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Abstract 

An experimentally motivated model is proposed for the formation of fluid-phase templates 

corresponding to the porous silica skeletons of diatoms, single-cell organisms found in marine and 

freshwater environments. It is shown that phase-separation pro- cesses on a planar surface may give 

rise to a quasi-static mold which could direct the deposition of condensing silica to form complex 

arrays of pores. Calculations show that appropriate fluid templates can be generated for a wide variety 

of diatom species. The results could be of some biological relevance, but the most significant advance 

may be the identification of a synthetic strategy for generating complex porous architectures from 

simple, amorphous materials. 

 

1. Introduction 

Diatoms are unicellular, photosynthetic organisms found in marine and freshwater envi- ronments
[1]

. 

The diatom cell is encapsulated in a porous, symmetrical shell (or frustule) fashioned from amorphous 

silica which is comprised of two valves that fit together much like a petri dish and its lid. The faces of 

the valves are commonly either circular (as in centric diatoms) or elongated (as in pennate diatoms) in 

shape, with typical dimensions in the range 1-100 µm. The silica valves possess complex and often 

highly ordered arrays of nanometer- to micrometer-scale pores and slits characteristic of the diatom 

species (of which there are thought to be in excess of 100,000). Diatoms are so numerous that they 

account for around 25 % of the World’s turnover of silica. It is a major goal to understand, or at least 

mimic, biomineralization in organisms such as diatoms in order that complex microstructures may be 

fashioned in the laboratory
[2]

. In this work, a theoretical model is proposed that incor- porates 

processes identified in experimental investigations of diatom morphogenesis, namely, the roles of 

templating by cellular structures, and by complex-fluid structures under physico- chemical control. It 

is shown that with a mild degree of prepatterning (mimicking the effects of cellular structures) a fluid 

phase-separation mechanism can generate suitable templates for the deposition of solid materials into 

forms resembling a wide range of diatom structures. This process may provide a means of assembling 

complex, porous architectures from simple inorganic materials for technological applications. 

To appreciate the widespread fascination with diatom structures, one need only glance at the small 

selection of optical and transmission electron microscopy images shown in Figures 2-4. The porous 

structures are species specific and are therefore central to taxonomic classifications
[3]

. The formation 

of amorphous-silica diatom valves during asexual reproduction has been studied in a variety of time-

resolved, electron-microscopy experiments
[4, 5]

 from which the following general picture emerges
[6, 7]

. 

After cell division, silica deposition occurs near the freshly exposed surfaces of the daughter cells in 
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membrane-bound compartments called silica deposition vesicles (SDVs); the process seems to occur 

in two distinct stages
[7]

. In the first stage, a thin (∼ 30 nm) base-layer of silica is deposited possessing 

“an irregular system of ribs”
[3]

 (or costae) of silica emanating from near the center of the new valve. 

In between newly formed costae are found rafts of organic droplets and/or vesicles
[5]

 which may have 

had a role in directing the initial formation of the costae. In the second stage, silica growth proceeds 

normal to the base layer (leading to vertical differentiation) until the valve has acquired the necessary 

thickness (∼ 10-100 nm), and the fine details of the porous structures are complete. Interestingly, the 

structure of the base layer does not necessarily correspond to the pore structure on the external face of 

the new valve; in some species, small pores in the base layer can be observed directly through the 

large pores in the external surface
[3]

. In general, the first stage of silica deposition to form the base 

layer is completed within 10-20 minutes, while the second stage of vertical differentiation can take up 

to several hours
[4, 7, 8, 9, 10]

. It would be inappropriate to summarize all of the experimentally observed 

variations here, but suffice to say that, depending on the diatom species, vertical differentiation has 

been observed to proceed in both directions normal to the base layer
[6, 7]

. 

