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a b s t r a c t

Influenza A virus vRNA segments contain specific packaging signals at their termini that overlap the coding
regions. To further characterise segment 5 packaging signals, we introduced synonymous mutations into
eceived in revised form 12 May 2009
ccepted 21 May 2009

eywords:
nfluenza

the terminal coding regions of the vRNA and characterised the replicative fitness of the resulting viruses.
Most mutations tested were well-tolerated, but a virus with alterations to NP codons 464-466, near
the 5′-end of the vRNA, produced small plaques and replicated to around one-tenth of the level of wild
type virus. The mutant virus supported normal levels of NP and segment 5 vRNA synthesis but packaged
reduced levels of both segment 5 and segment 3 into virus particles. This suggests an interaction between

influe
ackaging signal
ucleoprotein

segments 3 and 5 during

. Introduction

The negative-sense RNA of the influenza A virus genome is
ivided into eight segments, which are packaged into new viri-
ns as they assemble at the plasma membrane of infected cells.
s influenza virions do not typically package more than eight seg-
ents in total [1–5], packaging a random selection of segments
ould result in an extremely small proportion of new virions having

he full complement of genes required to initiate further infec-
ions [3]. As a result, the virus has evolved a mechanism to help
nsure each of its eight segments is selectively packaged [6,7]. This
elective packaging mechanism utilises cis-acting RNA packaging
ignals in each of the eight segments, the location of which has
een inferred from the structure of defective interfering (DI) RNAs
6,8], the packaging of recombinant virion RNA (vRNA) molecules
7,9–13] and the conservation of primary nucleotide sequences
14–16]. Additionally, reverse genetics has been used to introduce
oint mutations into segments 1–4, 7 and 8, identifying nucleotides
hat contribute to cis-acting RNA signals, including those required

or efficient genome packaging [9,10,13–18].

Despite the identification of packaging signals in each of the
ight segments of the genome, their mechanism of function
emains obscure. A favoured hypothesis is that each segment inter-

∗ Corresponding author. Tel.: +44 1223 336920; fax: +44 1223 336926.
E-mail address: pd1@mole.bio.cam.ac.uk (P. Digard).

1 Current address: Sir William Dunn School of Pathology, University of Oxford,
outh Parks Road, Oxford OX1 3RE, United Kingdom.
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nza A virus assembly.
© 2009 Elsevier Ltd. All rights reserved.

acts with a particular set of neighbouring segments, most likely
through RNA–RNA interactions, to assemble a specific ‘genome
complex’ containing all eight segments [7,19]. This is consistent
with ultrastructural studies showing a complex of eight parallel
and closely aligned segments at the point of viral assembly and
within virions [1,4,5], as well as with studies in which mutational
disruption of the packaging of particular segments affected the
incorporation of various other segments in trans [10,15,16,18,20].
However, this hypothesis predicts a specific array of vRNAs within
the virion and the order of segments in this putative genome
complex is currently unknown. This uncertainty, along with the
complex tertiary structure adopted by each vRNA when it is folded
and encapsidated to form a ribonucleoprotein complex (RNP),
has made the identification or prediction of specific interactions
between the segments difficult [14,21]. One way to address this
problem is to use viral reverse genetics in order to identify trans-
interacting sequences on the various segments.

We have previously used a bioinformatics approach to identify
regions of the eight vRNA coding regions under selection pressure
for primary RNA sequence as well as their coding capacity [14].
Regions of low synonymous codon variation correspond to the loca-
tion of cis-acting RNA sequences and have been successfully used
to guide the mutation of packaging signals in segments 1, 6 and
7 [14,16,18]. In this paper, we extend this approach to segment 5

of influenza A virus. We found that segment 5 packaging signals
were less sensitive to mutational disruption than those of segment
7. However, one cluster of mutations (in codons F464-L466) signif-
icantly affected virus fitness by disrupting packaging of segment 5
and, interestingly, also segment 3.

http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine
mailto:pd1@mole.bio.cam.ac.uk
dx.doi.org/10.1016/j.vaccine.2009.05.053
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at the nucleotide level.
Accordingly, guided by our previous bioinformatics analysis

[14], clusters of three adjacent, highly conserved codons were
identified in the terminal coding regions of segment 5 and the

