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Abstract This paper considers the efficient construction of a nonparametric fam-
ily of distributions indexed by a specified parameter of interest and its application
to calculating a bootstrap likelihood for the parameter. An approximate expression
is obtained for the variance of log bootstrap likelihood for statistics which are de-
fined by an estimating equation resulting from the method of selecting the first-level
bootstrap populations and parameters. The expression is shown to agree well with
simulations for artificial data sets based on quantiles of the standard normal distri-
bution, and these results give guidelines for the amount of aggregation of bootstrap
samples with similar parameter values required to achieve a given reduction in vari-
ance. An application to earthquake data illustrates how the variance expression can be
used to construct an efficient Monte Carlo algorithm for defining a smooth nonpara-
metric family of empirical distributions to calculate a bootstrap likelihood by greatly
reducing the inherent variability due to first-level resampling.

Keywords Aggregating samples· Bootstrap likelihood· Estimating equations·
Exponential tilting· Nonparametric tilting· Smoothing populations

1 Introduction

Davison, Hinkley and Worton (1992) used a nested bootstrap method to generate an
analogue of partial likelihood. The basic procedure when applied to an estimatorT
for a parameterθ and a data setx1, . . . ,xn, which is assumed to be a random sample
from a distribution functionF, proceeds as follows. Generate a first-level bootstrap
samplex∗1, . . . ,x

∗
n from F̂, the empirical distribution ofx1, . . . ,xn, and calculate the
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Algorithm 1 Bootstrap likelihood procedure

1. First-level resampling:GenerateM first-level bootstrap samples, and for each sample calculate the
value of the parameter estimatet∗. Each sample is treated as a population with parameter valuet∗.

2. Second-level resampling:For each population from step 1, generate second-level bootstrap samples,
and for each sample calculate the value of the parameter estimatet∗∗.

3. Density estimation:Estimate the bootstrap likelihood associated with parameter valuet∗ by estimating
the conditional density oft∗∗ given t∗ at the observed value of the parameter estimate for the original
data,t.

4. Curve fitting:Scatterplot smooth (on the log scale) theM bootstrap likelihood points obtained from
step 3 to obtain a curve of bootstrap likelihood.

estimatet∗ associated with the samplex∗1, . . . ,x
∗
n. We consider such a first-level boot-

strap sample as a populationP∗ with parameter valuet∗. Repeat this stepM times
to produce populationsP∗

1, . . . ,P∗
M with parameter valuest∗1, . . . ,t∗M. For eachP∗

m
and t∗m, m = 1, . . . ,M, use a second-level of bootstrapping to estimate the density
of T∗∗, the estimator computed from a second-level samplex∗∗1 , . . . ,x∗∗n . In its most
general form this is done by using Monte Carlo simulation andkernel density estima-
tion. However, it is usually much more efficient to use a density approximation, e.g.
a saddlepoint method (Davison and Hinkley 1988; Kuonen 2005), if it is available
to replace the direct simulation at the nested second-levelof bootstrap resampling.
Evaluating each density att, the observed value ofT for the original data set, givesM
likelihood points att∗1, . . . ,t∗M. A complete likelihood can be computed by applying a
curve-fitting algorithm to these points. Algorithm 1 gives asummary of the steps of
the numerical procedure.

An inherent source of variation in the above algorithm is dueto the random mech-
anism used to select the first-level populations and parameter values. However, for
each value oft∗ in a suitable interval for parameter values, our objective is to deter-
mine the expectation of the log bootstrap likelihood with respect to first-level popu-
lations with parameters very close tot∗. In Algorithm 1 this is simply achieved by the
use of step 4 to remove the substantial variation about the expectation, but it seems
highly desirable to reduce this variation at an earlier stage by directly averaging the
first-level populations themselves.

To illustrate the variability of simulated populations consider first-level bootstrap
samples for the earthquake data set studied in Section 4. Theobservations are the
time intervals in days between the worldwide earthquakes from 1990 to 2010 which
resulted in at least 1000 people being killed. In this example there aren = 24 ob-
servations, and the parameter of interest is the mean interval between earthquakes.
Figure 1 shows four first-levelP∗

m populations. For each population, some values in
the original data set do not appear in the population while other values can appear
several times. For example, in populationP∗

4 none of the lower values appear but a
value just below 500 days appears four times. In fact, the populations shown in Fig. 1
have been simulated to have a parameter valuet∗, to be the same as the mean of the
original data set, i.e.t = 297.75, but even so it is evident that the populations differ
significantly, and thus have considerable variability, dueto the nature of sampling. We
note that for this value of the parameter, witht∗ ≈ t, the expected population should
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Fig. 1 Frequencies,np∗mi, i = 1, . . . ,n, of four first-levelP∗
m populations for the earthquake data set with

n = 24 discussed in Section 4. Each of these four first-level populations has a parameter value oft∗ =
297.75 (297.75 is the mean of the original sample)

haven−1 at xi , i = 1, . . . ,n, but each of the simulated populations deviates from its
expectation fairly markedly.