The rib-like costae represent some of the most striking features of diatom frustules. The number of 

costae depends on the diatom species, but in centric diatoms there are typically around 10-50 

emanating symmetrically from the center of the frustule. The most accurate predictive model of 

diatom morphogenesis to date is based on the diffusion-limited aggregation (DLA) of silica 

nanoparticles
[11]

. Amorphous particles with diameters 1-10 nm are thought to be transported to the 

perimeter of the SDV (possibly via microtubules) and then released, whereupon they diffuse and 

aggregate to form a structure growing outwards from the center of the SDV. Computer simulations of 

the DLA process, including the effects of simultaneous sintering (smoothing) of the growing silica 

structure, show that spoke-like patterns can be formed. Depending on the choice of parameters within 

the DLA model, the spokes may also bifurcate leading to branched structures resembling those found 

in certain diatom species. Thus, the spoke-like structures seen in many centric diatom valves can be 

reproduced with a physical mechanism. Nonetheless, it is clear that the formation of costae is likely to 

be strongly influenced by intracellular factors, either through the positioning of microtubules and 

nanoparticle ‘release’ sites throughout the SDV, or through some sort of templating or prepatterning 

on the cell surface by cytoskeletal components. 

In diatoms, the usual physical mechanisms of biomineralization – such as crystal nucle- ation and 

directed crystal-growth – can be ruled out since the resulting siliceous material can be considered 

amorphous, at least above the 10 nm scale. The structure of biosilica on the 10 nm scale has been 

characterized in experiments
[12]

 and may be explained by considering the self assembly of species-

specific polypeptides
[13] 

such as silaffins
[14, 15, 16, 17]

. At lengthscales of 100 nm or more, however, a 
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templating mechanism may operate in which a self-assembled complex-fluid ‘mold’ directs the 

deposition of inorganic material
[18]

. It has been suggested that organic components in the SDV that 

avoid co-precipitation with silica should become more concentrated as the valve thickens and 

occupies the volume
[7]

. This could lead to droplets of organic material which would form a template 

for the pores and the cross-costae (the ribs bridging between radial costae). Helmcke proposed a 

‘bubble’ model in which gas-filled vesicles produce a foamy structure that acts as a template for silica 

condensation
[19]

. In experiments, Schmid observed rafts of liquid-filled “spacer vesicles”
[5]

, with 

diameters of about 1 µm
[20, 21]

, that appeared to guide the growth of silica. Sumper and co-workers 

found amphiphilic, long-chain polyamines trapped in silica harvested from a number of diatom 

species
[17, 22, 23, 24]

, which led to the proposal of a phase separation model of pore formation in diatom 

shells
[25]

. In all of these models, the organic components – which might be polyamines
[17, 22, 23, 24]

, 

polypeptides
[26]

, or other organic macromolecules – are considered to phase separate from water onto 

the base layer to form a two-dimensional, self-organized array of droplets / bubbles / vesicles which 

acts as a template or guide for the subsequent deposition of amorphous silica. 

An exact theoretical treatment of diatom morphogenesis is not yet possible, due to the sheer 

complexity of the problem and its diverse phenomenologies. It is safe to say that, at present, there is 

no single model that can reproduce or explain all aspects of diatom-frustule morphology. The DLA 

model of Parkinson et al. goes a long way to explain the formation of radial costae
[11]

, but the complex 

and often symmetrical arrays of pores are, as yet, unexplained. Sumper’s model of pore formation is 

based on experimental observations and a qualitative description of the phase-separation process
[25]

. In 

this work, we present the first quantitative test of a phase-separation mechanism for the formation of 

porous, siliceous structures resembling diatom valves. The central idea is that an organic component 

phase separates from an aqueous phase on the surface of the base layer within the SDV to form a 

quasi-two-dimensional emulsion of small droplets, around which a silica precursor (such as silicilic 

acid) in the aqueous phase can diffuse and condense to form a cast of the complex-fluid template. The 

initial formation of droplets is seen to be relatively fast, but the subsequent coalescence to form larger 

droplets – and ultimately a macroscopic interface – is an extremely slow process. The long-time 

dynamics of such processes are of considerable inherent interest
[27]

. There is likely to be coupling, and 

possibly cooperativity, between the processes of template formation and silica deposition, but in this 

preliminary investigation we consider these processes to occur on distinct timescales. The structure of 

the organic template is assumed to be essentially static over the time required for silica-precursor 

diffusion and condensation / aggregation; in other words, the initial array of organic droplets can be 

considered as a static template for the silica deposition. Under these assumptions, we show that a 

model of fluid phase separation in confined, two-dimensional environments, including the effects of 

‘prepatterning’ by the silica costae in the base layer, is capable of generating feasible templates for a 
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large number of centric- and pennate-diatom valves. This will provide a starting point for future 

studies, which will incorporate the initial formation of the base layer (by, e.g., DLA
[11]

) and the 

coupling of phase separation with silica deposition and sintering. 

