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LECTURES ON GAS FLOW IN POROUS MEDIA

LUIS A. CAFFARELLI AND ARAM L. KARAKHANYAN

The idea behind these lectures is to present in a relatively simple setting, that of solutions to

porous media in one space dimension, several of the main ideas and the main techniques that are

at the center of the regularity theory for nonlinear evolution equations and phase transitions.

These include exploiting the invariances of the equation to obtain infinitesimal relations and

geometric control of the solutions, the role of particular solutions to guide us in our theory

and provide us with barriers and asymptotic profiles, the idea of viscosity solutions to a free

boundary problem to deduce the geometric properties of the free boundary and the methods of

blowing up solutions and classifying the global profiles to obtain the differentiability properties

of a free boundary.

1. Introduction

The traditional way of modeling phenomena in continuum mechanics is through the descrip-

tion of conservation laws (of mass, energy, etc.) and constitutive relations among the different

unknowns, due to the properties of the media or material at hand.

Conservation laws are many times introduced as additive set functions and it is a consequence

of the fact that their validity in a very small set implies by superposition their validity in the

large, that conservation laws end up as infinitesimal relations on one hand while their being

originally set functions implies in turn their divergence structure. The model we are going to

consider is described in terms of the gas density ρ(x, t), the velocity field v(x, t) and a pressure

p(x, t). The first relation that we will discuss is the conservation of mass: it says that as time

evolves the amount of mass of the flowing gas in a domain G changes proportionally to the gas

flowing through the boundary of G.
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Let us consider some given volume G, then the mass (amount) of the gas occupying G at

time t is ∫
G
ρ(x, t)dx.

Through the elementary area dS on the boundary of G, the amount of the gas that crosses

it per unit of time is ρ(v · n)dS, where n is the outward unit normal of ∂G. v · n is positive

if the gas flows out of G and negative when it flows in G. The total mass of the gas crossing

through ∂G per unit of time is ∫
∂G
ρ(v · n)dS.

dS

n

v

On the other hand the rate of change of the gas in volume G per unit of time is equal to

∂

∂t

∫
G
ρ(x, t)dx.

Therefore we may write the conservation of mass as

− ∂

∂t

∫
G
ρ =

∫
∂G
ρvndS.(1.1)

Hence after applying the divergence theorem to the right hand side of this identity and in view

of the fact that G is arbitrary we get ρt + divρv = 0. This is the equation of conservation of

mass.

Next equation comes from a constitutive relation for flow in porous media, known as Darcy’s

law (named after H.Darcy) stating that v is the gradient of a potential function (the pressure)

v = −Dp.
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Finally we introduce the equations of state p = ρm−1,m > 1 and we get the porous medium

equation

ρt = div(ρDρm−1)

or explicitly

(1.2) ρt = mρm−1∆ρ+m(m− 1)ρm−2|Dρ|2.

This is a parabolic quasilinear divergence type equation. One can define the weak solution of

the initial value problem {
ρt = ∆(ρm) (x, t) ∈ RN × R+

ρ(x, 0) = ρ0(x) x ∈ R(1.3)

in a standard manner: ρ is said to be a weak solution of (1.3) if D(ρm) is a distribution and

for any T > 0 and any smooth φ(x, t), suppφ(x, t) ⊂ BR × [0, T ] one has

∫∫
Rn×[0,T ]

[ρ(x, t)φt(x, t)−Dφ(x, t)D(ρm(x, t))]dxdt+

∫
Rn

ρ0(x)φ(x, 0)dx = 0,

where BR is the ball centered at the origin with radius R, for some R > 0.

t

x

O

t=t2

t=t1

t=to

−
h (t)
+h (t)

v

Theorem 1. There exists unique weak solution to Cauchy problem provided that D(ρm0 ) is

bounded. Moreover comparison principle holds: if ρ01(x) ≤ ρ02(x) then ρ1(x, t) ≤ ρ2(x, t). If

the initial data has a compact support then ρ(x, t) has a compact support for every time t.

The proof of the existence and uniqueness of the weak solutions can be found in [O], [OKC].

It is helpful to understand many features of the problem to write the equation satisfied by

the pressure p. One of the main reasons is that the particles as the edge of the support of the
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region occupied by the gas are material points, i.e. they always remain on the moving front

and therefore the speed of the interface separating gas from vacuum is equal to the speed of

the flow Dp. If we consider the normalize pressure

v =
m

m− 1
ρm−1(1.4)

then v verifies

vt = (m− 1)v∆v + |Dv|2.(1.5)

This can be seen logarithmically since pt/p = (m− 1)ρt/ρ and

Dp

p
= (m− 1)

Dρ

ρ

from the equation

ρt = div(ρDp) = ρ∆p+DρDp

dividing by ρ we obtain

pt
p

=
1

m− 1
∆p+

|Dp|2

p

or

pt = |Dp|2 +
1

m− 1
p∆p.

Notice that along the interface the speed of the material point x(t) is |Dp| = | ∂p∂n |, therefore the

speed of the interface being the same as that of the material point becomes

pt
pn

= |∂p
∂n
|

or pt = | ∂p∂n |
2, a Hamilton-Jacobi type relation. Formally this means that the term p∆p should

go to zero at the interface.

Using these computations and changing p with m−1
m v we obtain

vt = (m− 1)v∆v + |Dv|2.(1.6)

In what follows we refer to (1.5) as the porous medium equation [A], [C2].

To try understand an evolution problem one of the first things we should explore are the

invariances of the equation and particular solutions. We start by exploring classes of particular
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solutions. We use the pressure equations. There are three standard type of solutions that we

may try.