In order to reduce this undesirable feature, an average population with a parameter
value nearθ0 can be defined as the aggregate of several first-level bootstrap samples
for whichθ0− ε ≤ t∗ ≤ θ0 + ε, with ε chosen as a small positive constant. To aggre-
gateMθ0 such populations we can average the relative frequencies over the first-level
bootstrap samples. Specifically, ifp∗mi denotes the relative frequency at pointxi in
populationP∗

m, i = 1, . . . ,Mθ0, then the relative frequency at pointxi in the aggre-
gatedpopulation is given by

p∗i (θ0) =
1

Mθ0

Mθ0

∑
m=1

p∗mi.

For example, in the case of the earthquake data set from Section 4, we could combine
the populations with a parameter value of about 297.75, suchas those shown in Fig. 1,
to obtain a smoothed population, and for this particular parameter value we would
expect a population that is similar to the original sample. In practice we would take
many more thanMθ0 = 4 first-level populations to reduce the variance of each element
of (p∗1(θ0), . . . , p∗n(θ0))

T with respect to the first-level sampling, and thus the variance
of log bootstrap likelihood at the parameter valueθ0, to an acceptable level.

Empirical evidence (Davison, Hinkley and Worton 1992, 1995; Davison and Hink-
ley 1997; Ventura 2002) suggests that such population smoothing is an effective vari-
ance reduction technique. However, currently there are relatively limited practical
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guidelines on how to best select the number of samples to aggregate when construct-
ing smoothed empirically defined populations. One initial consideration is that some
care is needed in resampling as with conventional resampling most populations will
have a parameter value fairly similar to the value of the statistic for the original data
set, as indicated in Section 2. Furthermore, below we demonstrate that we need to
generate many more populations in the regions associated with low likelihood, but
unfortunately these regions correspond to parameter values with very low probability
of generating populations.

In the present paper we study the use of aggregation in the above nested boot-
strap algorithm in more detail for estimators which can be written as the solution of
a smooth estimating equation, including the case of the mean. In theory we could
conduct a large simulation experiment for each data set considered to determine log
bootstrap likelihood variability based on either unsmoothed or various smoothed pop-
ulations with different levels of aggregation. However, this is not really a viable prac-
tical solution, and we thus propose and investigate a fast approximate technique. This
can then be routinely applied in each problem to construct a tailor-made Monte Carlo
simulation algorithm for defining populations for the calculation of bootstrap likeli-
hood. Certainly there would be no practical advantage in using a far more computa-
tionally expensive technique to determine variability over the approximate methods
which we investigate in this paper.

An alternative but extremely efficient approach to calculate a form of bootstrap
likelihood was proposed by Pawitan (2000), and this avoids the need for the second-
level of resampling and for the curve fitting. However, in thecurrent paper, we restrict
our attention to the original definition of bootstrap likelihood based on nested resam-
pling, and generating nonparametric populations in order to define a bootstrap like-
lihood. Within this framework we aim to construct an efficient approach to generate
the nonparametric populations.

In Section 2 we obtain an approximate expression for the variance of a log boot-
strap likelihood conditional on the value of the parametert∗ which results from the
first-level bootstrap resampling variability. Section 3 compares the results obtained
by using this formula with variances obtained by direct simulation for artificial data
sets based on the quantiles of a normal distribution. In Section 4 the approximate
variance is used to design an efficient Monte Carlo simulation algorithm in which
thet∗ values are selected so that when populations are aggregatedthe variance of log
bootstrap likelihood is approximately constant over the parameter values, and at an
acceptable level.

