
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adsorption of star polymers: computer simulations

Citation for published version:
Chremos, A, Camp, PJ, Glynos, E & Koutsos, V 2010, 'Adsorption of star polymers: computer simulations'
Soft Matter, vol. 6, no. 7, pp. 1483-1493. DOI: 10.1039/b922988d

Digital Object Identifier (DOI):
10.1039/b922988d

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Soft Matter

Publisher Rights Statement:
Copyright © 2010 by the Royal Society of Chemistry; all rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1039/b922988d
https://www.research.ed.ac.uk/portal/en/publications/adsorption-of-star-polymers-computer-simulations(bd674729-65d2-41d3-a2a0-7450320a2daa).html


 

Adsorption of star polymers: computer simulations** 

A. Chremos,
1,
† P.J. Camp,

1,
* E. Glynos

2,
‡ and V. Koutsos

2 

 

[1]
EaStCHEM, School of Chemistry, Joseph Black Building, University of Edinburgh, West Mains 

Road, Edinburgh, EH9 3JJ, UK. 

[2]
Institute of Materials and Processes, School of Engineering, and Centre for Materials Science and 

Engineering, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JL, U.K. 

[
†

]
Current address: Department of Chemical Engineering, Princeton University, Princeton, NJ 08540, 

USA. 

[
‡

]
Current address: Department of Materials Science and Engineering, University of Michigan, Ann 

Arbor, MI 48109-2136, USA. 

[
*

]
Corresponding author; e-mail: philip.camp@ed.ac.uk 

[
**

]
This research was supported by the School of Chemistry at the University of Edinburgh through 

the award of a studentship to A. C.; and by the EPSRC DTA, and the Institute for Materials and 

Processes in the School of Engineering at the University of Edinburgh, through the award of a 

studentship to E. G. 

 

Graphical abstract: 

  

Post-print of peer-reviewed article published by the Royal Society of Chemistry. 

Published article available at: http://dx.doi.org/10.1039/B922988D 

 

Cite as: 

Chremos, A., Camp, P. J., Glynos, E., & Koutsos, V. (2010). Adsorption of star polymers: 

computer simulations. Soft Matter, 6(7), 1483-1493. 

 

Manuscript received: 03/11/2009; Accepted: 05/01/2010; Article published: 08/02/2010 

philip.camp@ed.ac.uk
http://dx.doi.org/10.1039/B922988D


Page 1 of 26 

Abstract 

The behaviour of star polymers adsorbed on smooth surfaces is studied using coarse-grained bead-

spring models and Langevin dynamics simulations. The conformational properties of a single 

adsorbed star polymer in good-solvent conditions are considered as functions of the functionality 

(number of arms) f, the number of monomers per arm N, and the monomer-surface interaction energy 

εs. Four conformational regimes are identified: a linear-polymer regime; a two-dimensional star 

polymer regime; a sombrero regime; and a colloidal regime. The latter three correspond to regimes 

predicted theoretically by Halperin and Joanny [J. Phys. II (France), 1991, 1, 623–636]. Solvent 

effects are explored by dialing in effective attractions between the monomer beads; with decreasing 

solvent quality, the star polymers adopt more compact, globular structures. Good-solvent to bad-

solvent quenches at finite surface coverages are considered; these correspond to established 

experimental protocols for adsorbing and then drying polymer sub-monolayers on surfaces. The 

structure of the polymer film is surveyed as a function of surface coverage, f, N, and εs, in good-

solvent and bad-solvent conditions. The simulated post-quench structures are in good qualitative 

agreement with those observed in atomic-force microscopy measurements, while the simulated pre-

quench structures shed light on the microscopic mechanisms of film formation. This study draws 

together much of what is known about surface-adsorbed star polymers from theory, simulation, and 

experiment. 

 

1. Introduction 

A star polymer is a single molecule composed of f flexible polymer chains, or arms, tethered to a core 

particle; f is called the functionality. The conformational statistics of a single star polymer in dilute 

solution are well understood from the standard blob model introduced by Daoud and Cotton
[1]

 and 

further developed in the work of Birshtein et al.
[2,3]

 In the Daoud–Cotton model, the star is represented 

by concentric shells of blobs. Forf = 1 and 2 a star resembles a linear polymer meaning that for low 

functionalities, it exhibits highly aspherical conformations.
[4,5]

 As the functionality is increased, 

asphericity drops significantly and the star becomes stiffer and more spherical like a soft colloid.
[6–8]

 

In short, star polymers bridge two very important fields of soft matter – polymers and colloids – 

which have long histories and important industrial applications. 

Of recent interest is how star polymers in solution behave in the proximity of a substrate. One 

important example is how star polymers act as depleting agents for colloidal particles, and how they 

can be used for controlling colloidal aggregation to produce desired ordered structures.
[9–11] 

From 

theoretical
[12–16]

 and simulation
[17–19]

 studies of star polymers on flat surfaces, different structural 

regimes can be identified, each determined by the attractive interaction strength (δ) between a 
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monomer unit and the surface: (i) for small δ, the conformational statistics of the star polymer are 

essentially those of the free molecule in dilute solution (colloidal regime); (ii) for large δ, the star 

polymer is strongly adsorbed on the surface, and all of its arms are in contact with the surface leading 

to quasi-two dimensional conformational statistics (2D star regime); and (iii) for intermediate δ, a 

non-trivial ‘sombrero’ structure is predicted theoretically,
[15]

 where fads arms are strongly adsorbed on 

the surface, and the remaining f–fads free arms are in contact with the solution (sombrero regime). This 

list can be supplemented by a linear regime, applicable at very low functionalities, where the arms on 

the surface behave essentially independent of one another. In the sombrero regime, the conformational 

statistics are expected to be intermediate between two-dimensional and three-dimensional limiting 

cases; this case has not, to our knowledge, been observed in simulation studies. One of the goals of 

this work is to map out the different regimes, and represent them on a phase diagram in the plane of 

functionality f and number of monomers per arm N. To the best of our knowledge, we provide the first 

simulations of the sombrero structure predicted by Halperin and Joanny.
[15]

 