• Travelling profiles i.e. solutions that depend only on the variable x1−αt, α a constant,

• Separation of variables,

• If we have conservation of mass we can put a Dirac δ (a mass) at the origin and let it

go.

1.1. Traveling fronts. Let α be a constant and (·)+ = max(·, 0). Then

vα = (α2t+ αx)+(1.7)

is a solution to (1.5) in the whole space. The free boundary is the line x = h(t) ≡ −αt. Note

that on the free boundary x = h(t) the Darcy’s law is satisfied

h′(t) = −Dvα.(1.8)

In the N -dimensional case one can consider

vα = (α2t+ α(e · x))+, |e| = 1(1.9)

as a generalization of (α2t+ αx)+.

1.2. Quadratic solution (Separation of variables). If we try for the solutions of the form

f(x)g(t) we find another explicit solution of (1.5) in RN × R is

vp =
1

2(m+ 1)

(x+1 )
2

t0 − t
.(1.10)

This example shows that the free boundary may stay stagnant for a quadratic initial data, (see

section 5.2).

5



x

t

1

o

1.3. Fundamental solution. Let ρ be the Dirac delta at time zero. We expect such a solution

to be radially symmetric and selfsimilar due to the homogeneity of the equation. That reduces

the equation to an ODE. More precisely we must have ρ(x, t) = Wρ( x
M , 1) for some W,M

depending on t. But ρ preserves the mass so∫
ρ(x, t)dx =

∫
ρ(x, 1)dx =W

∫
ρ(
x

M
, 1)dx =WMN

∫
ρ(y, 1)dy

hence W =M−N . Next, we want ρ to be self similar, that is for some constants γ, δ,M

ρ(x, t) =M δρ(Mx,Mγt) =
Mγt

M2
M δρ(

x

M
, 1)

implying that M is a power of t, so we seek a solution in the following form

ρ(x, t) =
1

tα
F (

x

tβ
).

Recall that p = ρm−1. Since ρ is self-similar then after plugging in ρ(x, t) = 1
tβ
F ( x

tβ
) into

ρt = divρ∇p all the powers of t will cancel each other giving

div(F (z)∇Fm−1(z)) = −NβF (z)− β∇F (z) · z = −βdiv(zF (z)).

Since F is a common factor then it is enough to make

d

dz
(Fm−1 − β

2
z2) = const.

This gives the following solution

vδ =
m

m− 1

1

tα(m−1)
(a− b |x|

2

t2β
)+,(1.11)

α = Nβ, β =
1

2 +N(m− 1)
, b = β

m− 1

2m
,(1.12)
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a is an arbitrary constant. If ρδ is the density corresponding to vδ then

ρδ =
1

tα
(a− b |x|

2

t2β
)

1
m−1
+ .

This is the ”fundamental solution ” for porous medium equation. Note that ρδ converges to

Gaussian kernel t−N/2e−
|x|2
4t , the fundamental solution of the heat equation, when m → 1 and

a = 1. Indeed it is easy to check that the mass of the gas is

mass =

∫
RN

1

tα
(a− b |x|

2

t2β
)

1
m−1
+ dx(1.13)

=
1

tα

∫
SN

∫ √
a

0
[a−R2]

1
m−1
+

[
tβR√
b

]N−1
tβ√
b
dR

= ωNb
−N

2

∫ √
a

0
[a−R2]

1
m−1
+ RN−1dR

=
ωN

2
b−N/2B(

m

m− 1
,
N

2
),

where ωN is the area of unit sphere and B(·, ·) is the Euler’s beta function. Then using

B(
m

m− 1
,
N

2
) ∼ Γ(

N

2
)(

m

m− 1
)−

N
2

in conjunction with ωN = 2πN/2

Γ(N
2
)
we conclude

mass =
ωN

2
b−N/2B(

m

m− 1
,
N

2
)

∼
ωN

2
b−N/2Γ(

N

2
)(

m

m− 1
)−

N
2

∼ (π
2

β
)
N
2 .

As β → 1/2 when m→ 1, we get mass= (2
√
π)N =

∫
RN e

− |x|2
4 dx. For m = 1 the heat equation

takes the form ρt = divρ∇ log ρ.

2. Scaling

All three particular solutions: travelling front, quadratic and Barenblatt solutions are self-

similar, that is they are invariant under a family of scalings. Let v be a pressure solution to

porous medium equation, then for any A,B, positive constants

vA,B =
B

A2
v(Ax,Bt)(2.1)
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is also a solution. If A = B then we call the scaling hyperbolic, for B = A2 we call it to be

parabolic. Note that the porous medium equation has in some sense as reach a family of scalings

than the heat equation. Although nonlinear, it still has two free parameters. The comparison

principle with the semigroup generated by the invariant scalings is very useful to obtain global

a priori estimates for dilations of the solution. For instance

Lemma 2. If v is the solution to (1.5) then

vt ≥ −
v

t
.(2.2)

Proof. We will compare v(x, t) with (1+ε)v(x, (1+ε)t). Indeed let v01(x) = v(x, 0), v02(x) =

(1 + ε)v(x, 0) for some positive constant ε. Then if vi is the solution to

{
vi,t(x, t) = (m− 1)vi∆vi + |Dvi|2, i = 1, 2
vi(x, 0) = v0i(x)

(2.3)

then comparison principle implies

v1 ≤ v2.

But v2(x, t) = (1+ ε)v1(x, (1+ ε)t), since we can take A = 1, B = 1+ ε as the scaling constants

so that

v(x, t) ≤ (1 + ε)v(x, (1 + ε)t) = v(x, (1 + ε)t) + εv(x, (1 + ε)t)(2.4)

hence

v(x, (1 + ε)t)− v(x, t)
ε

+ v(x, (1 + ε)t) ≥ 0.(2.5)

Letting ε→ 0 the result follows. �

This type of argument can be used in many cases for radial symmetry (using infinitesimal

rotations) or for monotonicity of solutions (see later the reflexion method in section 5.5)

An important corollary of this lemma is the expansion of the support.