Fig. 1. Mutation of putative cis-acting signals in segment 5. (A) Scale diagram of seg-
ment 5 vRNA, showing non-coding regions in grey, and the coding region in white.
Areas of the coding region defined as the minimal regions required for efficient pack-
aging of a reporter construct are shown in green [12] while additional coding regions
present in the shortest reported DI RNA are shown in blue [29]. Pointed arrows indi-
cate mutations introduced to conserved codons and round-headed arrows indicate
mutations in non-conserved codons. (B) Details of mutations. For each altered codon
E.C. Hutchinson et al. / V

. Materials and methods

.1. Cells, virus, plasmids and antisera

Human embryonic kidney 293T cells and Madin-Darby canine
idney (MDCK) cells were cultured as described previously [22].
nfluenza A/PR/8/34 (PR8) virus was generated using an eight-
lasmid reverse genetics system kindly donated by Professor R.
ouchier [23]. Site-directed mutagenesis of the reverse genetics
lasmids was carried out using mismatched PCR primers and native
FU polymerase (Stratagene). Plasmids were sequenced using a
ombination of terminal primers and (where necessary) internal
rimers by the University of Cambridge Department of Biochem-

stry sequencing facility. Primers and PCR conditions are available
n request. Plasmids pCDNA-PB2, pCDNA-PB1, and pCDNA-PA have
een described previously [24]. Plasmid pHumanPolI-ffLuc was a
ind gift of Dr L. Tiley [25]. Rabbit anti-NP and anti-M1 sera have
een described previously [26,27]. Secondary antibodies were pur-
hased from Molecular Probes or LiCor Biosciences (fluorescent
onjugates) or DAKO (horseradish-peroxidase conjugates).

.2. Reverse genetics and virus titrations

Recombinant viruses were produced by transfection of 293T
ells with the reverse genetics plasmids, and working stocks pro-
uced by subsequent infection of MDCK cells for 48 h, as described
reviously [18]. Additional stocks were produced by infecting eight-
ay-old embryonated chicken eggs for 48 h [18]. Segment 5 from all
tocks of virus was sequenced to confirm the presence of the desired
utations. RNA was extracted from infected cells using the SV

otal RNA isolation system (Promega) or from virus stock using Tri
eagent LS (Sigma), reverse transcribed using avian myeloblastosis
irus reverse transcriptase (Promega) and a terminal vRNA-binding
rimer, and amplified by PCR using terminal primers and Illustra
aq DNA polymerase (GE Healthcare). Primers and reaction condi-
ions are available on request. Plaque assays were carried out on
onfluent MDCK cells; plaque assays and plaque size analysis were
erformed as described in [18].

.3. Protein and RNA analyses

Infected cell lysates were analysed by SDS-PAGE and west-
rn blotting according to standard procedures. Blots were imaged
y chemiluminescence using horseradish-peroxidase conjugated
econdary antibodies and X-ray film, or by fluorescence using
RDye 800 conjugated secondary antibodies on a Li-Cor Biosciences
dyssey near-infrared imaging platform. To examine the protein
ontent of virus particles, virus stocks were cleared of debris
y low-speed centrifugation and then pelleted through a cush-

on of 33% sucrose in PBS at 91,000 × g for 45 min at 4 ◦C, as
escribed elsewhere [18]; pellets were resuspended in 20 �l SDS-
AGE sample buffer. Reverse transcription to detect segment 5
r 7 vRNA in 500 ng of total RNA extracted from infected cells
h p.i. was carried out using avian myeloblastosis virus reverse

ranscriptase (Promega) and a terminal vRNA-binding primer (5′-
GC GAA AGC AGG AGT TTA AAA TG). Aliquots of these reactions
ere used in 25 cycles of PCR with Illustra Taq DNA polymerase

GE Healthcare) and terminal vRNA- and cRNA-binding primers
as above, and 5′- AGT AGA AAC AAG GAG TTT TTT GAA CAG,
espectively); reaction conditions are available on request. The
otal vRNA content of virus particles was analysed by 6% urea-

AGE and silver staining as previously described [18]. Densitometry
as carried out using the program ImageJ [28]. Quantitative RT-

CR was performed essentially as previously described [18] using
he SuperScript III Platinum one-step qRT-PCR system (Invitrogen)
nd a Rotor-Gene 3000 real-time thermal cycler (Corbett Research
27 (2009) 6270–6275 6271

Limited), using protocols based on UK National Standard method
VSOP 25 (www.hpa-standardmethods.org.uk). Reaction conditions,
primers, and TaqMan probe sequences are available upon request.

