
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the Tetrahedrally Symmetric Monopole

Citation for published version:
Braden, HW & Enolski, V 2010, 'On the Tetrahedrally Symmetric Monopole' Communications in
Mathematical Physics, vol. 299, no. 1, pp. 255-282. DOI: 10.1007/s00220-010-1081-0

Digital Object Identifier (DOI):
10.1007/s00220-010-1081-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Communications in Mathematical Physics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s00220-010-1081-0
https://www.research.ed.ac.uk/portal/en/publications/on-the-tetrahedrally-symmetric-monopole(5a19f59d-3596-46d0-ae96-9514c0c4bb86).html


ar
X

iv
:0

90
8.

34
49

v1
  [

m
at

h-
ph

] 
 2

4 
A

ug
 2

00
9

ON THE TETRAHEDRALLY SYMMETRIC MONOPOLE

H.W. BRADEN AND V.Z. ENOLSKI

Abstract. We study SU(2) BPS monopoles with spectral curves of the form η3 +
χ(ζ6 + bζ3

−1) = 0. Previous work has has established a countable family of solutions to
Hitchin’s constraint that L2 was trivial on such a curve. Here we establish that the only
curves of this family that yield BPS monopoles correspond to tetrahedrally symmetric
monopoles. We introduce several new techniques making use of a factorization theorem
of Fay and Accola for theta functions, together with properties of the Humbert variety.
The geometry leads us to a formulation purely in terms of elliptic functions. A more
general conjecture than needed for the stated result is given.
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1. Introduction

For many years there has been considerable interest in magnetic monopoles, the topo-
logical soliton solutions of Yang-Mills-Higgs gauge theories in three space dimensions with
particle-like properties. In particular BPS monopoles have been the focus of much research
(see [MS04] for a recent review). These monopoles satisfy a rather ubiquitous first order
Bogomolny equation

Bi =
1

2

3∑

j,k=1

ǫijkF jk = DiΦ

(together with certain boundary conditions, the remnant of a limit in which the Higgs
potential is removed). Here Fij is the field strength associated to a gauge field A, and Φ
is the Higgs field. The Bogomolny equation may be viewed as a dimensional reduction of
the four dimensional self-dual equations upon setting all functions independent of x4 and

1
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2 H.W. BRADEN AND V.Z. ENOLSKI

identifying Φ = A4; they are also encountered in supersymmetric theories when requiring
certain field configurations to preserve some fraction of supersymmetry. The study of BPS
monopoles is intimately connected with integrable systems. Nahm gave a transform of the
ADHM instanton construction to produce BPS monopoles [Nah82] and the resulting Nahm’s

equations have Lax form with corresponding spectral curve Ĉ. Hitchin gave a twistorial
description of this curve [Hit82]: just as Ward’s twistor transform relates instanton solutions
in R4 to certain holomorphic vector bundles over the twistor space CP3, Hitchin showed that
the dimensional reduction leading to BPS monopoles could be made at the twistor level as
well and also obtained the same curve lying in mini-twistor space, Ĉ ⊂ TP1. Subject to
certain nonsingularity conditions on the curve Ĉ Hitchin was able to prove all monopoles
could be obtained by this approach [Hit83]. Bringing methods from integrable systems to
bear upon the construction of solutions to Nahm’s equations for the gauge group SU(2)
Ercolani and Sinha [ES89] later showed how one could solve (a gauge transform of) the

Nahm equations in terms of a Baker-Akhiezer function for the curve Ĉ.
Despite the many striking results now obtained, disappointingly few explicit solutions

are known. This paper is part of a longer reappraisal of this work, seeking to understand
where the difficulties in implementation lie and developing new techniques to address them.
Throughout we shall focus on SU(2) BPS monopoles and this paper will deal with curves Ĉ
of the form

(1.1) η3 + χ(ζ6 + bζ3 − 1) = 0

where χ, b are certain real parameters. Such a curve is of genus 4 and could describe a
charge three monopole. Two types of problem arise (that will be made more precise below).
The first is that the curve (1.1) is subject to a set of constraints whereby the periods of a
meromorphic differential on the curve are specified. This type of constraint arises in many
other settings as well, for example when specifying the filling fractions of a curve in the
AdS/CFT correspondence. Such constraints are transcendental in nature and the number
of cases where they have be solved explicitly is rather limited. This is certainly an area
that needs to be studied more. For the curve (1.1) a countable number of solutions to
this constraint have been obtained. The second type of problem arises in implementing
a constraint that may be expressed as the vanishing of a real one parameter family of
cohomologies of certain line bundles, H0(Ĉ, Lλ(n − 2)) = 0 for λ ∈ (0, 2). Viewing the line
bundles as points on the Jacobian this is equivalent to a real line segment not intersecting
the theta divisor Θ of the curve. Indeed there are sections for λ = 0, 2 and the flow is
periodic (mod 2) in λ and so we are interested in the number of times a real line intersects
Θ. While techniques exist that count the number of intersections of a complex line with the
theta divisor we are unaware of anything comparable in the real setting. We establish here
that of the countable number of solutions to the second constraint that

Theorem 1. The only curves of the family (1.1) that yield BPS monopoles correspond to

tetrahedrally symmetric monopoles. These have b = ±5
√

2, χ
1

3 = − 1
6

Γ( 1

6
)Γ( 1

3
)

2
1

6 π
1

2

.

An outline of the paper is as follows. In section 2 we will recall the constraints on the
curve Ĉ that are equivalent for a monopole to exist. We shall then describe the curve (1.1) in
more detail and make concrete these constraints for this curve. This will entail a description
of the homology and period matrix for the curve. At this stage we will have reduced the
problem to properties of the theta function for the genus 4 curve Ĉ. (Our theta function
conventions are given in Appendix A.) Now the curve (1.1) (and indeed the more general
curve η3 + αηζ2 + χ(ζ6 + bζ3 − 1) = 0 that will be explored elsewhere) is invariant under
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the cyclic group C3 and we have a covering π : Ĉ → C of a genus 2 curve C. In section 3
we will describe a theorem of Fay and Accola that allows us to express the genus 4 theta
functions in terms of genus 2 theta functions so reducing the problem to one of genus 2
theta functions. Then in section 4 we will use the reduction theory of Humbert to further
reduce the problem to that of elliptic functions. At this stage we have reduced the initial
problem of the existence of a BPS monopole to a question about the number of zeros of an
elliptic function on an interval. Section 5 describes this in more detail. Although we have
a stronger conjecture than we can prove, we are able to establish the theorem given above.
We end with some final observations in section 6.

2. The Spectral Curve and its Constraints

2.1. Hitchin Data. If ζ is the inhomogeneous coordinate on the Riemann sphere, and (ζ, η)
are the standard local coordinates on TP1 (defined by (ζ, η) → η d

dζ ), the spectral curve of a

charge n monopole Ĉ ⊂ TP1 may be expressed in the form

(2.1) P (η, ζ) = ηn + ηn−1a1(ζ) + . . . + ηran−r(ζ) + . . . + η an−1(ζ) + an(ζ) = 0,

where ar(ζ) (for 1 ≤ r ≤ n) is a polynomial in ζ of maximum degree 2r. We may view Ĉ as
an n-fold branched cover of P1 and (by a rotation if necessary) we may assume n distinct
preimages {∞k}n

k=1 of the point ζ = ∞. The form of the curve means that η/ζ ∼ ρkζ at
∞k. For a generic n-monopole the spectral curve is irreducible and has genus gĈ = (n−1)2.

We will denote by {âk, b̂k}g
Ĉ

k=1 a canonical homology basis of Ĉ.

The Hitchin data constrains the curve Ĉ explicitly in terms of the polynomial P (η, ζ)

and implicitly in terms of the behaviour of various line bundles on Ĉ. If the homogeneous
coordinates of P1 are [ζ0, ζ1] we consider the standard covering of this by the open sets
U0 = {[ζ0, ζ1] | ζ0 6= 0} and U1 = {[ζ0, ζ1] | ζ1 6= 0}, with ζ = ζ1/ζ0 the usual coordinate

on U0. We will denote by Û0,1 the pre-images of these sets under the projection map
π : TP1 → P1. Let Lλ denote the holomorphic line bundle on TP1 defined by the transition
function g01 = exp(−λη/ζ) on Û0 ∩ Û1, and let Lλ(m) ≡ Lλ ⊗ π∗O(m) be similarly defined
in terms of the transition function g01 = ζm exp (−λη/ζ). A holomorphic section of such

line bundles is given in terms of holomorphic functions fα on Ûα satisfying fα = gαβfβ. We
denote line bundles on C in the same way, where now we have holomorphic functions fα

defined on C ∩ Ûα.
The Hitchin data constrains the curve to satisfy:

H1: The curve Ĉ is real with respect to the standard real structure on TP1 (the anti-
holomorphic involution defined by reversing the orientation of the lines in R3),

(2.2) τ : (ζ, η) 7→ (−1

ζ̄
,− η̄

ζ̄2
).