Corollary 3. For t > t0 we have

v(x0, t)

v(x0, t0)
≥ ect/t0 .(2.6)

Hence if for some point (x0, t0) v is positive then it remains so for any instant of time t > t0.
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Proof. By integrating (2.2) the result follows. �

A much more delicate and beautiful estimate is due to Benilan:

Lemma 4. If v is a solution to porous medium equation then one has Benilan’s estimate

∆v ≥ − 1

(m− 1)t
.(2.7)

Note that this estimate implies the previous one, except for the constant.

Proof. Let us assume for a moment that v is smooth, then applying the Laplacian to both

sides of the equation (1.5) we obtain

∂

∂t
(∆v) = (m− 1)∆(v∆v) + ∆(|Dv|2)(2.8)

= (m− 1)v∆(∆v) + 2mDv∆Dv + (m− 1)(∆v)2 + 2
∑
ik

v2ik.

Set w = ∆v, then w satisfies to the partial differential inequality

L(w) = 2
∑
ik

v2ik ≥ 0(2.9)

where

L(w) = ∂w

∂t
− [(m− 1)v∆w + 2mDvDw + (m− 1)w2].

Due to the presence of v in the equation, the only obvious barrier one can built should be a

function of t only so we want to compare w to a function −c/t for some constant c such that

L(−c/t) = 0, in fact this requires that c = 1/(m− 1) hence

L(w) ≥ 0 = L(− 1

t(m− 1)
)

while on the boundary we have that

∆v ≥ −∞.

Using comparison principle the result follows. In the general case one can approximate (1.5)

by a family of uniformly elliptic equations and then pass to the limit. �

Remark. The constant −1/(m − 1) is not optimal. Indeed if we estimate the trace of Hessian

D2v more carefully then

(TrD2v)2

N
≤

N∑
i=1

v2ii ≤
∑
ik

v2ik

9



thus introducing

L1(w) =
∂w

∂t
− [(m− 1)v∆w + 2mDvDw + (m− 1− 2

N
)w2]

and comparing w with − 1
t(m−1+ 2

N
)
we get the sharp form of Benilan’s estimate

(2.10) ∆v ≥ − 1

t(m− 1 + 2
N )

= −βN
t
.

One can check that for the Barenblatt solution this inequality becomes equality.

Then the immediate consequence of this is

Corollary 5. In the one dimensional case

vx +
x

(m− 1)t
(2.11)

is nondecreasing, so vx has one-sided limits everywhere. Furthermore v is semi-convex so it is

locally Lipschitz.

Theorem 6. Let v be a solution to (1.5). If v is Lipschitz in space, then v is also Lipschitz in

time.

The idea of the proof is very general and can be applied to a more general class of equations.

It is again a combination of the scaling invariance of solutions of (1.5) and maximum principle.

First we illustrate the underlying idea for the solutions of the heat equation. Let u be a solution

of ∆u − ut = 0 in a cylinder Qλ(x0, t0) and assume that the modulus of continuity of u with

respect to x is σ i.e. oscx∈Bλ(x0)u(x, t) ≤ σ(λ) independently of t, then the function

uλ(x, t) =
u(x0 + λx, t0 + λ2t)

σ(λ)

solves heat equation in the unit cylinder Q1(0, 0) = B1 × (0, 1) for any λ > 0. Let us show

that then uλ(0, 1) − uλ(0, 0) ≤ c1, c1 depending on σ. If ε > 0 and C is a large constant then

h(x, t) = |x|2 +2NCt+1+ uλ(0, 0) is a supersolution to the heat equation in the unit cylinder

Q1. Since oscB1uλ ≤ 1, we conclude that uλ(x, 0) < h(x, 0). Assume that the first contact of

uλ and h happens at the point (x1, t1). By the maximum principle (x1, t1) ∈ ∂B1 × (0, 1). But

then one has

1 ≥ uλ(x1, t1)− uλ(0, 0) ≥ h(x1, t1)− h(0, 0) = 1 + 2CNt1.(2.12)
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Hence uλ never catches-up with h and uλ < h in Q1 (see figure 1). Scaling back we get that

u(x0, t0 + λ2)− u(x0, t0) ≤ c1σ(λ), thus setting δ = λ2 we have

u(x0, t0 + δ)− u(x0, t0) ≤ c1σ(
√
δ).

Using the function −h as a subsolution we can prove also the lower estimate. In particular if u

is Lipschitz continuous in space then u is 1/2 Hölder continuous in time.

U

v

_

Q
1

oscU  =1

_

1<osc v

The similar argument applies to the solutions of (1.5) though with a hyperbolic scaling. First

we need the following lemma

Lemma 7. If v(x0, t0) = α, then v(x0, t0 + h) ≤ C1α for any h ≤ α
M , where M is a large

positive number and C1 is a positive universal constant.

Proof. To fix the ideas let’s assume that (x0, t0) = (0, 0). Introduce

S− = c
|x|2 + 2α2

2α
M − t

.(2.13)

By a direct computation one can see that S− is a supersolution to (1.5) in {|x| ≤ α} × (0, 1)

S−
t ≥ (m− 1)S−∆S− + |DS−|2

provided c > 0 is large enough. Indeed by a direct computation one can see that it is enough

to prove (1 − 4c)|x|2 < 2α2(2Nc(m − 1) − 1) for |x| ≤ α. Hence it suffices to assume that

c > 1/(2 +N(m− 1)).