The aim of this work was to explain a specific stage of diatom morphogenesis, but the resulting model 

corresponds to a very general physical situation, namely the phase separation of immiscible fluids 

under the influences of confinement and local external fields. Therefore, the results of this work 

should be tested directly by a well-controlled experiment, which could then lead to a means of 

producing complex inorganic microstructures resembling those in diatom frustules. Some comments 

on the experimental relevance of the work will be presented towards the end of the article, but for now 

we note that analogous methods for preparing porous materials using surfactant templates
[28]

 are 

already well known and widely exploited. Transient ‘target’ templates in phase separating complex 

fluids have also been described and exploited before, most commonly in polymer blends
[29, 30, 31]

. 

Finally, ‘surfactant-free’ routes have been identified in which the precursor of an inorganic material 

may, in essence, self-organize to direct the deposition
[32]

. 

The rest of this article is organized as follows. In Section 2 the model and computa- tional methods 

are detailed. Simulation results for specific centric and pennate diatoms are presented in Section 3, 

and Section 4 concludes the paper. 

 

2. Model and methods 

The complexity, diversity, and species-specificity of diatom structures preclude a detailed chemical 

account of morphogenesis, so instead we seek a generic model of the putative phase- separation 

mechanism. The system is modeled as a quasi-two-dimensional, two-component incompressible fluid 

mixture with fixed overall composition. The x, y, and z dimensions of the system are L, L, and l, 

respectively, with l ≪ L reflecting the quasi-two-dimensional geometries of the SDV and the resulting 

face of the diatom valve. The composition of the fluid is assumed to depend only on the lateral 

coordinates x and y. Component 1 is the organic material and component 2 is aqueous. The parameter 

signaling phase separation (demixing) is the local excess volume fraction of organic material, given 

by φ(x, y) = φ1 (x, y)−φ2(x, y) = 2φ1(x, y) − 1 where 0 ≤ φi(x, y) ≤ 1 is the local volume fraction of 

component i. Mass conservation implies that the quantity 
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representing the overall composition, is a constant. Phase separation is driven by the re- quirement to 

minimize the free energy, which in the current model is represented by the equation 

 

where v0 is a molecular volume. The first two terms (proportional to φ2 and φ4) describe the local 

free-energy per particle with energy scale ǫ; this familiar Landau-theory expression drives phase 

separation in to coexisting phases with φ = ±1
[33]

. The square-gradient and Laplacian terms, with 

coefficients κ1 and κ2 , respectively, are the first two terms in an expansion of the interfacial free 

energy
[34, 35, 36]

. In the final term, h(x, y) models the local field arising from prepatterning by the pre-

existing silica costae within the base layer; the charged silica surface will provide an attractive field 

for the aqueous component and a repulsive field for the organic component. Gradients in the chemical 

potential give rise to a flux in φ given by j = −M ∇µ, where M (x, y) is the local mobility. The 

constitutive relation for an incompressible fluid is ∂φ/∂t + ∇ j = 0. The phase-separation dynamics is 

therefore described by integrating the differential equation 

 

where the local chemical-potential is given by the functional derivative of the free-energy functional 

in Eq. (2): 

 

In all simulations, the perimeter of the diatom valve was taken to be an ellipse with a boundary 

defined by (x/a)
2
 + (y/b)

2
 = 1 where a and b are the ellipse semi-axes (for centric diatoms, a = b). A 

schematic diagram of the simulation cell dimensions is shown in Fig. 1. In the rare case of a 

concentric field in a centric diatom, we define an additional angle β = 2π√x
2
 + y

