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Synopsis: 

A six coordinate, mononuclear dialkyl tin complex of the octadentate macrocycle H4L has been prepared and 

adopts a Pacman structure in solution that desymmetrizes the two alkyl groups. Incorporation of Fe or Zn 

cations into the vacant N4-donor pocket is straightforward and results in heterobimetallic complexes in which 

the solid state structures display significant distortion when compared to homobimetallic analogues. 
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Abstract 

The synthesis of a dialkyltin complex [SnMe2(H2L)] of an octadentate Schiff-base pyrrole macrocycle is 

described in which the gross Pacman geometry enforces structural discrimination between the two methyl 

groups. The presence of the metal-free compartment engenders the formation of mixed-metal Sn-Fe and Sn-

Zn complexes in which the macrocyclic cleft has distorted considerably upon the introduction of the transition 

metal cation. 

 

Main text 

The well-defined metal cation microenvironments found within cavitates, metal-based capsules, and deep-

cavity complexes encourage chemical reactivity very different to the bulk medium. For example, the 

encapsulation of organometallic complexes within tetrahedral coordination cages has been shown to affect the 

rates and selectivities of C-H activation and hydroformylation reactions,
1
 while copper complexes of podand-

calixarenes with deep cavities display unusual reactivity towards O2.
2
 Similarly, the use of very bulky 

terphenyl substituents enables the catalytic formation of NH3 from N2 in Mo ‘tren’ chemistry, reactivity that 

was not seen when using less bulky substituents.
3
 

We have shown recently that remarkable reactivity of the oxo-groups of the uranyl dication [UO2]
2+ 

is 

promoted within the unique molecular microenvironment provided by a Schiff-base pyrrole macrocyclic 

Pacman framework.
4, 5

 Complexation of [UO2]
2+

 by the macrocycle H4L (Scheme 1) desymmetrizes the linear 

O=U=O motif and allows selective manipulation of the oxo-group within the macrocyclic cleft to promote the 

selective reductive silylation of uranyl.
6
 This similarity between actinyl and transition metal oxo chemistry has 

prompted us to evaluate synthetic approaches to new monometallic Pacman complexes of H4L; furthermore, 

organometallic chemistry based on this ligand architecture is relatively unexplored.
7
 In this contribution we 

describe the synthesis of the mononuclear Sn
IV

 complex [SnMe2(H2L)], a rare example of a stable, six 

coordinate, dialkyl Sn cation supported by an N4-donor set, and its reactions with Fe and Zn cations to form 

the mixed metal complexes [SnMe2M(THF)(L)] (M = Fe, Zn). 

The dehydrohalogenation reaction between the neutral macrocycle H4L and SnMe2Cl2 in the presence of 

DABCO results in the rapid and clean formation of the mononuclear tin dialkyl complex [SnMe2(H2L)] as a 

yellow powder in good yield (Scheme 1). As with the uranyl chemistry of H4L, it appears that the presence of 

a trans-ligand arrangement limits the formation of dinuclear complexes, presumably due to a steric clash of 

axial ligands within the macrocyclic cleft.
4
 This reaction appears limited to the use of SnMe precursors, as 

reactions using other tin alkyls such as SnR2Cl2 (R = Ph, Bu
n
) leads to mixtures of complexes that have yet to 

be identified. While we have been unable to grow crystals of [SnMe2(H2L)] suitable for X-ray structural 

analysis, the structure in solution can be identified using 
1
H and 

13
C NMR spectroscopy.  
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Scheme 1. Formation of SnMe2 complexes of the Schiff-base calixpyrrole H4L. Reagents and conditions: (i) 

SnMe2Cl2, DABCO, PhMe, 73%; (ii) [M(THF)n{N(SiMe3)2}2], THF, M = Zn, n = 0, 80 %; M = Fe, n = 1, 

48% 

 

The 
1
H NMR spectrum of [SnMe2(H2L)] (Figure 1) is characteristic of a folded, Pacman geometry in solution. 

In particular, resonances due to one metallated and one vacant N4-donor compartment are seen, with two 

resonances at 8.00 and 7.87 ppm for the imine protons, a pyrrole N-H resonance at 9.29 ppm, and 

furthermore, four resonances for each of the CH2 and CH3 protons of the endo- and exo-meso-ethyl 

substituents. The Sn-CH3 groups are clearly in very different chemical environments, resonating at 1.28 and 

0.55 ppm, and the averaged magnitude of the 
2
JSnH coupling constants (100.5 Hz) suggests a trans-

configuration with a C-Sn-C angle of 163.4
o
,
 
calculated using Lockhart and Manders’ empirical correlation;

8
 

in NOE experiments, the resonance at 0.55 ppm shows no enhancement to other ligand resonances and is 

therefore identified as the CH3 group that resides within the macrocyclic cleft. 