2.4. RNP reconstitution assay

1 × 106 293 T cells per 35 mm well were transfected in sus-
pension using Lipofectin (Invitrogen). To reconstitute RNPs, 250 ng
each of pCDNA-PB2, pCDNA-PB1, and pCDNA-PA were transfected
along with 250 ng of an NP-expressing reverse genetics plasmid
and 100 ng of pHumanPolI-ffLuc. Following incubation at 37 ◦C for
48 h, cells were lysed and luciferase levels determined with an
AutoLumat LB953 luminometer (EG&G Berthold), using 0.6 mM
beetle luciferin (Promega).

3. Results

3.1. Mutation of conserved codons in the terminal regions of
segment 5

Previously, we showed that the introduction of synonymous
mutations into normally highly conserved codons in the terminal
regions of segments 1, 6 and 7 caused defects in vRNA incorporation
into virus particles, consistent with the presence of cis-acting pack-
aging signals [14,18]. Here, we applied the same techniques to study
cis-acting RNA signals in segment 5 of the virus. The structure of a
DI RNA derived from segment 5 [29], our previous bioinformatics
analysis [14], as well as the minimal segment 5-derived sequences
required to package a reporter gene [12] indicated that, similarly to
the other segments of the influenza A genome, the terminal regions
of segment 5 vRNA contained packaging signals (Fig. 1A). However,
to the best of our knowledge, the structure/function of these pack-
aging signals had not been previously investigated experimentally
the mutant (mut) and wild type (WT) nucleotide sequences are shown in coding
sense, with mutations indicated by lowercase bold letters. Also shown is the mean
pairwise distance (MPD) score of each codon, scaled from 0 (absolutely conserved)
to 1 (no conservation beyond that expected from amino acid constraint) [14](For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of the article.).

http://www.hpa-standardmethods.org.uk/
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Fig. 2. Growth characteristics of segment 5 mutant viruses. (A) Growth characteristics of WT and mutant viruses. MDCK cells or embryonated eggs were infected at low
multiplicity and virus titres at 48 h p.i. determined by plaque assay in MDCK cells. Values are plotted relative to the titre achieved by the WT virus in each experiment. The
mean + half-range of two isolates are shown for egg-grown viruses while the mean + SEM of between 2 and 9 isolations are plotted for MDCK-grown viruses. (B) Representative
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mages of plaques formed by MDCK-grown viruses. Log10 of the concentration of v
gg-grown stocks were quantified and normalised with respect to the mean area of
easured for each virus; mean + SEM values are shown.

aximum number of synonymous mutations (3–5 per mutant)
ntroduced into a reverse genetics cDNA clone of the PR8 segment
Fig. 1B). Additionally, we noted that codons are found through-
ut the influenza genome which, though variable, have only been
ecorded as utilising a subset of possible nucleotide sequences (sup-
lementary data of [14]). We identified two clusters of codons

n which the third ‘wobble’ base of non-conserved codons was
trongly biased towards usage of either purines (G30) or pyrim-
dines (S28, V29, P477 and S478). To test whether this reflected a
unctional role, we introduced synonymous mutations that violated
his bias (Fig. 1B). WT and mutant viruses were rescued by transfec-
ion of plasmids encoding all eight segments of the viral genome
nto 293 T cells. Independent rescues were carried out between
wo and nine times, depending on the virus. The growth parame-
ers of the mutant viruses in MDCK cells were then characterised.
espite carrying mutations not normally observed in segment 5,

he majority of viruses grew almost as well as the WT virus, reach-
ng average titres of more than 1 × 108 PFU/ml (Fig. 2A). However,
he virus F464-L466 produced on average, titres that were more
han 5-fold lower than the WT virus (Fig. 2A). To measure growth
roperties in a more physiological system, aliquots of MDCK cell-
rown viruses were used to inoculate embryonated chicken eggs.