2
/a, where a = b is the 

radius of the circular domain describing the diatom valve. To retain the convenience of solving the 

equation of motion (3) numerically on a cartesian grid, the elliptical diatom boundary was established 

by allowing the mobility to depend on the position, interpolating smoothly between a value M0 inside 

the boundary and zero outside the boundary. For convenience, the expression used was 
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where W controls the width of the boundary, R is the sum of the distances between the point (x, y) and 

the two foci of the ellipse, and S is the sum of the distances between a point on the boundary of the 

ellipse and the two foci (which is always equal to twice the major semi-axis). The width W was made 

small compared to the diatom dimensions so that the boundary was relatively sharp but still 

continuous; this meant that complicated discontinuous boundary conditions did not have to be 

accommodated within the numerical scheme. The dynamical equation (3) was integrated numerically 

using a three-point, finite-difference algorithm
[37]

 on a square cartesian grid with spacing l and 

periodic boundary conditions applied. The integration time step was adjusted to conserve φ to within 

1 part in 10
4
. All calculations were performed in dimensionless units defined using the grid spacing l, 

the energy ε, and the basic unit of time τ = l
2
 /εM0 : dimensions L/l (and equivalent expressions for a, 

b, and W ); h(x, y)/ε. τ is the most obvious unit of time for calculations based on a grid with spacing l, 

although one could also define a unit based on a natural lengthscale, such as the equilibrium width of 

an interface separating coexisting phases. This choice is made solely on the basis of convenience, and 

the conversion from simulation time to real time – such as in Section 3 – will still yield the correct 

results. 

 

 

Figure 1. Schematic of the simulation cell. L is the box length, O is the origin, and a and b are the 

semi-major and semi-minor axes, respectively. 
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Parameters were adjusted heuristically to generate a particular diatom structure. In each case the 

initial state of the fluid was an almost homogeneous mixture with a ±1% random variation in φ 

amongst 200 × 200 (or occasionally 350 × 350) cells on a square grid of side L and spacing l. (The 

exact size of the initial, random variations does not affect the final results.) Then, phase separation 

was allowed to occur as a result of mutual diffusion of organic and aqueous components, driven by 

local free-energy gradients as computed from Eq. (4). Long-lived structures adopted by the phase-

separating fluid are sensitive to the average excess concentration of organic material, as measured by 

the conserved quantity φ. In the absence of the local field h(x, y), the time-dependent phase-separation 

structures are well known: when φ ≪ 0 or φ ≫ 0, long-lived droplets of organic and aqueous phases, 

respectively, are formed so as to minimize the interfacial free energy; when φ ≃ 0, labyrinthine 

spinodal structures result. As a rule, it was found that the composition of the fluid had to be adjusted 

such that φ ≃ −0.3, corresponding to a volume fraction of organic component of about 0.35; this 

relatively low volume fraction means that the organic material forms droplets in water. In some cases, 

the organic fractions inside and outside the valve perimeter (φin and φex, respectively) were altered 

independently to ‘fine-tune’ the template structure at the boundary, but this was by no means vital, 

and the effects on the interior structures were seen to be negligible. The simulation parameters are 

reported in Table 1. 

 

3. Results 

Figure 2 compares experimental and simulated structures for three different diatom species, and the 

simulated prepatterning field h(x, y) required as input in Eq. (2). The colors in the experimental 

images arise from diffraction effects, and do not reflect any pigmentation or staining of the silica. In 

the instantaneous simulated structures, the black regions denote high concentrations of organic 

material (φ ≫ 0), representing the template for silica deposition. The white regions (φ ≪ 0) therefore 

indicate the aqueous domains where the silica will condense. In the case of the centric diatom 

Arachnodiscus ehrenbergii in Fig. 2(a), the formation of the radial spokes in the simulated structure is 

dictated by the prepatterning field shown, which may correspond to the influence of costae in the base 

layer. Cross-costae are not apparent in the simulated structure, but the overall similarity with the 

experimental image is high. The gross features of the pennate diatom Surinella linearis v. helvetica 

can be modeled using an elliptical domain and a radial prepatterning field, as shown in Fig. 2(b). It is 

also possible to mimic structures with apparent concentric-ring motifs, such as Actinocyclus confluens 

shown in Fig. 2(c). The diffraction colors in the experimental image highlight variations in the density 

of silica in the frustule, which can be matched by the model. 
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Figure 2. Experimental (top) and simulated (middle) images of diatom structures, and the prepattern 

field (bottom) required for each simulated structure: (a) Arachnodiscus ehren- bergii
[49]

; (b) Surinella 

linearis v. helvetica
[50]

, (c) Actinocyclus confluens
[49]

. In the simulated images, the dark regions 

correspond to organic-rich domains. In the prepattern fields, blue and red correspond to low and high 

free energy regions, respectively. Scale bars are 10 µm. Experimental images are reproduced with 

permission. 

