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Abstract This paper considers the efficient construction of a nonparametric fam-
ily of distributions indexed by a specified parameter of interest and its application
to calculating a bootstrap likelihood for the parameter. An approximate expression
is obtained for the variance of log bootstrap likelihood for statistics which are de-
fined by an estimating equation resulting from the method of selecting the first-level
bootstrap populations and parameters. The expression is shown to agree well with
simulations for artificial data sets based on quantiles of the standard normal distri-
bution, and these results give guidelines for the amount of aggregation of bootstrap
samples with similar parameter values required to achieve a given reduction in vari-
ance. An application to earthquake data illustrates how the variance expression can be
used to construct an efficient Monte Carlo algorithm for defining a smooth nonpara-
metric family of empirical distributions to calculate a bootstrap likelihood by greatly
reducing the inherent variability due to first-level resampling.

Keywords Aggregating samplesBootstrap likelihood Estimating equations
Exponential tilting- Nonparametric tilting Smoothing populations

1 Introduction

Davison, Hinkley and Worton (1992) used a nested bootstrap method to generate an
analogue of partial likelihood. The basic procedure when applied to an estifhator
for a paramete6 and a data set, ..., X,, which is assumed to be a random sample
from a distribution functiori, proceeds as follows. Generate a first-level bootstrap
samplexj, ..., x; from F, the empirical distribution ok, ...,x,, and calculate the
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Algorithm 1 Bootstrap likelihood procedure

1. First-level resamplingGenerateM first-level bootstrap samples, and for each sample cactite
value of the parameter estimate Each sample is treated as a population with parameter value

2. Second-level resamplingfor each population from step 1, generate second-levebtraptsamples,
and for each sample calculate the value of the parametenagsti*.

3. Density estimationEstimate the bootstrap likelihood associated with parametiuet* by estimating
the conditional density df* givent* at the observed value of the parameter estimate for thenatigi
datat.

4, Curve fitting: Scatterplot smooth (on the log scale) t#ebootstrap likelihood points obtained from
step 3 to obtain a curve of bootstrap likelihood.

estimatet* associated with the samptg, . .., ;. We consider such a first-level boot-
strap sample as a populatigA* with parameter valu€‘. Repeat this steM times

to produce populations’;, ..., &%, with parameter valuef, ... ,ty;,. For each#,
andty, m=1,...,M, use a second-level of bootstrapping to estimate the gensit
of T**, the estimator computed from a second-level sampile .., x;*. In its most
general form this is done by using Monte Carlo simulation kewhel density estima-
tion. However, it is usually much more efficient to use a dgrespproximation, e.g.

a saddlepoint method (Davison and Hinkley 1988; Kuonen 200§ is available

to replace the direct simulation at the nested second-teviebotstrap resampling.
Evaluating each density gtthe observed value df for the original data set, giveéd
likelihood points atj, ... ,ty. A complete likelihood can be computed by applying a
curve-fitting algorithm to these points. Algorithm 1 giveswanmary of the steps of
the numerical procedure.

Aninherent source of variation in the above algorithm is thuthe random mech-
anism used to select the first-level populations and paemvatues. However, for
each value of* in a suitable interval for parameter values, our objectvimideter-
mine the expectation of the log bootstrap likelihood witepect to first-level popu-
lations with parameters very closetto In Algorithm 1 this is simply achieved by the
use of step 4 to remove the substantial variation about theaation, but it seems
highly desirable to reduce this variation at an earlier stag directly averaging the
first-level populations themselves.