2 Variance approximation for log bootstrap likelihood

We now obtain an approximate expression for the conditionalvariance of log boot-
strap likelihood in the general case of an estimatorT which is defined by the unique
solution to the estimating equationn−1∑n

i=1u(xi,T) = 0, whereu(x,θ ) is a mono-
tonic decreasing function ofθ , and is smooth at the data points for the values of
θ considered. Here we have a parameterθ determined implicitly byE{u(X,θ )} =∫

u(x,θ )dF(x) = 0.
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First, the second-level bootstrap density estimator is approximated by (Hinkley
and Shi 1989)

T∗∗ ∼ N(t∗,n−1s∗2), s∗2 = n−1
n

∑
i=1

I∗2
i ,

where I∗i = I(x∗i ,P
∗) =

u(x∗i ,t
∗)

v∗ , with v∗ = −n−1∑n
i=1{∂u(x∗i ,θ )/∂θ}|θ=t∗ , is the

empirical influence function ofT at the ith sample pointx∗i when sampling from
populationP∗ with parameter valuet∗.

By evaluating this approximate density ofT∗∗ at the observed value for the orig-
inal data set,t, we obtain an approximate (partial) bootstrap likelihood for the pa-
rameterθ at t∗. Taking the natural logarithm of this likelihood, the approximate log
bootstrap likelihood att∗ based onP∗ up to an additive constant is given by

l(t∗) = −
1
2 logs∗2−

n(t − t∗)2

2s∗2 . (1)

If p∗ = (p∗1, . . . , p∗n)
T denotes the relative frequencies of the valuesx1, . . . ,xn associ-

ated with populationP∗, that isp∗i = #(x∗j = xi)/n, then we can expresss∗2 in terms
of p∗ andt∗ as

s∗2 =
∑n

i=1 p∗i u2(xi ,t∗)
{∑n

i=1 p∗i u′(xi ,t∗)}2 ,

whereu′(xi ,θ ) = ∂u(xi ,θ )/∂θ .
Under simple random sampling of the datax1, . . . ,xn to generate the first-level

bootstrap samplesx∗1, . . . ,x
∗
n, np∗ has a multinomial distribution (Efron and Tibshirani

1993 p. 286), that is

p∗ ∼ n−1Mult(n,p),

with p = (n−1, . . . ,n−1)T .

Using large sample properties of the vectorp∗, we have thatp∗ is approximately
multivariate normal with mean vectorp and covariance matrixV/n, whereV =
diag(p)−ppT (Mardia, Kent and Bibby 1979 p. 52).

For a particular value oft∗, sayt∗0, in n−1 ∑n
i=1u(x∗i ,t

∗
0), make the transformation

from p∗ to q∗ = (q∗1, . . . ,q
∗
n)

T = At∗0
p∗, where

At∗0
=





1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
0 0 0 · · · 1 0

u(x1, t∗0) u(x2, t∗0) u(x3, t∗0) · · · u(xn−1,t∗0) u(xn,t∗0)




.

Therefore, using properties of multivariate normal randomvectors, the vectorq∗ is
asymptotically multivariate normal with mean vector(n−1, . . . ,n−1,n−1 ∑n

i=1u(xi ,t∗0))T ,
and covariance matrixB = At∗0

VAT
t∗0
/n.
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It follows that the conditional distribution ofr∗ = (r∗1, . . . , r
∗
n−1)

T = (q∗1, . . . ,q
∗
n−1)

T

givenq∗n = n−1∑n
i=1u(x∗i , t

∗
0)= ∑n

i=1 p∗i u(xi , t∗0)= 0 is approximately multivariate nor-
mal with mean vector and covariance matrix given by

mt∗0
= E(r ∗|q∗n = 0) = (n−1, . . . ,n−1)T +B12B

−1
22 {−n−1

n

∑
i=1

u(xi ,t
∗
0)}

Ct∗0
= var(r ∗|q∗n = 0) = B11−B12B

−1
22 B21,

whereB11,B12,B21, andB22 partition the matrixB such that

B =

(
B11 B12

B21 B22

)
.

We note that in the present contextB22 is a scalar as the parameter is a scalar.
We can view the mean vector,mt∗0

, as tilted probabilities to ensure the constraint
that the populationP∗ has specified parameter valuet∗0, rather than the mean of
the first-level bootstrap statisticst∗ over populationsP∗ beingt as is the case for
the unconstrained and untilted sampling corresponding to simple random sampling
(Hinkley and Shi 1989).

