof for 0 ≤ Q < N is
given in Appendix 8 (Theorem 3).

Although it is possible to prove that GQ(q) is convex in q, there is no closed
form expression for finding the q∗ that minimizes this function. Nevertheless,
due to its convexity in q, it is clearly possible to use convex optimization ap-
proaches to find the q∗ that minimizes or maximizes this function over a given
interval.

Let us consider the confidence interval (qlb, qub) for the parameter q of the
binomial demand. For a given order quantity Q, consider the value

q∗Q,min = argmin
q∈(qlb,qub)

GQ(q)

(
q∗Q,max = argmax

q∈(qlb,qub)

GQ(q)

)

that minimizes (maximizes) GQ(q) for q ∈ (qlb, qub). With confidence proba-
bility α, GQ(q

∗
Q,min) and GQ(q

∗
Q,max) represent a lower and an upper bound,

respectively, for the cost associated with Q.

By recalling that the optimal order quantity Q∗ is, with confidence probabil-
ity α, a member of the set {Q∗

lb, . . . , Q
∗
ub}, it is easy to compute upper (c∗ub) and

lower (c∗lb) bounds for the cost that a manager will face, with confidence proba-
bility α, whatever order quantity he chooses in the candidate set {Q∗

lb, . . . , Q
∗
ub}.

The lower bound is
c∗lb = min

Q∈{Q∗

lb
,...,Q∗

ub
}
GQ(q

∗
Q,min)

and the upper bound is

c∗ub = max
Q∈{Q∗

lb
,...,Q∗

ub
}
GQ(q

∗
Q,max).

It should be emphasized that, when the confidence interval (qlb, qub) cov-
ers the real parameter q of the binomial demand we are estimating, then the
set {Q∗

lb, . . . , Q
∗
ub} comprises the optimal order quantity Q∗ and the interval

(c∗lb, c
∗
ub) comprises the real cost associated with every possible order quantity

in {Q∗
lb, . . . , Q

∗
ub}. Given the way confidence interval (qlb, qub) is constructed, it

is guaranteed that this happens with probability α.

Of course, by increasing the number M of past observations, we can decrease
the size of confidence interval (qlb, qub). As a direct consequence, the cardinality
of the set {Q∗

lb, . . . , Q
∗
ub} decreases. In the ideal case, this set comprises a

single candidate order quantity Q∗ that with confidence probability α represents
an optimal solution to the problem and has a cost comprised in the interval
(GQ∗(q∗Q∗,min), GQ∗(q∗Q∗,max)).

Finally, consider the case in which unobserved lost sales occurred and the M
observed past demand data, d1, . . . , dM , only reflect the number of customers
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that purchased an item when the inventory was positive. The analysis discussed
above can still be applied provided that the confidence interval for the unknown
parameter q of the bin(N ; q) demand is computed as

qlb = min{q|Pr{bin(∑M

j=1 N̂j ; q) ≥ X} ≥ (1− α)/2},
qub = max{q|Pr{bin(∑M

j=1 N̂j ; q) ≤ X} ≥ (1− α)/2},

where N̂j is the total number of customers that entered the shop in day j —
for which a demand sample dj is available — while the inventory was positive.

4.3 Algorithm

The procedure to compute, under the prescribed confidence probability α, a
candidate set Q of order quantities and upper (c∗ub) and lower (c∗lb) bounds for
the cost a manager faces when he selects one of these quantities is presented
in Algorithm 1. The code initially computes Clopper-Pearson interval (qlb, qub)
by exploiting the relationship between the binomial distribution and the Beta
distribution [Forbes et al., 2000] — InverseCDF denotes the inverse cumulative
distribution function. Then it computes the critical fractile β and the upper
and lower bound for the set Q of candidate order quantities. Finally, it iterates
through the elements of this set to compute the upper (c∗ub) and lower bound
(c∗lb) for the estimated cost associated with these candidate order quantities.

In general, the set Q = {Q∗
lb, . . . , Q

∗
ub} may comprise a significant number of

elements, especially if a very limited number of samples is available. A decision
maker may then employ one of the strategies discussed in Section 3.1 in order
to determine the most promising quantity in this set.

4.4 Example

We consider a simple example involving the Newsvendor problem under bino-
mial demand. Assume that, in our problem, h = 1, p = 3, and the demand
follows a bin(50, q) distribution, in which parameter q is unknown. We are
given 10 samples for the demand, which we may use to determine the optimal
order quantity Q∗. The samples are {28, 28, 24, 27, 25, 26, 28, 28, 23, 27}. The
real value for parameter q, which is used to generate the 10 samples is 0.5.
Accordingly, the optimal order quantity Q∗ is equal to 27 and provides a cost
equal to 4.4946.

We consider α = 0.9. By using Algorithm 1 we compute the set of candidate
order quantities Q = {27, 28, . . . , 31} and the confidence interval for the esti-
mated cost (c∗lb, c

∗
ub) = (4.4268, 7.2205). Among the candidate quantities in Q,
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Algorithm 1: Newsvendor under incomplete information: binomial de-
mand.
input : M past demand realizations di, i = 1, . . . ,M ;

the number of customers per day: N ;
the holding cost: h;
the penalty cost: p;
the confidence probability: α.

output: the set Q of candidate order quantities;
the interval (c∗lb, c

∗
ub) for the estimated cost.

begin

a←∑
i=1,...,M di;

b←MN −
∑

i=1,...,M di;

qub ←InverseCDF[BetaDistribution(a+ 1, b),(1 + α)/2];
qlb ←InverseCDF[BetaDistribution(a, b+ 1),(1− α)/2];
β ← p/(p+ h);
Q∗

ub ←InverseCDF[BinomialDistribution(N, qub),β];
Q∗

lb ←InverseCDF[BinomialDistribution(N, qlb),β];
Q ← {Q∗

lb, . . . , Q
∗
ub};

c∗ub ← −∞;
c∗lb ←∞;
for each Q ∈ Q do

q∗Q,max ← argmaxq∈(qlb,qub)
GQ(q);

q∗Q,min ← argminq∈(qlb,qub)
GQ(q);

c∗ub ← max(c∗ub, GQ(q
∗
Q,max));

c∗lb ← min(c∗lb, GQ(q
∗
Q,min));

both the strategies presented in Section 3.1 identify Q̂∗ = 29 as the candidate
optimal quantity. By using the approach discussed in Section 4.2, we compute
the α confidence interval for the estimated cost, which is

(
G

Q̂∗
(q∗

Q̂∗,min
), G

Q̂∗
(q∗

Q̂∗,max
)
)
= (4.4487, 4.9528).