11



Then

S−(x, 0) = c
|x|2 + 2α2

2α
M

≥ cαM.

Since v is Lipschitz in space we conclude that in |x| ≤ α

v(x, 0) ≤ v(0, 0) + L|x| = (1 + L)α ≤ cαM(2.14)

≤ S−(x, 0)

provided M > (1 + L)/c (this is the relation between M, c and L-Lipschitz constant). Let t1

be the first time when S− touches v at (x1, t1). this cannot happen in the interior of cylinder

{|x| ≤ α} × [0, α/M ]. From strong maximum principle we conclude that |x1| = α, and

v(x1, t1) = S−(x1, t1) = c
3α2

2α
M − t1

.(2.15)

Furthermore,

v(x1, t1)− v(0, t1) ≥ S−(x1, t1)− S−(0, t1)(2.16)

= c
3α2

2α
M − t1

− c α2

2α
M − t1

≥ cαM.

This contradicts to the Lipschitz regularity in space if M is large. Hence v < S− ≤ Cα.

Note that using hyperbolic scaling one can assume that α = 1. �

In the same way using the Barenblatt solution S+ as a subsolution one can obtain v ≥ S+.

Lemma 8. If v(x0, t0) = α, then v(x0, t0 +h)−α ≥ −C2α for any h ≤ α
M , where M is a large

positive number and C2 is positive universal constant.

Combining this two lemmas the theorem follows. Next using the scaling and the Lipschitz

regularity we also can prove that Schauder estimates hold in the positivity set.

Theorem 9. Let v be a solution to (1.5). If v ∼ α in Bα(x0)× (t0, t0 +
α
M ) then

|Dkv| ≤ C(k)

α|k|+1
, in Bα/2(x0)× (t0, t0 +

α

2M
).

Proof. After scaling vα = v(x0 + αx, t0 + αt)/α ∼ 1 in B1 × (0, 1
M ) and the equation

becomes uniformly parabolic. Then using parabolic Schauder estimates for vα and scaling back

the result follows. �
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3. Regularity of the free boundary

We will now illustrate the main steps in proving the free boundary regularity for our problem.

That is: the (increasing) boundary of the support of v may stay stationary for a while but as

soon as it starts to move it will always have positive speed, in fact its speed will satisfy a

differential inequality and it will be a C1 curve. The two main ingredients that reappear in

much more complex problems are present already here: an asymptotic convexity of the free

boundary under dilations and the possibility to classify global profiles. The two main barriers

we will use are the pressure form of the fundamental solution and the travelling fronts.

First we observe the following property of the Barenblatt solutions. Let

v1(x) =
m

m− 1
(A−B|x|2)+.

Recall that the Barenblatt solution in N -dimension is

v(x, t) =
m

m− 1

1

tα(m−1)
(A−B |x|

2

t2β
)+(3.1)

α = Nβ, β =
1

2 + (m− 1)N
, B =

(m− 1)β

2m

and A > 0 is the constant which determines the total mass. Hence v(x, t) is the solution to{
vt = (m− 1)v∆v + |Dv|2, t > 1
v(x, 1) = v1(x).

(3.2)

A direct computation (N = 1) then shows that on the free boundary x = h(t)

h′(1) = β

√
A

B
(3.3)

h′′(1) = −(1− β)h′(1)

We now consider a solution v(x, t), with initial data v0 = (x, t0) supported in the interval [a, b],

then the free boundary for t ≥ t0 > 0 consists of two monotone, Lipschitz curves h+(t), h−(t).

More precisely we have

Lemma 10. Let h(t) ≡ h+(t) = sup{x, v(x, t) > 0}. Then h(t) is monotone and Lipschitz.

Proof. h(t) is monotone since by (2.6) we have

v(x̄, t) ≥ v(x̄, t̄)e−ct/t̄ > 0

13



provided v(x̄, t̄) > 0. To prove that h(t) is Lipschitz we compare v with a travelling front

solution. Recall that v is Lipschitz for N = 1. Let x0, t0 be a free boundary point. From the

mean value theorem

v(x, t0) = −vx(·, t0)(h(t0)− x) ≤ C(h(t0)− x), x < x0 = h(t0).

Now consider the wave solution

vα = α(α(t− t0) + (x0 − x))+

then if α = C, the Lipschitz constant, and applying the comparison principle we conclude that

v(x, t) ≤ vα(x, t), t > t0, x > x0 hence the free boundary of v is inside of the free boundary of

vα, so the slope of h is controlled by Lipschitz constant of v. �

t

Future t>t

 Past t<t

to

o

o

xo x
1

h (t)
+

l(t)

Remark. v can be controlled from above by a travelling front. Next we shall see that v can be

controlled from below by a Barenblatt solution. In its turn this will imply a formula for a speed

h′(t) of the free boundary.

Corollary 11. If v(x0, t0) > 0 and vx(x0, t0) = −α, then there is a parabola P (x) such that

v ≥ P (x), t ≥ t0 and P ′′ = β/2, P ′(x0) = −α, P (x0) = v(x0, t0).

Proof. If it is necessary we may consider the scaled function v̄(x, t) = 1
t0
v(xt0, tt0) and we

may assume that t0 = 1. Then by (2.10)

∆v̄ = v̄xx ≥ −β

14



and therefore

v̄(x, t) + β
|x− x̄0|2

2

is convex. Then if `(x) is the support plane at the point x̄0 = t0x0, then v̄ ≥ P (x) where

P (x) = −β |x− x̄0|
2

2
+ `(x− x̄0)(3.4)

= −β |x− x̄0|
2

2
− α(x− x̄0) + v̄(x̄0, t̄0)

=
m

m− 1
(−b|x− x̄0|2 − 2Nb(x− x̄0)) + v̄(x̄0, t̄0)

=
m

m− 1
(bN2 − b|x− x̄0 +N |2) + v̄(x̄0, t̄0).