In recent work by our groups , the physisorption and self-assembly of linear
[20]

 and star
[21]

 polymers 

on smooth surfaces were examined using atomic-force microscopy (AFM ). In a typical experiment, a 

polymer solution was prepared in good-solvent conditions at concentrations well below the critical 

overlap volume fraction (
*
), resulting in well-separated polymers in solution and hence precluding 

any strong degree of structural ordering prior to adsorption. Polymer (sub-)monolayers were formed 

by exposing a smooth surface (such as mica) to the polymer solution. The surface was then placed in a 

good solvent for several hours and extensively rinsed with good solvent to remove any non-adsorbed 

polymer . Finally, the samples were dried gently under a stream of nitrogen and subsequently imaged 

in air by AFM in tapping mode to investigate the structures resulting from the good solvent-to-bad 

solvent quench. The glass-transition temperature of the polymers was more than 100 K below room 

temperature and so all of the observed structures should be at, or close to, thermodynamic 

equilibrium. Depending on the polymer molecular weight, architecture, and concentration, very 

different surface structures can be obtained. This protocol is somewhat related to that reported by 

Kiriy et al.,
[22]

 in which starpolymers were adsorbed from dilute solutions in various good and 

selective solvents , dried by rapid solvent evaporation , and then characterised in AFM measurements. 

A full report on the experimental investigation of linear polymers is in preparation
[20]

 and a simulation 

study yielding insight on the as-yet-unpublished experimental results has already appeared.
[23]

 Using 

the same experimental procedure, the adsorption of star polybutadiene on to mica from toluene 

solution has been studied. The functionality and concentration of star polymers can be used to control 

a crossover between the aforementioned polymer and colloidal regimes, being distinguished by 

characteristic cluster topologies, sizes, and surface coverage.
[21]

 An aim of this work is to reproduce, 



Page 3 of 26 

and gain insight on, the experimentally observed adsorption regimes using Langevin dynamics 

simulations of coarse-grained bead-spring models of star polymers . 

In the past, the bulk properties of star polymers and the crossover between the polymer and colloidal 

structural regimes have been examined experimentally, theoretically, and with computer simulations. 

In particular, computer simulations have helped to confirm the predictions of the Daoud–Cotton 

model and its scaling laws.
[24–26]

 Simulations have also been used to obtain the effective interactions 

between star polymers , which can be used to coarse-grain the whole star polymer as one ultra-soft 

particle;
[27]

 this technique has yielded valuable insights on the bulk-phase properties of star polymers , 

including the phase diagram.
[27]

 Despite numerous simulation studies of star polymers , their detailed 

behaviour in the proximity of an attractive surface is largely unexplored. To the best of our 

knowledge, simulation work has been limited to many-arm star polymers tethered to surfaces by the 

core particles,
[17–19]

 and to lattice models of physisorbed f = 3 star polymers .
[28,29]

 It should be noted, 

however, that the behaviour of star-branched polyelectrolytes on oppositely charged surfaces in the 

presence of counterions has been thoroughly surveyed using computer simulations.
[30]

 The so-called 

‘starfish’, ‘antenna’, ‘anemone’, ‘jellyfish’, and ‘sea urchin’ structures observed in this system are 

somewhat similar to those described above. 

This paper reports a simulation study of physisorbed star polymers . We use Langevin dynamics 

simulations of coarse-grained bead-spring models to gain insight on the results from polymer 

adsorption experiments.
[21]

 The outline of this study is as follows. Firstly, we study the properties of 

isolated adsorbed polymers (vanishing surface coverage) in both good-solvent and bad-solvent 

conditions. We compare our simulated isolated-polymer structures under bad-solvent conditions to 

those inferred from AFM experiments on systems at low surface coverages.
[21]

 Secondly, we deal with 

many polymers on a surface in both good-solvent and bad-solvent conditions, and compare the 

resulting sub-monolayer films with those produced in experiments.
[21]

 The paper is organized as 

follows. Section II contains details of the coarse-grained polymer model, and the simulation methods. 

The results are presented in section III, and section IV concludes the paper. 

 

2. Simulation and methods 

A. Simulation model 

In this work a star polymer is modelled with f polymer chains, which are bonded to a core particle. 

Each chain is composed of N beads of equal size and mass, connected by bonds. The size of the core 

particle may be larger than the size of the beads, especially for f > 32, to allow space for the arms. The 

core size was kept as small as possible and was insignificant compared to the star's overall 
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dimensions. A star of f arms and N beads per arm will be abbreviated by the notation f/N. Such bead-

spring models of linear and star polymers were first introduced and employed in simulations by Grest 

and co-workers.
[24,25,31,32]

 In this work, N beads are connected to form a chain using a non-linear 

finitely extensible (FENE) potential between neighbouring beads, given by 

    (1) 

Here r is the bead-bead separation, R0 is the maximum possible (bonded) bead-bead separation, and k 

is a spring constant. In this study we use parameters from earlier work,
[24]

 namely R0 = 1.5σ and k = 

30ε/σ
2
; ε and σ are the energy and range parameters, respectively, for the non-bonded interactions to 

be defined next. 

Non-bonded interactions operate between all pairs of beads, and are derived from a composite 

potential devised by Steinhauser.
[33]

 The potential is a combination of three terms. The first 

contribution is the purely repulsive Weeks–Chandler–Andersen (WCA) potential,
[34]

 which is a 

Lennard–Jones potential cut and shifted at the position of the minimum, rmin = 2
1/6
σ: 

  (2) 

To represent the attractive interactions, the WCA potential is shifted back down in the range 0 ≤ r ≤ 

rmin by a square-well (SW) potential 

    (3) 

where λ reflects the solvent quality (to be discussed below). To interpolate the potential smoothly 

between – λε at r = rmin and 0 at a cut-off distancercut > rmin, we add the term 

 (4) 

where α and β satisfy the conditions αrmin
2
 + β = π and αrcut

2
 + β = 2π. The cosine form of the potential 

also means that the force −dVcos/dr = 0 at r= rcut. Following earlier work,
[33] 

rcut = 3σ/2 for which the 

appropriate parameters are 
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    (5) 

   (6) 

The final, non-bonded potential is V(r) = VWCA + VSW(r) + Vcos(r). The parameter λ controls the depth 

of the potential well at r = rmin, and provides a convenient measure of the solvent quality. In a good 

solvent , the effective bead-bead interactions are purely repulsive; this corresponds toλ = 0. In a bad 

solvent , the bead-bead interactions are attractive, and this behaviour can be modelled with λ = 1; this 

corresponds to the same well depth as in the Lennard–Jones potential, which has been used frequently 

in the past. θ-solvent conditions – under which the chain statistics are very similar to those for an ideal 

(non-interacting) chain – are reproduced by λ = 0.646.
[33]

 

For simulations involving a surface, an additional effective bead-surface potential is used,
[32]

 based on 

integrating the Lennard–Jones interactions arising from a homogeneous distribution of sites within the 

surface. The potential is 

   (7) 

where z is the perpendicular distance of the bead from the surface, and εs controls the strength of the 

bead-surface attraction. 