Clearly, the information on the minimum and maximum cost associated with
each order quantity inQ lets the decision maker perform a more educated choice.
For instance, if a manager is not a risk-taker, he may decide select the order
quantity Q̂∗, for which the α confidence interval for the estimated cost has the
lowest possible upper bound G

Q̂∗
(q∗

Q̂∗,max
). In the above example, this is still

29, but in general it may be a different order quantity.

Less conservative, but approximate, confidence intervals may be obtained
by replacing the Clopper-Pearson [Clopper and Pearson, 1934] interval with
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the Agresti-Coull [Agresti and Coull, 1998] interval for the binomial parame-
ter. The maximum likelihood and the Bayesian approach do not employ con-
fidence intervals for selecting the candidate order quantity. Therefore they are
not affected by this choice and the selected order quantity remains Q̂∗ = 29.
The α confidence interval for the estimated cost associated with Q̂∗ = 29 is(
G

Q̂∗
(q∗

Q̂∗,min
), G

Q̂∗
(q∗

Q̂∗,max
)
)
= (4.4487, 4.9155). This interval is 7.3% smaller

than that produced by using the Clopper-Pearson interval.

5 Poisson demand

In many practical contexts, a random demand distributed according to a Poisson
law may become relevant. A random demand Poisson(λ) is said to be distributed
according to a Poisson law with rate parameter λ > 0, if its probability mass
function is

Pr{d = k} = e−λλ
k

k!
, k = 0, 1, 2, . . . ,∞.

The Poisson distribution is the limiting distribution of the binomial distribution
when N is large and q is small. In this case, the parameters of the two distribu-
tions are linked by the relationship λ = qN . We recall that the expected value
of d is λ and that the standard deviation of d is

√
λ.

By using Eq. 3, we easily obtain the optimal order quantity Q for a given
demand d. We shall give an example. Consider a demand d that follows a
Poisson(50) distribution. Let h = 1 and p = 3, therefore β = 0.75. The optimal
order quantity is Q∗ = 55. Furthermore, by noting that

G(Q) = h(Q− λ) + (h+ p)

∞∑

i=Q

(1 − Pr{Poisson(λ) ≤ i}),

the optimal cost is G(Q∗) = 9.1222.

We shall now consider, also in this case, the situation in which the parameter
λ is not known. Instead, the decision maker is given a set of M past realizations
of d. As in the previous case, from these realizations he has to infer the range
of “candidate” optimal order quantities and upper and lower bounds for the
cost associated with these quantities. This range will contain the real optimum
according to a prescribed confidence probability.

5.1 Confidence intervals for the Poisson distribution

As in the previous case, we discuss the exact confidence interval that can be used
to estimate the rate parameter λ of the Poisson distribution. This confidence
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interval was proposed by Garwood [1936] and takes the following form. Consider
a set of M samples di drawn from a random demand d that is distributed
according to a Poisson law with unknown parameter λ. We rewrite d̄ =

∑M

i=0 di.
According to Garwood [1936], the confidence interval for λ is (λlb, λub), where

λlb = min{λ|Pr{Poisson(Mλ) ≥ d̄} ≥ (1− α)/2},
λub = max{λ|Pr{Poisson(Mλ) ≤ d̄} ≥ (1− α)/2}.

This interval can be expressed in terms of the chi-square distribution, as shown
by Garwood [1936]. Let χ2

n denote the chi-square distribution with n degrees
of freedom, and G−1(χ2

n, ·) denote the inverse cumulative distribution function
of χ2

n. We can write

λlb =
G−1(χ2

2d̄
, (1− α)/2)

2M
,

λub =
G−1(χ2

2d̄+2
, (1 + α)/2)

2M
.

Furthermore, it is possible to express this interval using quantiles from the
gamma distribution [Swift, 2009]. More specifically, the lower endpoint is the
(1 − α)/2-quantile of a gamma distribution with shape parameter d̄ and scale
parameter 1/M , and the upper endpoint is the (1 + α)/2-quantile of a gamma
distribution with shape parameter d̄ + 1 and scale parameter 1/M . Swift lists
a number of existing approaches for building approximate intervals that are
less conservative than Garwood’s one and he also suggests strategies to shorten
Garwood’s interval by choosing suitable asymmetric tails [Swift, 2009].

5.2 Solution method employing statistical estimation based

on classical theory of probability

The method for computing an upper and a lower bound for the optimal order
quantity Q∗ in a Newsvendor problem under Poisson demand and partial infor-
mation on parameter λ can be carried out in a similar fashion to the binomial
case given in Section 4.2. Consider Garwood’s confidence interval (λlb, λub) for
the unknown parameter λ of the Poisson demand. Let Q∗

lb be the optimal order
quantity for the Newsvendor problem under a Poisson(λlb) demand and Q∗

ub be
the optimal order quantity for the Newsvendor problem under a Poisson(λub)
demand. With confidence probability α the optimal order quantity Q∗ is a
member of the set {Q∗

lb, . . . , Q
∗
ub}.