This is the Barenblatt solution truncated at t = 1. Note that the free boundary condition (3.3)

h′ = α is satisfied. Scaling back to the original variables the result follows. �

Corollary 12. Let (x0, t0) be a free boundary point. For t ≥ t0 v is above the corresponding

Barenblatt solution.

Proof. Without loss of generality we can assume that t0 = 1. From the previous corollary

we have P (x) is the Barenblatt solution truncates at t = 1. Since all this parabolas are below v,

have the same second derivatives and vx is semicontinuous then the conclusion of the corollary

holds for free boundary points as well (see the figure). Indeed we can approach to the free

boundary point (x0, t0) a little bit from the future or a little bit from the past, since everything

is continuous then we can pass to the limit and get a desired limit parabola P (x), which is

the truncated Barenblatt, touching v from below at the free boundary point. Then let vP

be the Barenblatt corresponding to the initial condition P (x). Thus by comparison principle

vP ≤ v, t > 1. �
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Free Boundary

v

x

t
1

t
2

t

v(x,t )

v(x,t )
2

1

Next lemma makes precise the free boundary condition, which heuristically is the Darcy’s

law. Notice that the lim sup below is taken for both (x, t) converging to (x0, t0), both from the

past and the future.

Lemma 13. Let (x0, t0) be a free boundary point and let

α = lim sup
(x,t)→(x0,t0)

(−vx).(3.5)

Then for t ≥ t0 we have

h(t) = x0 + α(t− t0) + ω(t− t0).(3.6)

Further, from above we only have that ω = o(t − t0), but from below we have the stronger

inequality

ω(t− t0) ≥ −αC(t− t0)2 + o((t− t0)2).

Proof. From the previous result it follows that

h(t) ≥ h(t0) + α(t− t0)− Cα(t− t0)2.

To show that the reversed inequality is satisfied we take ε > 0 and use the definition of α,

−vx ≤ (α+ ε), x0 − δ < x < x0

then from the Lipschitz continuity and the mean value theorem we get

v(x, t0) = −vx(·)(x0 − x) ≤ −(α+ ε)(x− x0)

in the future.

Lemma 14. Coming from the past h(t) ≥ x0 + α(t− t0)− o(t− t0).

16



Proof. Assume that for a sequence tk ↑ t0

xk = h(tk) ≤ x0 + (α+ δ)(tk − t0).

Since

lim sup(−vx) = α

we have that (−vx) ≤ α+ δ/4 in a small enough neighborhood of (x0, t0), Ns(x0, t0), in space

and time. We will compare v with the traveling front solution w(x, t), going trough (xk, tk)

with speed α+ δ/2. From the estimate by above of xk, this wave goes through the left of x0 at

t0 and thus crosses the free boundary. But if we go backwards in x from xk at time tk we have

that

w(x, tk) ≥ v(x, tk) +
δ

4
|x− xk|.

So for x = xk − s, w(xk − s, tk) ≥ v(xk − s, tk) + δ
4h. This is enough room to go into the future

starting at xk − s, tk to use w as a barrier for v in the region {x ≥ xk − s, tk ≤ t ≤ t0} and get

a contradiction. �

We will now get a differential inequality for h. We start by proving that h(t) is a ”viscosity

subsolution” of h′′ ≥ Ch′.

Lemma 15. If h(t) has at t = t0 a tangent parabola x(t) = `(t) + a(t − t0)2 by above then a

must be a ≥ −C`′.

Proof. At t0, h has a tangent line with a slope α, from lemmas 14 and 13. Therefore `′

must be equal to α. If a ≤ −C`′ = −Cα going into future we have a contradiction to Lemma

13.

�

We are now in the final step. In this section we want to illustrate how to show the regularity

of a free boundary by classifying global ”blow-outs” of a solution. We have already an important

fact. We know that the free boundary of the blow out must be convex. We will now show that

every blow out is a travelling front solution and go back and deduce that the free boundary

was indeed C1.

17



Consider the travelling front vα = (α+ε)[(α+ε)(t−t0)−(x−x0)]+ then from the comparison

principle v ≤ vα, t > t0, therefore

h(t) ≤ h(t0) + (α+ ε)(t− t0) + o((t− t0)2).

At this point, at least coming from the future we seem to have the differential inequality

h′′ ≥ −Ch′

that heuristically would imply that h is ”quasi convex”, i.e. h(t) + Ct2 should be convex in

the neighborhood of t0. In this opportunity, we introduce a new idea, the idea of ”viscosity

solution”, i.e. using comparison with smooth super and subsolution.

In one dimension the idea is straightforward, as we will see below. In more dimensions it has

become very fruitful to show that very weak solutions of an equations are actually smooth.

Corollary 16. There exists a large positive constant C depending on Lipschitz norm of v such

that

φ(t) = h(t) + Ct2(3.7)

is convex.

Proof. If not find a parabola touching h with a ≤ −Ch′′

Corollary 17. h(t), satisfies to

h′′(t) ≥ −Ch′(t),(3.8)

in the viscosity sense. Hence

h′(t) ≥ h′(t0)e−c(t−t0).

4. Differentiability of the free boundary

We want to show that h is actually differentiable. Since h(t) +Ct2 is convex, it has left and

right differentials at every point, and for t < s

(h′(t))− ≤ (h′(t))+ ≤ (h′(s))− ≤ (h′(s))+.