To illustrate the variability of simulated populations sader first-level bootstrap
samples for the earthquake data set studied in Section 4obl$ervations are the
time intervals in days between the worldwide earthquaka® 1990 to 2010 which
resulted in at least 1000 people being killed. In this exanipere aren = 24 ob-
servations, and the parameter of interest is the mean altbetween earthquakes.
Figure 1 shows four first-leve?;;, populations. For each population, some values in
the original data set do not appear in the population whiteovalues can appear
several times. For example, in populatigfy none of the lower values appear but a
value just below 500 days appears four times. In fact, thelfaipns shown in Fig. 1
have been simulated to have a parameter vilu® be the same as the mean of the
original data set, i.e. = 297.75, but even so it is evident that the populations differ
significantly, and thus have considerable variability, thude nature of sampling. We
note that for this value of the parameter, with~ t, the expected population should
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Fig. 1 Frequenciesnp,;,i = 1,...,n, of four first-level 2, populations for the earthquake data set with
n = 24 discussed in Section 4. Each of these four first-level ladipns has a parameter value téf=
297.75 (297.75 is the mean of the original sample)

haven—! atx;, i = 1,...,n, but each of the simulated populations deviates from its
expectation fairly markedly.

In order to reduce this undesirable feature, an averagdgiquwith a parameter
value neafy can be defined as the aggregate of several first-level baptstmples
for which 6y — £ <t* < 6y + €, with € chosen as a small positive constant. To aggre-
gateMg, such populations we can average the relative frequencerio first-level
bootstrap samples. Specifically, pf,; denotes the relative frequency at poktn
populationZy, i = 1,...,Mg,, then the relative frequency at poixtin the aggre-
gatedpopulation is given by

1 Mo
P (6o) = M—eo ng Prmi-

For example, in the case of the earthquake data set fromo&ektive could combine
the populations with a parameter value of about 297.75, asithose shown in Fig. 1,
to obtain a smoothed population, and for this particulanpeater value we would
expect a population that is similar to the original sampbeptdactice we would take
many more thaMg, = 4 first-level populations to reduce the variance of each efgm
of (p;(6b),---,P5(6o)) " with respect to the first-level sampling, and thus the vasan
of log bootstrap likelihood at the parameter valigeto an acceptable level.
Empirical evidence (Davison, Hinkley and Worton 1992, 1:9%&vison and Hink-
ley 1997; Ventura 2002) suggests that such population dnmapis an effective vari-
ance reduction technique. However, currently there armgively limited practical



guidelines on how to best select the number of samples teeggtg when construct-
ing smoothed empirically defined populations. One init@sideration is that some
care is needed in resampling as with conventional resampiiost populations will
have a parameter value fairly similar to the value of thasttatfor the original data
set, as indicated in Section 2. Furthermore, below we detraiaghat we need to
generate many more populations in the regions associatbdaw likelihood, but
unfortunately these regions correspond to parameter saliik very low probability
of generating populations.

In the present paper we study the use of aggregation in theeatested boot-
strap algorithm in more detail for estimators which can bi#tem as the solution of
a smooth estimating equation, including the case of the mieatheory we could
conduct a large simulation experiment for each data setidersl to determine log
bootstrap likelihood variability based on either unsmeathr various smoothed pop-
ulations with different levels of aggregation. Howeveistls not really a viable prac-
tical solution, and we thus propose and investigate a faggbapmate technique. This
can then be routinely applied in each problem to construgit@arimade Monte Carlo
simulation algorithm for defining populations for the cad#tion of bootstrap likeli-
hood. Certainly there would be no practical advantage inguaifar more computa-
tionally expensive technique to determine variability iotree approximate methods
which we investigate in this paper.

An alternative but extremely efficient approach to calaiaform of bootstrap
likelihood was proposed by Pawitan (2000), and this avdidsteed for the second-
level of resampling and for the curve fitting. However, in terent paper, we restrict
our attention to the original definition of bootstrap likedod based on nested resam-
pling, and generating nonparametric populations in ordetefine a bootstrap like-
lihood. Within this framework we aim to construct an effidi@approach to generate
the nonparametric populations.

In Section 2 we obtain an approximate expression for thewmas of a log boot-
strap likelihood conditional on the value of the paramétexhich results from the
first-level bootstrap resampling variability. Section 3rqmares the results obtained
by using this formula with variances obtained by direct datian for artificial data
sets based on the quantiles of a normal distribution. Ini@ee the approximate
variance is used to design an efficient Monte Carlo simutagilgorithm in which
thet* values are selected so that when populations are aggrebateariance of log
bootstrap likelihood is approximately constant over theapeeter values, and at an
acceptable level.