Langevin dynamics are used to simulate the bead-spring polymer chains, in which the system is 

coupled to a heat bath, corresponding physically to solvent . In addition to the conservative forces 

arising from the interaction potentials described above, each bead will feel random and frictional 

forces mimicking the solvent surrounding the bead. Thus the equations of motion for bead i are given 

by 

   (8) 

where m is the bead mass, Γ is the friction coefficient, Wi(t) represents the Brownian forces of the 

solvent acting on the bead, and V = ∑i<jVij is the total interaction potential. Wi(t) is represented by 

Gaussian white noise satisfying the fluctuation-dissipation theorem
[35]

 

〈Wi(t)·Wj(t′)〉 = 6kBTmΓδijδ(t−t′)   (9) 
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where kB is Boltzmann's constant, and T is the temperature. The Einstein relation leads to a diffusion 

constant for an isolated bead of D0 = kBT/mΓ. Further details are given in ref. 31. 

Simulations are performed in an L × L × H cuboidal box with periodic boundary conditions in all 

three directions and the minimum-image convention applied. The box dimension in the z direction is 

set to a large but finite value of H = 200σ, and the surface is represented by a structureless, L × L × l 

solid slab with a thickness l no less than the maximum range of interaction between beads. To control 

the surface bead density, L takes on values of 80σ through to 180σ, which are always large enough for 

polymers in their natural conformations to avoid interacting with their own periodic images. The 

simulation conditions mean that the polymers are at finite density within the simulation cell , and so 

there is an equilibrium state where the polymers are adsorbed. In principle, the polymers could adsorb 

on either face of the slab, but they cannot interact with each other because l is larger than the 

interaction range, and H is much larger than typical polymer dimensions (as measured by the radius of 

gyration, Rg); hence, the two surfaces are essentially isolated from one another. In practice, initial 

configurations are prepared by placing the polymers on one face of the slab, and all subsequent 

measurements are made for that one surface. Simulated properties are reported here in reduced units 

defined in terms of m, ε, and σ. The equations of motion were integrated using the velocity-Verlet 

algorithm with a time step δt = 0.007τ, where  is the basic unit of time. In all cases, the 

reduced temperature kBT/ε = 1, and the reduced friction coefficient Γτ = 1. 

 

3. Results and discussion 

We have studied four different situations using Langevin dynamics simulations: (i) the behaviour of 

an isolated star polymer on a surface in good-solvent conditions (λ = 0); (ii) the behaviour of an 

isolated star polymer on a surface in various solvent qualities (0 < λ ≤ 1); (iii) the behaviour of many 

star polymers on a surface in good-solvent conditions (λ = 0); and (iv) many star polymers in bad-

solvent conditions (λ = 1). The good-solvent conditions correspond to the experimental situation 

before the bad-solvent quench, while the bad-solvent conditions mimic the dried state of the 

experimental system which is probed in AFM experiments. Star polymers with functionalities in the 

range 2 ≤ f ≤ 128 and three different chain lengths (N = 25, 50, and 100), on different surfaces having 

bead-surface energy parameters ε
*
s = εs/ε = 0.4, 0.6, 0.8 and 1.0 have been studied; in the case of many 

polymers, a range of surface coverages was also explored. 
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A. An isolated star in good solvent 

Some earlier studies have focused on the conformations of isolated star polymers with the cores 

tethered to a surface.
[17–19]

 In the case of repulsive or marginally attractive surfaces, and with the core 

particle tethered on the surface, the configuration of a star polymer is similar to that of a bulk star 

polymer with twice as many arms.
[36]

 In the case of strongly attractive surfaces, core-adsorbed star 

polymers resemble two-dimensional polymers . To the best of our knowledge, however, very little 

simulation work has been carried out on many-arm star polymers adsorbed on attractive surfaces 

without the core tethered to the surface. Sikorski studied a lattice model of f = 3 star polymers , 

concentrating on a comparison with linear and ring polymers ,
[28]

 and on the equilibrium dynamics.
[29]

 

Here, simulations are used to study the surface effects on a physisorbed star polymer , and to survey 

the different structural regimes controlled by the functionality f, the arm length N, and the bead-

surface energy ε
*
s. Model parameters are chosen which correspond to the physisorption regime, 

meaning that the interaction between a bead and the surface is of order kBT; adsorption is favoured 

because of the large number of contacts between individual beads and the surface. 

All isolated polymer simulations began with a star polymer being placed in good-solvent conditions (λ 

= 0) and close enough to the surface for adsorption to occur. The required equilibration time depended 

on f, N and ε
*
s. Equilibration was complete within 2 × 10

5
δt for the smallest molecules and up to 8 × 

10
6
δt for the largest. Subsequently, the measured properties were averaged over a production run of 4 

× 10
6
δt. Snapshots of some equilibrated polymer conformations are shown in Figure 1. 

 

 

Figure 1. Snapshots of isolated f/N star polymers (f is functionality, N is arm length) adsorbed on the 

surface in good-solvent conditions (λ = 0) and with bead-surface energy ε
*
s = 0.6: (a) 4/100; (b) 

32/100; (c) 128/100; (d) 4/25; (e) 32/25; (f) 128/25. 