H2: L2 is trivial on Ĉ and L(n − 1) is real.

H3: H0(Ĉ, Lλ(n − 2)) = 0 for λ ∈ (0, 2).

Only the first of these constraints is immediate to implement. The reality of the curve
means the coefficients of (2.1) satisfy

(2.3) ar(ζ) = (−1)rζ2rar(−
1

ζ
).
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For the curve (1.1) this is why χ and b are real. Ercolani and Sinha show the reality of L(n−1)
within the Baker-Akhiezer function setting and [BE06] implements this in terms of theta
functions on the curve. The triviality of L2 means that there exists a nowhere-vanishing
holomorphic section. In terms of the open sets Û0,1 we will have two, nowhere-vanishing

holomorphic functions, f0 on Û0 ∩ Ĉ and f1 on Û1 ∩ Ĉ, such that on the intersection

(2.4) f0(η, ζ) = exp

{
−2

η

ζ

}
f1(η, ζ).

Consideration of the logarithmic derivative of (2.4) shows that, in order to avoid essential
singularities, we must have

dlog f0(P ) =

(
2ρk

t2
+ O(1)

)
dt, at P → ∞k,(2.5)

where t = 1/ζ is a local parameter. Ercolani and Sinha introduced the normalized mero-
morphic differential γ∞ whose pole behaviour is that of 1

2dlog f0(P ) and whose a-periods
vanish. In terms of the vector of b-periods we have

Lemma 2 (Ercolani-Sinha Constraints). The following are equivalent:

(1) L2 is trivial on Ĉ.

(2) 2Û ∈ Λ ⇐⇒ Û = 1
2πı

(∮
b̂1

γ∞, . . . ,
∮

b̂g
Ĉ

γ∞

)
= 1

2n + 1
2 τ̂m where n, m ∈ Zĝ.

(3) There exists a 1-cycle c = n · â + m · b̂ such that
∮
c

Ω = −2β0 for every holo-

morphic differential Ω =
β0η

n−2 + β1(ζ)ηn−3 + . . . + βn−2(ζ)
∂P
∂η

dζ, where βj(ζ) is a

polynomial of degree at most 2j in ζ.

Here Λ is the period lattice of Ĉ and τ̂ the a-normalized period matrix. Ercolani and Sinha
established the equivalence of (1) and (2) while the dual form of the Ercolani-Sinha con-
straints (3) was given by Houghton, Manton and Ramão [HMR00]. If the anti-holomorphic

involution τ induces an action Mτ on the homology,

(
τ∗â

τ∗b̂

)
= Mτ

(
â

b̂

)
, then we have

MτJMτ = −J , where J is the standard symplectic structure, and

Corollary 3. τ∗c = −c or 2ÛMτ =
(
n m

)
Mτ = −

(
n m

)
.

The Ercolani-Sinha constraints place gĈ transcendental constraints on the spectral curve

Ĉ and, as noted in the introduction, solving these is a major difficulty in implementing this
theory.

We have yet to discuss H3, the implementation of which is the second type of prob-
lem mentioned in the introduction. Here Lλ(n − 2) is a degree gĈ − 1 line bundle so
using Riemann’s vanishing theorem for line bundles L of this degree, multiplicityL θ =
dimH0(C,O(L)), we see that Lλ(n − 2) does not lie in the theta divisor for λ ∈ (0, 2). In
[BE06] we establish that

Lemma 4. Let K̃ = K+φ ((n − 2)
∑n

k=1 ∞k) where K is the vector of Riemann constants
and φ the Abel-Jacobi map. Then

(2.6) H0(Ĉ, Lλ(n − 2)) 6= 0 ⇐⇒ θ(λÛ − K̃ | τ̂ ) = 0

for λ ∈ (0, 2), where θ is Riemann’s theta function for the curve Ĉ.
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Thus the second problem is to determine when the (real) line λÛ −K̃ intersects the theta

divisor Θ. We note the following properties of the vector K̃,

Lemma 5.

• K̃ is independent of the choice of base point of the Abel map.

• 2K̃ ∈ Λ.
• For n ≥ 3 then K̃ ∈ Θsingular, the singular locus of the theta divisor.

• Û ± K̃ is a non-singular even theta characteristic.

It is straightforward to see that 2Û 6= 0 and is a primitive vector in the period lattice.

We also remark that because K̃ is a half-period then

(2.7) θ(λÛ − K̃ | τ̂ ) = 0 ⇐⇒ θ(λÛ + K̃ | τ̂ ) = 0.

2.2. The curve and its properties. We will write the curve (1.1) in the form

(2.8) w3 = z6 + bz3 − 1 = (z3 − α3)(z3 +
1

α3
)

to avoid various factors, where (z, w) = (ζ,−η/χ1/3) and 1/α3 = (b +
√

b2 + 4)/2. With
ρ = e2ıπ/3 this curve has symmetries:

R : (z, w) → (z, ρw), σ : (z, w) → (ρz, ρw), c : (z, w) → (−1/z,−w/z2).

These yield the group C3 × S3, with C3 =< R|R3 = 1 > and S3 =< σ, c|σ3 = 1, c2 =

1, cσc = σ2 >. When b = ±5
√

2, the dihedral symmetry S3 is enlarged to tetrahedral
symmetry by

t : (z, w) →
(
±

√
2 ∓ z

1 ±
√

2z
,− 3w

(1 ±
√

2z)2

)
, t2 = 1,

with A4 being generated by σ and t.

The paper [BE06] chose an homology basis1 {âs
i , b̂

s
i} reflecting the symmetry R: R(b̂s

i ) =

−âs
i (i = 1, 2, 3) and R(b̂s

4) = âs
4. If we order the branch points {λ1, . . . , λ6} in terms of

increasing argument and denote by γk(zi, zj) the oriented path going from Pi = (zi, wi) to
Pj = (zj, wj) in the k-th sheet we may express these cycles as

âs
1 = γ1(λ2, λ1) + γ2(λ1, λ2), b̂s

1 = γ1(λ2, λ1) + γ3(λ1, λ2),

âs
2 = γ1(λ4, λ3) + γ2(λ3, λ4), b̂s

2 = γ1(λ4, λ3) + γ3(λ3, λ4),

âs
3 = γ1(λ6, λ5) + γ2(λ5, λ6), b̂s

3 = γ1(λ6, λ5) + γ3(λ5, λ6),

âs
4 = γ3(λ2, λ1) + γ2(λ1, λ5) + γ3(λ5, λ6) + γ1(λ6, λ2),

b̂s
4 = γ2(λ2, λ1) + γ3(λ6, λ2) + γ2(λ5, λ6) + γ1(λ1, λ5).

(2.9)

This is shown in Figure 1(a). In the next section we shall choose a homology basis reflecting
the symmetry σ in order to use the results of Fay and Accola. Let us fix the following
lexicographical ordering of independent canonical holomorphic differentials of Ĉ,

(2.10) du1 =
dz

w
, du2 =

dz

w2
, du3 =

zdz

w2
, du4 =

z2dz

w2
.

1The conventions of the paper [BE06] were such that the b-normalized period matrix was positive definite.
We must change the relative orientation of the a-cycles and b-cycles to obtain the positive definite a-
normalized period matrix used in this paper.
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Then the symmetry R together with the Riemann bilinear relations shows that the period
matrix for Ĉ may be expressed in terms of just the four periods

x = (x1, x2, x3, x4)
T =

(∮

a1

du1, . . . ,

∮

a4

du1

)T

.

Following Wellstein [Wel899] and Matsumoto [Mat01] we find

Proposition 6. Let Ĉ be the triple covering of P1 with six distinct point λ1, . . . , λ6,

(2.11) w3 =

6∏

i=1

(z − λi).

Then the a-normalized Riemann period matrix is of the form

τ̂s = ρ2

(
H + (ρ2 − 1)

xxT

xT Hx

)
,(2.12)

where H = diag(1, 1, 1,−1). Then τ̂s is positive definite if and only if

x̄T Hx < 0.(2.13)

In fact the symmetry of (2.8) means that x2 = ρx1, x3 = ρ2x1, and only two periods

need be computed. Choosing the first sheet so that w = 3

√
(z3 − α3)(z3 + 1/α3) is negative

and real on the real z-axis between the branch points (−1/α, α) these may be expressed in
terms of the integrals computed on the first sheet

I1(α) =

α∫

0

dz

w
= −2π

√
3α

9
2F1

(
1

3
,
1

3
; 1;−α6

)
,(2.14)

J1(α) =

−1/α∫

0

dz

w
=

2π
√

3

9α
2F1

(
1

3
,
1

3
; 1;−α−6

)
.(2.15)

Here 2F1(a, b; c; z) is the standard Gauss hypergeometric function and we may express the
periods as x1 = −(2J1+I1)ρ−2I1−J1 and x4 = 3(J1−I1)ρ+3J1. Thus the period matrix
may be expressed via (2.12) as rational expressions in terms of x1 and x4, or equivalently in
terms of I1 and J1.