 

Figure 3 shows a selection of observed and simulated centric-diatom structures. In Figs. 3(a)-(c) there 

are no prepatterning fields, and the simulated structure consists of a disordered array of droplets, 

which provides a template for a disordered array of pores. The key variables here are the overall 

concentration of organic material φ, and the diameter of the circular cell a. The structures are, by 

themselves, not so surprising, but these images serve to illustrate the complementarity of the pore 

structure of the diatom valve and the droplet structure of the fluid template. In the remaining figures 

there is a clear requirement for prepatterning; each of the diatoms possesses highly developed costae 

emanating from the center of the face of the valve. Figures 3(g) and 3(h) in particular require further 

comment. For these species – Melosira sol and Stictodiscus johnsonianus, respectively – the 

simulated template structure switches over from droplets near the center to spokes near the perimeter. 

The crossover arises spontaneously in the simulations: near the center, the spacing between minima in 

the prepatterning field is small compared to the characteristic droplet size, and so in terms of the free 

energy, it is more favorable for the droplets to remain intact than for them to break up and collect in 

the minima; near the perimeter, the free energy can be lowered by the droplets coalescing in the 

minima, thus forming spokes. (The characteristic droplet size is, of course, time-dependent; it 

increases like t
1/3 [27, 38]

.) In Fig. 3(i) – Arachnodiscus indicus – the concentric organization of pores 

(droplets) is driven by an additional concentric field: it is emphasized that the physical origin of such 
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a field has not yet been identified; it has only been invoked in this case, and that of Actinocyclus 

confluens shown in Fig. 2(c). 

 

 

Figure 3. Experimental (upper) and simulated (lower) structures of centric diatoms: (a) Stictodiscus 

californicus
[49]

; (b) Psammodiscus nitidus
[51]

; (c) Aulacodiscus argus
[49]

; (d) Actinoptychus 

undulatus
[49]

; (e) Actinoptychus campanulifer
[49]

; (f ) Cyclotella meneghini- ana
[50]

; (g) Melosira 

sol
[49]

; (h) Stictodiscus johnsonianus
[49]

; (i) Arachnodiscus indicus
[49]

; (j) Stephanodiscus
[51]

; (k) 

Psammodiscus
[52]

; (l) Aulacodiscus  kittonii
[49]

. In the simulated images, the dark regions correspond 

to organic-rich domains. Scale bars are 10 µm, except in (j) which is 20 µm. Experimental images are 

reproduced with permission. 

 

Some results for pennate diatoms are shown in Fig. 4. Pennate diatoms often possess parallel striae 

(rows of pores) aligned parallel to the long axis of the valve
[7]

. We found that these features were 

favored specifically by the inclusion of a weak (∇2
φ)

2
 term in Eq. (2). It is known that in models of 

three-dimensional oil-water-surfactant solutions, such a term is required to stabilize modulated cubic 

(bicontinuous) phases
[39, 40, 41]

. In two dimensions, this might be expected to favor a ‘square’ array of 
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pores, as required in pennate diatoms. Indeed, Fig. 4 shows that the experimental structures could be 

templated by a phase separated structure, provided that κ2 is non-zero. In an experiment, this might 

require the addition of a surfactant to the organic and aqueous components. Note that in the simulated 

centric diatoms, κ2 = 0, and hence no surfactant should be required. 

 

 

Figure 4. Experimental (upper) and simulated (lower) structures of pennate diatoms: (a) Cocconeis 

disculoides
[51]

; (b) Achnanthes parvula
[51]

; (c) Achnanthes parvula
[51]

. In the simulated images, the 

dark regions correspond to organic-rich domains. Scale bars are 10 µm. Experimental images are 

reproduced with permission. 