 



Page 8 of 26 

Figure 2 shows how the behaviour of the average maximum height of the star 〈h〉, and the average 

height of the core particle 〈hcore〉, vary with the functionality. The results are plotted in units of Rc, 

the root mean square centre-end distance of a star polymer in bulk: 

    (10) 

 

 

Figure 2. Dimensions of an adsorbed star polymer with arm lengths N = 25 (left column), N = 50 

(middle column), and N = 100 (right column) in good-solvent conditions (λ = 0): (top row) average 

height of the star 〈h〉 in units of the root mean square centre-end distance Rc [Eq. (10)]; (middle 

row) average core height 〈hcore〉 in units of Rc; (bottom row) ratio 〈hcore〉/〈h〉. 

 

〈h〉/Rc shows how the overall polymer structure is affected by the star's interaction with the surface, 

while 〈hcore〉/Rc reflects how much the centre of the star is pulled down on to the surface. The 

general trend is for the ratios to increase with increasing f, approaching the values 2 and 1, 

respectively, these limits corresponding to the bulk structure. 

The ratio 〈hcore〉/〈h〉 describes the relation between the height of the star and the position of its 

core. For low values of f the ratio 〈hcore〉/〈h〉 has values slightly less then 0.5, which means that 

the core is located slightly lower than the mid-height of the molecule. The ratio has higher values and 

closer to 0.5 for more attractive surfaces because the bead-surface interactions disfavour dangling tails 
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and large loops, which otherwise would increase 〈h〉. Thus even though the core particle is close to 

the surface – as indicated by 〈hcore〉 – the ratio increases for more attractive surfaces. 

Above a threshold value of f (which increases with increasing N or ε
*
s) the ratio 〈h〉/Rc increases 

significantly, with 〈hcore〉/Rc following the lead but at a different rate. This happens because as f is 

increased the number of arms effectively saturates the region near the core of the star, where the 

whole structure is essentially flat on the surface. At the threshold functionality, 〈hcore〉/〈h〉 

significantly drops because any new arms will find the surface too crowded and will therefore point 

away from the surface, thus increasing 〈h〉. There are two characteristic conformational features in 

this regime; the first one is that the adsorbed arms form a disk lying on the surface, and the second 

feature is that, due to crowding, some arms form a central fountain [Figure 1(b) and (e)]. In fact, this 

conformation was predicted theoretically by Halperin and Joanny, and was christened the “sombrero” 

structure.
[15]

 As far as we are aware, this structure has not been reported in earlier simulation studies. 

Beyond the threshold functionality there is an increase of 〈hcore〉/Rc, because the area around the 

core particle becomes more crowded and that lifts the core particle away from the surface. At higher 

values of f, the ratios 〈h〉/Rc and 〈hcore〉/Rc continue to increase towards values of 2 and 1, 

respectively; the ratio 〈hcore〉/〈h〉 reaches a minimum and continues with an increase towards 

0.5. The star polymer essentially starts to regain its bulk shape and features, and the effects of the 

surface are reduced. The star polymer now starts to resemble either a hemispherical droplet [Figure 

1(c)] or a spherical droplet [Figure 1(f)] due to the osmotic pressure within its volume. In other words 

the star behaves like a soft-colloid, since it is stiff enough to resist the flattening effects of the 

attractive surface forces. This effect is also seen in AFM experiments
[21]

 albeit in the post-quench, 

bad-solvent regime; this issue is addressed specifically in the next section. The variation of 〈hcore〉/

〈h〉 with ε
*
s for high-functionality star polymers is in reverse of what is observed in the linear-

polymer regime (f  2); a lower bead-surface energy means less structural perturbation to the star 

polymer , and hence 〈hcore〉/〈h〉 tends to 0.5 from below. 

To understand further the behaviour of the adsorbed star polymer, attention is drawn to the radius of 

gyration, 

    (11) 

where Nb = Nf + 1 is the total number of beads. It is well known that for star polymers in solution 〈

R
2
g〉  N

2ν
f
1−ν

, where ν is the Flory exponent.
[1]

 In good-solvent conditions ν  3/5, therefore 〈R
2〉 
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 N
6/5

f
2/5

. Far from a surface, the average shape of a star is spherical. But near a surface, it is 

necessary to consider the different dimensions of the star with respect to the surface. Therefore, we 

resolve the vector ri – rj in Eq. (11)in to components perpendicular (⊥) and parallel (‖) to the surface, 

and generate the corresponding radii of gyration labelled 〈R
2

g⊥〉 and 〈R
2

g‖〉, the sum of which 

equals 〈R
2

g〉. Results for the case N = 25 are shown in Figure 3. The perpendicular and parallel 

components of 〈R
2
g〉 deviate significantly from one another at low functionality and at high values 

of the surface interaction strength, ε
*
s. At very high values of f, the star is stiff enough to maintain the 

spherical shape it adopts away from the surface; this is precisely the effect observed in AFM 

measurements.
[21]

 Thus, in the proximity of a surface, isotropy breaks down, and the components of 

〈R
2

g〉 no longer scale like f
2/5

. The strong interaction with the surface significantly alters the 

structure of a low- or mid-functionality adsorbed star. 

 

 

Figure 3. The parallel and perpendicular components of the squared radius of gyration, 〈R
2
g‖〉 

(dashed lines) and 〈R
2
g⊥〉 (solid lines), respectively, as functions of functionality f, for star 

polymers with arm length N = 25 in good-solvent conditions (λ = 0). The black line corresponds to 〈

R
2
g〉  f

2/5
. 

 

Figure 4 shows the ratio of the parallel component of the radius of gyration of an isolated star on the 

surface over its value in the bulk, . This ratio signals the effects of the surface on the 

shape and size of the star; it is greater than 1 since the polymer spreads laterally on the surface. As 
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seen above, for low functionalities the star has a two-dimensional conformation and for high 

functionalities the star polymer regains its bulk statistics. A star polymer having a two-dimensional 

conformation means that we can use the scaling arguments for two-dimensional stars, i.e., 〈R
2

g‖〉  

f
1−ν

 = f
1/4

, [ν = 3/(d + 2) in d dimensions].
[37]

 This leads to the prediction that 

〈R
2

g‖〉/〈R
2
g‖〉0  f

1/4
/f

2/5
 = f

−3/20
   (12) 

 

 

Figure 4. Properties of isolated adsorbed star polymers with arm lengths N= 25 (left column), N = 50 

(middle column), and N = 100 (right column) in good-solvent conditions: (top row) the parallel 

component of the squared radius of gyration 〈R
2
g‖〉, divided by its value for an isolated star polymer 

in bulk; (bottom row) the bound fraction 〈Φa〉. 