Now the Ercolani-Sinha constraints place constraints on the periods. These were solved
in [BE06] to give

Proposition 7. To each pair of relatively prime integers (m, n) = 1 for which

(m + n)(m − 2n) < 0

we obtain a solution2 n =
(
n m − n −m 2n − m

)
, m =

(
−m n m − n 3n

)
to the

Ercolani-Sinha constraints for the curve (2.8) as follows. First we solve for t, where

(2.16)
2n− m

m + n
=

2F1(
1
3 , 2

3 ; 1, t)

2F1(
1
3 , 2

3 ; 1, 1 − t)
.

Then

(2.17) b =
1 − 2t√
t(1 − t)

, t =
−b +

√
b2 + 4

2
√

b2 + 4
,

2Note that m differs by a sign from that of [BE06] because we are working with a-normalized quantities
and their attendant orientations (see the previous footnote).
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and we obtain χ from

(2.18) χ
1

3 = −(n + m)
2π

3
√

3

α

(1 + α6)
1

3

2F1(
1

3
,
2

3
; 1, t)

with α6 = t/(1 − t).

Remarkably one may solve the transcendental equation (2.16) using a theory developed
to explain various formulae of Ramanujan [BBG95, Ber98]. We shall not need any examples
beyond those of [BE06]. At this stage one finds that the period matrix for a curve (2.8)
satisfying H1 and H2 may be expressed in terms in terms of the quantity

(2.19) R =
I1(α)

J1(α)
=

m − 2n

m + n
.

We note the following symmetries that preserve the constraints on (m, n),

(2.20) (m, n) 7→ (−m,−n), R 7→ R; (m, n) 7→ (n − m, n), R 7→ 1

R .

The remaining problem is to determine those allowed (n, m) which also satisfy H3. To make
use of our alternative characterisation (2.6) we record

Lemma 8 ([BE06]). For the curve (2.8) K̃ = Θsingular. Expressed as a characteristic,

K̃ =
1

2

[
1 1 1 1
1 1 1 1

]
.

Remark: Because in the case under consideration K̃ is an even half-period the function

the function θ(λÛ ± K̃, τ̂) vanishes to second order at least at the points λ = 0 and λ = 2

θ(λÛ ± K̃, τ̂)
∣∣∣
λ∼0

= ∂2
bU
θ(K̂; τ̂ )λ2 + O(λ4),

θ(λÛ ± K̃, τ̂)
∣∣∣
λ∼2

= ∂2
bU
θ(K̂; τ̂ )(λ − 2)2 + O((λ − 2)4).

We shall see that in fact it vanishes to order 4.
Finally we note some of the coverings associated with the curve Ĉ.

Lemma 9. The action of σ on the curve (2.8) yields the unramified covering π : Ĉ → C :=

Ĉ/C3, where C is the genus 2 hyperelliptic curve

(2.21) C = {(µ, ν)|ν2 = (µ3 + b)2 + 4},
with ν = z3 + 1/z3 and µ = −w/z. Further, C two-sheetedly covers the two elliptic curves
E±,

(2.22) E± = {(z±, w±)|w2
± = z±(1 − z±)(1 − k2

±z±)},
where

z± =
K2 − L2

K2 − ρL2

K − µ

ρK − µ

L2 − Kµ

L2 − Kρµ
,

w± = −ı
√

2 + ρ

√
L ± K

L ∓ K

K2

L

L2 − ρK2

ρL2 − K2

ν(L ∓ µ)

(µ − ρK)2(L2 − ρKµ)2
.

With M = K/L, K = (2ı − b)
1

3 and L = (b2 + 4)
1

6 the Jacobi moduli k± are given by

(2.23) k2
± = −ρ(ρM ± 1)(ρM ∓ 1)3

(M ± 1)(M ∓ 1)3
.
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3. Fay-Accola factorization

Thus far we have recalled earlier works: a countable putative family of spectral curves for
SU(2) BPS monopoles has been produced together with their period matrices and the vector

K̃ but it remains to discuss the Hitchin constraint H3. The formulation of this constraint
(2.6) is in terms of genus 4 theta functions and in this section we wish to reduce this to
questions of genus 2 theta functions making use of a remarkable factorization theorem due
to Accola and Fay [Acc71, Fay73] and also observed by Mumford. Let π : Ĉ → C be a

cyclic unramified covering. The map π leads to a map π∗ : Jac(C) → Jac(Ĉ) which may be

lifted to π∗ : Cg → Cĝ. When ẑ = π∗z the theta functions on Ĉ and C are related by this
factorization theorem. We shall now describe this theorem in the monopole setting.

Previously we have considered the symmetry R of the spectral curve. Now we shall
focus on the cyclic symmetry σ, C3 =< σ |σ3 = 1 > and the unramified covering π :

Ĉ → C := Ĉ/C3 described in Lemma 9. (The same considerations apply to the curve
η3 + αηχ2 + χ(ζ6 + bζ3 − 1) = 0 and more generally cyclically symmetric monopoles.) To
implement this theory we need a different choice of homology basis to that described earlier

which reflects this symmetry. We wish an homology basis {âc
0, . . . , â

c
3; b̂

c
0, . . . , b̂

c
3} on Ĉ and

{a0, a1, b0, b1} on C satisfying (for i = 1, 2, 3)

σk(âc
i) = âc

i+k, σk(b̂c
i ) = b̂c

i+k, σk(âc
0) ∼ âc

0, σk(b̂c
0) = b̂c

0, k = 1, 2, 3,

(that is σk(âc
0) is homologous to âc

0) and such that

π(âc
i ) = a1, π(b̂c

i ) = b1, π(âc
0) = a0, π(b̂c

0) = 3b0.

We may construct such a basis as follows. We take âc
1 = âs

1, b̂c
1 = b̂s

1 = −R2âs
1 and âc

0 = âs
4

and extend these by âc
i+k = σk

∗ (âc
i ) and b̂c

i+k = σk
∗ (b̂c

i ). Thus âs
i+k = R2(i+k−1)σk

∗ (âc
i), and

b̂s
i+k = R2(i+k−1)σk

∗ (b̂c
i ). At this stage we have defined the cyclic cycles âc

i , b̂c
i (i = 1, 2, 3)

together with âc
0. We complete the homology basis by seeking an invariant cycle b̂c

0 and
define the cycles on C in terms of these. Such a basis is exhibited in Figure 1(b). If we take

as ordered bases {γ̂s
i } = {âs

1, . . . , â
s
4; b̂s

1, . . . , b̂
s
4} and {γ̂c

i } = {âc
1, . . . , â

c
3, â

c
0; b̂

c
1, . . . , b̂

c
3, b̂

c
0}

then γ̂c
i = Sγ̂s

i where S is the symplectic matrix

(3.1) S =




1 0 0 0 0 0 0 0

0 −1 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 −1 0 0 0 0 0 0

0 0 1 0 0 0 −1 0

0 0 0 −1 0 0 0 1




:=

(
A B
C D

)
∈ Sp(8, Z).

For example

âc
2 = σâc

1 = σâs
1 = Râs

2 = −R2b̂s
2 = (1 + R)b̂s

2 = −âs
2 + b̂s

2.
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Fay works with the ordered basis {γ̂c
i } = {âc

0, â
c
1, . . . , â

c
3; b̂

c
0, b̂

c
1, . . . , b̂

c
3}, this reordering being

achieved (on both the a and b-cycles) by

S :=




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0




.

We may again represent these cycles as integrals between branch points:

âc
1 = γ1(λ2, λ1) + γ2(λ1, λ2), b̂c

1 = γ1(λ2, λ1) + γ3(λ1, λ2),

âc
2 = γ2(λ4, λ3) + γ3(λ3, λ4), b̂c

2 = γ2(λ4, λ3) + γ1(λ3, λ4),

âc
3 = γ3(λ6, λ5) + γ1(λ5, λ6), b̂c

3 = γ3(λ6, λ5) + γ2(λ5, λ6),

âc
0 = γ3(λ2, λ1) + γ2(λ1, λ5) + γ3(λ5, λ6) + γ1(λ6, λ2),

b̂c
0 = γ3(λ1, λ2) + γ1(λ2, λ5) + γ2(λ5, λ6) + γ3(λ6, λ3) + γ1(λ3, λ4) + γ2(λ4, λ1).

(3.2)

With the cyclic homology basis just described we have

Theorem 10 (Fay-Accola). With respect to the ordered canonical homology bases {γ̂c
i } =

{âc
0, â

c
1, . . . , â

c
3; b̂

c
0, b̂

c
1, . . . , b̂

c
3} and {a0, a1, b0, b1} specified above then the a-normalized Rie-

mann period matrices of Ĉ and C take the respective forms

(3.3) τ̂c =




a b b b
b c d d
b d c d
b d d c


 , τc =

(
1
3a b
b c + 2d

)
.