 

The majority of the simulated images presented in this work are ‘snapshots’ of the fluid template at 

some particular late stage of the simulation. In Fig. 5 we show a representative example of the time 

dependence of phase separation; the particular diatom is Melosira sol shown in Fig. 3(g). Figure 5(a) 

shows the initial, homogeneous state. At short times t* ∼ 1, the only apparent structures are the spokes 

near the perimeter of the circular cell. The interior of the circular domain is still essentially 

homogeneous. At t* ∼ 5 the fluid has produced two distinct regions, spokes near the perimeter and 

droplets in the interior. These motifs are long-lived, and persist up to and well beyond times t* ∼ 10. 

The structure is essentially static at times beyond t* ∼ 20, and therefore corresponds to a quasi-static 

template which might direct the deposition of silica to form a porous valve. The wide range of 

timescales reported in Table 1 reflects the different distributions of droplets in the fluid- phase 

templates. For example, the parameters required for the diatoms in Figs. 3(a) and 3(b) are comparable, 

except for the choices of κ1* and t/τ . A larger value of κ1* is required to generate the target structure 

in Fig. 3(a), which consists of a small number of large droplets; Fig. 3(b) shows a large number of 

small droplets. Given that both the compositions and diatom dimensions are comparable, the structure 

in Fig. 3(b) forms faster than that in Fig. 3(a) due to the distances over which the organic material has 

to diffuse. The slowest forming templates – in Figs. 2(b) and 3(f ) – are characterized by a complete 
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absence of organic material near the center. The simulations are long in these cases due to the time 

required for complete evacuation of the central regions. 

 

 

Figure 5. Simulation images of the diatom Melosira sol at times (a) t = 0, (b) t = 1τ, (c) t = 3τ , (d) t = 

5τ , (e) t = 10τ , and (f ) t = 20τ. 

 

The major conclusion of this work is that the pore structures of the valves in a diverse range of diatom 

species can be mimicked qualitatively by a simple fluid phase separation model. We are not seeking 

precise reproductions of the observed diatom structures; to mimic every last detail would require a 

much more complicated and unwieldy model, which takes account of processes on a variety of 

lengthscales (including, for example, simultaneous costa formation, self assembly of biomolecules 

and colloidal silica on the 1-10 nm scale, the chemistry of silica condensation, etc.). Nonetheless, the 

gross features of the diatom frustule, specifically the costae and the pores, can be produced ‘in 

negative’ by a phase-separated, fluid template. 

The biological relevance of the results can only be assessed through further (challenging) experiments 

with real diatoms. From a materials-chemistry perspective, however, the model makes predictions 

which could be readily tested. After all, the model is essentially one of phase separation in a thin fluid 

layer on a patterned substrate. Hence, it should be possible to test the predictions by preparing 

emulsions on hydrophilic-hydrophobic patterned surfaces, the latter being prepared by lithographic 

techniques, for example. In order to estimate the physical parameters required to produce the 

theoretically predicted template structures, we must convert the dimensionless simulation parameters 

in to real units. The fluid composition φ is defined in terms of volume fractions and can therefore be 

read off directly from Table 1. The grid spacing l ∼ 10
-7 

m because ∼ 10
2 
points are used to represent 

a typical diatom
 
dimension of ∼ 10 µm; all cell dimensions in Table 1 are reported as multiples of l.
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The numerical values of κ∗ can be rationalized by relating κ1 for a planar interface to the interfacial 

tension γ between phase-separated organic and aqueous domains. The calculation is standard
[34, 42]

, 

and for the specific free-energy functional presented in Eq. (2) the result is κ1 = 9γ
2
v

2
/16ε, so that 

 

The interfacial tensions between water and typical organic liquids are normally several millijoules per 

square-meter
[43]

, and so γ ∼ 10
-2

 J m
−2

. The molecular volume v0 ∼ 10
−27 

m
3 
may be estimated from 

typical molecular dimensions of 10 Å, and as noted earlier, the grid
 
spacing l ∼ 10

-7 
m. Finally, the 

energy parameter ǫ driving phase separation [see Eq. (2)]
 
is unlikely to be much more than 0.1 kBT 

where kB is Boltzmann’s constant and T is the temperature. Combining these order-of-magnitude 

estimates in Eq. (6) gives κ∗ ∼ 0.5, which is very close to the typical values determined heuristically 

in the simulations (reported in
 
Table 1). 