Consider the cost associated with an order quantity Q,

G(Q) = h

Q∑

i=0

Pr{Poisson(λ) = i}(Q− i) + p

∞∑

i=Q

Pr{Poisson(λ) = i}(i−Q).
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Also in this case we can prove that GQ(λ)

GQ(λ) = h

Q∑

i=0

Pr{Poisson(λ) = i}(Q−i)+p

∞∑

i=Q

Pr{Poisson(λ) = i}(i−Q), (5)

is convex in λ. The proof is given in Appendix 8 (Theorem 4). Therefore upper
(cub) and lower (clb) bounds for the cost associated with a solution that sets the
order quantity to a value in the set {Q∗

lb, . . . , Q
∗
ub} can be easily obtained by us-

ing convex optimization approaches to find the λ∗ that minimizes or maximizes
this function over a given interval.

Also in this case, consider the case in which unobserved lost sales occurred
and the M observed past demand data, d1, . . . , dM , only reflect the number of
customers that purchased an item when the inventory was positive. The analysis
discussed above can still be applied provided that the confidence interval for the
unknown parameter λ of the Poisson(λ) demand is computed as

λlb = min{λ|Pr{Poisson(M̂λ) ≥ d̄} ≥ (1− α)/2},
λub = max{λ|Pr{Poisson(M̂λ) ≤ d̄} ≥ (1− α)/2}.

where M̂ =
∑M

j=1 Tj , and Tj ∈ (0, 1) denotes the fraction of time in day j —
for which a demand sample dj is available — during which the inventory was
positive.

5.3 Algorithm

The computational procedure for Poisson demand is presented in Algorithm 2.
The code initially computes Garwood’s interval (λlb, λub) by exploiting the re-
lationship between the Poisson distribution and the gamma distribution [Swift,
2009]. Then it computes the critical fractile β and the upper and lower bound
for the set Q of candidate order quantities. Finally, it iterates through the el-
ements of this set to compute the upper (c∗ub) and lower bound (c∗lb) for the
estimated cost associated with these candidate order quantities.

5.4 Example

We consider a simple example involving the Newsvendor problem under Poisson
demand. In our problem, h = 1, p = 3, and the demand follows a Poisson(λ)
distribution, in which parameter λ is unknown. We are given 10 samples for the
demand, which we may use to determine the optimal order quantity Q∗; these
are {51, 54, 50, 45, 52, 39, 52, 54, 50, 40}. The real value for parameter λ, which
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Algorithm 2: Newsvendor under incomplete information: poisson de-
mand.
input : M past demand realizations di, i = 1, . . . ,M ;

the holding cost: h;
the penalty cost: p;
the confidence probability: α.

output: the set Q of candidate order quantities;
the interval (c∗lb, c

∗
ub) for the estimated cost.

begin

a←
∑

i=1,...,M di;

b←M ;
λub ←InverseCDF[GammaDistribution(a+ 1, 1/b),(1 + α)/2];
λlb ←InverseCDF[GammaDistribution(a, 1/b),(1− α)/2];
β ← p/(p+ h);
Q∗

ub ←InverseCDF[PoissonDistribution(λub),β];
Q∗

lb ←InverseCDF[PoissonDistribution(λlb),β];
Q ← {Q∗

lb, . . . , Q
∗
ub};

c∗ub ← −∞;
c∗lb ←∞;
for each Q ∈ Q do

λ∗
Q,max ← argmaxλ∈(λlb,λub)

GQ(λ);

λ∗
Q,min ← argminλ∈(λlb,λub) GQ(λ);

c∗ub ← max(c∗ub, GQ(λ
∗
Q,max));

c∗lb ← min(c∗lb, GQ(λ
∗
Q,min));

is used to generate the samples, is 50. Accordingly, the optimal order quantity
Q∗ is equal to 55 and provides a cost equal to 9.1222.

We consider α = 0.9. By using Algorithm 2 we compute the set of candi-
date order quantities Q = {50, 51, . . . , 57} and the confidence interval for the
estimated cost (c∗lb, c

∗
ub) = (8.6803, 14.6220). Let us consider a strategy strategy

based on the maximum likelihood estimator. In the case of the Poisson distribu-
tion, this estimator takes the following convenient form, 1

M

∑M

i=1 di, where di,
for i = 1, . . . ,M are the observed samples. Therefore, according to the above
samples, the maximum likelihood estimator for λ is 48.7. By using a demand
that follows a Poisson distribution with mean rate λ = 48.7 in Eq. 3 we ob-
tain a candidate optimal order quantity Q̂∗ = 53 and an estimated expected
cost of 9.0035. However, such a strategy does not provide any information on
the reliability of the above estimates. In fact, the actual cost associated with
this order quantity, when λ = 50, is 9.3693. Conversely, our approach reports
the α confidence interval (8.9463, 11.0800) for the expected cost associated with
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Q̂∗ = 53, which in this case includes the actual cost a decision maker will face
in case he decides to order 53 units.

Similar issues occur for the Bayesian approach presented by Hill [1997]. For
the sample set presented above, this approach suggests ordering 54 units and
estimates a cost of 9.4764, but it does not provide any information on the
reliability of these estimates. In contrast, for an order quantity of 54 units our
approach reports the α confidence interval (9.0334, 10.3374) for the expected
cost, which include the actual cost 9.1530 associated with this quantity when
λ = 50.

6 Exponential demand

A random demand exp(λ) is said to be distributed according to an exponential
law with rate parameter λ > 0 if its probability density function is

f(λ, k) = λe−λk, k ≥ 0;

the expected value of exp(λ) is 1/λ.