Applying the multivariate delta method for large samples (Bishop, Fienberg and
Holland 1975 p. 493) to the conditional distribution ofr ∗ given the particular value
t∗0, yields the variance ofl(t∗) at t∗0 as

v(t∗0) =
∂ l(t∗0)

∂ r ∗

T

Ct∗0

∂ l(t∗0)

∂ r ∗
, (2)

with r ∗ evaluated atmt∗0
. Theith element of∂ l(t∗0)/∂ r ∗ in (2), evaluated atr ∗ = mt∗0

,
is given by

nkt,t∗0

2v2
t∗0

s4
t∗0

[
u(xi , t

∗
0){u(xi , t

∗
0)−u(xn, t

∗
0)}+2vt∗0

s2
t∗0

{
u′(xi ,t

∗
0)−

u(xi ,t∗0)u′(xn,t∗0)

u(xn,t∗0)

}]
,

wherekt,t∗0
= {(t− t∗0)2−n−1s2

t∗0
}, s2

t∗0
= v−2

t∗0
∑n

i=1 µiu2(xi ,t∗0), vt∗0
=−∑n

i=1 µiu′(xi ,t∗0)

andµn is determined by∑n
i=1 µiu(xi , t∗0) = 0 if (µ1, . . . ,µn−1)

T = mt∗0
, provided that

u(xn,t∗0) 6= 0.
From the general case of an estimating equation considered above we can deduce

an approximate expression for the conditional variance of log bootstrap likelihood
in the special case of the sample mean estimator,T = n−1 ∑n

i=1Xi , of the population
mean,θ = E(X) =

∫
xdF(x). With this case we haveu(xi ,t) = xi − t, v∗ = 1, I∗i =

x∗i − t∗ ands∗2 = ∑n
i=1 p∗i (xi − t∗)2 with t∗ = x̄∗. As a consequence of the simpler form

of s∗2 than in the more general case, the corresponding expressionfor theith element
of ∂ l(t∗0)/∂ r ∗ in (2) can be shown to have a simpler form, and is given by

n(xn−xi)(t∗0 −xi){(t − t∗0)2−n−1s2
t∗0
}

2s4
t∗0

,

wheres2
t∗0

= ∑n
i=1 µi(xi − t∗0)2.
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We can exploit the analysis developed in this section in a practical way to not
only study the variance of log bootstrap likelihood as a function of the parameter of
interest but also to give guidelines on how much aggregationof first-level bootstrap
samples should be applied for a particular data set, and whether the amount of ag-
gregation should vary with the value of the parameter. Studying the results used to
derive (2), we can deduce that ifK samples with similar values oft∗ ≈ t∗0 are aggre-
gated to produce an ‘average’ smoothed population with parameter valuet∗ ≈ t∗0 then
the denominator ofn in the covariance matrixB is replaced bynK. Consequently
both Ct∗0

andv(t∗0) are reduced by a factor ofK. Of course, the precise parameter
value for such an aggregated population may be determined exactly. In Section 3 we
will demonstrate that variances of log bootstrap likelihood vary considerably for dif-
ferent values of the parameter. This means that different amounts of aggregation will
be appropriate to obtain comparable final variability for different values oft∗0. How-
ever, at a particular value oft∗0, we can select an appropriateK, sayKt∗0

, to achieve
the variability we require. In Section 4 we employ this result directly to construct a
method for combining samples over values of the parameter ofinterest, with the ob-
jective of reducing the variation of log bootstrap likelihood to acceptable levels over
a range of suitable parameter values.

3 Numerical study: normal reference

In this section we apply the approximate variance expression obtained in Section 2
to artificial data sets of various sample sizes based on the normal distribution for the
case of the sample mean. The data sets were taken as

xi = Φ−1
(

i
n+1

)
, i = 1, . . . ,n,

whereΦ−1 is the inverse of the standard normal distribution function. The results
may be used as a normal-type reference for the level of variation we might expect
at a given value oft∗, and thus to provide guidelines for the number of samples it is
necessary to aggregate att∗ to achieve a specified reduction in variance.

Approximate variance (2), together with particular valuesdetermined by direct
simulation, for the casen = 20 are plotted in Fig. 2 and illustrate the dependence of
the variance on the distance between the first-level population parameter value and
the observed value of the statistic for the original data set. We can see that the variance
is far from constant as a function of|t∗− t| and is extremely high for the distance of

about|t∗− t| ≈ 2sn−
1
2 .

