
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Efficient and accurate approximate Bayesian inference with an
application to insurance data

Citation for published version:
Streftaris, G & Worton, BJ 2008, 'Efficient and accurate approximate Bayesian inference with an application
to insurance data' Computational statistics & data analysis, vol. 52, no. 5, pp. 2604-2622. DOI:
10.1016/j.csda.2007.09.006

Digital Object Identifier (DOI):
10.1016/j.csda.2007.09.006

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computational statistics & data analysis

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.csda.2007.09.006
https://www.research.ed.ac.uk/portal/en/publications/efficient-and-accurate-approximate-bayesian-inference-with-an-application-to-insurance-data(77ca84fd-16d4-497f-b6a9-07b23a700add).html


www.elsevier.com/locate/csda

Author’s Accepted Manuscript

Efficient and accurate approximate Bayesian
inference with an application to insurance data

George Streftaris, Bruce J. Worton

PII: S0167-9473(07)00342-8
DOI: doi:10.1016/j.csda.2007.09.006
Reference: COMSTA 3807

To appear in: Computational Statistics & Data
Analysis

Received date: 5 December 2006
Revised date: 7 September 2007
Accepted date: 8 September 2007

Cite this article as: George Streftaris and Bruce J. Worton, Efficient and accurate approx-
imate Bayesian inference with an application to insurance data, Computational Statistics
& Data Analysis (2007), doi:10.1016/j.csda.2007.09.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

Streftaris, G & Worton, BJ 2008, 'Efficient and accurate approximate Bayesian inference with an  
application to insurance data'  Computational statistics & data analysis, vol 52, no. 5, pp. 2604-2622

http://www.elsevier.com/locate/csda
http://dx.doi.org/10.1016/j.csda.2007.09.006


Acc
ep

te
d m

an
usc

rip
t 

Efficient and accurate approximate Bayesian

inference with an application to insurance

data

George Streftaris a,∗, Bruce J. Worton b

aSchool of Mathematical and Computer Sciences and Maxwell Institute for

Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.

bSchool of Mathematics and Maxwell Institute for Mathematical Sciences, The

University of Edinburgh, James Clerk Maxwell Building, King’s Buildings,

Mayfield Road, Edinburgh EH9 3JZ, U.K.

Abstract

Efficient and accurate Bayesian Markov chain Monte Carlo methodology is proposed
for the estimation of event rates under an overdispersed Poisson distribution. An
approximate Gibbs sampling method and an exact independence-type Metropolis–
Hastings algorithm are derived, based on a log-normal/gamma mixture density that
closely approximates the conditional distribution of the Poisson parameters. This
involves a moment matching process, with the exact conditional moments obtained
employing an entropy distance minimisation (Kullback-Liebler divergence) criterion.
A simulation study is conducted and demonstrates good Bayes risk properties and
robust performance for the proposed estimators, as compared with other estimating
approaches under various loss functions. Actuarial data on insurance claims are used
to illustrate the methodology. The approximate analysis displays superior Markov
chain Monte Carlo mixing efficiency, whilst providing almost identical inferences to
those obtained with exact methods.
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1 Introduction

Simultaneous inference for several Poisson distributions has attracted much
attention, especially in the case of additional variation caused by the depen-
dence among the Poisson parameters θ = (θ1, θ2, . . . , θm)T. Applications in-
volving such inference have emerged in various areas, including actuarial sci-
ence (Haberman and Renshaw, 1996; Makov et al., 1996) and epidemiology
(Clayton and Kaldor, 1987; Ainsworth and Dean, 2006). The problem has
been tackled in the past using various shrinkage estimating approaches, aim-
ing to exploit the information provided in the entire vector of the Poisson
parameters θ (e.g. Morris, 1983). Bayesian methodology provides a natural
framework for exploiting the relation between the components of θ through
the prior distribution, thus also dealing with the problem of overdispersion.
The use of Bayes and empirical Bayes methods for the analysis of Poisson data
in actuarial science, including the consideration of Poisson/gamma models for
insurance claims, is discussed by Makov et al. (1996), Haastrup (2000), Czado
et al. (2005) and Ntzoufras et al. (2005) among others. Advances in Markov
chain Monte Carlo (MCMC) stochastic integration methodology (e.g. Tierney,
1994) have facilitated the generic implementation of full Bayesian analysis in
related problems.

In this paper we work under a hierarchical Bayesian framework assuming a log-
normal prior distribution for the Poisson parameters, and develop very efficient
and accurate MCMC methodology for posterior analysis. The motivation for
the work is that generally, with non-conjugate models, efficiency in the mixing
behaviour of a Markov chain usually depends on the choice and construction
of suitable proposal distributions, and this is often not given sufficient consid-
eration in easily implemented MCMC algorithms employed in the analysis of
hierarchical models. We propose a method which improves on the efficiency
of commonly used Gibbs and Metropolis–Hastings schemes, while retaining
the accuracy of the posterior inference. The presented approach may also be
extended to a larger class of related models, where other prior distributions
are assumed for the Poisson parameters.