In the context of the Newsvendor, the exponential distribution may occur
in two cases. An exponentially distributed random variable exp(λ) with rate
parameter λ can represent the inter-arrival time between two unit demand oc-
currences in a Poisson process with rate parameter λ. Alternatively, an expo-
nentially distributed random variable exp(λ) can represent the total demand
over the Newsvendor planning horizon. It is clear that the first case can be
easily reduced to the case of a random demand that follows a Poisson distribu-
tion with rate parameter λ. Such a situation can be handled by following the
discussion in the previous section. In the second case, by using Eq. 2, we easily
obtain the optimal order quantity Q∗ for exp(λ). This is simply

Q∗ = − 1

λ
ln

(
h

h+ p

)
. (6)

We shall give an example. Consider a random demand exp(1/50) with mean 50.
Let h = 1 and p = 3, therefore h/(h+ p) = 0.25. The optimal order quantity is
Q∗ = 69.32. Furthermore, consider the cost function

G(Q) = h

∫ Q

0

(Q− i)f(λ, i)di+ p

∫ ∞

Q

(i −Q)f(λ, i)di,

where f(λ, ·) denotes the probability density function of exp(λ). Rewrite

G(Q) = h(Q − 1

λ
) + (h+ p)

∫ ∞

Q

(1− F (λ, i))di,
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where F (λ, ·) denotes the cumulative distribution function of exp(λ). By noting
that

G(Q) =
h+ p

λ

(
h

h+ p
(λQ− 1) + e−λQ

)
, (7)

the optimal cost is G(Q∗) = 69.32.

We shall now consider, also in this case, the situation in which the parameter
λ is not known and the decision maker is given a set of M past realizations of
the demand. As in the previous case, from these realizations he has to infer the
range of candidate optimal order quantities and upper and lower bounds for the
cost associated with these quantities. This range will contain the real optimum
according to a prescribed confidence probability.

6.1 Confidence intervals for the exponential distribution

We discuss the exact confidence interval that can be used to estimate the rate
parameter λ of the exponential distribution. Consider a set of M samples di
drawn from a random variable that is distributed according to an exponential
law with unknown parameter λ. We rewrite d̄ =

∑M

i=0 di. Since the sum of
M independent and identically distributed exponential random variables with
rate parameter λ is a random variable gamma(M, 1/λ) that follows a gamma
distribution with shape parameterM and scale parameter 1/λ, the α confidence
interval for the unknown parameter λ is (λlb, λub), where

λlb = min{λ|Pr{gamma(M, 1/λ) ≥ d̄} ≥ (1− α)/2},
λub = max{λ|Pr{gamma(M, 1/λ) ≤ d̄} ≥ (1− α)/2}.

A closed form expression for this confidence interval — that employs quantiles
from the χ2 distribution — was proposed by Trivedi [2001, chap. 10] and takes
the following form. Let χ2

n denote the chi-square distribution with n degrees of
freedom, and G−1(χ2

n, ·) denote the inverse cumulative distribution function of
χ2
n. We can write

λlb =
G−1(χ2

2M , (1− α)/2)

2d̄
, λub =

G−1(χ2
2M , (1 + α)/2)

2d̄
.

Furthermore, it is possible to express this interval using quantiles from the
gamma distribution. More specifically, the lower endpoint is the (1 − α)/2-
quantile of a gamma distribution with shape parameter M and scale parameter
1/d̄, and the upper endpoint is the (1 + α)/2-quantile of a gamma distribution
with shape parameter M and scale parameter 1/d̄.
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6.2 Solution method employing statistical estimation based

on classical theory of probability

Consider the confidence interval (λlb, λub) for the unknown parameter λ of the
exponential demand. Let Q∗

lb be the optimal order quantity for the Newsvendor
problem under an exp(λub) demand and Q∗

ub be the optimal order quantity for
the Newsvendor problem under an exp(λlb) demand. Recall that λ is a rate,
this is the reason why the optimal order quantity for the Newsvendor problem
under an exp(λlb) gives an upper bound Q∗

ub for the real optimal order quantity.
Clearly, the optimal order quantity Q∗ lies in the interval (Q∗

lb, Q
∗
ub).

Let us write the expected total cost associated with an order quantity Q for
a given demand rate λ > 0,

Gλ(Q) = h(Q− 1

λ
) + (h+ p)

∫ ∞

Q

(1 − F (λ, i))di,

it is known that this function is convex. Then, consider the function

GQ(λ) = h(Q− 1

λ
) + (h+ p)

∫ ∞

Q

(1 − F (λ, i))di, (8)

in which the order quantity Q is fixed and in which we vary the demand rate
λ ≥ 0. Unfortunately, GQ(λ) is not convex in the continuous parameter λ.
Nevertheless, we prove a number of properties for this function.

Theorem 1. limλ→0 GQ(λ) =∞, limλ→∞ GQ(λ) = hQ−, the function admits
a single global minimum λ∗, it is strictly increasing for λ > λ∗ and strictly
decreasing for λ < λ∗.

The proof is given in Appendix 8.

Because of the properties of GQ(λ) introduced in Theorem 1 we can employ a
simple line search procedure in order to find the λ∗ that minimizes or maximizes
this function over a given interval.

Since the optimal order quantityQ∗ is, with confidence probability α, a value
in the interval (Q∗

lb, Q
∗
ub), it is therefore easy to compute upper (c∗ub) and lower

(c∗lb) bounds for the cost that a manager will face, with confidence probability
α, whatever order quantity he chooses in this interval.

Theorem 2. The lower bound is

c∗lb = GQ∗

lb
(λub)

the upper bound is

c∗ub = max{GQ∗

lb
(λlb), GQ∗

ub
(λub)}.

23



The proof is given in Appendix 8.

Unlike the previous cases, it is not straightforward to extend the above rea-
soning to the case in which unobserved lost sales occurred and the M observed
past demand data, d1, . . . , dM , only reflect the number of customers that pur-
chased an item when the inventory was positive. This is due to the fact that
the distribution of the general sum of exponential random variables is not ex-
ponential, rather it is Hypoexponential. We therefore leave this discussion as a
future research direction.