n this system, most viruses also yielded similar plaque titres to

T, with an overall average titre of 1.8 × 109 PFU/ml. However, the
464-L466 virus again showed a replication defect, producing titres
hat were more than 10-fold lower than those of WT virus (Fig. 2A).
t was also noticeable that the plaques formed by the F464-L466
tock used is shown above each well. (C) Plaque areas of viruses from MDCK- and
irus prepared under the same conditions. Between 139 and 287 plaque areas were

virus in MDCK cells were generally smaller than those of the WT
virus or the other mutant viruses (Fig. 2B and data not shown). In
confirmation of this, when plaque areas of the viruses (whether
MDCK-grown or egg-grown) were measured, most viruses pro-
duced plaques with an average area similar to WT, but plaques from
the F464-L466 virus were less than half the area of the wild type
virus (Fig. 2C). Overall therefore, most of the synonymous mutations
chosen to probe the function of the segment 5 packaging signals had
only minor (less than 2-fold) effects on virus replication. However,
a virus with mutations in NP codons F464-L466 showed a more
substantial reduction in growth properties.

3.2. Effects of synonymous mutations on viral macromolecular
synthesis

Segment 5 encodes NP, a multifunctional protein with important
roles in viral RNA synthesis and virion assembly [21,30]. Synony-
mous mutations are unlikely to affect protein function, but to
test whether the NP proteins encoded by the mutated segments
were still active in viral gene expression, their function was tested
in RNP reconstitution assays. Cells were transfected with plas-
mids that expressed a synthetic vRNA containing (in antisense)

a luciferase reporter gene, the WT viral polymerase proteins and
plasmids encoding either WT or mutant NP genes. The resulting
luciferase expression was then quantified as a measure of the abil-
ity of the various NP mutants to support viral gene expression.
All segment 5 clones, whether WT or mutant, produced NP that
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Fig. 3. Effect of mutations on viral macromolecular synthesis. (A) Ability of NP encoded by the mutant segments to promote viral gene expression. RNPs containing a synthetic
vRNA encoding luciferase were reconstituted in 293T cells by transfection, with NP provided by the reverse genetics plasmids used to generate the mutant viruses (−NP; NP
omitted as a negative control). Luciferase activity in cell lysates was determined 48 h post-transfection. Data are the mean + half-range of two experiments except for R19-L21
(a single experiment) and P477-S478 and S486-F488 (mean + half-range of three experiments). (B) NP and M1 expression in infected cells. MDCK cells were infected at an MOI
of 1 and at 18 h p.i., cell lysates analysed by SDS-PAGE and western blotting. The migration of NP, M1 and molecular mass standards (kDa) are indicated. (C) vRNA accumulation
i . 500 n
i R prod
s les. Vi
v rn blo

p
f
w
a
p
i
t
p
t
f
c
(
R
q
w
w
t
o
f
s
d
s
v

n infected cells. MDCK cells were infected at an MOI of 3 and RNA isolated at 8 h p.i
ndicated) used as PCR templates for amplification of full-length segment 5 or 7. PC
ize markers (kb) are indicated. (D) NP and M1 content of egg-grown virus partic
irus), were pelleted through a sucrose pad before analysis by SDS-PAGE and weste

romoted viral transcription to similar levels, approximately 1000-
old higher than a negative control lacking NP (Fig. 3A). Similarly,

hen viral gene expression was examined in infected MDCK cells,
ll viruses produced comparable amounts of both NP and the matrix
rotein M1 (Fig. 3B). Next, we examined vRNA accumulation in

nfected cells, as several previous studies have found that muta-
ions in the terminal regions of the segments outside of the core
romoter sequences can affect vRNA expression [14,18,31,32]. To
his end, RNA isolated from infected cells was analysed by RT-PCR
or vRNA from segments 5 and 7. However, similar amounts of
DNA product were produced for both segments from all viruses
Fig. 3C). Seeding of the PCR reactions with 10-fold dilutions of the
T products confirmed that the assay was working in the semi-
uantitative range (e.g. compare lanes 1 and 2), while no products
ere detected in reactions in which either the RT or the RT primer
as left out (data not shown), confirming the strand specificity of