 

However, the results in Figure 4 do not follow such a simple scaling law for all values of f. At f = 2 

(equivalent to a linear chain) the ratio is greater than one, meaning that the polymer has spread out on 

the surface. For all N, the ratio first decreases with increasing f; this effect is more pronounced with 

stronger surface interactions. This suggests that, at very low functionalities, each arm of the star 

polymer behaves like an independent linear chain, held closely to the surface (hence the observed 

dependence on ε
*
s). For low values of f, each arm on the surface is well separated from the rest of the 

arms of the star and hence there is little or no interaction between them; as a result, 〈R
2

g‖〉 is, 

initially, insensitive to an increase in f. In the bulk, however, the arms are free to explore all possible 

conformations, and hence they interact with each other more; therefore, 〈R
2

g‖〉0 is expected to 

increase. The ratio of the two therefore decreases initially, until it reaches a local minimum. The 

subsequent increase is due to the onset of interactions between arms on the surface: at first, these 

interactions simply cause a stretching of the arms on the surface, leading to an increase in 〈R
2
g‖〉. 

Figure 1(a) and (d) show snapshots of systems in which the arms are held flat on the surface. 

Eventually, though, the crowding of the arms on the surface becomes too great, and they begin to lift 
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from the surface. This crossover between two-dimensional and three-dimensional structures results in 

the ratio asymptotically approaching unity; the star's core lifts from the surface (see Figure 2) and the 

molecule regains bulk characteristics and shape. 

The bound fraction 〈Φa〉 is defined here as the average fraction of beads within a certain distance 

of the surface. As in our previous work,
[23] 

this distance was determined by inspection of the bead 

probability density profile p(z) (not shown) which shows a primary peak at a distance 

 corresponding to the minimum in Vs(z) [Eq. (7)], and either a local minimum or 

a point of inflexion at z/σ  1.2. The latter distance was taken as a criterion for assessing whether a 

particular bead is bound to the surface or not. 〈Φa〉 is shown as a function of f in Figure 4. At low 

functionalities 〈Φa〉 remains roughly constant at a value dictated by the surface interaction energy; 

in essence, the arms are adsorbed independently on to the surface. The addition of more arms creates 

crowding effects, however, and beyond a certain threshold value of f, some arms lift off the surface, 

leading to a reduction in 〈Φa〉. 

Our results are in conflict with a statement made by Kosmas regarding a “general rule that by 

increasing the compactness of the stars by increasing f while keeping the total molecular weight M 

constant, the number of contacts with the surface and the adsorption will increase.”
[16]

 In other words, 

if fis increased with fN held constant, then 〈Φa〉 should increase. In fact, the opposite trend is seen 

here. For example, for systems with fN = 400 andε
*
s = 1.0 we obtain 〈Φa〉 = 0.62, 0.60, and 0.48 for 

4/100, 8/50, and 16/25 stars, respectively. For systems with fN = 800 and ε
*
s = 0.4 we obtain 〈Φa〉 

= 0.10, 0.07, and 0.03 for 8/100, 16/50, and 32/25 stars, respectively. Kosmas found theoretically that 

ideal star polymers , ring polymers , and comb polymers each have fewer contacts than does an ideal 

linear polymer under conditions where the monomer-surface interaction was of finite strength but 

infinitesimally short range.
[16]

 In a subsequent theoretical study,
[38]

 Stratouras and Kosmas compare 

the adsorption of linear and ring polymers with more realistic monomer-surface interactions and 

confirm the opposite trend established experimentally when the adsorption was “clearly marginal”.
[39]

 

By inference, with more realistic treatments of the effective monomer-monomer and monomer-

surface interactions, the theoretical prediction should be that physisorbed star polymers will also 

possess fewer contacts than linear polymers , as is observed in our simulations. 

The variations of 〈Φa〉 with f shown in Figure 4 appear quite regular, which suggests that it might 

scale with some appropriate combination of f,N, and ε
*
s. In fact, Halperin and Joanny provide 

predictions for this scaling:
[15]

 in the 2D star (strong-adsorption) regime, 〈Φa〉  δ
2/3

; in the 

sombrero regime, 〈Φa〉  Nf
−1
δ

2/3
; and in the colloidal (weak-adsorption) regime 〈Φa〉  

N
2/5

f
−6/5

δ
2/3

. Figure 5 shows 〈Φa〉/(ε
*
s)

2/3
plotted against N/f on log-log scales. The results show that, 
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at high values of N/f, each system is in an apparently strong-adsorption regime where 〈Φa〉 is 

independent of N and f. The scaling with ε
*
s (crudely identified with δ) is not in perfect agreement 

with the theoretical predictions; in particular, the data for ε
*
s = 0.4 scarcely show the predicted 

plateau. At smaller values of N/f, 〈Φa〉 decreases; if the system crosses over from the 2D star 

regime to the sombrero regime, then 〈Φa〉 should be proportional to N/f. Unfortunately, the data are 

not sufficiently detailed to discriminate between the various scaling laws predicted by Halperin and 

Joanny (including the scaling law appropriate to the colloidal regime). In any case, it seems unlikely 

that the cartoon of the sombrero regime provided by Halperin and Joanny is very precise: in their 

work, the core of the star polymer is in contact with the surface as part of an adsorbed disk, and the 

desorbed arms are free to point away from the surface in the form of a hemispherical cap;
[15]

 from the 

simulations, Figure 1(b) and (e) show that the core is more likely to have lifted off from the surface, 

and that the cap is not a perfect hemisphere. 

 

 

Figure 5. Bound fractions 〈Φa〉 divided by (ε
*
s)

2/3
 for isolated adsorbed stars on various surfaces, 

plotted against N/f. 