2 Variance approximation for log bootstrap likelihood

We now obtain an approximate expression for the conditivagance of log boot-
strap likelihood in the general case of an estimatavhich is defined by the unique
solution to the estimating equation* s, u(x, T) = 0, whereu(x, 8) is a mono-
tonic decreasing function o, and is smooth at the data points for the values of
6 considered. Here we have a paramétatetermined implicitly byE{u(X,0)} =
Ju(x,8)dF(x) =0.



First, the second-level bootstrap density estimator is@pmated by (Hinkley
and Shi 1989)

n

T ~ N(t*, nfls*Z)’ S*Z _ nfl lei*27
i=

wherely = 1(x, 2*) = "800 with v = —n-13" {du(x,0)/30}|g—r-, i the
empirical influence function of at theith sample poin’ when sampling from
populationZ?* with parameter valug'.

By evaluating this approximate density Df* at the observed value for the orig-
inal data sett, we obtain an approximate (partial) bootstrap likelihoodthe pa-
rameterf att*. Taking the natural logarithm of this likelihood, the apyiroate log

bootstrap likelihood at* based onZ?* up to an additive constant is given by

o 1, 42 Nt—t%)?
I(t*") = —5logs oz Q)
If p* = (pi,...,p;)T denotes the relative frequencies of the valkes. ., x, associ-
ated with populatior??”, that isp;’ = #(x’j‘ =x)/n, then we can expres& in terms

of p* andt* as

o2 _ SIL1 pruA(xi,t)
{Zhy Py (%, t4) 32

whereu'(x,0) = du(x;,0)/96.

Under simple random sampling of the data...,X, to generate the first-level
bootstrap samples, ..., x5, np* has a multinomial distribution (Efron and Tibshirani
1993 p. 286), that is

p* ~n Mult(n,p),

withp=(n~%,...,n"HT.

Using large sample properties of the veqtdr we have thap* is approximately
multivariate normal with mean vectgr and covariance matri¥ /n, whereV =
diagp) —pp" (Mardia, Kent and Bibby 1979 p. 52).

For a particular value dft, saytg, inn~1 s, u(x',t$), make the transformation
fromp* toq* = (q5,...,q)" = Ay;p*, where

1 0 o - 0 0
0 1 o - 0 0
At(): . .
0 0 o - 1 0

U(Xe, 1) Uk, 1) U(Xa. ) = U(Xn-1,15) Uk tg)

Therefore, using properties of multivariate normal randa@utors, the vectog* is
asymptotically multivariate normal with mean vector?,...,n=t,n=1 s u(x,t))",
and covariance matri® = A VAtT6 /n.



It follows that the conditional distribution of = (r},....r: )T =(d},...,q; ;)"
giveng; =n"13M u(x',t5) = SN, pru(x,ty) =0 is approximately multivariate nor-
mal with mean vector and covariance matrix given by

n

mg =E(rgy=0)=(n""....n"HT+ Blngg{—nflziu(x; )}
i=

Cyy = var(r*|d; = 0) = B11 — B12B;3Boy,
whereB;1,B12,B21, andBy; partition the matrix8 such that

B_ (311 BlZ)
B21 B2 /-
We note that in the present cont®¢; is a scalar as the parameter is a scalar.

We can view the mean vectan;, as tilted probabilities to ensure the constraint
that the population?* has specified parameter valtfg rather than the mean of
the first-level bootstrap statisti¢s over populations??* beingt as is the case for
the unconstrained and untilted sampling correspondingmple random sampling
(Hinkley and Shi 1989).

Applying the multivariate delta method for large samplesBp, Fienberg and
Holland 1975 p. 493) to the conditional distributionrdfgiven the particular value
t5, yields the variance dft*) att; as

vg) - 28) ¢, 2) @

with r* evaluated atn; . Theith element ol (t;) /dr* in (2), evaluated at* = mg,
is given by

nK.t* % % * *
AL um,to){um,to)—u(xn,to>}+2vt5s%{u’(m,tw—
2% ’

u(%, to)U (n,to) H 7

u(xn,t3)

wherek; = {(t—t5)7 —n '}, § = STl w06, 1), iy = — ST kil (%, 1)
and iy is determined bys ! ; piu (x| ) =0if (U1,...,th-1)T = my;, provided that
U(Xn,t3) # 0.