he RT-PCR as well as the lack of any signal from potential carry-
ver of the reverse genetics plasmids. Similar results were obtained

rom a replicate experiment using independently isolated virus
tocks (data not shown). Thus, the synonymous mutations intro-
uced into segment 5 do not appear to affect viral macromolecular
ynthesis, even in the case of the poorly replicating F464-L466
irus.
g of total RNA was reverse transcribed and fixed volumes of the resulting cDNA (as
ucts were analysed by agarose gel electrophoresis and ethidium staining. Selected

rions from equal volumes of allantoic fluid (corresponding to 3.9 × 108 PFU of WT
tting.

3.3. Characterisation of a segment 5 packaging defect

Next, we investigated whether the replication defect of the
F464-L466 virus resulted from impaired genome packaging. Previ-
ously, we found that mutation of the segment 7 packaging signals
lead to lower overall incorporation of NP/RNPs into virus particles
when the mutant viruses were grown in eggs [18]. However, when
the NP and M1 content of the segment 5 mutant viruses was exam-
ined by western blotting of virions pelleted through a sucrose pad,
comparable amounts of protein were found in all viruses, including
F464-L466 (Fig. 3D).

Although the presence of approximately equal levels of NP in
the virions suggested that the mutations did not alter overall lev-
els of genome packaging, it remained possible that the packaging
of specific segments was affected. To investigate this, vRNA was
extracted from equal quantities of virus (according to plaque titre)
and analysed by urea-PAGE and silver staining. RNA species of sizes
expected for the eight segments were clearly observed in samples

from both mutant and WT viruses, with no staining detectable in a
sample of mock-infected allantoic fluid prepared in the same man-
ner (Fig. 4A; note that under these conditions segments 1 and 2
co-migrate). Overall, the mutant viruses packaged similar amounts
of vRNA to WT, in agreement with the levels of NP incorporation.
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Fig. 4. Effect of mutations on vRNA packaging. (A) vRNA was extracted from equal titres of virus (corresponding to 1.4 × 108 PFU/lane) and analysed by urea-PAGE and silver
staining. Segment numbers are indicated. Asterisks highlight under-represented vRNA species in F464-L466 virus. (B) Densitometry traces of selected lanes from (A), with
reduced peaks indicated by asterisks. The segments corresponding to each peak are given beneath the traces. (C) Densitometric quantification of virion RNA content. Three
separate preparations of vRNA from two independently rescued virus stocks were analysed as in (A) and (B). For every mutant the area of each peak was expressed relative to
t hen no
r virus
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he total peak area for that virus (to account for small errors in input PFU) and was t
educed segments 3 and 5. (D) Relative incorporation of specific segments into the
as determined by qRT-PCR and normalised with respect to WT virus for each seg
easurements of two independent stocks of virus).

owever, close inspection of the gel suggested there were reduced
mounts of segments 3 and 5 in the F464-L466 virus compared to

T (Fig. 4A, lane 5, highlighted by asterisks). Densitometric analy-
is of the gel confirmed this observation, as samples from WT and
ll mutant viruses other than F464-L466 produced traces in which
he peaks corresponding to segment 5 were distinctly higher than
he flanking segments 4 and 6, while segment 3 formed a sub-
idiary peak only slightly lower than the co-migrating segments
and 2 (Fig. 4B and data not shown). In contrast, the peak heights

f segments 3 and 5 in the trace from virus F464-L466 were notice-
bly lower. When the areas under each peak were calculated from
hree replicate analyses, segments 3 and 5 were consistently around
-fold lower in F464-L466 compared to WT (Fig. 4C), while seg-
ents in the other viruses were similar to WT. This suggested that

464-L466 did indeed possess a specific packaging defect.
To further examine vRNA packaging in the mutant viruses, the

elative amounts of segments 3, 5 and 7 incorporated into the
iruses was measured by qRT-PCR. In most viruses the ratios of
hese segments to each other were similar to those of WT, fluctu-

ting around 1:1 values (Fig. 4D). However, the ratios of segment 7
whose packaging did not appear by silver stain to be reduced) to
egments 3 and 5 in virus F464-L466 were increased by around 3-
old (Fig. 4 D), consistent with the under-representation of the latter
wo segments seen by direct PAGE analysis of the vRNAs (Fig. 4C).
rmalised to segment 7. Mean + SEM values are plotted with asterisks indicating the
population. The copy number of segments 3, 5 and 7 from equal PFU of the viruses
. The ratios of the indicated pairs of segments are plotted (mean + half-range from