 

The shape of a physisorbed star allows one to further understand the influence of the surface. For an 

overview concerning star polymers in bulk see ref. 40. One measure, developed by Rudnick et al.,
[41]

 

is the asphericity, A, defined as 
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   (13) 

where Li are the principal components of the squared radius of gyration, and d is the number of the 

principal components (equal to the number of spatial dimensions). The quantity A has an upper bound 

of 1 when it is extended in one dimension (rod-like); the lower bound is 0 for a circular shape in d = 2 

and a spherical shape in d = 3. Figure 6 shows Axyz (three-dimensional asphericity) for a star in the 

bulk and on a surface with different bead-surface energies. It provides information on how much the 

surface has affected a star's shape. In previous studies it was found that in the bulk the asphericity 

drops as  f
−1

,
[40]

 which is in agreement with our own results for the bulk. However, the results for 

stars on the surface show a more complex picture. For this reason, Figure 6 also shows Axy, which is 

the two-dimensional asphericity with the bead positions projected on to the surface. The quantity Axy 

has a weak power-law dependence that scales with  f
−1.4

, which is different from that found in the 

bulk. In addition, Figure 6 shows the asphericity in the xz plane Axz, which provides a clear indication 

of the adsorbed star's flatness. The results show that for high values of ε
*
s and low values of f, Axz has 

values near to 1 meaning that the star lies flat on the surface. Note that the longer the arms are, the 

higher the functionality is required to start regaining its three-dimensional bulk shape. Longer arms 

have more monomer contacts with the surface, and so a higher degree of crowding is required to tip 

the free-energy balance in favour of desorption. Thus one can adjust the strength of the surface 

interaction and the length of the arms of a star to stabilise a high-f star in a (nearly) two-dimensional 

conformation. A more detailed investigation of the transition between two-dimensional and three-

dimensional structures is in progress. 

 

 

 

← Figure 6. Measures of 

asphericity for isolated 

adsorbed and bulk star 

polymers with arm lengths N 

= 25 (left column), N = 50 

(middle column), and N = 100 

(right column) in good-solvent 

conditions: (top row) three-

dimensional asphericity Axyz; 

(middle row) two-dimensional 

asphericityAxy, in the plane of 

the surface; (bottom row) two-

dimensional asphericityAxz, in 

a plane perpendicular to the 

surface. 
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Four different structural regimes have been identified from the results presented above. The linear 

regime corresponds to the case where the arms do not interact significantly with one another, and so 

the star polymer acts like a network of loosely-coupled linear chains. The colloidal regime applies 

when the star resembles a soft colloid. The 2D star and sombrero regimes are intermediate between 

the linear and colloidal regimes: a 2D star extends in the lateral dimensions only, and thus resembles a 

true two-dimensional star polymer ; and in a sombrero structure, the star is strongly anchored to the 

surface by adsorbed arms, but some arms have desorbed. The boundary between the linear and 2D 

star regimes is identified using the first minimum in 〈R
2
g‖〉/〈R

2
g‖〉0 as a function of f, as shown in 

Figure 4. The transition between the 2D star and sombrero regimes occurs at the point where 〈hcore〉

/〈h〉 starts to decrease significantly, signalling the desorption of arms from the surface, as shown in 

Figure 2. Finally, the boundary between the sombrero and colloidal regimes is identified using the 

minimum occurring in 〈hcore〉/〈h〉, beyond which the core lifts off from the surface. The 

boundaries between these regimes can be represented on a ‘phase diagram’; Figure 7 shows an 

example for a bead-surface energy ε
*
s = 1.0. For the purposes of constructing this figure, additional 

simulations of polymers with arm lengths N = 10 and N = 75 were carried out. Increasing f with fixed 

N leads to the sequence linear-2D star-sombrero-colloid, while increasing N at fixed f would lead to 

the reverse sequence. 

 

 

Figure 7. Structural phase diagram for isolated adsorbed star polymers with functionality f, arm 

length N, and bead-surface energy ε
*
s = 1.0, in good-solvent conditions. 
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B. Solvent effects on an isolated star 

This section is focused on the effects of the solvent on the structure of an isolated adsorbed star 

polymer . These were studied by taking final configurations from the simulations performed in good-

solvent conditions (λ = 0) and equilibrating the system with 0 < λ ≤ 1 over times of around 2 × 10
6
δt; 

to allow effective equilibration, λ was increased in steps of 0.1. The final values of λ considered here 

are 0.4, 0.646 (corresponding to θ-solvent conditions
[33]

), and 1. Production runs of 4 × 10
6
δt were 

carried out after equilibration. 

Increasing λ corresponds to increasing bead-bead attractions. The immediate result is that the star 

polymer shrinks in size, as illustrated in Figure 8which shows 〈h〉 and 〈hcore〉. Generally 

speaking, both quantities are reduced by decreasing the solvent quality; the polymer collapses on the 

surface. There is, however, an anomalous increase in 〈hcore〉 between λ = 0.646 and λ = 1 for the 

case of low bead-surface energy ε
*
s = 0.4. This is attributed to the bead-bead interactions dominating 

the bead-surface interactions, leading to the polymer adopting a more spherical conformation and the 

core lifting off again from the surface. This behaviour is precluded by a strong surface energy, such as 

ε
*
s = 1, which serves to anchor the core near the surface. 

 

 

Figure 8. Dimensions of isolated star polymers with arm length N = 50 adsorbed on the surface with 

bead-surface energy ε
*
s = 0.4 (left column) and ε

*
s = 1.0 (right column) in varying solvent conditions 

λ: (top row) average height of the star 〈h〉; (bottom row) average core height 〈hcore〉. 
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Figure 9 shows 〈R
2
g‖〉 and 〈Φa〉. As described above, when the solvent quality is reduced, the 

star polymer shrinks in size. The behaviour of 〈R
2
g‖〉 reflects this shrinking effect for both bead-

surface energies considered (ε
*
s = 0.4 and 1.0). The bound fraction, however, shows some non-trivial 

behaviour. With ε
*
s = 0.4, 〈Φa〉 remains essentially constant for all λ; the shrinking of the polymer 

in the lateral directions could be pictured as a kind of concertina process, where the number of 

contacts with the surface is conserved. With ε
*
s = 1, there is a significant decrease of 〈Φa〉 as λ is 

increased towards 1; stronger monomer-surface interactions hold the polymer arms flatter on the 

surface and with more surface contacts; this increases crowding and makes it more difficult for arms 

to contract without losing surface contacts. 