Moreover for arbitrary z = (z0, z1) ∈ C2 then π∗z = ẑ = (3 z0, z1, z1, z1) and

(3.4)
θ(3 z0, z1, z1, z1; τ̂

c)

∏2
k=0 θ

[
0 0
k
3 0

]
(z0, z1; τc)

= c0(τ̂
c)

is a non-zero modular constant c0(τ̂
c) independent of z.

In our setting we obtain

Proposition 11. The quantities a, b, c, d appearing in the Fay-Accola theorem are expressible
in terms of the holomorphic integrals x1, x4 (with ρ3 = 1) as

a = −6x2
1 − x2

4 + ρ(3x2
1 + x2

4)

3x2
1 − x2

4

, b =
(1 + 2ρ)x1x4

3x2
1 − x2

4

,(3.5)

c =
2x2

1 − x2
4 + ρ(x2

1 − x2
4)

3x2
1 − x2

4

, d = − (1 + 2ρ)x2
1

3x2
1 − x2

4

.(3.6)

Proof. If we perform the symplectic transformation of the period matrix (2.12) with the
symplectic transformation (3.1), τ̂s → (C +Dτ̂s)(A+Bτ̂s)−1, we obtain a period matrix of
the form 



c d d b
d c d b
d d c b
b b b a


 = S−1τ̂cS,
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the final result coming after conjugation by S to change the order of the homology basis to
match that of Fay. �

Again we see that the period matrix just depends on the ratio of x1/x4 or equivalently

on R. Now to make use of the Fay-Accola theorem we must show that the vectors Û and

K̃ may be obtained by pullback from Jac(C). To this end we have

Proposition 12. In the cyclic homology basis {âc
0, . . . , â

c
3; b̂

c
0, . . . , b̂

c
3} the winding vector Û

and vector K̃ take the form

Û = (Û0, Û1, Û1, Û1), Û0 = − C0x4

3x2
1 − x2

4

, Û1 =
C0x1

3x2
1 − x2

4

,(3.7)

K̃ =

(
1

2
,
1

2
,
1

2
,
1

2

)
+

(
1

2
,
1

2
,
1

2
,
1

2

)
τ̂c = (K̃0, K̃1, K̃1, K̃1),(3.8)

where C0 = −3(2n− m). The winding vector is a half-period and the Ercolani-Sinha vector

may be written 2Û = n̂ + m̂ τ̂c where

(n̂, m̂) = (5n − m, n, n, n, 3n,−m,−m,−m).

Proof. Using the explicit expression for the matrix A from [BE06] one has the vector Û
s

=
ν(1, 0, 0, 0)A−1 and

(3.9) Û
s

= −C0

(
x1

x2
4

,
ρx1

x2
4

,
ρ2x1

x2
4

,− 1

x4

)
.

Then with the symplectic transformation (3.1) Û = Û
s
(A + Bτ̂s)−1. The value of constant

C0 is found from the condition H2. Performing the symplectic transformation on the vector
(n, m) given in Proposition 7 yields

(n̂S, m̂S) = (n, m)S−1 = (n, n, n, 5n − m,−m,−m,−m, 3n)

and the result follows.
The only point to note is in the transformation of the vector of Riemann constants.

This has two parts: the vector K transforms as a vector, K → K(A + Bτ̂s)−1; but in
transforming the argument of a theta function function by a symplectic transformation the
characteristics of the theta function also transform (see Appendix A), and a theta function
with no characteristics may acquire characteristics. When dealing with Riemann’s theta
function (with vanishing characteristic) the acquired characteristics are typically placed in
the transformed vector of Riemann constants. We do this here and find

K̃ = (
1

2
. . .

1

2
)S−1

(
1
τ̂c

)
+

1

2

(
(CDT )0, (ABT )0

)( 1
τ̂c

)

yielding the stated result. �

The form of the vectors Û and K̃ given in the theorem establishes

Corollary 13. Û = π∗(U∗) and K̃ = π∗(K∗) where

U∗ =

(
1

3
Û0, Û1

)
, K∗ =

(
1

3
K̂0, K̂1

)
.

Therefore we may employ the Fay-Accola result. Introduce the three functions

fk(λ) = θ(λU ∗ + K∗ + k l∗ | τc), k = 0, +1,−1, l∗ =

(
1

3
, 0

)
.
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Up to exponential factors these correspond to the three genus 2 theta functions with char-
acteristics in the denominator of (3.4). Making use of (2.6, 2.7) we arrive at

Theorem 14. If λ ∈ [0, 2] then

(3.10) H0(Ĉ, Lλ(n − 2)) 6= 0 ⇐⇒ θ(λÛ ± K̃ | τ̂ ) = 0 ⇐⇒ fk(λ) = 0

for at least one k ∈ {0,±1}.
At this stage we have reduced the question H3 to questions about various genus 2 theta

functions and we shall look at these in the next section.
Remark: We note that the symplectic transformation



0 0 0 0 0 1 1 1

0 0 0 0 1 0 0 0

0 2 −1 −1 0 0 0 0

0 0 0 0 0 0 1 −1

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 1 −1 0 0 0 0 0




brings τ̂c to the form



−1

3

a

−3 b2 + ac + 2 ad

b

−3 b2 + ac + 2 ad
−1

3
0

b

−3 b2 + ac + 2 ad
− c + 2 d

−3 b2 + ac + 2 ad
0 0

−1

3
0

c − d

6

1

2

0 0
1

2
−1

2

1

c − d




.

One may identify the top 2 × 2 block as conjugate to −τc−1/3. Using this one can use
Weierstrass reduction to rewrite the genus 4 theta functions as in [BE06].

4. The Humbert variety

At this stage by using the Fay-Accola theorem we have reduced the question of the

vanishing of the genus 4 θ-function θ(λ Û + K̃; τ̂c) to that of the vanishing of the genus 2
θ-functions fk(λ), k ∈ {0,±1}. We can in fact do better. In [BE06] it was observed that
C covered two elliptic curves and we shall now exploit this geometry making use of ideas of
Humbert expounded in Krazer [Kra03] that we now recall.

Definition 1. The period matrix τ of a genus two algebraic curve C belongs to the Humbert
variety H∆ associated with the symplectic invariant ∆ if there exist integer qi ∈ Z satisfying

(4.1) q1 + q2τ11 + q3τ12 + q4τ22 + q5(τ
2
12 − τ11τ22) = 0

and

(4.2) q2
3 − 4(q1q5 + q2q4) = ∆.

The curve C covers elliptic curves E± if and only if ∆ is a perfect square, ∆ = h2 ≥ 1,
h ∈ N. Then the integer h is the degree of the cover.
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Theorem 15 (Bierman-Humbert). Let τ ∈ H∆ and ∆ = h2. Then there exists a
symplectic transformation S ∈ Sp(4, Z), such that

(4.3) S ◦ τ = τ̃ =

(
τ̃11

1
h

1
h τ̃22

)

The transformation S is given constructively and may be realized in a finite number of steps.

A modern proof of the theorem is given [Mur94] revising that of Krazer [Kra03].
When a 2 × 2 period matrix τ̃ has the structure (4.3) we may decompose the associated

θ-function as

θ(z1, z2 | τ̃ ) =

h−1∑

k=0

ϑ3

(
z1 +

k

h
| τ̃1,1

)
θ

[
k
h
0

] (
hz2 |h2τ̃2,2

)
, h2 = ∆.(4.4)

Here and below ϑk(z|τ), k = 1, 2, 3, 4 denote the Jacobi theta functions [BE55].
Our case is relevant to the Humbert variety H4 that has received most study. The

following is true.

Proposition 16. Let τc be the period matrix of the curve C. Then τc ∈ H4 with

(4.5) τ̃11 =
1

2

(ρ − 1) (−3 x1 + 2 x4 + ρ x4)

3 x1 − x4 + ρ x4
, τ̃22 =

1

6

(2 + ρ) (−3 x1 − x4 + ρ x4)

3 x1 + 2 x4 + ρ x4
.

Proof. Substituting the expressions we have for a, b, c and d in terms of x1 and x4 in the
matrix equality

τc =

(
τ11 τ12

τ12 τ22

)
=

(
1
3a b
b c + 2d

)

we may eliminate x1 and x4 to obtain the two relations:

0 = −2 − τ22 + 3τ11,(4.6)

0 = 1 − 3τ11 − τ2
12 + 3τ2

11.(4.7)

Using the first of these we may write 3τ2
11 = τ11(τ22 + 2) which leads to the second taking

the form
1 − τ11 + τ11τ22 − τ12

2 = 0.