From the general case of an estimating equation considbmetave can deduce
an approximate expression for the conditional varianceogfdootstrap likelihood
in the special case of the sample mean estimates,n* S i1 X, of the population
mean,0 = E(X) = [xdF(x). With this case we have(x,t) =x —t, v = 1,1 =
xF —t* ands? = S, pf(x —t*)2 with t* = X*. As a consequence of the simpler form
of s2 than in the more general case, the corresponding expressitheith element
of dl(t5)/dr* in (2) can be shown to have a simpler form, and is given by

N0 —xi)(tg —x){(t —t5) —nlStz}

wheres% =5N (% —t3)2



We can exploit the analysis developed in this section in atjwa way to not
only study the variance of log bootstrap likelihood as a fiomcof the parameter of
interest but also to give guidelines on how much aggregatidinst-level bootstrap
samples should be applied for a particular data set, andnwh#ite amount of ag-
gregation should vary with the value of the parameter. Shglthe results used to
derive (2), we can deduce thatdf samples with similar values of ~ t; are aggre-
gated to produce an ‘average’ smoothed population withrpater valud* ~ t; then
the denominator of in the covariance matriB is replaced bynK. Consequently
both Cté andv(ty) are reduced by a factor &f. Of course, the precise parameter
value for such an aggregated population may be determiratlgxin Section 3 we
will demonstrate that variances of log bootstrap likelii@ary considerably for dif-
ferent values of the parameter. This means that differeousns of aggregation will
be appropriate to obtain comparable final variability fdfedient values ofj. How-
ever, at a particular value ¢f, we can select an appropriefe sayKg, to achieve
the variability we require. In Section 4 we employ this réslitectly to construct a
method for combining samples over values of the parametaterfest, with the ob-
jective of reducing the variation of log bootstrap likeldtbto acceptable levels over
a range of suitable parameter values.

3 Numerical study: normal reference

In this section we apply the approximate variance exprassiiained in Section 2
to artificial data sets of various sample sizes based on thealalistribution for the
case of the sample mean. The data sets were taken as

X|_®l<nl——’—1)7 i:].,...,n,

where @1 is the inverse of the standard normal distribution functithe results
may be used as a normal-type reference for the level of vamiate might expect
at a given value of*, and thus to provide guidelines for the number of samples it i
necessary to aggregate ato achieve a specified reduction in variance.

Approximate variance (2), together with particular valdesermined by direct
simulation, for the case = 20 are plotted in Fig. 2 and illustrate the dependence of
the variance on the distance between the first-level papualatarameter value and
the observed value of the statistic for the original data\&etcan see that the variance
is far from constant as a function @if —t| and is extremely high for the distance of
about|t* —t| ~ 2sm 2.

Table 1 shows that the variances obtained by applying appadion (2) agree
well with simulated values obtained under simple randompding and exponential
tilted random sampling, which is discussed in Section 4hefdata. The results for
the larger sample sizes of= 100 andn = 250 illustrate that the approximation ob-
tained in Section 2, which was based on a large sample ardguimg@noves as sample
size increases. For the smaller sample sizes-6fl5 andn = 20, it can be seen that
the approximate variances obtained from (2) are lower thase obtained using the
numerically intensive simulation methods @t = 1.5, but are slightly higher when
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Fig. 2 Approximate conditional variance (2) of log bootstrap lilkeod givent* plotted agains®* =

nz |t* —t|/s, for the artificial data set based on the quantiles of a nodistibution with sample size
n = 20. Each point shown on the graph was estimated from 50,000latied log bootstrap likelihoods

with |[T* —t*| < 0.0005%n? calculated under simple random sampling (symbpand exponential tilted
sampling witha = z/(sn% ),z=1(symbol:A),2 (symbol:+)

0* = 2.0. However, overall, the approximate variances still gigwad indication of

the variability relative to the variability at other valuesd*, and therefore the ap-
proximation seems highly suitable for the method which @gpoised in Section 4. We
also can see that & = 1.0 the variance is low, a feature which has been observed
in empirical studies (e.g., see Fig. 5).