 

Fig. species L/l φin φex   a/l b/l W/l h(x,y)/ε t/τ 

2a Arachnoidiscus ehrenbergii
49

 200 −0.3 +0.0 0.2   70 70 1 0.5 cos
10

(8α) 3.00 

2b Surinella linearis v. helvetica
50

 200 −0.65 −0.65 0.2 0.05 60 25 4 0.4 cos
2
(8α) 1000.00 

2c Actinocyclus confluens
49

 200 −0.4 −0.2 0.4   90 90 1 0.3 cos
10

(β) 10.90 

3a Stictodiscus californicus
49

 200 −0.4 −0.3 0.6   40 40 4   30.00 

3b Psammodiscus nitidus
51

 200 −0.4 −0.3 0.43   60 50 6   18.00 

3c Aulacodiscus argus
49

 350 −0.3 −0.3 0.4   100 100 8   8.00 

3d Actinoptychus undulatus
49

 200 −0.4 −0.4 0.3   60 60 6 [0.02(0.1 + sin
2
(

4α)]/[0.1 + cos
2
(

4α))] 

10.00 

3e Actinoptychus campanulifer
49

 200 −0.3 +0.0 0.2   60 60 6 1/[1 + 10 sin
2
(3

α)] 

2.80 

3f Cyclotella meneghiniana
50

 200 −0.5 −0.5 0.2   60 60 4 0.4 cos
2
(18α) 2800.00 

3g,5 Melosira sol
49

 200 −0.2 −0.2 0.5   60 60 6 0.18 cos
2
(26α) 20.00 

3h Stictodiscus johnsonianus
49

 200 −0.3 −0.1 0.6   60 60 3 0.06 cos
2
(12α) 20.75 

3i Arachnoidiscus indicus
49

 200 −0.5 −0.5 0.4   50 50 1 0.08 cos
8
(8α) + 

0.05 cos
8
(4β) 

10.60 

3j Stephanodiscus
52

 200 −0.5 −0.1 0.3   60 60 1 0.15 sin
4
(6α) 13.00 

3k Psammodiscus
52

 200 −0.6 −0.6 0.1   40 40 6 0.1 cos
2
(4α) 50.00 

3l Aulacodiscus kittonii
49

 200 −0.35 −0.1 0.5   70 70 1 [0.05 (0.1 + cos
2

(2α)]/[0.1 + sin
2

(2α))] 

10.70 

4a Cocconeis disculoides
51

 200 −0.45 −0.1 0.5 0.08 70 38 2.5   20.80 

4b Achnanthes parvula
51

 200 −0.3 −0.3 0.5 0.1 60 5 4   35.00 

4c Achnanthes parvula
51

 200 −0.3 −0.3 0.3 0.06 70 30 2 0.1 sin
2
(α) 9.00 

 

Table 1.  Model parameters used to generate the simulated diatom structures shown in figures 2−5
a
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The order-parameter profile across a planar interface is φ(x) = tanh (x/2ξ)
[34, 42]

 where the interfacial 

width ξ = √κ1 /ε. From the numerical values obtained above we estimate that ξ ∼ 10
-8 

m, which is 

small compared to the dimensions of the porous structures reported in
 
Section 3; hence, the resolution 

of the simulated images should be attainable in experiment.
 

The typical strength of the prepatterning field (measured by the difference between the minimum and 

maximum field) is, from Table 1, less than 0.5ε. With the assumption made above for ε, this equates 

to around 0.05 kBT , which does not seem excessively strong. As for the basic unit of time, τ = l
2
/εM0 

it is difficult to estimate the mobilities, or the diffusion
 
coefficient D = M/ kBT , of organic molecules 

in as confined a space as the SDV. The Stokes-Einstein expression for a spherical solute of radius R ∼ 

10 Å in a water-like solvent with
 
viscosity η ∼ 10

-3 
Pa s gives D = kBT /6πηR ∼ 10

−10 
m

2
 s

−1
. In 

combination with the
 
estimates of l and ε given above, we find that τ ∼ 10

-3 
s. The simulation times 

reported in Table 1 therefore correspond to real times from tens to thousands of milliseconds. These 

are probably serious underestimates because of the likely macromolecular crowding within the SDV, 

and the effects of confinement; if the mobility M0 is decreased, then the basic unit of
 
time τ ∼ 1/M0 

increases. Hence, the reduced times reported in Table 1 may well correspond
 
to biologically relevant 

timescales (seconds and minutes).
 