Table 1 shows that the variances obtained by applying approximation (2) agree
well with simulated values obtained under simple random sampling and exponential
tilted random sampling, which is discussed in Section 4, of the data. The results for
the larger sample sizes ofn = 100 andn = 250 illustrate that the approximation ob-
tained in Section 2, which was based on a large sample argument, improves as sample
size increases. For the smaller sample sizes ofn = 15 andn = 20, it can be seen that
the approximate variances obtained from (2) are lower than those obtained using the
numerically intensive simulation methods forδ ∗ = 1.5, but are slightly higher when
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Fig. 2 Approximate conditional variance (2) of log bootstrap likelihood givent∗ plotted againstδ ∗ =

n
1
2 |t∗ − t|/s, for the artificial data set based on the quantiles of a normaldistribution with sample size

n = 20. Each point shown on the graph was estimated from 50,000 simulated log bootstrap likelihoods

with |T∗− t∗| ≤ 0.0005sn−
1
2 calculated under simple random sampling (symbol:◦) and exponential tilted

sampling withα = z/(sn
1
2 ), z= 1 (symbol:△),2 (symbol:+)

δ ∗ = 2.0. However, overall, the approximate variances still give agood indication of
the variability relative to the variability at other valuesof δ ∗, and therefore the ap-
proximation seems highly suitable for the method which is proposed in Section 4. We
also can see that atδ ∗ = 1.0 the variance is low, a feature which has been observed
in empirical studies (e.g., see Fig. 5).

For each sample size, although the variability is low at|t∗−t|= sn−
1
2 , it increases

very fast beyond|t∗−t|= 1.5sn−
1
2 , indicating that much greater levels of aggregation

are required in regions of low likelihood. Comparing the results for the columns of
Table 1 relating toδ ∗ = 0.0 andδ ∗ = 2.0 we can see that about 25 times as much
first-level bootstrap sample aggregation would be necessary atδ ∗ = 2.0 as atδ ∗ = 0.0
to achieve similar levels of variance of log bootstrap likelihood in the case of the
sample size ofn = 15. The corresponding levels of increase are about 20 and 10
times as much aggregation forn = 20 andn = 50 respectively. Furthermore, if we
are using the log bootstrap likelihood to set 95% confidence limits, for example, then
variability at |t∗− t| ≈ 2sn−

1
2 is of interest. For these data sets, we should aggregate

approximately 70, 40 and 10 first-level samples close to thispoint forn = 15, 20 and
50 respectively to reduce the variance of the log bootstrap likelihood to about 0.12,
under each of the resampling methods considered. Although to achieve a variance of
about 0.052 at |t∗− t| ≈ 2sn−

1
2 we would need to aggregate approximately 270, 150
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Table 1 Variance of log bootstrap likelihood for artificial data sets withxi = Φ−1{i/(n+1)}, i = 1, . . . ,n,

at various values ofδ ∗ = n
1
2 |t∗ − t|/s, for sample sizes ofn = 15, 20, 50, 100 and 250. The approximate

conditional variance was calculated using (2), while each variance under simple random sampling (SRS)

and exponential tilted sampling withα = z/(sn
1
2 ), z = 1,2, was estimated from 50,000 simulated log

bootstrap likelihoods with|T∗− t∗| ≤ 0.0005sn−
1
2

δ ∗

n 0.0 0.5 1.0 1.5 1.75 2.0

15 Approximate Eq. (2) 0.0200 0.0115 0.0001 0.0750 0.2559 0.7371
SRS (untilted) 0.0259 0.0116 0.0065 0.1298 0.2753 0.6679
Exp. tilted sampling (z= 1) 0.0260 0.0117 0.0064 0.1312 0.2751 0.6643
Exp. tilted sampling (z= 2) 0.0254 0.0117 0.0068 0.1331 0.2893 0.6501

20 Approximate Eq. (2) 0.0160 0.0091 0.0000 0.0478 0.1526 0.3997
SRS (untilted) 0.0187 0.0093 0.0023 0.0702 0.1739 0.3580
Exp. tilted sampling (z= 1) 0.0189 0.0092 0.0023 0.0700 0.1716 0.3548
Exp. tilted sampling (z= 2) 0.0189 0.0093 0.0023 0.0697 0.1742 0.3618

50 Approximate Eq. (2) 0.0075 0.0043 0.0000 0.0151 0.0436 0.0995
SRS (untilted) 0.0076 0.0041 0.0002 0.0161 0.0414 0.0846
Exp. tilted sampling (z= 1) 0.0077 0.0041 0.0002 0.0159 0.0421 0.0870
Exp. tilted sampling (z= 2) 0.0076 0.0042 0.0002 0.0162 0.0430 0.0874

100 Approximate Eq. (2) 0.0041 0.0023 0.0000 0.0073 0.0203 0.0446
SRS (untilted) 0.0040 0.0023 0.0000 0.0072 0.0192 0.0404
Exp. tilted sampling (z= 1) 0.0041 0.0023 0.0000 0.0073 0.0196 0.0406
Exp. tilted sampling (z= 2) 0.0041 0.0023 0.0000 0.0073 0.0195 0.0406