For each sample size, although the variability is low'at-t| = sn? , itincreases

very fast beyondt* —t| = 1.53n*21, indicating that much greater levels of aggregation
are required in regions of low likelihood. Comparing theutesfor the columns of
Table 1 relating t@* = 0.0 andd* = 2.0 we can see that about 25 times as much
first-level bootstrap sample aggregation would be necessdr = 2.0 as aid* = 0.0

to achieve similar levels of variance of log bootstrap likebd in the case of the
sample size oh = 15. The corresponding levels of increase are about 20 and 10
times as much aggregation for= 20 andn = 50 respectively. Furthermore, if we
are using the log bootstrap likelihood to set 95% confideineiéd, for example, then
variability at|t* —t| ~ 2sn 2 is of interest. For these data sets, we should aggregate
approximately 70, 40 and 10 first-level samples close topbist forn = 15, 20 and

50 respectively to reduce the variance of the log bootstkafitood to about A2,
under each of the resampling methods considered. Althaugbhieve a variance of

about 005 at |t* —t| ~ 2% we would need to aggregate approximately 270, 150



Table 1 Variance of log bootstrap likelihood for artificial datasetithx, = @~ 1{i/(n+1)},i=1,...,n,

at various values ob* = n? [t* —t|/s, for sample sizes af = 15, 20, 50, 100 and 250. The approximate
conditional variance was calculated using (2), while eaatiamce under simple random sampling (SRS)

and exponential tilted sampling with = z/(sn%), z=1,2, was estimated from 5000 simulated log
bootstrap likelihoods withT* —t*| < 0.0005n 2

6*
n 0.0 0.5 1.0 1.5 1.75 2.0
15 Approximate Eg. (2) 0.0200 0.0115 0.0001 0.0750 0.2559737
SRS (untilted) 0.0259 0.0116 0.0065 0.1298 0.2753 0.6679

Exp. tilted samplingZ=1) 0.0260 0.0117 0.0064 0.1312 0.2751 0.6643
Exp. tilted samplingZ=2) 0.0254 0.0117 0.0068 0.1331 0.2893 0.6501

20  Approximate Eq. (2) 0.0160 0.0091 0.0000 0.0478 0.1526399F.
SRS (untilted) 0.0187 0.0093 0.0023 0.0702 0.1739 0.3580
Exp. tited samplingZ=1) 0.0189 0.0092 0.0023 0.0700 0.1716 0.3548
Exp. tited samplingZ=2) 0.0189 0.0093 0.0023 0.0697 0.1742 0.3618

50 Approximate Eq. (2) 0.0075 0.0043 0.0000 0.0151 0.0436099%
SRS (untilted) 0.0076 0.0041 0.0002 0.0161 0.0414 0.0846
Exp. tilted samplingZ=1) 0.0077 0.0041 0.0002 0.0159 0.0421 0.0870
Exp. tilted samplingZ=2) 0.0076 0.0042 0.0002 0.0162 0.0430 0.0874

100  Approximate Eq. (2) 0.0041 0.0023 0.0000 0.0073  0.0203044B
SRS (untilted) 0.0040 0.0023 0.0000 0.0072 0.0192 0.0404
Exp. tited samplingZ=1) 0.0041 0.0023 0.0000 0.0073 0.0196 0.0406
Exp. tited samplingZ=2) 0.0041 0.0023 0.0000 0.0073 0.0195 0.0406

250  Approximate Eq. (2) 0.0018 0.0010 0.0000 0.0029  0.00800172
SRS (untilted) 0.0018 0.0010 0.0000 0.0029 0.0077 0.0163
Exp. tilted samplingZ=1) 0.0018 0.0010 0.0000 0.0029 0.0079 0.0167
Exp. tilted samplingZ=2) 0.0018 0.0010 0.0000 0.0029 0.0078 0.0167

and 40 first-level samples for= 15, 20 and 50 respectively, highlighting the need to
generate a sufficient number of samples in regions of loviltiked.