 

 

Figure 9. Properties of isolated adsorbed star polymers with arm length N = 50 adsorbed on to the 

surface with bead-surface energy ε
*
s = 0.4 (left column) and ε

*
s = 1.0 (right column) in varying solvent 

conditions λ: (top row) the parallel component of the squared radius of gyration 〈R
2

g‖〉; (bottom 

row) the bound fraction 〈Φa〉. 

 

These descriptions are illustrated in Figure 10 by simulation snapshots for f/100 polymers with 

monomer-surface interactions of ε
*
s = 0.4 and 1.0. With ε

*
s = 0.4 the collapsed polymers adopt 

globular conformations, but with ε
*
s = 1.0 the stars are flatter; in addition, the structures become more 

regular with increasing f. 
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Figure 10. Top-view snapshots of f/100 star polymers in bad-solvent conditions, with f = 8 (left 

column), f = 16 (middle column), and f = 32 (right column): (top row) bead-surface energy ε
*
s = 0.4; 

(bottom row) ε
*
s= 1.0. 

 

At this point we make contact with experiment, by comparing the structures shown in Figure 10 with 

those inferred from AFM measurements of dried films.
[21] 

Figure11 (a)-(c) show AFM topography 

images of polybutadiene star polymers adsorbed on mica from toluene solution; the incubation times 

in these experiments were short so that the surface coverages are low, and hence the observed 

structures are essentially those of isolated molecules. (Incubation refers to the time the mica surface is 

held in the polymer solution, prior to rinsing and drying.) The images correspond to three different 

functionalities, (a) f = 18, (b) f = 32, and (c) f = 59. As the functionality is increased, the 

conformations of the star polymers become more regular, corresponding to the approach towards the 

colloidal regime. 

 

 

← Figure 11. AFM topography 

images of polybutadiene star 

polymers with functionality f, 

adsorbed on mica from toluene 

solution with incubation times t: 

(a) f = 18 (t = 5 mins); (b) f = 32 

(t = 10 mins); (c) f = 59 (t = 180 

mins); (d) f = 18 (t = 760 mins); 

(e) f = 32 (t = 1440 mins); (f) f = 

59 (t = 3600 mins). 
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C. Many adsorbed stars in good solvent 

In good-solvent conditions, polymers experience purely repulsive effective mutual interactions. 

Simulations with λ = 0 were initiated by preparing configurations with many polymers on a surface, 

and equilibrating for around 5 × 10
6
δt. The number of molecules is Nb/fN, where Nb = 20 000 is the 

number of beads used in all simulations (excluding the core beads). To avoid finite-size artifacts, only 

relatively small polymers were studied: 2/25, 4/25, 8/25, and 16/25. Following equilibration, 

production runs of 4 × 10
6
δt were performed. During equilibration runs at higher surface 

concentrations, some of the polymers were seen to desorb as the polymer film approached the steady 

state. Adsorption was therefore measured by the steady-state surface bead density, defined in terms of 

the number of beads Nads belonging to those stars with at least one bead-surface contact, identified 

using the distance-based criterion z ≤ 1.2σ. Note that Nads is, in general, greater than the number of 

beads actually bound to the surface. The reduced surface bead density is ρ
*
 = Nadsσ

2
/L

2
. For an isolated 

star, an effective surface bead density is defined by 

    (14) 

where Ag = π〈R
2

g‖〉 is the area covered on the surface by the adsorbed polymer . ρ
*
g can be used to 

define the critical overlap concentration between star polymers . The dilute regime corresponds to 

ρ
*≪ρ

*
g; in this regime the individual stars are almost independent from one another, and their 

structures are essentially those of an isolated star. For ρ
*
 > ρ

*
g, excluded-volume interactions should 

perturb the polymer conformations. In terms of the density parameter 

    (15) 

the critical overlap concentration corresponds to γ = 1. By placing a number of stars on surfaces of 

various dimensions, it was possible to simulate up to the critical overlap concentration. In other 

words, the simulations were performed at surface concentrations (within the film) approaching the 

semidilute regime. 

Figure 12 shows the behaviour of 〈h〉 and 〈hcore〉 with varying surface density. For very small 

surface densities the star polymers are dispersed on the surface, and so we expect identical results 

with those of an isolated star polymer . (Note that γ = 0 corresponds to an isolated star.) Under weak-

adsorption conditions (ε
*
s = 0.4) only small values of γ could be addressed due to desorption. In 

general, increasing the surface density leads to increases in both 〈h〉 and 〈hcore〉; evidently, the 

polymers bunch up as they begin to overlap. The maximum height of the film 〈h〉 is more sensitive 
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to the density γ with stronger surface interactions ε
*
s. This is because the arms are held flatter on the 

surface, leading to more excluded-volume interactions with neighbouring polymers . The core height 

〈hcore〉, however, is less sensitive to density with the stronger monomer-surface interaction; this 

interaction keeps the core more firmly anchored to the surface, outweighing the interactions between 

polymer arms. 

 

 

Figure 12. Dimensions of f/25 star polymers adsorbed on surfaces with bead-surface energy ε
*
s = 0.4 

(left column) and ε
*
s = 1.0 (right column), at various relative surface densities γ: (top row) the average 

height of the star 〈h〉; (bottom row) the average core height 〈hcore〉. 

 

Figure 13 shows the ratio of the parallel and the perpendicular components of the radius of gyration 

〈R
2

g‖〉/〈R
2
g⊥〉, and the bound fraction 〈Φa〉. The results show that under weak-adsorption 

conditions (ε
*
s = 0.4) the polymers bunch up but without significant changes in the bound fraction. 