To fix the ideas we assume that origin is on the free boundary.

18



4.1. Blow-up. For λ > 0 consider function

vλ(x, t) =
v(λx, λt)

λ
.

It follows that vλ is a solution to porous medium equation. Moreover, vλ is Lipschitz, therefore

limλ→0 vλ = v∞ exists and it is called the blow-up of v. Note that

• second derivative

(vλ)xx = λvxx(λx, λt) ≥ −
λ

(m− 1)t
→ 0

so v∞ is convex.

• free boundary h(t) is convex and consists of two lines

h(t) =

{
At, t > 0
Bt, t < 0

(4.1)

with A ≥ B ≥ 0.

Note that

v∞(x, 0) = lim
v(x0 + λx, t0 + λt)

λ
= 0, x > 0,(4.2)

v∞x (x, 0) = lim vx(x0 + λx, t0 + λt) = −A

i.e. v∞(x, 0) = (−Ax)+ therefore we conclude from the uniqueness theorem that v∞(x, t) =

A(At− x)+ for t > 0.

We want to show now that the travelling front cannot ”break” going into the past. To do

this we will go far to the left for t = t0 and get a contradiction. We start with an estimate for

the decay of vtt.

Lemma 18. There exists a constant C > 0 such that for x0 < 0 large we have

v∞tt (x, t) ≤
C

|x0|
,∀(x, t) ∈ {|x− x0| ≤

|x0|
2
, |t| ≤ |x0|

M
} ≡ D.(4.3)

Proof. Let us consider the scaled function

vR(x, t) =
v∞(Rx,Rt)

R
,R =

1

|x0|
.

19



Then vR is Lipschitz in |t| ≤ 1
M , |x− x0| ≤ 1/2. By parabolic Schauder estimates we have that

|(vR)tt| ≤ C(4.4)

and returning to v∞ the result follows. �

Corollary 19.

lim
x→−∞

[v∞(x, t)−A(At− x)+] = 0.

Proof. Take x < 0 large, then at (x, 0) v∞ is C1 smooth, therefore using Taylor’s formula

v∞(x, t)−A(At− x) = v∞(x, 0) + tv∞(x, 0) +
t2

2
v∞tt (·)−A(At− x)(4.5)

=
t2

2
v∞tt (·)→ 0,

when x→ −∞. �

4.2. Classification of the global solutions. Next, we want to show that v∞ = A(At − x).

An important step to prove this, is to show that at any point

vx ≥ −A.

Assume that for some (x0, t0) we have −v∞x (x0, t0) = −A− δ < −A, then we can put under v

a travelling front with speed A+ δ that will catch up with the free boundary. If x < x0 < 0 we

have

v∞(x, t) = v∞(x0, t)− v∞x (·)(x0 − x)(4.6)

≥ v∞(x0, t) + (A+ δ)(x0 − x).

We used v∞x (·) ≤ v∞x (x0, t) since v
∞
xx ≥ 0.

Thus

0← v∞(x, t)−A(At− x) ≥ v∞(x0, t) + (A+ δ)(x0 − x)−At2 +Ax(4.7)

= v∞(x0, t)−A2t+Ax0 + δ(x0 − x)→ +∞

provided δ > 0, this is a contradiction, hence

v∞x ≥ −A.
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This implies that for any (x, t)

v∞(x, t) ≥ A(At− x).

Finally let us show that v∞ is the wave function A(At−x). Take a point (x̄, t̄) and assume that

x̄ ≤ At̄ such that v∞(x̄, t̄) > A(At̄−x̄) which contradicts to the strong maximum principle. Next

assume that x̄ > At̄. But then for t > t̄ we know that v∞(x̄, t) > 0 by (2.6). Contradiction. �

5. Remarks

5.1. N-dimensional results. In the N dimensional case v may not be Lipschitz though it is

always Hölder continuous. In [CVW] the authors proved Lipschitz continuity for large times.

More precisely if T0 is the time when the support of v(x, t) overflows the smallest ball, where

the initial support is contained then v is Lipschitz in RN × (τ,∞) for any τ > T0, with bounds

depending on the initial data and τ . Also suppv is bounded for any t but eventually it covers

the whole space. As a consequence the free boundary is Lipschitz. Furthermore it is also C1,α

[CW]. However there is an example constructed by J. Graveleau showing that if suppv0 has

holes then Dv may blow up. Therefore the result in [CVW] is optimal.

5.2. Waiting time. As the example of quadratic solution indicates the free boundary may

stay stagnant. If there exists a t? ∈ [0, T ] so that h(t) does not move for t ∈ (0, t?) and h(t)

moves for t > t? then t? is called waiting time. Note that when h starts moving it never stops.

The value of t? depends on the initial condition. Next theorem is due to Knerr [K].

Theorem 20. If initial data v0(x) ≥ c(−x)γ ,−δ < x < 0 for some γ ∈ (0, 2) then t? = 0. If

v0(x) ≤ cx2,−δ < x < 0 then t? > 0.

If t ∈ (t?, T ) then h ∈ C1(t?, T ) [CF], and hence the free boundary condition is satisfied in

the classical sense.

Theorem 21. Let tm = 1/2(m+ 1) and v is the solution of{
vt = (m− 1)v∆v + |Dv|2 (x, t) ∈ RN × R+,
v(x, 0) = v0(x) x ∈ R.(5.1)
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If for some α, β > 0

v0(x) ≤ αx2 + o(x2) as x ↑ 0(5.2)

v0(x) = 0,∀x ∈ R+

v0(x) ≤ βx2 in x ∈ R+

then

tm
β
≤ t? ≤ tm

α
,

in particular if α = β t? = tm/α.