250 Approximate Eq. (2) 0.0018 0.0010 0.0000 0.0029 0.0080 0.0172
SRS (untilted) 0.0018 0.0010 0.0000 0.0029 0.0077 0.0163
Exp. tilted sampling (z= 1) 0.0018 0.0010 0.0000 0.0029 0.0079 0.0167
Exp. tilted sampling (z= 2) 0.0018 0.0010 0.0000 0.0029 0.0078 0.0167

and 40 first-level samples forn = 15, 20 and 50 respectively, highlighting the need to
generate a sufficient number of samples in regions of low likelihood.

Although the above study gives some indication of the results we might expect
in an idealised situation, it does have limitations due to the particular form of the
data sets used. Therefore, to investigate how results may vary over simulated data
sets, Fig. 3 shows the results of applying the approximationto various data sets of
sample size 20 simulated from a normal distribution. For comparison, results obtained
by computationally expensive direct simulation are also included, and are similar to
the computationally inexpensive approximation. We can seethat the variance of log
bootstrap likelihood has broadly similar features to the results for the artificial data
set of size 20: the variance is extremely high forδ ∗ near±2, but low whenδ ∗ is close
to±1, and moderate forδ ∗ ≈ 0.
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Fig. 3 Approximate conditional variance (2) of log bootstrap likelihood givent∗ plotted againstδ ∗ =

n
1
2 (t∗− t)/s, for various simulated normal data sets each with sample size n = 20. Each point shown on

the graphs was estimated from 50,000 simulated log bootstrap likelihoods with|T∗ − t∗| ≤ 0.0005sn−
1
2 .

(Note that they-axis is plotted on the square-root scale, as the variances are extremely high for the extreme
δ ∗ values.)

4 Application to earthquake data set

An application of the proposed methodology to calculation of a bootstrap likelihood
for earthquake data is considered in this section. Table 2 gives the dates and locations
of earthquakes from 1990 to 2010 in which at least 1000 peopledied. The last column
lists the number of days between the earthquakes for then= 24 intervals over the total
of 7146 days.

The parameter of interestθ is the mean time interval in days between the earth-
quakes. The mean interval for the earthquake data set ist = 297.75. Figure 4 shows
the approximate variance curvev(t∗) for this problem which we will employ to de-
sign an efficient method for constructing populations that can be used to calculate
bootstrap likelihood. Also shown on the plot are some estimates obtained by direct
simulation. As with the artificial data sets of Section 3, forthe earthquake data set
the variability is extremely high for values of the parameter t∗ far from the sample
mean of the data, and thus first-level populations associated with these regions require
more aggregation than populations associated with the central parameter region near
t = 297.75. Considering the results in terms of the number of aggregated first-level
bootstrap samples required to reduce the variance to, for example, 0.052 as presented
in the right axis of Fig. 4 shows the extremely high levels of aggregation needed for
the higher and lower parameter regions.
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Table 2 Earthquake data set (U.S. Geological Survey, 2010). Worldwide earthquakes from June 1990 to
January 2010 with at least 1000 deaths

Date Location Interval between earthquakes (days)
(year/month/day)

1990 06 20 Western Iran
1990 07 16 Luzon, Philippine Islands 26
1991 10 19 Northern India 460
1992 12 12 Flores Region, Indonesia 420
1993 09 29 Latur-Killari, India 291
1995 01 16 Kobe, Japan 474
1995 05 27 Sakhalin Island 131
1997 05 10 Northern Iran 714
1998 02 04 Hindu Kush Region, Afghanistan 270
1998 05 30 Afghanistan-Tajikistan Border Region 115
1998 07 17 Papua New Guinea 48
1999 01 25 Colombia 192
1999 08 17 Turkey 204
1999 09 20 Taiwan 34
2001 01 26 Gujarat, India 494
2002 03 25 Hindu Kush Region, Afghanistan 423
2003 05 21 Northern Algeria 422
2003 12 26 Southeastern Iran 219
2004 12 26 Sumatra 366
2005 03 28 Northern Sumatra, Indonesia 92
2005 10 08 Pakistan 194
2006 05 26 Indonesia 230
2008 05 12 Eastern Sichuan, China 717
2009 09 30 Southern Sumatra, Indonesia 506
2010 01 12 Haiti Region 104