6.3 Algorithm

The computational procedure for exponential demand is presented in Algorithm
3. The code initially computes the confidence interval (λlb, λub) by exploiting the

Algorithm 3: Newsvendor under incomplete information: exponential
demand.
input : M past demand realizations di, i = 1, . . . ,M ;

the holding cost: h;
the penalty cost: p;
the confidence probability: α.

output: the set Q of candidate order quantities;
the interval (c∗lb, c

∗
ub) for the estimated cost.

begin

a←M ;
b←∑

i=1,...,M di;

λub ←InverseCDF[GammaDistribution(a, 1/b),(1+ α)/2];
λlb ←InverseCDF[GammaDistribution(a, 1/b),(1− α)/2];
β ← p/(p+ h);
Q∗

ub ←InverseCDF[PoissonDistribution(λub),β];
Q∗

lb ←InverseCDF[PoissonDistribution(λlb),β];
Q ← {Q∗

lb, . . . , Q
∗
ub};

c∗ub ← max{GQ∗

lb
(λlb), GQ∗

ub
(λub)};

c∗lb ← GQ∗

lb
(λub);

relationship between the exponential distribution and the gamma distribution.
Then it computes the critical fractile β and the upper and lower bound for the
set Q of candidate order quantities. Finally, it computes the upper (c∗ub) and
lower bound (c∗lb) f or the estimated cost associated with these candidate order
quantities by exploiting Theorem 2.
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6.4 Example

We consider a simple example involving the Newsvendor problem under expo-
nential demand. In our problem, h = 1, p = 3, and the demand is a random
variable exp(λ) for which parameter λ is unknown. We are given 10 samples
for the demand, which we may use to determine the optimal order quantity Q∗;
these are

{39.79, 39.26, 32.21, 0.51, 107.03, 72.87, 45.23, 20.12, 26.46, 56.80}.

The real value for parameter λ, which is used to generate the samples, is 1/50.
Accordingly, the optimal order quantity Q∗ is equal to 69.31 and provides a cost
equal to 69.31.

We consider α = 0.9. The α confidence interval for the demand rate λ is
(0.0123211, 0.0356664). By using Algorithm 3 we compute the range of candi-
date order quantities Q = (38.86, 112.51) and the confidence interval for the
estimated cost (c∗lb, c

∗
ub) = (38.86, 158.81). A plot of the expected total cost as

a function of λ ∈ (0.0123211, 0.0356664) and of Q ∈ (38.86, 112.51) is shown
in Appendix 8. Let us consider a strategy based on the maximum likelihood
estimator for the demand rate λ. In the case of the exponential distribution,
this estimator takes the following form, λ̂ = N∑

N

i=1
di

, where di, for i = 1, . . . , N

are the observed samples. Therefore, according to the above samples, the maxi-
mum likelihood estimator for λ is λ̂ = 0.0227099. By using a rate λ = 0.0227099
in Eq. 3 we obtain a candidate optimal order quantity Q̂∗ = 61.04 and an es-
timated expected cost of 61.04. As previously remarked, such a strategy does
not provide any information on the reliability of the above estimates. In fact,
the actual cost associated with this order quantity, when λ = 1/50, is 70.03.
Conversely, our approach reports the α confidence interval (45.71, 132.90) for

the expected cost associated with Q̂∗ = 61.04, which in this case includes the
actual cost a decision maker will face in case he decides to order 61.04 units.

Similarly, the Bayesian approach presented by Hill [1997] suggests an or-
der quantity of 59.14 units and estimates a cost of 65.05. As discussed, this
strategy does not provide any information on the reliability of these estimates.
Conversely, for an order quantity of 59.14 units, our approach reports the α con-
fidence interval (44.71, 134.63) for the expected cost, which includes the actual
cost 70.42 associated with this quantity when λ = 1/50.

7 Discussion and future works

In this section we first discuss advantages of our strategy, based on Neyman’s
method of confidence intervals, with respect to existing frequentist and Bayesian
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approaches to the Newsvendor problem under sampled demand information.
Secondly, we discuss limitations of our work and possible future research direc-
tions.

7.1 Comparison with frequentist and Bayesian approaches

Bayesian approaches such as the one proposed by Hill [1997] present several
theoretical and practical drawbacks that we are now going to enumerate. The-
oretical drawbacks of the Bayesian approach to parameter estimation are il-
lustrated by Neyman [1937, p. 343]. The first issue raised by Neyman is the
fact that the unknown parameter a of the demand distribution is not a ran-
dom variable, therefore assigning a prior or posterior distribution to it has no
meaning. In fact, one may try to employ the prior probability distribution —
for instance a uniform distribution in Hill’s case — to compute Pr{a < ∆},
where ∆ ∈ (0, 1). Of course, a is not a random variable therefore this proba-
bility should be either 1 or 0 depending on ∆. Therefore, talking about prior
or posterior distribution for a can only represent an approximation. It is often
stated that in Bayesian probability prior and posterior distributions are meant
to represent a “state of knowledge”, that is decision maker’s uncertainty about
the unknown quantity a. However, problems arise immediately as soon as one
tries to interpret the meaning of the prior and posterior distribution in light of
classical probability theory. Neyman, in fact, also points out that, even if the
unknown parameter a is a random variable, the posterior distribution f(d|b)
for the random demand d, computed as illustrated in Hill [1997], does not gen-
erally have the property serving as a definition of the elementary probability
law of the observed data b. In particular, this distribution is not compatible
with the classical definition of probability, in the sense that, if we repeat an
experiment an infinite number of times, the observed frequency does not con-
verge to the probability predicted by such a distribution. For instance, consider
once more the example presented in Section 4.4. Instead of having a single
set of demand observations, we now consider M experiments, with M large,
in each of which we observe 10 demand realizations. Let bi be the demand
set observed in experiment i = 1, . . . ,M . For each experiment i, we construct
the posterior distribution, fi(di|bi), of the random demand di from 10 demand
observations, according to the Bayesian strategy discussed by Hill [1997]. Ney-
man points out that, in general, when we select two values ∆1 and ∆2, and
we compute pi = Pr{∆1 < di < ∆2}, the quantity 1/M

∑M

i=1 pi will not con-
verge — as it should, according to the law of large numbers — to its real value
Pr{∆1 < bin(50; q) < ∆2}, where q is the real value of a. In our example, we
set ∆1 = 26 and ∆2 = 28. Pr{∆1 < bin(50; 0.5) < ∆2} = 0.1747. Nevertheless,
if we estimate pi = Pr{∆1 < di < ∆2} in each experiment i by using the pos-
terior distribution f(di|b) discussed by Hill [1997] for a binomial demand, the

estimated probability 1/M
∑M

i=1 pi converges to 0.2654, when the experiment
is repeated M = 100000 times. This essentially differs from the real value, as
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Neyman remarks. For this reason, using the posterior distribution in place of
the original distribution in the problem of interest is a strategy that may lead
to misleading results.