5.3. Viscosity solutions. Viscosity solutions were introduced by M. Crandall and P. Lions in

the context of the first order equations of Hamilton-Jacobi type.

For instance if we are given in the interval [−1, 1] the equation{
|wx| = 1
w(−1) = w(1) = 0

any zig-zag with slopes 1 and −1 would be a candidate for a weak solution. But there are two

natural ones: w = 1 − |x| and −w = |x| − 1. The solution w is selected by the ”vanishing

viscosity” method i.e. it is the limit of wε, solutions to

εwε
xx + (1− |wε

x|) = 0,

(thus the name of viscosity solution). They realized that w would be ”touched by below” by a

smooth function φ only if |φ′| ≥ 1, while by above only if |φ′| ≤ 1 (i.e. it is the most concave

solution).

It was soon realized that this was an excellent way to define weak solutions for equations

in non-divergence form, i.e. defined by a comparison with a ”specific profiles” (quadratic

polynomials for second order PDE’s, global profiles for the phase transition problems, etc.)

Here we sketch how the theory works for the Laplacian [CC].

Definition 22. A function u : RN → R, continuous in Ω, is said to be a subsolution (superso-

lution) to ∆u = 0, and we write ∆u ≥ 0 (∆u ≤ 0), if the following holds: if x0 ∈ Ω, φ ∈ C2(Ω)

and u−φ has local maximum (minimum) at x0 then ∆φ ≥ 0(∆φ ≤ 0). A solution is a function

u which is both a subsolution and a supersolution.

22



Heuristically this definition tells that a subsolution cannot touch a solution from below.

Indeed assume that φ is a C2 strict subsolution touching the solution u from below at x0, then

u(x) ≤ φ(x), u(x0) = φ(x0). Since φ touches u from below then D2u ≥ D2φ. On the other hand

0 < ∆φ ≤ ∆u = 0, contradiction. To make this argument work for subsolutions one needs to

consider φ+ ε|x|2 and let ε ↓ 0. Another way of checking this is to use the maximum principle,

for we have from previous computation that ∆φ = ∆u = 0 and φ− u has a local minimum at

x0, thus buy maximum principle u = φ.

If in the definition one changes ∆u with F (D2u) then the definition of viscosity solutions for

elliptic operator F follows.

As an example let us show that any continuous viscosity solution of ∆u = 0 is a classical

harmonic function. In 1-dimensional case the classical solution is a line `(x). Now if u is above

of this line then bringing the parabola P (x) = `(x) − εx2 from infinity will touch u at some

point which will contradict to Pxx ≥ 0.

In N -dimensional case let Bρ be a ball of radius ρ, and let ∆u = 0 in Bρ in viscosity sense.

Let v be harmonic in Bρ and u = v on ∂Bρ. Then v is the Poisson integral of the continuous

function u. Thus v ∈ C2(Bρ). We want to compare u with v in Bρ choosing ρ to be sufficiently

small.

Denote M = maxBρ(u− v) and suppose that M > 0. Then for some x0, M = u(x0)− v(x0)

and x0 is an interior point, since u = v on the boundary of Bρ. Consider uε(x) = v(x)+ε(x−x0)2

where ε is a small positive number. Let M1 = maxBρ(u− v + ε(x− x0)2) and it is attained at

some x1. Then if we choose ε to be very small we have that x1 should be close to x0, that is x1

is an interior point, then we have

u(x) ≤ v(x) + ε(x− x0)2 +M1,(5.3)

u(x1) = v(x1) + ε(x1 − x0)2 +M1,

hence φ(x) = v(x) + ε(x − x0)2 +M1, which is C2 in Bρ, touches u at x1 from above. From

definition of the viscosity solutions 0 ≤ ∆φ = ∆(v − ε(x− x0)2) = −2Nε contradiction. Thus

x0 is not an interior point and u ≤ v in Bρ.
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In the same way one can show that m = minBρ(u − v) ≥ 0. Otherwise if m < 0 and the

minimum is attained at some point y0 we will compare u to the function ψ(x) = v − ε(x −

y0)
2 +m1 where m1 = minBrho(u− v − ε(x− y0)2) and the inequality u ≥ v follows .

In this section, we give an idea of how the techniques described in the lectures surface in the

theory of minimal surfaces and free boundary problems.

5.4. Global profiles and regularity. A minimal surface is as surface which has smallest area

among all surfaces with prescribed boundary condition. Classical solutions to minimal surface

problem do not always exist. Therefore one has to seek the solution in a weak sense, that is to

define the area in some generalized way. This is given in a weak fashion through the divergence

theorem, by means of the perimeter. Ω is said to be a set of finite perimeter if for any smooth

vectorfield ψ, supx∈Ω |ψ| ≤ 1 compactly supported in Ω

|
∫
Ω
divv| ≤ C0.

The best constant C0 is called the perimeter of set ∂Ω. Then perimeter is semicontinuous under

L1 convergence of characteristic functions χΩ. Note that heuristically using the divergence

theorem

|
∫
Ω
divv| = |

∫
∂Ω
v · ν| ≤ area(∂Ω).

Sets of finite perimeter can also be thought as L1 limits of polyhedra with a uniformly finite

area. Then we can look at the following problem:

Among all sets of finite perimeter Ω ⊂ B1 find one which has minimum perimeter.

The existence of a set with minimal perimeter is immediate by compactness.

Having defined the generalized area and generalized minimal surface one tries to explore how

”classical” it can be. In other words to show that except an unavoidable singular set Σ it is

smooth hypersurface satisfying to equation of mean curvature.