We first give some general practical considerations before describing an efficient
method for implementing calculation of bootstrap likelihood. The results of Section 2
indicate that to achieve approximate homogeneity of variance atM′ (usuallyM′ ≪M)
selected nominal pointsθ1, . . . ,θM′ , with populations defined as the aggregate of first-
level bootstrap samples having parameters within binsθm− ε ≤ t∗ ≤ θm+ ε, where
0 < ε ≪ sn−

1
2 for s defined below, we require the number of samples in themth bin

to be proportional tov(θm). Ordinary (untilted) bootstrap sampling at the first-levelis
clearly a very poor method for generating the populationsP∗ asT∗ is approximately
N(t,n−1s2), with s2 = n−1 ∑n

i=1 I2
i , whereIi = xi −t is the empirical influence function

of T at xi when sampling from̂F, and this density is far from being proportional to
the variance shown in Fig. 4. We could incorporate rejectionsampling to combineKm

samples in themth population such thatv(θm)/Km is equal to a constant, for example
0.052, but this is extremely inefficient for values ofθm which are far from the mean
of the original samplet = 297.75.

In practical applications it is much more efficient to generate populations with
t∗ values that are (in effect) continuous, with reference tov(t∗) as a guide on where
t∗ values are required, rather than use rejection sampling with a limited set of pa-
rameter values. This can be done by use of importance sampling. Exponential tilted
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Fig. 4 Approximate conditional variance (2) of log bootstrap likelihood givent∗ for the earthquake data
with sample sizen= 24. Each point shown on the graph was estimated from 50,000 simulated log bootstrap

likelihoods with|T∗−t∗| ≤ 0.0005sn−
1
2 . The right axis gives the number of first-level bootstrap samples it

is necessary to aggregate to reduce the variance to 0.052. (Note that they-axis is plotted on the square-root
scale, as the variances are extremely high for the lower and highert∗ values.)

resampling (Johns 1988; Hinkley and Shi 1989) was used as an efficient method to
suitably and substantially increase the generation of values oft∗ in regions of high
log bootstrap likelihood variability. With this approach,the resampling probabilities
of the data are taken as

Pr(X∗ = xi) ∝ exp(αIi), (3)

for a specified tilting constantα, to giveT∗ ∼ N(t + αs2,n−1s2). By being able to
select the tilting constantα appropriately, based on the form ofv(·), we have control
over placement of thet∗ parameter values in regions where they are most needed. To
be specific, the following steps of an inversion-type algorithm were used to determine
appropriate first-level populations:

1. Calculate a functionG(u) =
∫ uv(u)duwith integration implemented using a sim-

ple numerical procedure.
2. Determine a suitable set of tilting constants,αm = (τm− t)/s2, with τm specified

with reference to the variance functionv(·), such thatτm = G−1{m/(M + 1)},
evaluated using interpolation,m= 1, . . . ,M.

3. GenerateM first-level bootstrap samples with importance sampling using (3) and
the tilting constants obtained in step 2.

We have an additional important requirement thatM is sufficiently large to ensure that
the variability of log bootstrap likelihood, based on aggregated first-level samples,
is expected to be below a specified level over values of the parameter. The right
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Fig. 5 Log bootstrap likelihood points for the earthquake data using unaggregated first-level populations

axis of Fig. 4 and similar plots for other variance levels provide us with guidance
on the selection of an appropriate value forM. In addition, the selection could be
based on the local density of theτm values, but it is more natural to assess whether
sufficient samples have been generated locally over each value in the parameter space
by studying the actualt∗ values within intervals, as we do in the application to the
earthquake data below.

The log bootstrap likelihood points(t∗, l(t∗)) from step 3 of Algorithm 1 using the
above approach to generate populationsP∗

1, . . . ,P∗
M with parameter valuest∗1, . . . ,t∗M

are plotted in Fig. 5 for the earthquake data set. In this application, the value of
M = 1000 was chosen sufficiently large so thatv(θ )/K < 0.0252, whereK is the
number of first-level samples with parameter within an interval θ − 10≤ t∗ ≤ θ +
10, for any 240< θ < 380. The likelihood points were obtained by using a density
estimator ofT∗∗ in the second-level bootstrap approximated by N(t∗,n−1s∗2), but
a saddlepoint approximation density estimator would produce very similar results,
with high variability due to the multinomial sampling discussed in Section 2. Note
the high levels of variability of log bootstrap likelihood in Fig. 5 for the lower and
upper values oft∗, as predicted by Fig. 4.