In practice, a direct consequence is that, although for large samples asymp-
totic results may be obtained (see e.g. Bensoussan et al. [2009]), it becomes
hard to assess the quality of estimates produced for small sample set. It is
fairly simple to observe this latter fact by considering once more the example
presented in Section 4.4. By using the approach in Hill [1997], we obtain the
posterior distribution for the random demand out of the 10 samples, and then
we use this distribution in order to compute an estimate of Q∗, which in the
particular example we consider is 29. We also employ the posterior distribu-
tion in the Newsvendor cost function in order to estimate the cost associated
with the optimal order quantity selected; this turns out to be 4.6692. Clearly,
Hill’s approach does not give any hint on the “quality” of the estimates pro-
duced, which in this particular case are relatively poor. In particular, based
on the available data, we do not know with what frequency the order quan-
tity may substantially over- or underestimate the real optimum order quantity,
and how far the prescribed order quantity is likely to be from the real opti-
mum order quantity. The same, of course, holds for the estimated optimum
cost. Our approach based on Neyman’s framework, in contrast, suggests that,
with 90% confidence, the optimal order quantity — that is 27 — lies between
27 and 31, and that the optimum cost — that is 4.4946 — lies in the interval
(4.4268,7.2205). Then, when a given heuristic suggests ordering 29 units — for
instance according to Hill’s Bayesian approach — our approach can be used
to derive a 90% confidence interval for the cost associated with this decision,
that is (4.4487, 4.9528). This interval actually covers, in this specific case, the
real cost associated with the decision of ordering 29 units, i.e. 4.8904. In gen-
eral, the interval will cover the real cost according to the prescribed confidence
probability. Conversely, Hill’s approach suggests that the cost associated with
ordering 29 units is 4.6692, but it provides no indication on the reliability of this
estimate. This shows a practical exemplification of how our approach can be
employed to effectively complement existing Bayesian approaches under small
sample sets. In fact, we must also underscore the fact that Bayesian approaches
such as the one in [Hill, 1997] represent very effective and practical heuristics
for order quantity selection.

Similar issues arise in classical frequentist approaches. For the example in
Section 4.4, an approach based on the maximum likelihood estimator, as re-
marked, suggests an order quantity of 29 units. The estimated cost according
to this strategy is 4.4614. Nevertheless, also in this case we have no indication
on the reliability of this estimate. Kevork [2010] derives maximum likelihood
estimators for the optimal order quantity and for the maximum expected profit.
The asymptotic distribution for these estimators are then derived and asymp-
totic confidence intervals are extracted for the corresponding true quantities.
Unfortunately, as the author remarks, these intervals are only asymptotically
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exact and do not provide the prescribed confidence, i.e. they are biased, for
small sample sets.

By using our approach based on Neyman’s framework, the confidence in-
terval produced for the unknown parameter of the binomial demand is always
guaranteed to cover its actual value according to the prescribed confidence prob-
ability. This probability is controlled by the decision maker and influences the
size of the interval. Neyman’s method differs advantageously from the Bayesian
approach by being independent of a priori information about the unknown pa-
rameter. This approach remains valid even if the unknown parameter is a ran-
dom variable. By using our approach, it is possible to immediately translate the
confidence interval for the unknown parameter into a confidence interval for the
order quantity and for the actual cost. Intuitively, in the example presented in
Section 4.4, if we observe a set of 10 samples over and over again and we repeat
our analysis, the intervals produced will cover the real optimum order quantity
and the associated cost according to the prescribed probability. In contrast to
other existing frequentist of Bayesian approaches our approach provides explicit
and exact likelihood guarantees that can be easily interpreted in the context of
classical probability theory. Furthermore, by using confidence intervals, the de-
cision maker has a better control on the risk of exceeding a certain cost and a
better outlook on the range of order quantities that may be optimal according
to the observed demands, especially when a limited set of samples is employed.

7.2 Limitations and future works

Our analysis is limited to three maximum entropy probability distributions in
the exponential family [Andersen, 1970], each of which features a single param-
eter that must be estimated. As shown by Harremoes [2001], the binomial and
the Poisson are maximum entropy probability distributions for the case in which
all we know about the distribution of a random demand is that it has positive
mean and discrete support that goes from 0 to a maximum value N (binomial)
or to infinity (Poisson). The exponential distribution is the maximum entropy
probability distribution for the case in which all we know about the distribution
of a random demand is that it has positive mean and continuous support that
goes from 0 to infinity. These considerations show how broadly applicable the
results in this work are. In this work, the normal distribution — which is part
of the exponential family and which is also a maximum entropy probability dis-
tribution — has not been considered. The analysis on the normal distribution
is complicated by the fact that two parameters, mean and variance, must be
considered. Then a number of cases naturally arise: unknown mean and known
variance, unknown variance and known mean, etc. For this reason, in order to
keep the size and the scope of the discussion limited, we decided to leave this dis-
cussion as a future work. Furthermore, in principle it may be possible to extend
the analysis to other distributions such as the multinomial, for which confi-
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dence intervals are surveyed in [Lee et al., 2002, Chafäı and Concordet, 2009];
or the Johnson translation system [Johnson, 1949], if exact or approximate ex-
pressions for the confidence regions of its unknown parameters were available.
Unfortunately, we are not aware of any work that investigated these confidence
regions.