One of the ways of doing so is to exploit the invariance of area minimizing surfaces (such as

scaling!) and a monotonicity formula. The latter one is the following: if S is an area minimizing

surface and 0 ∈ S in RN+1 then

A(r) =
area(S ∩Br)

rN
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is a monotone function of r. Moreover, if A(r) is identically constant S has to be a cone,

i.e. the defining function is homogeneous. One then considers the sequence of dilations Sk =

{x, rkx ∈ S}, rk ↓ 0. The ”limiting blow-up” object is a surface S0, also called global solution,

for which A(r) = const. = A(0+). Hence if one can classify all possible minimal cones S0 which

are alternatives to a hyperplane a regularity theorem can be deduced. For instance if N < 8

the only such cones are hyperplanes and the generalized minimal surface S is really an analytic

graph.

Many free boundary problems can be treated parallel to the theory of minimal surfaces [CS].

For instance consider the classical two phase problem [ACF].

Let u be Lipschitz function in unit ball B1, such that

∆u = 0, in {u > 0} ∪ {u < 0},
(u+ν )

2 − (u−ν )
2 = 1 on F = ∂{u > 0}.(5.4)

The free boundary here is F and the extra gradient jump condition (u+ν )
2 − (u−ν )

2 = 1 on F

is satisfied in some weak sense. Weak solution of this problem can be obtained by minimizing

the functional

J(u) =

∫
B1

|Du|2 + λ2+χ{u>0} + λ2−χ{u≤0}

for some positive constants λ+, λ−. Note that if Λ = λ2+ − λ2− > 0 then

J(u) =

∫
B1

|Du|2 + Λχ{u>0} + λ2−|B1|

so J(u) is the sum of Dirichlet energy and Λmeas{u > 0}. This suggests the fact that u is a

minimizer imposes some minimality on the volume of positivity set. It turns out that ∂{u > 0}

is a generalized surface of positive mean curvature [C1] i.e. if ∂{u > 0} is perturbed inside of

positivity set {u > 0} near Br then for perturbed surface S′, Hn−1(S′) ≥ Hn−1(∂{u > 0}).

Let us illustrate how the ideas from minimal surface theory can be applied to classify the

global solutions of (5.4) in two dimensional case. Assume that u is a minimizer of J so that it

solves (5.4) in some weak sense. First note that Lipschitz is the best possible regularity for u

one can expect in view of the gradient jump along the free boundary F . Using a monotonicity

formula one can show that u is Lipschitz [ACF]. For rk ↓ 0 and 0 ∈ ∂{u > 0} let us consider

uk(x) = u(rkx)/rk. This function is well-defined for Lipschitz function u. Then Sk = ∂{uk > 0}
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and S0 = ∂{u0 > 0} where u0 = limuk must be homogeneous global solution. If the free

boundary ∂{u0 > 0} forms an angle with aperture θ at zero then ∂{u0 > 0} is a cone Γθ with

aperture θ. We want to show that there are no alternative to u0 of being a linear function, i.e.

Γθ is a half-plane.

By rotation of coordinate system we may assume that Γθ = {x ∈ R2 : 0 < x2 < x1 tan θ}.

Let us write the Laplacian in polar coordinates

∆u =
1

r

(
∂

∂r
(rur) +

1

r
uφφ

)
.

Since u = rg(φ), g(φ) verifies to Cauchy problem

(5.5)

{
g′′(φ) + g(φ) = 0
g(0) = g(θ) = 0,

which has a unique solution g(φ) = sinφ. Therefore θ = π and Γθ is a the upper half-plane.

Hence in two dimensional case all the global solutions are linear functions and F is differentiable.

5.5. Moving plane method. As a final example of the power of symmetries we describe the

moving plane method created by A.D. Aleksandrov in his study of the surfaces of constant

curvature. The well-known theorem of A.D. Aleksandrov states: if S is a surface of constant

nonzero mean curvature then S is a sphere. Let’s take a one parameter family of planes and

move it in some constant direction. Let St be the surface which is reflection of S with respect

to the plane corresponding to t. Then at some point, St and S would be tangent to each other

hence by Hopf lemma S = St, so S is symmetric with respect to any plane thus it is a sphere.

This technique can be used to prove Lipschitz continuity of the free boundary inN -dimensional

case when suppu0 ⊂ B1 and the free boundary is strictly outside of B1. Let Ω = suppu0(x)

and let a = infx∈Ω x1, b = supx∈Ω x1, where x = (x1, x
′), x′ ∈ RN−1. Then for any λ ∈ (a, b)

consider xλ = 2λ − x1. So xλ is the reflection of x with respect to the plane x1 = λ. Our

goal is to show that u(x, t) ≥ u(xλ, t), t > 0 when a > 0 or b < 0. Indeed u0(x) ≥ u0(xλ) and

u0(x) = u0(xλ) for x1 = λ hence the comparison principle applies. In particular this implies

monotonicity of u in the x1 direction since λ is arbitrary number in (a, b). Clearly this reflection

argument applies to any plane Σ = {x ∈ RN , (x− y0) · ` = 0} for some fixed point y0 and unit

direction ` provided that Ω has a positive distance from Σ. Now to prove that the boundary
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of suppu is Lipschitz it is enough to show that there exists a uniform cone of monotonicity at

each point on the boundary of the support of u(x, t) when the free boundary lies outside B1.

O

K

α

α

0

0
x

x

Now take x0, |x0| > 1 and let Kα = {x,∠(x − x0, x0) ≤ α}, α < α0 with cosα0 = 1/|x0|.

Then for any plane Σ reflecting x to x0 we can apply Aleksandrov’s idea and conclude that in

Kα u is monotone.

Notice that we did not assume Lipschitz regularity for u.
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