This is (4.1) with q1 = 1, q2 = −1, q3 = 0, q4 = 0, q5 = −1 and the value of the invariant
∆ = 4. (We remark that other possibilities may arise in the elimination process but we
present only one resulting in ∆ = 4.) Standard procedure [Kra03], [BBE94] yields the
symplectic transformation

(4.8) S =




0 1 1 0

1 1 0 1

0 1 0 1

0 0 1 0




=

(
α β
γ δ

)
∈ Sp(4, Z)

which reduces τc to the form (4.3) with h = 2 and the stated identifications (4.5). �

This proposition enables us to write the genus two theta functions and so the functions
fk in terms of Jacobi θ-functions,

θ(z1, z2 | τ̃ ) = ϑ3 (z1 | τ̃1,1)ϑ3 (2z2 | 4τ̃2,2) + ϑ3 (z1 + 1/2 | τ̃1,1)ϑ2 (2z2 | 4τ̃2,2) .(4.9)

We will need to transform the argument z = λU ∗ + K∗ + k l∗ using the transformation
(4.8) but before doing so it is helpful to consider the moduli τ̃11 and τ̃22 and an additional
link between them. As explained earlier, the periods x1,4 are expressible in terms of the
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integrals I1(α) and J1(α) whose ratio (2.19) is constrained to be R. Only the ratios of x1,4

appear in (4.5) and we may replace these by R,

τ̃11 =
1

2

2 + 4 ρ + 3R
R + 1 + 2 ρ

=
2i
√

3 + 3R
2(R + i

√
3)

, τ̃22 = −1 + 2 ρ + 3R
6R = − i

√
3 + 3R
6R .

It is convenient to introduce the purely imaginary quantity (with positive imaginary part)

(4.10) T = −2ı
√

3

R = 2ı
√

3
n + m

2n − m
.

In terms of this we have

(4.11) τ̃11 = 1 − 1

T − 2
, τ̃22 =

T
12

− 1

2

and the transformed arguments take the form

U ′ = U∗(α + βτ)−1 =

((
−1 + i

√
3
)
C0 T

36(T − 2)
,−
(
3 + i

√
3
)
C0 T

216

)
,

l
′ = l

∗(α + βτ)−1 =

(
− (T − 3)

3(T − 2)
,
1

6

)
,

K′ = K∗(α + βτ)−1 +
1

2

(
(γδT )0, (αβT )0

)( 1
τa

)
=

(
4

3
− 1

3(T − 2)
,
T
12

− 1

6

)
.

Using (4.11, 4.9) and various substitutions the following proposition is established in Ap-
pendix B.

Proposition 17. For each pair of relatively prime integers (m, n) = 1 for which (2n −
m)(n + m) > 0 let Û be the Ercolani-Sinha vector and τ̂ the period matrix of the genus 4

curve described above. Then the function θ(λ Û + K̂ | τ̂ ) vanishes for λ ∈ [0, 2] if and only
if at least one of the three functions (with k ∈ Z)

hk(y) :=
ϑ3

ϑ2

(
i
√

3 y +
k T
3

∣∣∣T
)

+ (−1)k ϑ2

ϑ3

(
y +

k

3
| T

3

)
, k = −1, 0, 1 mod 3,(4.12)

also vanishes. Here y := y(λ) = λ (n + m)ρ/3, T = 2i
√

3(n + m)/(2n− m) and ϑ3

ϑ2

(z|T ) is

shorthand for ϑ3(z|T )
ϑ3(z|T ) . Further the functions hk satisfy

hk+3(y) = hk(y), hk

(
y +

2(n + m)

3

)
= hk−[n+m](y),

hk

(
y +

2(n + m)

3
ρ

)
=

{
(−1)n+m hk−[n+m](y) if m even,

(−1)khk−[n+m](y + T /2) if m odd,
(4.13)

hk(y(λ + 2)) = 0 ⇐⇒ hk−[n+m](y(λ)) = 0.

Therefore hk are elliptic functions with periods 2(n + m) and 4(n + m)ρ. We also note
that the zero divisors of hk(y) and hk(y + T /2) are the same.

Thus we have reduced the question of H3 to that of the zeros of the elliptic functions
hk. This theta function question is much simpler than the corresponding (much greater
degree) theta function expressions of [BE06] which arose making use of Weierstrass-Poincaré
reduction. Exploiting the geometry has greatly simplified the problem. We shall turn to the
theta function question in the next section.
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Remark: We have an action of Γ(2)×Γ(2) on period matrices of the form

(
λ1 1/2
1/2 λ2

)
which

may be associated to any genus 2 curve with extra involution distinct from the hyperelliptic

involution. Here Γ(2) =

{(
a b
c d

)
∈ PSL(2, Z)

∣∣∣ a ≡ d ≡ 1 (mod 2), b ≡ c ≡ 0 (mod 2)

}

has generators τ 7→ τ + 2 and τ 7→ τ
1−2τ and we have the exact sequence

1 → Γ(2) → PSL(2, Z) → S3 → 1.

To see this we observe that with the action

(
A B
C D

)
: τ 7→ (C + D τ)(A + B τ)−1 we have

s




1 2 −4 0
0 1 0 0
0 0 1 0
0 1 −2 1




(
λ1 1/2
1/2 λ2

)
7→
(

λ1

1−4λ1
1/2

1/2 λ2

)

t




1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1




(
λ1 1/2
1/2 λ2

)
7→
(

λ1 + 1 1/2
1/2 λ2

)




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




(
λ1 1/2
1/2 λ2

)
7→
(

λ2 1/2
1/2 λ1

)

If we set µ = 2λ1 then s and t give the actions µ 7→ µ + 2, µ 7→ µ
1−2µ and so generate Γ(2);

conjugation by the final matrix then extends this to Γ(2) × Γ(2). Then with

(4.14) τ̃ ′
11 = s2t−1 (τ̃11) = − 1

T + 6
, τ̃ ′

22 = t (τ̃22) =
T + 6

12

and we have 12τ̃ ′
11τ̃

′
22 + 1 = 0, the relation Bolza’s claimed for period matrices for such

curves [Bol887].
We may now give an alternate characterization of those curves (1.1) satisfying Hitchin’s

conditions H1 and H2.

Proposition 18. The family of curves η3 + χ(ζ6 + bζ3 − 1) = 0 satisfy the constraints H1
and H2 when

(4.15) b(m, n) = −
√

3(p(m, n)6 − 45p(m, n)4 + 135p(m, n)2 − 27)

9p(m, n)(p(m, n)4 − 10p(m, n)2 + 9)

and χ = χ(m, n) may be expressed in terms of m, n and b(m, n) by Proposition 7. Here m
and n are relatively prime integers (m, n) = 1 for which (m + n)(m − 2n) < 0 and

(4.16) p(m, n) =
3ϑ2

3

(
0|T (m,n)

2

)

ϑ2
3

(
0|T (m,n)

6

) , T (m, n) = 2ı
√

3
n + m

2n − m
.

Indeed we may relate the elliptic curves E± of Lemma 9 with the period matrix (4.5) or
the symplectically equivalent (4.14) via
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Corollary 19. The genus two curve C two-sheetedly covers the elliptic curves E± whose
Jacobian moduli may be written

k2
+ =

ϑ4
2

(
0|T6

)

ϑ4
3

(
0|T6

) , k2
− =

ϑ4
2

(
0|T2

)

ϑ4
3

(
0|T2

)

The proof of both the proposition and corollary is presented in Appendix C.

5. The Theta function Question

The final step in establishing the existence of monopoles with spectral curve (1.1) is then
to understand the vanishing properties of the function

(5.1) H(y) = h−1(y)h0(y)h1(y)

with the definitions introduced in Proposition 17. H(y) is also an elliptic function with
periods 2(n + m)/3 and 4(n + m)ρ/3. Given the periodicity in k of hk proven in this
proposition we have that

Lemma 20. H(y(λ)) = 0 ⇔ H(y(λ + 2)) = 0 and these functions have the same vanishing
properties.

Numerical calculations in [BE07] suggested the conjecture

Conjecture 21. For each pair of relatively prime integers (m, n) = 1 for which (2n−m)(n+

m) > 0 let y = y(λ) = λ(n + m)ρ/3 and T = 2i
√

3(n + m)/(2n − m). Then H(y) vanishes
2(|n| − 1) times on the interval λ ∈ (0, 2).

To prove the uniqueness of the tetrahedral monopole within the class of symmetric mono-
pole curves it will suffice to show only (m, n) = (1, 1) and (0, 1) have no zeros within the
range. At present we don’t know how to prove the more general conjecture. We expect
vanishing at λ = 0 and 2. This follows here due to

Lemma 22. We have the following identities for all τ in the upper half-plane:

ϑ3

(
τ
3 | τ

)

ϑ2

(
τ
3 | τ

) =
ϑ2

(
1
3 | τ

3

)

ϑ3

(
1
3 | τ

3

)(5.2)

ϑ2
4(0|τ)i

√
3

ϑ1

(
τ
3

∣∣ τ
)
ϑ4

(
τ
3

∣∣ τ
)

ϑ2
2

(
τ
3

∣∣ τ
) + ϑ2

4

(
0
∣∣∣τ
3

) ϑ1

(
1
3

∣∣ τ
3

)
ϑ4

(
1
3

∣∣ τ
3

)

ϑ2
3

(
1
3

∣∣ τ
3

) = 0(5.3)

Similar identities may be obtained by cyclic interchange of the θ-subscripts i, j, k ∈ {2, 3, 4}.