8 Conclusions

We considered the problem of controlling the inventory of a single item with
stochastic demand over a single period. We introduced a novel strategy to ad-
dress the issue of demand estimation in single-period inventory optimization
problems. Our strategy is based on the theory of statistical estimation. We
employed confidence interval analysis in order to identify a range of candidate
order quantities that, with prescribed confidence probability, includes the real
optimal order quantity for the underlying stochastic demand process with un-
known parameter(s). In addition, for each candidate order quantity that is
identified, our approach can produce an upper and a lower bound for the as-
sociated cost. We applied our novel approach to three demand distribution in
the exponential family: binomial, Poisson, and exponential. For two of these
distributions we also discussed the case in which the decision maker faces un-
observed lost sales. Numerical examples are presented in which we showed how
our approach complements existing strategies based on maximum likelihood es-
timators or on Bayesian analysis. In particular, we showed that our approach
does not provide a single order quantity recommendation and a point estimate
for the associated cost, but — according to a prescribed confidence level — a
set of candidate optimal order quantities and, for each of these, a confidence
interval for the associated cost. This advanced information can be employed,
together with existing frequentist or Bayesian approaches, to better assess the
impact of a given decision.

Appendix I: proofs of statements for Binomial de-

mand

Consider Eq. 4 in Section 4.2, it can be proved that GQ(q) is convex in the
continuous parameter q. Firstly, we rewrite Eq. 4 as

GQ(q) = h(Q−Nq) + (p+ h)

N∑

i=Q

(1− Pr{bin(N ; q) ≤ i}). (9)
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We now show that the second derivative of this function is positive. Of course,
this is equivalent to proving that

d2

dq2
(p+ h)

N∑

i=Q

(1− Pr{bin(N ; q) ≤ i}) ≥ 0.

Theorem 3. For Q ≤ N ,

d2

dq2

N∑

i=Q

(1− Pr{bin(N ; q) ≤ i})

is a positive function of q ∈ (0, 1).

Proof (Theorem 3). We introduce the following notation:

f(i;N, q) = Pr{Bin(N ; q) = i} =
(
N
i

)
qi(1− q)N−i,

F (i;N, q) = Pr{Bin(N ; q) ≤ i}.
We reduce the convexity of GQ(q) to showing that

d2

dq2

N∑

i=Q

F (i;N, q) ≤ 0.

Using the regularized incomplete beta function:

F (i;N, q) = (N − i)

(
N

i

)∫ 1−q

0

tN−i−1(1− t)idt;

differentiating under the integral sign by Leibniz’s rule:

d
dq
F (i;N, q) = −(N − i)

(
N

i

)
(1 − q)N−i−1qi

= −N
(
N−1

i

)
qi(1 − q)N−i−1

= −Nf(i;N − 1, q)
= −N [F (i;N − 1, q)− F (i− 1;N − 1, q)];

using this recursive relationship:

d2

dq2
F (i;N, q) = −N [−(N − 1)(F (i;N − 2, q)− F (i− 1;N − 2, q))+

(N − 1)(F (i− 1;N − 2, q)− F (i− 2;N − 2, q))]
= N(N − 1)[f(i;N − 2, q)− f(i− 1;N − 2, q)];

and summing over i, all terms cancel out except the first and last:

d2

dq2

N∑

i=Q

F (i;N, q) = N(N − 1)[f(N ;N − 2, q)− f(Q− 1;N − 2, q)].

However, f(N ;N − 2, q) = 0 because it represents the probability of N successes
in N − 2 trials, so

d2

dq2

N∑

i=Q

F (i;N, q) = −N(N − 1)f(Q− 1;N − 2, q) ≤ 0
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Appendix II: proofs of statements for Poisson de-

mand

Consider Eq. 5 in Section 5.2, it can be proved that GQ(λ) is convex in the
continuous parameter λ. Firstly, we rewrite Eq. 5 as

GQ(λ) = h(Q − λ) + (h+ p)
∞∑

i=Q

(1− Pr{Poisson(λ) ≤ i}). (10)

We now show that the second derivative of this function is positive. Of course,
this is equivalent to proving that

d2

dλ2
(h+ p)

∞∑

i=Q

(1− Pr{Poisson(λ) ≤ i}) ≥ 0.

Therefore, we have to prove that

d2

dλ2
−

∞∑

i=Q

Pr{Poisson(λ) ≤ i} ≥ 0.

Theorem 4. For Q ≥ 0,

d2

dλ2
−

∞∑

i=Q

Pr{Poisson(λ) ≤ i}

is a positive function of λ ≥ 0.

Proof (Theorem 4). The following derivations prove convexity for the above
expression.

d2

dλ2
−

∞∑

i=Q

Pr{Poisson(λ) ≤ i} =

d2

dλ2
−

∞∑

i=Q

e−λ

i∑

k=0

λk

k!
=

−


 d2

dλ2
e−λ

∞∑

i=Q

i∑

k=0

λk

k!


 =

−


 d

dλ
− e−λ

∞∑

i=Q

i∑

k=0

λk

k!
+

d

dλ
e−λ

∞∑

i=Q

i∑

k=1

λk−1

(k − 1)!


 =

−


e−λ

∞∑

i=Q

i∑

k=0

λk

k!
− e−λ

∞∑

i=Q

i∑

k=1

λk−1

(k − 1)!
− e−λ

∞∑

i=Q

i∑

k=1

λk−1

(k − 1)!
+ e−λ

∞∑

i=Q

i∑

k=2

λk−2

(k − 2)!