Although the above study gives some indication of the resuét might expect
in an idealised situation, it does have limitations due ® pharticular form of the
data sets used. Therefore, to investigate how results mgyovar simulated data
sets, Fig. 3 shows the results of applying the approximatiorarious data sets of
sample size 20 simulated from a normal distribution. Forgarison, results obtained
by computationally expensive direct simulation are alsuded, and are similar to
the computationally inexpensive approximation. We cantlsatthe variance of log
bootstrap likelihood has broadly similar features to theuhes for the artificial data
set of size 20: the variance is extremely highdémear+2, but low whend* is close
to +1, and moderate fa¥* =~ 0.
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Fig. 3 Approximate conditional variance (2) of log bootstrap lilkeod givent* plotted agains®* =
n (t* —t)/s, for various simulated normal data sets each with sampéensiz 20. Each point shown on

the graphs was estimated from 50,000 simulated log boptéik@lihoods with|T* —t*| < 0.0005M 2.
(Note that they-axis is plotted on the square-root scale, as the variameesxeremely high for the extreme
&* values.)

4 Application to earthquake data set

An application of the proposed methodology to calculatiba bootstrap likelihood
for earthquake data is considered in this section. Tablggsdghe dates and locations
of earthquakes from 1990 to 2010 in which at least 1000 peabipte The last column
lists the number of days between the earthquakes farth24 intervals over the total
of 7146 days.

The parameter of intereétis the mean time interval in days between the earth-
guakes. The mean interval for the earthquake data $et 897.75. Figure 4 shows
the approximate variance curv@*) for this problem which we will employ to de-
sign an efficient method for constructing populations theat be used to calculate
bootstrap likelihood. Also shown on the plot are some egBmabtained by direct
simulation. As with the artificial data sets of Section 3, floe earthquake data set
the variability is extremely high for values of the paramétefar from the sample
mean of the data, and thus first-level populations assabvetl these regions require
more aggregation than populations associated with thealgrairameter region near
t = 297.75. Considering the results in terms of the number of agdeefast-level
bootstrap samples required to reduce the variance to, fanpbe, 005 as presented
in the right axis of Fig. 4 shows the extremely high levels gdi@gation needed for
the higher and lower parameter regions.
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Table 2 Earthquake data set (U.S. Geological Survey, 2010). Wadielwarthquakes from June 1990 to
January 2010 with at least 1000 deaths

Date Location Interval between earthquakes (days)
(year/month/day)

1990 06 20 Western Iran

1990 07 16 Luzon, Philippine Islands 26
19911019 Northern India 460
19921212 Flores Region, Indonesia 420
1993 09 29 Latur-Killari, India 291
199501 16 Kobe, Japan 474
1995 05 27 Sakhalin Island 131
1997 05 10 Northern Iran 714
1998 02 04 Hindu Kush Region, Afghanistan 270
1998 05 30 Afghanistan-Tajikistan Border Region 115
1998 07 17 Papua New Guinea 48
1999 01 25 Colombia 192
1999 08 17 Turkey 204
1999 09 20 Taiwan 34
2001 01 26 Gujarat, India 494
2002 03 25 Hindu Kush Region, Afghanistan 423
20030521 Northern Algeria 422
2003 12 26 Southeastern Iran 219
2004 12 26 Sumatra 366
2005 03 28 Northern Sumatra, Indonesia 92
2005 10 08 Pakistan 194
2006 05 26 Indonesia 230
2008 05 12 Eastern Sichuan, China 717
2009 09 30 Southern Sumatra, Indonesia 506
20100112 Haiti Region 104