As a consequence we obtain

ϑ3

(
τ
3 | τ

)

ϑ2

(
τ
3 | τ

) =
ϑ3

(
± τ

3 | τ
)

ϑ2

(
± τ

3 | τ
) =

ϑ3

(
2τ
3 | τ

)

ϑ2

(
2τ
3 | τ

) =
ϑ2

(
1
3 | τ

3

)

ϑ3

(
1
3 | τ

3

) = −ϑ2

(
2
3 | τ

3

)

ϑ3

(
2
3 | τ

3

) .

Although we have not seen these identities in the standard texts known to us these identities
may be established by standard techniques. We then have,

Lemma 23. At λ = 0 we have

(5.4) h±1(0) = 0, h0(0) 6= 0,

and each of the functions, h±1(y(λ)) vanish to second order in λ.
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Proof. At the point y = 0 we have that h±1(0) = 0 on account of (5.2). Further the
derivatives

d

dz

(
ϑ3

ϑ2

(
z
∣∣∣T
))

= πϑ2
4(0|T )

ϑ1

ϑ2

(
z
∣∣∣T
) ϑ4

ϑ2

(
z
∣∣∣T
)

,

d

dz

(
ϑ2

ϑ3

(
z
∣∣∣T
))

= −πϑ2
4(0|T )

ϑ1

ϑ3

(
z
∣∣∣ T
) ϑ4

ϑ3

(
z
∣∣∣ T
)

.

show that h′
±1(0) = 0 also vanishes on account of (5.3) and so both vanish to second order

here. Standard θ-function expansions show that h0(0) is nonvanishing.
�

A consequence of this lemma is that H(y(λ)) vanishes to fourth order in λ at λ = 0 and

2; this is equivalent to the higher order vanishing of θ(λÛ ± K̃, τ̂) remarked upon earlier.
We may now establish the theorem stated in the introduction.

Proof of Theorem 1. The dependence (4.10) of the modulus T = T (R) on the ratio R
means that the vanishing hk(y) = 0 and H(y) = 0 define (respectively) implicit functions
y = Xk(R) and y = X(R) of the real variable R. Although our problem has R ∈ Q we
may extend its domain to the whole real half-line, |R| ∈ R+ (recall our conventions are such
that R < 0). The functions X∗(R) are clearly multi-valued reflecting the periodicities of
hk(y) and H(y). We may determine many points on X(R) using the fundamental Lemma
22. For example, consider y = 2ρ/3 and solutions to h−1(2ρ/3) = 0. Substitution and some
simplification leads to solving

(5.5)
ϑ3

ϑ2

( |R| + 2

6
T
∣∣∣T
)

=
ϑ2

ϑ3

( |R|
6

T +
1

3
| T

3

)
.

Using Lemma 22 we find solutions when

• |R| is even, giving |R| = 6k or 6k + 2 ie 2, 6, 8, 12, 14, . . .
• |R| is odd, giving |R| = 3, 5, 9, 11, 15, 17, . . ..

Similar arguments give solutions

y = 2ρ/3 h−1 |R| = 2, 3, 5, 6, 8, 9, 11, 12, . . .
y = 2ρ/3 h0 |R| = 1, 2, 4, 5, 7, 8, 10, 11, . . .
y = 4ρ/3 h0 |R| = 1, 2, 4, 5, 7, 8, 10, 11 . . .
y = 4ρ/3 h0 |R| = 3k + 1/2,
y = 4ρ/3 h1 |R| = 2, 3, 5, 6, 8, 9, 11, 12, . . .
y = 4ρ/3 h1 |R| = 3k + 1/2, . . .
y = 2ρ h1 |R| = 1, 2, 3, 4, 5, 6, 7, 8, 9, . . .

and so on. At several of these points these points the tangent to X∗(R) becomes vertical;
these may be obtained by solving the analogous formulae for the tangent. A graph of some
of the components of X(R) is given in Figure 2.

Now using the symmetry (2.20) we may assume that n+m ≥ 1 and so for λ ∈ (0, 2) then
y/ρ ∈ (0, 2(n + m)/3) ⊇ (0, 2/3). Now we see that X(R) always has a zero in (0, 2/3) for
all |R| = (2n − m)/(n + m) ∈ (1, 2) ∪ (2,∞) and so these values cannot yield a monopole.
Similarly if n + m ≥ 2 there is always a zero of X(R) in (0, 4/3) for any |R| 6= 1/2. Thus
we must have either n + m = 1 and |R| ∈ (0, 1] ∪ {2} or n + m = 2 and |R| = 1/2. The
only solutions to these constraints are (m, n) = (0, 1) with |R| = 2 and (m, n) = (1, 1) with
|R| = 1/2. For all other (m, n) there are solutions to H(y) = 0 for λ ∈ (0, 2) and thus by
Proposition 17 they do not yield monopoles. Now the two cases (m, n) = (0, 1), (1, 1) were
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shown to yield the tetrahedrally symmetric monopoles in [BE06]. Thus we have established
Theorem 1. �

Remark: We numerically observe that hk(y) = 0 ⇐⇒ hk(ρy) = 0 ⇐⇒ hk(ρ2y) = 0. The
modulus of the elliptic functions hk is 2ρ so this is not simply complex multiplication. This
observation remains unexplained.

6. Discussion

This paper has been devoted to the study of certain charge three (centred) SU(2) BPS
monopoles. The spectral curve of the general monopole of this class may be put (by a
rotation) in the form

η3 + η(α0ζ
4 + α1ζ

3 + αζ2 − ᾱ1ζ + ᾱ0) + βζ6 + β1ζ
5 + β2ζ

4 + γζ3 − β̄2ζ
2 + β̄1ζ − β = 0

with α, β and γ real. Hitchin’s constraints on the spectral curve mean there are transcen-
dental relations amongst these coefficients and the outstanding problem is to realise these.
Two sorts of problem arise. The first is implementing Hitchin’s constraint H2 coming from
the triviality of the line bundle L2 on the spectral curve. This leads via the equivalent
Ercolani-Sinha constraints (Lemma 2) to requiring the vector of b-periods of the meromor-
phic differential γ∞ to be a half-period in the period lattice. In [BE06] it was shown for the
trigonal curve

η3 + βζ6 + β1ζ
5 + β2ζ

4 + γζ3 − β̄2ζ
2 + β̄1ζ − β = 0

how these might be reexpressed in terms of the four a-periods of a specified holomorphic
differential. These constraints were then solved for the symmetric curves

η3 + βζ6 + γζ3 − β = 0,

and a countable family of curves satisfying this constraint of Hitchin ensued. The problem
of requiring a curve with specified periods of a given meromorphic differential arises in
many settings within finite-gap integration theory. The bijective correspondence between
harmonic maps T 2 → S3 and algebro-geometric data, specifying curves with given filling
fractions in the AdS/CFT correspondence and seeking closed real geodesics on an ellipsoid
all lead to this problem. Finding ways to solve such will be an important area for future
research.

The second type of problem and the focus of this paper has been in satisfying Hitchin’s
constraint H3, the vanishing of a real one parameter family of cohomologies of certain line

bundles, H0(Ĉ, Lλ(n−2)) = 0 for λ ∈ (0, 2). We reexpressed this in terms of the intersection
of a real line with the theta divisor Θ of the curve and the problem is to count the number
of intersection points. Again a more general theory is called for. We made progress here
utilizing two features of the geometry of our situation. The first was that our curve (1.1) has
extra symmetry: it falls within a class studied by Hitchin, Manton and Murray [HMM95]
when looking at spectral curves of monopoles with spatial symmetries. Curves of the form

(6.1) η3 + αηζ2 + βζ6 + γζ3 − β = 0

have a cyclic C3 symmetry (ζ, η) → (ρζ, ρη) where ρ3 = 1. If γ = 0 this is enlarged to a dihe-
dral symmetry D3 with (ζ, η) → (1/ζ,−η/ζ2). Actually the spectral curves themselves have
larger symmetry (for any γ in the curve (6.1) we have the symmetry (ζ, η) → (−1/ζ,−η/ζ2))
but the nomenclature is based on those symmetries that may be realized as spatial sym-
metries. This cyclic symmetry means there exists a quotient spectral curve. Here it was of
genus 2. We were then able to show that a theorem of Fay and Accola applied and so the
problem reduced to one about the theta divisor of the quotient curve (Theorem 14). For a
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cyclically invariant charge n monopole exactly the same considerations apply and we find the
genus (n−1)2 monopole curve is an n-fold unbranched cover of a genus (n−1) hyperelliptic
curve. This is the Affine Toda curve of Seiberg-Witten theory observed by Sutcliffe [Sut96].
Thus symmetry together with the Fay-Accola theorem reduces the problem significantly.
The second simplifying feature reduced the problem to one of elliptic functions: Humbert
theory tells us our curve covered an elliptic curve. This feature is a consequence of the great
symmetry of our curve and will not persist for the general curves (6.1). Notwithstanding
this reduction to questions of elliptic functions we have not proven the general Conjecture
21 counting the number of intersections of the line with the theta divisor. We have however
established the uniqueness of the tetrahedrally symmetric monopole within spectral curves
of the form (1.1).