 =
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e−λ


−

∞∑

i=Q

i∑

k=0

λk

k!
+

∞∑

i=Q

i∑

k=1

λk−1

(k − 1)!
+

∞∑

i=Q

i∑

k=1

λk−1

(k − 1)!
−

∞∑

i=Q

i∑

k=2

λk−2

(k − 2)!


 =

∞∑

i=Q

(
−e−λ

i∑

k=0

λk

k!
+ 2e−λ

i∑

k=1

λk−1

(k − 1)!
− e−λ

i∑

k=2

λk−2

(k − 2)!

)
.

For convenience, we rewrite this expression as

∞∑

i=Q

(−CDF(Poisson(λ), i) + 2CDF(Poisson(λ), i − 1)− CDF(Poisson(λ), i − 2))

where CDF denotes the cumulative distribution function. By expanding, we
obtain

−CDF(Poisson(λ), Q) + 2CDF(Poisson(λ), Q − 1)− CDF(Poisson(λ), Q − 2)+
−CDF(Poisson(λ), Q + 1) + 2CDF(Poisson(λ), Q)− CDF(Poisson(λ), Q − 1)+
−CDF(Poisson(λ), Q + 2) + 2CDF(Poisson(λ), Q + 1)− CDF(Poisson(λ), Q) + . . . =

CDF(Poisson(λ), Q− 1)− CDF(Poisson(λ), Q − 2) =

e−λ

Q−1∑

k=0

λk

k!
− e−λ

Q−2∑

k=0

λk

k!
=

e−λ

(
Q−1∑

k=0

λk

k!
−

Q−2∑

k=0

λk

k!

)
=

e−λλQ−1

(Q− 1)!
≥ 0
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Appendix III: proofs of statements for exponen-

tial demand

In this section we provide the proofs for the two theorems introduced in Section
6.2.

Proof (Theorem 1). The first fact, that is limλ→0 GQ(λ) =∞ can be easily veri-
fied by simple algebraic derivations. We shall therefore prove that limλ→∞ GQ(λ) =
hQ− and that the function admits a single global minimum. Let us split Eq. 7
into two parts

GQ(λ) =
h+ p

λ
e−λQ +

(
hQ− h

λ

)
. (11)

We shall consider the first term

h+ p

λ
e−λQ, (12)

and the second term

hQ− h

λ
, (13)

on the right hand side of Eq. 7, separately.

Firstly, we observe that, when λ → ∞, GQ(λ) → hQ from below, that is
limλ→∞ GQ(λ) = hQ−. This is due to the fact that (12) approaches zero faster
than h/λ does, i.e.

lim
λ→∞

h+p

λ
e−λQ

h
λ

= 0.

From this fact we immediately infer that the derivative of GQ(λ) must be equal to
zero for at least one value λ other than infinity. Furthermore, the derivative of
(12) is negative, strictly increasing for λ > 0. The derivative of (13) is positive
strictly decreasing for λ > 0. Therefore there exists only a single value of λ
for which the derivative of (12) and the derivative of (13) add up to zero. This
immediately implies that GQ(λ) admits a single global minimum, it is strictly
increasing for λ > λ∗ and strictly decreasing for λ < λ∗

Proof (Theorem 2). Firstly, let us consider c∗lb. By definition, this is the ex-
pected total cost associated with the optimal order quantity Q∗

lb for the largest
possible value λub that the demand rate takes in the confidence interval. Con-
sider a demand rate λ and the associated optimal order quantity Q∗

λ. By sub-
stituting Q in Eq. 7 with the expression of the optimal order quantity in Eq. 6
we immediately see that the expected total cost associated with an optimal order
quantity Q∗

λ is decreasing in the respective demand rate λ — i.e. it is increasing
w.r.t. the expected value 1/λ of the demand — it immediately follows that there
exists no other pair 〈Q∗

λ, λ〉, where λ ∈ (λlb, λub) that ensures a lower expected
total cost.
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Let λ ∈ (λlb, λub) and Q ∈ (Qlb, Qub). Consider a point in the two dimen-
sional space λ × Q, for which λ = λ̄ and Q = Q̄. For any of such points,
two cases can be observed, that is (i) Q̄ > Q∗

λ̄
, or (ii) Q̄ < Q∗

λ̄
. A strict

equality can be reduced to any of these two cases. If we are in case (i), then
Gλ̄(Q̄) < Gλ̄(Qub) because of Theorem 1. Q̄ was already an order quantity larger
than the optimal one, therefore Qub is also an order quantity larger than the op-
timal one for a demand rate λ̄. Consequently, if we increase the demand rate
λ (i.e. we decrease the expected demand 1/λ) our cost can only increase; this
means that Gλ̄(Qub) < Gλub

(Qub). If we are in case (ii), then Gλ̄(Q̄) < Gλ̄(Qlb)
because of Theorem 1. Q̄ was already an order quantity smaller than the opti-
mal one, therefore Qlb is also an order quantity smaller than the optimal one
for a demand rate λ̄. Consequently, if we decrease the demand rate λ (i.e. we
increase the expected demand 1/λ) our cost can only increase; this means that
Gλ̄(Qlb) < Gλlb

(Qlb). Therefore, the maximum cost, when we let λ vary in
(λlb, λub) and Q vary in (Q∗

lb, Q
∗
ub), can be either observed at 〈Q∗

lb, λlb〉 or at
〈Q∗

ub, λub〉

Appendix IV: plot for the expected total cost of

the example in Section 6.4

In Fig. 1 we provide a graphical outlook of the cost function discussed in Section
6.4.
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Figure 1: Expected total cost as a function of λ ∈ (λlb, λub) ≡
(0.0123211, 0.0356664) and of Q ∈ (Q∗

lb, Q
∗
ub) ≡ (38.86, 112.51). Note that

c∗lb = GQ∗

lb
(λub) and that c∗ub = max{GQ∗

lb
(λlb), GQ∗

ub
(λub)} = GQ∗

lb
(λlb).
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