The ratio of segments 3 to 5 was not affected in this virus (Fig. 4D),
suggesting that incorporation of both segments into F464-L466
virions was reduced to an approximately equal extent. Thus, the
introduction of synonymous mutations into NP codons F464-L466
results in a specific packaging defect affecting the incorporation of
segments 3 and 5.

4. Discussion

By using a prior bioinformatics analysis of codon variation in
influenza A virus [14] we set out to better define the packaging
signals in segment 5 of influenza A virus. We targeted codons with
low variability or whose variability appeared to be constrained to
either purine or pyrimidine usage for mutational analysis. The max-
imum number of novel synonymous mutations were introduced in
clusters of 2 or 3 adjacent codons, without substantially increasing
the usage of codons that were rare in the genomes of influenza
A [14], dogs or chickens (http://www.kazusa.or.jp/codon/), or
of codon pairs that are uncommon in the human genome [33].

All mutations lay in regions retained by a segment 5-derived DI
RNA [29] and all except S28-G30 lay within the minimal flanking
regions required for efficient packaging of a reporter gene [12].
None of the mutations characterised here appeared to significantly
affect the function of the segment 5 gene product, NP, or viral

http://www.kazusa.or.jp/codon/
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acromolecular synthesis in general. When NP transcriptional
unction was tested, the mutants showed activities within 1.5-fold
f the WT protein (Fig. 3A) and when accumulation of NP was
easured, again, no more than a 1.5-fold deviation from the WT

alue was seen (data not shown). Indeed, most of the mutations
ad little overall effect on virus growth, with 5 of the 6 mutant
iruses replicating to very similar levels as the WT virus and
nly one virus (F464-L466) showing a relatively modest fitness
ecrease of around 10-fold. This contrasts with the outcome when
e applied a very similar strategy to segment 7, where all viruses
ith lesions in conserved regions of the packaging signals showed

rowth defects of between 10 and 1000-fold relative to WT virus
18]. One possibility is that the mutations chosen in this study
ere simply ‘unlucky’ and did not target crucial residues, or a

ufficient number of residues, to prevent function of the packaging
ignal. This is consistent with the recent work showing that the
ackaging signals of segments 7 and 8 can accommodate a diverse
ange of mutations without major effects on packaging [13,17], and
ith a study in which a group of mutations in the terminal regions

f segment 3 that could not be rescued together caused minimal
efects when mutated as two separate groups [16]. An alternative
ossibility is that the segment 5 packaging signals are simply more
olerant of mutation than those in segment 7, perhaps because the
atter segment plays a more important role in directing the incor-
oration of other segments [18]. A better understanding of how
ackaging signals function is required to distinguish between these
ypotheses.

Nevertheless, one of the mutants in this study, F464-L466, did
isplay a phenotype consistent with a segment-specific packag-

ng defect. While we cannot categorically rule out defects in the
ntracellular stages of its life cycle, the most obvious defects were
een in the vRNA content of released particles. As well as show-
ng a 2–3-fold deficiency in packaging of the mutated segment 5,
464-L466 also showed a comparable reduction in packaging of
he WT segment 3 (Fig. 4C and D). This further suggests that dur-
ng virion assembly, segment 5 interacts, directly or indirectly, with
egment 3. It is interesting to note a similar reduction in the pack-
ging of segment 5 has been reported following the introduction of
etween 6 and 14 synonymous point mutations in the 5′-end of seg-
ent 3 vRNA [16]. Further work is required to investigate whether

his indicates a reciprocal interaction between these sites during
ackaging, but inter-segment interactions of this sort are predicted
y the current model of packaging involving the assembly of a

genome complex’ stabilised by RNA–RNA interactions between the
ight vRNAs. Thus although the packaging mechanism of influenza
virus remains unclear, further characterisation of the RNA signals

t the nucleotide level may begin to provide clues to its mode of
ction.
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