We first give some general practical considerations befeseribing an efficient
method for implementing calculation of bootstrap likeliltb The results of Section 2
indicate that to achieve approximate homogeneity of vagatM’ (usuallyM’ < M)
selected nominal poin®, . .., Gy, with populations defined as the aggregate of first-
level bootstrap samples having parameters within Bips € <t* < 6+ €, where
0< & < s 2 for sdefined below, we require the number of samples imttiebin
to be proportional te(6y). Ordinary (untilted) bootstrap sampling at the first-lagel
clearly a very poor method for generating the populatigfisasT* is approximately
N(t,n1s%), with s> =n=15" ; 12, wherel; = x; —t is the empirical influence function
of T atx when sampling fronf, and this density is far from being proportional to
the variance shown in Fig. 4. We could incorporate rejectampling to combin&,
samples in thenth population such that 6y,) /Km is equal to a constant, for example
0.0%?, but this is extremely inefficient for values 6f, which are far from the mean
of the original samplé = 297.75.

In practical applications it is much more efficient to getenaopulations with
t* values that are (in effect) continuous, with reference(td) as a guide on where
t* values are required, rather than use rejection sampling avitmited set of pa-
rameter values. This can be done by use of importance sagnfkponential tilted
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Fig. 4 Approximate conditional variance (2) of log bootstrap litkeod givent* for the earthquake data
with sample siz& = 24. Each point shown on the graph was estimated from 50,80dated log bootstrap

likelihoods with|T* —t*| < 0.0005%n™ 3. The right axis gives the number of first-level bootstrap glasnit
is necessary to aggregate to reduce the varianc®%.qNote that they-axis is plotted on the square-root
scale, as the variances are extremely high for the lower myteit* values.)

resampling (Johns 1988; Hinkley and Shi 1989) was used affiaieet method to
suitably and substantially increase the generation ofegbft* in regions of high
log bootstrap likelihood variability. With this approadhe resampling probabilities
of the data are taken as

Pr(X* =x) Oexpal), 3)

for a specified tilting constant, to give T* ~ N(t + as?,n~1s?). By being able to
select the tilting constamt appropriately, based on the formf), we have control
over placement of the' parameter values in regions where they are most needed. To
be specific, the following steps of an inversion-type altjwn were used to determine
appropriate first-level populations:

1. Calculate a functio®(u) = [“v(u)duwith integration implemented using a sim-
ple numerical procedure.

2. Determine a suitable set of tilting constantg,= (Tm — t)/sz, with 1, specified
with reference to the variance functiefi), such thatry, = G-{m/(M + 1)},
evaluated using interpolatiom=1,... M.

3. GeneratM first-level bootstrap samples with importance samplinggi$8) and
the tilting constants obtained in step 2.

We have an additional important requirement t#as sufficiently large to ensure that
the variability of log bootstrap likelihood, based on aggred first-level samples,
is expected to be below a specified level over values of thanpater. The right
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Fig. 5 Log bootstrap likelihood points for the earthquake datagisinaggregated first-level populations

axis of Fig. 4 and similar plots for other variance levelsyide us with guidance
on the selection of an appropriate value kr In addition, the selection could be
based on the local density of thg values, but it is more natural to assess whether
sufficient samples have been generated locally over eaak irathe parameter space
by studying the actudl* values within intervals, as we do in the application to the
earthquake data below.

The log bootstrap likelihood poins*, I (t*)) from step 3 of Algorithm 1 using the
above approach to generate populatigfis . . ., &y, with parameter valuds, . . . ,ty;
are plotted in Fig. 5 for the earthquake data set. In thisieptbn, the value of
M = 1000 was chosen sufficiently large so théf)/K < 0.02%, whereK is the
number of first-level samples with parameter within an wveed —10<t* < 6+
10, for any 240< 6 < 380. The likelihood points were obtained by using a density
estimator ofT** in the second-level bootstrap approximated by*M~1s?), but
a saddlepoint approximation density estimator would peedvery similar results,
with high variability due to the multinomial sampling dissed in Section 2. Note
the high levels of variability of log bootstrap likelihood Fig. 5 for the lower and
upper values of*, as predicted by Fig. 4.