An obvious line for further study is to seek those monopoles within the class (6.1). Hitchin,
Manton and Murray argued that there were five loci of monopoles within this. These loci
are totally geodesic submanifolds of the full moduli space and may be viewed as the orbits of
geodesic monopole scattering. Of these loci, one corresponded to D3 symmetric monopoles:
asymptotically we have α3 = 27β2 (with β large and positive at one end and negative at the
other) and half-way along this there is the axisymmetric monopole. The other four loci were
isomorphic: at one end asymptotically one has α3 = 27β2 (with β of either sign) and γ = 0
while at the other end α = π2/4 − 3b2, β = 0 and γ = 2b(b2 + π2/4) (with b of either sign).
Half-way along this is the tetrahedrally symmetric monopole, the four loci corresponding
to four distinct orientations of the tetrahedron. Extending our work to this broader class
encounters new difficulties. Although we may use the cyclic symmetry to express the curve
and Ercolani-Sinha constraints to ones for the quotient curve, the period integrals arising
are not simply expressible in terms of hypergeometric functions and the curve does not cover
an elliptic curve. These are significant complications and we hope to pursue this elsewhere.
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Appendix A. Theta Functions

For r ∈ N the canonical Riemann θ-function is given by

(A.1) θ(z | τ) =
∑

n∈Zr

exp(ıπnT τn + 2ıπzT n).

The θ-function is holomorphic on Cr × Sr and satisfies

(A.2) θ(z + p | τ) = θ(z | τ), θ(z + pτ | τ) = exp{−ıπ(pT τp + 2zT p)} θ(z | τ),

where p ∈ Zr.
The Riemann θ-function θa,b(z | τ) with characteristics a, b ∈ Q is defined by

θa,b(z | τ) = exp
{
ıπ(aT τa + 2aT (z + b)))

}
θ(z + τa + b | τ)

=
∑

n∈Zr

exp
{
ıπ(n + a)T τ(n + a) + 2ıπ(n + a)T (z + b)

}
,

where a, b ∈ Qr. This is also written as

θa,b(z | τ) = θ

[
a

b

]
(z | τ).
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For arbitrary a, b ∈ Qr and a′, b′ ∈ Qr the following formula is valid

θa,b(z + a′τ + b
′ | τ) = exp

{
−ıπa′T τa′ − 2ıπa′T z − 2ıπ(b + b

′)T a′
}
× θa+a′,b+b′(z | τ).

(A.3)

The function θa,b(τ) = θa,b(0 | τ) is called the θ-constant with characteristic a, b. We
have

θ−a,−b(z | τ) = θa,b(−z | τ)

θa+p,b+q(z | τ) = exp(2πıaT q)θa,b(z | τ)

The following transformation formula is given in [Igu72, p85, p176].

Proposition 24. For any g =

(
A B
C D

)
∈ Sp(2g, Z) and (a, b) ∈ Q2g we put

g · (a, b) = (a, b)g−1 +
1

2
(diag(CDT ), diag(ABT ))

φa,b(g) = −1

2
(aDT BaT − 2aBT Cb

T + bCT Ab
T ) +

1

2
(aDT − bCT )T diag(ABT ),

where diag(A) is the row vector consisting of the diagonal components of A. Then for every
g ∈ Sp(2g, Z) we have

θg·(a,b)(0 | (Aτb + B)(Cτb + D)−1) = κ(g)exp(2πıφa,b(g)) det(Cτb + D)
1

2 θ(a,b)(0 | τb)

(A.4)

in which κ(g)2 is a 4-th root of unity depending only on g while

θg·(a,b)(z(Cτb + D)−1 | (Aτb + B)(Cτb + D)−1) = µ exp
(
iπz(Cτb + D)−1CzT

)
det(Cτb + D)

1

2

× θ(a,b)(z | τb)

(A.5)

and µ is a complex number independent of τ and z such that |µ| = 1.

Appendix B. Proof of Proposition 17

The proposition follows from Theorem 14. Let us first simplify (4.9) first using (4.11).
Using the standard transformation properties,

ϑ3

(
z1

∣∣∣ 1 − 1

T − 2

)
= ϑ4

(
z1

∣∣∣ − 1

T − 2

)

= (−i [T − 2])
1/2

exp
[
iπz2

1(T − 2)
]

ϑ2

(
[T − 2] z1

∣∣∣T − 2
)

= (−i [T − 2])
1/2

exp
[
iπz2

1(T − 2) − iπ/2
]

ϑ2

(
[T − 2] z1

∣∣∣ T
)

ϑ3

(
z1 + 1/2

∣∣∣1 − 1

T − 2

)
= ϑ4

(
z1 + 1/2

∣∣∣ − 1

T − 2

)

= (−i [T − 2])
1/2

exp
[
iπ(z1 + 1/2)2(T − 2)

]
ϑ2

(
[T − 2] (z1 + 1/2)

∣∣∣T − 2
)

= (−i [T − 2])1/2 exp
[
iπz2

1(T − 2)
]

ϑ3

(
[T − 2] z1

∣∣∣T
)

ϑ3 (2z2 | 4τ̃2,2) = ϑ3

(
2z2 |

T
3
− 2

)
= ϑ3

(
2z2 |

T
3

)
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ϑ2 (2z2 | 4τ̃2,2) = ϑ2

(
2z2 |

T
3
− 2

)
= exp(−iπ/2)ϑ2

(
2z2 |

T
3

)
.

we obtain

θ(z1, z2; τ̃ ) = (−i [T − 2])
1/2

exp
[
iπz2

1(T − 2) − iπ/2
]

×
[
ϑ2

(
[T − 2] z1

∣∣∣ T
)

ϑ3

(
2z2 |

T
3

)
+ ϑ3

(
[T − 2] z1

∣∣∣ T
)

ϑ2

(
2z2 |

T
3

)]
.

(B.1)

Now the argument z = λU ′ + K ′ + k l′ is simplified upon setting

y =
n + m

3
ρ λ =

n + m

3

(−1 + i
√

3)

2
λ.

This yields

[T − 2]z1 = −i
√

3 y +
4

3
T − 3 + k − k

T
3

, 2z2 = y +
T
6

+
k − 1

3
.

With Aτ (v) = e−iπ(2v+τ), Bτ (v) = e−iπ(v+τ/4) we have

ϑ2

(
[T − 2] z1

∣∣∣ T
)

= (−1)k−1AT (−[i
√

3 y + (k − 1)
T
3

])ϑ2

(
i
√

3 y + (k − 1)
T
3

∣∣∣ T
)

ϑ3

(
2z2 |

T
3

)
= BT /3(y +

k − 1

3
)ϑ2

(
y +

k − 1

3
| T

3

)

ϑ3

(
[T − 2] z1

∣∣∣ T
)

= AT (−[i
√

3 y + (k − 1)
T
3

])ϑ3

(
i
√

3 y + (k − 1)
T
3

∣∣∣T
)

ϑ2

(
2z2 |

T
3

)
= BT /3(y +

k − 1

3
)ϑ3

(
y +

k − 1

3
| T

3

)

and substituting these in (B.1) gives us, up to an exponential factor, the function Hk−1(y)
where we define the functions

Hk(y) : = ϑ3

(
i
√

3 y +
kT
3

∣∣∣ T
)

ϑ3

(
y +

k

3
| T

3

)
+ (−1)k ϑ2

(
i
√

3 y +
kT
3

∣∣∣ T
)

ϑ2

(
y +

k

3
| T

3

)
,

(B.2)

hk(y) : =
Hk(y)

ϑ2

(
i
√

3 y + kT
3

∣∣∣T
)

ϑ3

(
y + k

3 | T
3

)

= hI
k(y) + (−1)k hII

k (y) =
ϑ3

ϑ2

(
i
√

3 y +
kT
3

∣∣∣T
)

+ (−1)k ϑ2

ϑ3

(
y +

k

3
| T

3

)
,

(B.3)

where k ∈ Z and ϑ3

ϑ2

(z|T ) is shorthand for ϑ3(z|T )
ϑ3(z|T ) . Thus we have shown

fk(λ) = 0 ⇐⇒ Hk−1(λ) = 0.