Under strong-adsorption conditions (ε
*
s = 1), 〈R

2
g‖〉/〈R

2
g⊥〉 is larger for a fixed value of γ, and the 

bound fraction decreases significantly as the density is increased. The latter behaviour arises because 

the arms are held flatter on the surface and with more surface contacts, and hence the arms are less 

able to ‘bunch up’ under the influence of excluded-volume interactions without losing contacts. 
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Figure 13. Properties of f/25 star polymers adsorbed on surfaces with bead-surface energy ε
*
s = 0.4 

(left column) and ε
*
s = 1.0 (right column), at various relative surface densities γ: (top row) the ratio of 

the parallel and perpendicular components of the squared radius of gyration 〈R
2

g‖〉/〈R
2
g⊥〉; 

(bottom row) the bound fraction 〈Φa〉. 

 

D. Many adsorbed stars in bad solvent 

The final step in the experimental polymer -adsorption procedure
[20,21]

 that motivated this work is the 

quench from good-solvent to bad-solvent conditions (corresponding to rinsing with solvent and then 

drying in nitrogen /air). As described for the case of linear chains in ref. 23, this step can be mimicked 

in simulations by starting simulations from well-equilibrated configurations with λ = 0 (good solvent) 

and then instantaneously switching to λ= 1 (bad solvent ). The system was re-equilibrated for 5 × 

10
6
δt, during which time the system was seen to reach an apparent steady state. Experimentally, the 

surface structures formed from this quenching procedure are apparently stable over periods of at least 

months. In our simulations the structures observed are apparently static on the accessible timescales. 

Figure 14 shows equilibrated simulation configurations before (λ = 0) and after (λ = 1) the quench, for 

systems of polymers made up from arms with N = 25 beads, with bead-surface energy ε
*
s = 0.4, with 

different functionalities, and at various surface densities. In good-solvent conditions the polymers are 

in extended conformations, but in bad-solvent conditions they collapse to optimise the attractive bead-

bead interactions. Functionality plays a significant role in determining the degree of clustering 

between the polymers . Even at low densities, low functionalities of f = 2 or 4 lead to clusters 

composed of four or even six polymers , while for f = 16 one has to reach higher values of surface 

coverage (γ  0.75) to observe a cluster composed of three polymers . The interpenetration of 

polymers is dictated by the stiffness of the star polymers before the quench. For low functionalities 



Page 22 of 26 

the star polymers diffuse in the lateral directions and once they collide, they easily interpenetrate with 

one another. The probability of two polymers belonging to a single cluster after the quench is clearly 

enhanced if they interpenetrate before the quench. For higher values of f, the degree of 

interpenetration between polymers is greatly reduced due to the osmotic repulsion between the stars. 

Therefore high-functionality stars, prior to the quench, position themselves in such a way as to 

minimise the degree of overlap with one another. Hence, after the quench the star polymers tend to 

form isolated collapsed globules, or very rarely, small clusters. To observe clustering of high 

functionality star polymers, one has to increase significantly the surface density in order to promote 

overlap. Another important contributing factor is that the mobility decreases with increasing 

functionality. Therefore, the collapse of an isolated star could occur on a timescale shorter than that 

required for two stars to diffuse together, and so there may be a kinetic effect which militates against 

clustering of high-functionality stars. 

 

 

Figure 14. Top-view snapshots of f/25 star polymers (f is the functionality) adsorbed at relative 

surface density γ on the surface with bead-surface energy ε
*
s = 0.4, in good-solvent conditions (top 

row) and in bad-solventconditions (bottom row). From left to right (f, γ) = (2, 0.107), (4, 0.186), (8, 

0.466), and (16, 0.750). 

 

The decrease in clustering with increasing functionality has been studied in experiments, such as those 

conducted by us.
[21]

 To make contact with this work, Figure 11(d)-(f) shows AFM images of 

polybutadiene star polymers with f = 18, 32, and 59, adsorbed on to mica from toluene , and then 

dried. The incubation times are long, meaning that the surface coverages are high enough (although 

still sub-monolayer) for interactions between molecules to be significant. With f = 18, individual 

molecules interpenetrate, fuse together, and cannot be distinguished within clusters , which are 

themselves rather irregular in shape. With f = 32, the distribution of molecular centres is more 

uniform, suggesting an increase in repulsions between the molecules; the apparent overlap of 
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individual molecules should not be interpreted as evidence for clustering, however, because AFM tip -

convolution effects limit the resolution of the topography images. Finally, with f = 59, individual 

molecules can clearly be resolved, and almost no association can be observed. These structures are 

taken in air, which is considered a ‘bad solvent ’. Hence, it is meaningful to compare these 

experimental images with the simulation snapshots in Figure 14. There is excellent accord: the 

simulations successfully reproduce the decrease in clustering with increasing functionality, as 

observed in experiments. 

 

4. Conclusion 

In this work Langevin dynamics simulations of coarse-grained, bead-spring models have been used to 

gain insight on the adsorption of star polymerson to a smooth surface. The study was motivated by 

experimental AFM images of polymers physisorbed from solution on to mica surfaces followed by 

solvent evaporation. The process was mimicked by switching the coarse-grained model interactions 

between those appropriate for good-solvent and bad-solvent conditions. 

Of particular interest was the observation of the crossover from polymer -like to colloidal behaviour. 

For isolated polymers in good-solvent conditions, three parameters were identified as being important 

for controlling the structure of the star on the surface: the functionality, the arm length, and the bead-

surface energy. By exploring this parameter space, four different structural regimes were identified: 

the linear regime at low functionality, where the polymer arms behave essentially independent of one 

another; the 2D star regime, where the polymer behaves like a true two-dimensional molecule; the 

sombrero regime, characterized by a strong adsorbed disk with a central cap (as predicted by 

theory
[15]

); and the colloidal regime, where the polymer adopts a roughly (hemi)spherical 

conformation. These regimes were mapped onto a phase diagram; in this work, the functionality-arm 

length plane was selected, at constant bead-surface energy. 

The simulation methodology allows the solvent quality to be tuned with a single parameter, thus 

gaining valuable insights on the conformational changes likely to be induced by solvent . The collapse 

of isolated stars on a surface with decreasing solvent quality was considered, and then the quench of a 

many-polymer system from good-solvent conditions to bad-solvent conditions was examined. The 

observed structures are in good qualitative agreement with those observed in AFM experiments, and 

can be rationalized in terms of the probable interpenetration between polymers before the quench. 
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