 

 

Figure 1. 
1
H NMR spectrum of [SnMe2(H2L)] in C6D6 displaying the aliphatic region. 
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As in the case of the uranyl complex [UO2(THF)(H2L)],
4
 the presence of the vacant N4-donor compartment in 

[SnMe2(H2L)] facilitates the incorporation of a second metal cation to form heterobimetallic complexes. As 

such, the transamination reactions between [SnMe2(H2L)] and the low co-ordinate metal silylamides 

[M(THF)n{N(SiMe3)2}2] (M = Fe, n = 1; M = Zn, n = 0) result in the ready isolation of the mixed metal 

complexes [SnMe2M(THF)(L)] in good yield (Scheme 1). While the 
1
H NMR spectrum of the iron complex 

[SnMe2Fe(THF)(L)] shows paramagnetically-shifted and broadened resonances between 102 and -12 ppm, it 

is clear from the number of resonances and their integral values that a Pacman structure is retained on addition 

of the second metal. This conclusion is reinforced by the 
1
H NMR spectrum of the zinc analogue 

[SnMe2Zn(THF)(L)], which clearly displays resonances for two distinct N4-donor compartments and four 

pairs of resonances for endo- and exo-meso-ethyl groups that are expected for a Pacman geometry. As with 

[SnMe2(H2L)], the Sn-CH3 groups are in separate environments, in this case at 1.13 and 0.06 ppm, with the 

latter resonance associated with the endo-CH3 group protons by NOE experiments and, as such, becoming 

shielded by the transition metal cation. Furthermore, analysis of the 
2
JSnH coupling constants suggests that a 

compression of the C-Sn-C angle has occurred from 163.4 in [SnMe2(H2L)] to 150.5
o
 in [SnMe2Zn(THF)(L)]. 

Crystals of both [SnMe2Fe(THF)(L)] and [SnMe2Zn(THF)(L)] were grown that were suitable for X-ray 

diffraction and their solid state structures determined. Due to the similarity of these two structures and the 

ability to correlate these data to the solution structure, only that of the SnZn complex is described here (Figure 

2, see SI Fig. S1 for the SnFe complex). In this complex, the trans-SnMe2 fragment is six co-ordinate and 

bound in one N4-donor pocket in a distorted octahedral geometry, while the Zn cation is located in the 

opposing compartment and adopts a five co-ordinate square pyramidal geometry due to axial co-ordination of 

a molecule of THF, exogenous to the molecular cleft. X-ray structural data for six co-ordinate dialkyltin 

complexes of nitrogen based ligands are rare,
9, 10

 with only a few structures of dialkyltin porphyrins known, 

none of which contain simple alkyl ligands such as ethyl or methyl.
10

 There are also only a handful of 

structures based on related salen-type ligands, although six co-ordinate SnMe2 complexes have been 

described.
11

 While the Sn1-N1 bond distance at 2.153(2) Å is similar to Sn-N(pyrrole) bond distances seen in 

Sn
IV 

porphyrins (ca. 2.1 Å), the Sn1-N2 bond (2.534(2) Å) is appreciably longer than the Sn-N(imine) bond 

distances seen in Sn
IV

 salen complexes (2.25 – 2.29 Å), and is likely due to a combination of the more acute 

C100-Sn1-C200 angle (150.06(16)
o
) and the ability of the aryl hinge groups to splay away from each other; 

this feature is similar to that seen by us in the uranyl complexes [UO2(THF)(H2L)] in which the THF adopts 

an equatorial position in-between the aryl hinge groups.
4
 Significantly, the C100-Sn1-C200 angle is 

commensurate with that calculated from the averaged 
2
JSnH

 
coupling constants for [SnMe2Zn(THF)(L)] in 

solution (150.5
o
). 
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Figure 2. The solid state structure of [SnMe2Zn(THF)(L)]. For clarity, all hydrogen atoms are omitted (50% 

probability displacement ellipsoids, symmetry related atoms generated using the operators x, -y+1/2, z and x, -

y+1, -z+3/2) 

 

In order to accommodate the two metals and the endogenous methyl group, the gross macrocyclic structure 

has distorted significantly from that seen in the homobimetallic complexes [M2(L)] (M = transition metal),
12

 

with the ‘bite’ angle (72.3 
o
) considerably more obtuse (usual range 45-62 

o
) and the M···M separation (4.56 

Å) elongated (range 3.15 – 4.12 Å). Furthermore, the SnN4 donor plane has folded away from the cleft at the 

N2/N2’ hinge nitrogen atoms by 19.8
o
. The resulting steric clash between the exo-Sn-Me group and the aryl 

hinge groups between the two donor compartments, coupled with compression of the C-Sn-C angle has 

caused the aryl hinge groups to move away from co-planarity and adopt a V-shaped conformation with a 

dihedral angle of 43.4 
o
. The zinc cation sits exogenous to the N4-donors by 0.43 Å which causes the imine-

pyrrole chelates to fold about the meso-carbon by 38.2
o
 (cf. 15.4 

o
 for the Sn compartment). 

We have shown that a stable mononuclear dialkyl Sn
IV

 complex of L can be prepared and that the Pacman 

molecular cleft arrangement causes the desymmetrization of the two Sn-methyl environments. Moreover, this 

complex can be functionalized further by incorporation of transition metals into the lower vacant coordination 

pocket. The influence of the introduction of the second metal on the reactivity of the SnMe2 moiety is being 

studied. 
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