To establish the proposition we observe that the zeros of Hk(y) are different from those of

ϑ2

(
y + k

3 | T
3

)
and ϑ3

(
i
√

3 y + kT
3

∣∣∣ T
)
. Upon writing y = w(−1 + i

√
3) with w real a zero

of ϑ2

(
y + k

3 | T
3

)
takes the form

y = w(−1 + i
√

3) = m1 +
1

2
− k

3
+ n1

T
3

, n1, m1 ∈ Z

while a zero of the latter has the form

i
√

3 y = w(−i
√

3 − 3) = m2 +
1

2
+ (n2 +

1

2
− k

3
) T , n2, m2 ∈ Z.
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If these were to vanish simultaneously then we see from their imaginary parts that

0 = n2 +
n1

3
+

1

2
− k

3
,

which is not possible. Hence the zero’s of Hk(y) are different from those of ϑ2

(
y + k

3 | T
3

)

and ϑ3

(
i
√

3 y + kT
3

∣∣∣ T
)
. Therefore

fk(λ) = 0 ⇐⇒ Hk−1(y(λ)) = 0 ⇐⇒ hk−1(y(λ)) = 0

and (4.12) is established up making use of Theorem 14.
The first periodicity of (4.13) is follows immediately from the periodicity of the theta

functions. For the second we note

hI
k

(
y + 2

(n + m)

3

)
=

ϑ3

ϑ2

(
i
√

3 y +
(2n − m)

3
T +

kT
3

)
∣∣∣ T
)

= hI
k−[n+m](y),

hII
k

(
y + 2

(n + m)

3

)
= (−1)n+m hII

k−[n+m](y),

hk

(
y + 2

(n + m)

3

)
= hk−[n+m](y),

hI
k

(
y + 2

(n + m)

3
ρ

)
=

ϑ3

ϑ2

(
i
√

3 y − (n + m)

3
i
√

3 − (n + m) +
kT
3

)
∣∣∣ T
)

= (−1)n+m ϑ3

ϑ2

(
i
√

3 y − (2n − m)

6
T +

kT
3

)
∣∣∣ T
)

= (−1)n+m
[
hI

k−[n+m](y)
]ǫ(m)

hII
k

(
y + 2

(n + m)

3
ρ

)
=

ϑ2

ϑ3

(
y +

k − [n + m]

3
+

(2n − m)

6
T
∣∣∣ T

3

)
=
[
hII

k−[n+m](y)
]ǫ(m)

hk

(
y + 2

(n + m)

3
ρ

)
=





(−1)n+m hk−[n+m](y) if m even,

(−1)kgk−[n+m](y) if m odd,

where ǫ(m) = 1 if m is even and −1 if m is odd and

gk(y) := hk

(
y +

T
2

)
=

Hk(y)

ϑ3

(
i
√

3 y + kT
3

∣∣∣ T
)

ϑ2

(
y + k

3 | T
3

)

Now y(λ + 2) = y(λ) + 2(n + m)ρ/3 and the result follows as hk(y) = 0 ⇐⇒ gk(y) = 0.

Appendix C. Proof of Proposition 18

The proof involves three steps. First let us parameterize M = (2ı − b)
1

3 /(b2 + 4)
1

6 of
Lemma 9 by

(C.1) M =
p + ı

√
3

p − ı
√

3
.

Then solving for b we obtain the form (4.15),

(C.2) b = −
√

3(p6 − 45p4 + 135p2 − 27)

9p(p4 − 10p2 + 9)
.
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The same substitution (C.1) in the Jacobian moduli (2.23) leads to their parametrization

(C.3) k2
+ =

(p + 1)3(3 − p)

16p
, k2

− =
(p + 1)(3 − p)3

16p3
.

This is the parametrization used by Ramanujan in his hypergeometric relations of signature
3, see e.g. [BBG95]. The θ-functional representation of the moduli k± can be found in
[Law89, Section 9.7],

(C.4) k+ =
ϑ2

2(0|τ)

ϑ2
3(0|τ)

, k− =
ϑ2

2(0|3τ)

ϑ2
3(0|3τ)

, p =
3ϑ2

3(0|3τ)

ϑ2
3(0|τ)

.

To establish the proposition we must show that the parameter τ = T (m, n)/6. To do
this we next consider a genus two curve with period system τ11,

1
2 , τ22. Bolza [Bol886, p.451]

showed that the associated genus two curve may be presented in the form

(C.5) w2 = (1 + z2)(c2 + e′
2
z2)(c′

2
+ e2z2)

with c = θ2
2/θ2

3, c′ = θ2
4/θ2

3, e = Θ2
2/Θ2

3, e′ = Θ2
4/Θ2

3 and θj = ϑj(0|2τ11), Θj =
ϑj(0|2τ22), j = 2, 3, 4. For the moment let us assume this is our curve C. Both the (unnor-
malized) holomorphic differentials zdz/w and dz/w reduce to the holomorphic differentials
of elliptic curves that we shall call (and shortly identify with) E± by the (respective) sub-
stitutions z2 = t and z2 = 1/t,

(C.6)
1

2

dt√
(1 + t)(c2 + e′2t)(c′2 + e2t)

, −1

2

dt√
(1 + t)(c2t + e′2)(c′2t + e2)

.

The Jacobian moduli of E± are then

(C.7) k2
+ =

e2

e′2
c2 − e′2

c′2 − e2
, k2

− =
c′2

c2

c2 − e′2

c′2 − e2
.

Taking the period system (4.14), i.e. τ11 = −1/(T + 6), τ22 = (T + 6)/12, one can see that

c =
1

C′
, c′ = ı

C

C′
, e = −ı

E

E′
, e′ =

1

E′

where

C =
ϑ2

2

ϑ2
3

(
0|T

6

)
, C′ =

ϑ2
4

ϑ2
3

(
0|T

6

)
, E =

ϑ2
2

ϑ2
3

(
0|T

2

)
, E′ =

ϑ2
4

ϑ2
3

(
0|T

2

)
.

Again using the parametrization (C.3, C.4) we obtain from (C.7) after simplification,

k2
+ = C2 =

ϑ4
2

ϑ4
3

(
0|T

6

)
, k2

− = E2 =
ϑ4

2

ϑ4
3

(
0|T

2

)
.

This has proven τ = T (m, n)/6 provided we can establish the curve (C.5) is C and identify
the elliptic curves E± as above.

Our final step then is to show the curve (C.5) is birationally equivalent to the curve (2.21).
Indeed let

T =
L + µ

L − µ
, S =

8ν

(L − µ)3
, µ = L

T − 1

T + 1
, ν =

L3S

(T + 1)3
.

Then (2.21) transforms to

S2 = (T − 1)6 + 2
b

L3
(T 2 − 1)3 + (T + 1)6.
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This curve is of the same form as (C.5) up to scaling of S and T . Using the substitution
(C.2) this becomes

(
S√

2(1 − b/L3)

)2

= 27
(p − 1)

2
(p + 1)

2

p2 (p + 3)
2
(−3 + p)

2 T 6 + 9
45 p2 + 18 + p6

p2 (p + 3)
2
(−3 + p)

2 T 4

+ 3
2 p6 + 45 p4 + 81

p2 (p + 3)
2
(−3 + p)

2 T 2 + 1

whereas (C.5) may be written

( w

cc′

)2

=
(p + 3)4 (p + 1)2

(p − 1)
4
p2 (−3 + p)

2 z6 +

(
45 p2 + 18 + p6

)
(p + 3)

2

(p − 1)
4
p2 (−3 + p)

2 z4

+
2 p6 + 45 p4 + 81

p2 (−3 + p)2 (p − 1)2
z2 + 1.

These coincide with z =
√

3 (p − 1)T/ (p + 3). The substitution W = T 2 reduces the
canonical differentials dT/S and T dT/S to the canonical differentials of the elliptic curves
E± given in Lemma 9. These correspond to the differentials and curves E± identified above.

In the course of the proof we find the θ-constant representation for the Jacobian moduli
of the curves E±,

(C.8) k+(m, n) =
ϑ2

2

(
0|T (m,n)

6

)

ϑ2
3

(
0|T (m,n)

6

) , k−(m, n) =
ϑ2

2

(
0|T (m,n)

2

)

ϑ2
3

(
0|T (m,n)

2

) , T (m, n) = 2ı
√

3
n + m

2n − m

which yields the corollary.
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(a) The symmetric basis âs
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Figure 1. The homology bases. Sheet 1 is denoted by a solid line; sheet 2
by a dashed line; and sheet 3 by a dotted line.
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Figure 2. The plot shows (some) branches of the multi-valued function
y = X(R) given implicitly by the equation H(y) = 0. Circles on the
plot shows points at which the tangent lines are vertical. The bold lines
correspond to |R| = 2 and 1/2. The different colours correspond to branches
of y = Xk(R) (blue=X1, green=X0, red=X1).
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