It is strongly emphasized that these are very rough, order-of-magnitude estimates, in- tended only to 

show that the simulation results are physically reasonable. 

 

4. Conclusions 

From a materials-science perspective, it may be neither possible nor necessarily desirable to mimic 

the precise details of diatom structures on every lengthscale. A given application might only require a 

material with a well-defined pore structure of a particular dimension. Nonetheless, in this work we 

have shown that the basic structural features of the diatom valve may be templated by long-lived 

domains in phase-separating fluids, controlled by a balance of confinement, composition, interfacial 

tension, and a mild degree of prepatterning (which may be present in real diatoms). As far as we are 

aware, we have presented the most accurate, quantitative model of the pore structure in diatom valves 

to date. 

It should be possible to meet the necessary physical conditions for template formation in the 

laboratory, which would then lead to the production of synthetic diatom valves, and other complex 

microstructures, fashioned from simple solids. The strength of the prepatterning field h(x, y) need only 

be about one tenth of the characteristic energy ǫ, and a prepatterned surface could be fashioned using 
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lithographic techniques. The required values of κ1 correspond to typical values of the interfacial 

tension γ for water and organic liquids, and the dimensions of the confining cell are on the 10 µm 

scale. Experimental tests of the theoretical predictions are eagerly anticipated. 

From the biological perspective, this work represents only a preliminary study. Future work should 

concentrate on combining the phase-separation process presented here, along with the diffusion-

limited aggregation of silica nanoparticles thought to be responsible for the formation of costae in the 

underlying base layer. In addition, the condensation of silica and thickening of the frustule (vertical 

differentiation) should be accounted for simultaneously with phase separation. The basic assumption 

made here is that phase separation and silica condensation occur on distinct timescales, and that the 

fluid template is essentially static on the timescale for silica condensation. Experiments suggest the 

base layer is formed within minutes while vertical differentiation can take up to several hours. This 

suggests that to a first approximation, the assumption of a static fluid template is justified. 

Nonetheless, it should be possible to model these processes simultaneously without making any 

strong as- sumptions a priori. A specific process of interest is the formation of hexagonal ‘close 

packed’ arrays of pores, which feature in the valves of some diatom species
[3]

. In Thompson’s classic 

work On Growth and Form
[44]

, the hexagonal array of pores is attributed to ‘electromag- netic 

vibrations’ on the surface of the cell “like standing waves on drums”
[7]

. There are a number of 

dynamical mechanisms by which such arrays might arise
[7]

; in two dimensions these have been 

generated from equations of the Cahn-Hilliard or Landau-Ginzburg type for three-component, phase-

separating, reactive fluids
[45, 46]

 and phase-separating adsorbates
[47]

. 

The present model was inspired by the results of experimental observations of diatom morphogenesis, 

and so it may shed some light on a specific stage of the biological mechanism (although of course it 

offers no insight on the nature and extent of cellular control). In Nature there are a number of 

mechanisms by which complex patterns are known to be formed. The distribution of reacting 

compounds and pigments can be described by a reaction-diffusion equation (Turing equation) which 

explains, for example, leopards’ rosettes and tigers’ stripes
[48]

. In this case, the patterns are associated 

with mathematical instabilities in the under- lying reaction-diffusion equation. But no two tigers have 

the exactly the same set of stripes, and this is a very different situation from that in diatoms; the 

structures of the diatoms within a given single-species colony are essentially identical, at least on the 

100 nm scale. It therefore seems unlikely that a reaction-diffusion mechanism applies to diatom 

morphogen- esis, and in any case, the experimental clues point much more clearly towards the type of 

phase-separation mechanism described in this work. Experimental studies will shed light on whether 

the simple model presented here, and Occam’s law of parsimony, are sound.  
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