We now use these populationsP∗
1, . . . ,P∗

M, which have been generated to suit-
ably increaset∗ values in regions of high log bootstrap likelihood variability, to de-
fine a smooth family of empirical distributions indexed by the parameter of interest.
A convenient way to smoothly aggregate first-level bootstrap samples to obtain a
smoothed population with a target value of the parameter,θ 0 say, is to locally aver-
age the populationsP∗

1 , . . . ,P∗
M with parameter valuest∗1, . . . ,t∗M, with a kernel-type
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smoother (Davison, Hinkley and Worton 1995)

p∗i (θ 0,ε) ∝
M

∑
m=1

w

(
θ 0− t∗m

ε

)
p∗mi, i = 1, . . . ,n,

wherep∗m1, . . . , p∗mn denote the relative frequencies ofx1, . . . ,xn for populationP∗
m,

m= 1, . . . ,M, with a chosen bandwidthε > 0 and kernel functionw(.). Herew(.) was
taken as the standard normal density function. The probabilities p∗i (θ 0,ε) associated
with pointsxi , i = 1, . . . ,n, are now considered as defining a smoothed population
P∗(θ 0,ε) for which the precise value of the parameterθ (θ 0,ε) ≈ θ 0 can be de-
termined. Although, as noted by Canty, Davison, Hinkley andVentura (2006) in the
context of bootstrap diagnostics,θ 0 andθ (θ 0,ε) are very similar for small or mod-

erate values of the smoothing parameter, e.g.ε = 0.2sn−
1
2 to 1.0sn−

1
2 . A grid of θ 0

values was used to generateM′ = 100 populations over an interval of parameter val-
ues. Of course, the value ofM′ is not crucial, but needs to be large enough to give
an accurate representation of the curve, as it is the local weighted averaging of the
underlyingM populations that gives a reduced variance. These smoothed populations
were then used in steps 2 and 3 of Algorithm 1 in place of the original unsmoothed
samples to compute the bootstrap likelihood.

Figure 6 shows eight independent log bootstrap likelihood curves for the earth-
quake data set, obtained by repeat applications of Algorithm 1 but with the smoothed
populations replacing the unsmoothed populations. Each curve was calculated by
using the above aggregation method, withε = 0.3sn−

1
2 , M = 1000 andM′ = 100.

Evidently, there is a dramatic reduction in the variabilitywhen compared with Fig. 5,
both within and between the different curves, and this method provides a much more
effective use of first-level bootstrap samples than the basic method, especially if the
very inefficient (untilted) simple random resampling were to be used to generate first-
level bootstrap samples. Also, and perhaps of equal importance, it seems more desir-
able for likelihood to vary smoothly over an underlying family rather than erratically
jump about as the parameter value varies, and this variability to have to be removed by
scatterplot smoothing. Note that for the smoothed nonparametric populations step 4
of Algorithm 1 is not necessary as the population smoothing is sufficient to generate
a smooth curve of log bootstrap likelihood.

5 Conclusions

In this paper we have shown that by using the properties of first-level bootstrap sam-
ples it is possible to obtain an explicit approximate expression for the variance of log
bootstrap likelihood. We have applied this expression to suitably generate first-level
bootstrap samples in order to define a smooth family of nonparametric distributions
indexed by a parameter of interest. From a computational point of view, we have
shown that in its implementation we can employ approaches based on tilted sampling
to obtain an efficient method for constructing the smoothed populations which are
used to compute a curve of log bootstrap likelihood.

One key feature of the unsmoothed bootstrap populations is that they are inher-
ently variable and in particular do not vary smoothly with the parameter of interest,
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Fig. 6 Eight independent log bootstrap likelihood curves for the earthquake data using smoothed first-level
populations. (No scatterplot smoothing, step 4 of Algorithm 1, has been used to generate the curves.)

whichever method of density smoothing is applied to the second-level bootstrap sam-
ples. We should note that if kernel density estimation is used, then increasing the level
of smoothing leads to grossly biased estimation and is not appropriate in the present
context. At the other extreme, it is possible to define a parametric family of empir-
ical distributions which does vary smoothly with the parameter of interest, e.g. an
empirical exponential family model. However, by doing thiswe are not fully exploit-
ing the nonparametric nature of the problem. Therefore, using the smoothed popula-
tions seems to be an attractive compromise between using theunsmoothed bootstrap
populations which have high variability and using a parametric family of empirical
distributions which may place possibly unreasonable constraints on the populations.
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