We now use these populatiods;, ..., Zy, which have been generated to suit-
ably increase* values in regions of high log bootstrap likelihood variapijlto de-
fine a smooth family of empirical distributions indexed b fharameter of interest.
A convenient way to smoothly aggregate first-level boogssamples to obtain a
smoothed population with a target value of the paramétesay, is to locally aver-
age the populationg’;, ..., & with parameter valuds, . . . . ty), with a kernel-type
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smoother (Davison, Hinkley and Worton 1995)

; Moore0—ta\ .
P (6%¢) O ZW< : m) P i=1,...,n,
m=1

wherep;y, ..., Pmn denote the relative frequenciesxaf . . ., x, for populationZy,
m=1,...,M, with a chosen bandwidth> 0 and kernel functiomw(.). Herew(.) was
taken as the standard normal density function. The prolibip; (6°, €) associated
with pointsx, i = 1,...,n, are now considered as defining a smoothed population
27*(89, ) for which the precise value of the parame@fi6°,¢) ~ 6° can be de-
termined. Although, as noted by Canty, Davison, Hinkley gadtura (2006) in the
context of bootstrap diagnostic®? and8(8°, ) are very similar for small or mod-

erate values of the smoothing parameter, e;g.O.an*% to 1.0sn 2. A grid of 6°
values was used to generalé = 100 populations over an interval of parameter val-
ues. Of course, the value &’ is not crucial, but needs to be large enough to give
an accurate representation of the curve, as it is the locightesd averaging of the
underlyingM populations that gives a reduced variance. These smootedations
were then used in steps 2 and 3 of Algorithm 1 in place of thgimeil unsmoothed
samples to compute the bootstrap likelihood.

Figure 6 shows eight independent log bootstrap likelihoaes for the earth-
guake data set, obtained by repeat applications of Algorittbut with the smoothed
populations replacing the unsmoothed populations. Eachecwas calculated by
using the above aggregation method, with- 0.33n*%, M = 1000 andM’ = 100.
Evidently, there is a dramatic reduction in the variabiityen compared with Fig. 5,
both within and between the different curves, and this mégirovides a much more
effective use of first-level bootstrap samples than thechasithod, especially if the
very inefficient (untilted) simple random resampling werée used to generate first-
level bootstrap samples. Also, and perhaps of equal impoetdt seems more desir-
able for likelihood to vary smoothly over an underlying fyniather than erratically
jump about as the parameter value varies, and this vatiatulhave to be removed by
scatterplot smoothing. Note that for the smoothed nonpanacrpopulations step 4
of Algorithm 1 is not necessary as the population smoothsraypificient to generate
a smooth curve of log bootstrap likelihood.

5 Conclusions

In this paper we have shown that by using the properties ¢fiével bootstrap sam-
ples it is possible to obtain an explicit approximate exgi@sfor the variance of log
bootstrap likelihood. We have applied this expression ttably generate first-level
bootstrap samples in order to define a smooth family of napatric distributions
indexed by a parameter of interest. From a computationait i view, we have
shown that in its implementation we can employ approachssdan tilted sampling
to obtain an efficient method for constructing the smootheplupations which are
used to compute a curve of log bootstrap likelihood.

One key feature of the unsmoothed bootstrap populatiorsisttey are inher-
ently variable and in particular do not vary smoothly witle frarameter of interest,
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Fig. 6 Eightindependent log bootstrap likelihood curves for theleuake data using smoothed first-level
populations. (No scatterplot smoothing, step 4 of Algenith, has been used to generate the curves.)

whichever method of density smoothing is applied to the sédevel bootstrap sam-
ples. We should note that if kernel density estimation iglugeen increasing the level
of smoothing leads to grossly biased estimation and is rroggpiate in the present
context. At the other extreme, it is possible to define a patemfamily of empir-

ical distributions which does vary smoothly with the paréenef interest, e.g. an
empirical exponential family model. However, by doing this are not fully exploit-

ing the nonparametric nature of the problem. Thereforegigie smoothed popula-
tions seems to be an attractive compromise between usinmoothed bootstrap
populations which have high variability and using a paraiméamily of empirical

distributions which may place possibly unreasonable caimgt on the populations.
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