We investigate the use of a close approximation to the conditional distri-
bution of the Poisson rates θ1, θ2, . . . , θm, given all other model parameters
and the data. The proposed approximation is based on a log-normal/gamma
mixture density which matches the first three moments of the original dis-
tribution. For the computation of the moments of the posterior distribution
we use a method relying on entropy distance (Kullback-Liebler divergence)
minimisation. The resulting density is then employed in a Gibbs sampling
scheme which mixes more efficiently than traditionally used approaches, and
provides very accurate posterior inference that also performs favourably in
terms of Bayes risk. We also employ the approximate density as the pro-
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posal distribution for an independence-type Metropolis–Hastings step (Tier-
ney, 1994), which gives a very efficient exact algorithm with acceptance rate
close to 1. In contrast, standard MCMC approaches often incorporate Gibbs
sampling algorithms using rejection sampling techniques (e.g. as implemented
in the WinBUGS software, http://www.mrc-bsu.cam.ac.uk/bugs), or various
Metropolis–Hastings schemes that rely on fine-tuning the variance of candi-
date distributions (Gelfand and Smith, 1990; George et al., 1994; Damien et
al., 1999). Although the implementation of such approaches appears to be
straightforward, mixing efficiency is not necessarily guaranteed. Our results
demonstrate that ease of implementation can be offset by an increase in the
number of iterations required to achieve a certain level of estimation preci-
sion, which can be important in problems with slow chain mixing. Despite the
fact that rapid advance of computing power continuously changes the balance
among the developing, computing and running time of algorithms, there is
arguably still scope for improved efficiency.

The proposed methodology is applied to the estimation of insurance claim
intensities. The analysis confirms the accuracy of the methodology, and ad-
ditionally demonstrates its convergence efficiency in terms of mixing of the
Markov chain.

In Section 2 we introduce the Poisson/log-normal hierarchical model, while
the derivation of the MCMC methods for the analysis is outlined in Sections
3–5. The results of an extensive Monte Carlo simulation study are presented
in Section 6 to assess the risk properties of the proposed estimators, and
compare them with those of other Bayes and classical methods under various
scenarios concerning the prior distribution and loss function. The insurance
data application is discussed in Section 7, where we also compare the efficiency
of the considered MCMC schemes.

2 The model

We assume that given the parameters θ1, θ2, . . . , θm, the counts Y1, Y2, . . . , Ym,
are conditionally independent Poisson random variables with respective means
θiEi, i = 1, . . . , m, i.e.

Yi|θi ∼ Poisson(θiEi), i = 1, . . . , m, (1)

where Ei, i = 1, . . . , m, represent different exposure times. The parameters
θi, i = 1, . . . , m, give the rate of occurrence of events and depend on p ex-
planatory variables in a log-linear regression structure expressed as

log(θi) = xT
i b + εi, i = 1, . . . , m, (2)
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where xT
i = (x1,i, x2,i, . . . , xp,i), for i = 1, . . . , m, are known values of the

explanatory variables, b = (b1, b2, . . . , bp)
T is a vector of regression coefficients

and εi, i = 1, . . . , m, are random error terms.

In actuarial science (1) and (2) can be used to model the occurrence of in-
surance claims. In this context, Yi represents the number of actual claims in
group i = 1, . . . , m, xi are covariates related to group i (e.g. age), and Ei is
the total time of exposure of group i to a specific policy. Overdispersion in
observed insurance claims data occurs due to a number of duplicate policies
among policy holders (Currie and Waters, 1991). For example, a classical gen-
eralised linear model (GLM) analysis on the number of claims data described
in Section 7 (and presented in Table 4), reveals some extra-Poisson variation
(GLM deviance 17.2 on 6 degrees of freedom). The use of GLMs in actuarial
science is discussed in detail by Haberman and Renshaw (1996). In the sim-
ple exchangeable model, the maximum likelihood estimator for θi is given as

θ̂i

ML
= Yi

Ei
, i = 1, . . . , m. Although θ̂i

ML
is the minimum variance unbiased

estimator, it is inadmissible under various loss functions when two or more
conditionally independent Poisson distributions are involved (Hudson, 1978).
This is because it ignores the remaining components of the data vector, which
are important in situations where the estimation of each individual element
of the parameter vector θ = (θ1, θ2, . . . , θm)T benefits from the information
incorporated in the entire parameter vector.

Under a full hierarchical Bayes framework, we assume a log-normal prior dis-
tribution for the event rates θi, i = 1, . . . , m to allow for overdispersion in
the data. In addition to (1), the error terms εi, i = 1, . . . , m, in (2) are as-
sumed to be identically and independently distributed as N(0, σ2) random
variables, or equivalently the parameters θi, i = 1, . . . , m, are independently
distributed according to a log-normal distribution LN

(
xT

i b, σ2
)
, with mean

exp
(
xT

i b + 1
2
σ2
)

and variance exp(2xT
i b+σ2)(eσ2

−1). If we let λi denote the
natural logarithm of θi, then we can write

λi = log(θi) ∼ N(xT
i b, σ2), i = 1, . . . , m. (3)

At the second prior stage we assume that the hyperprior parameters b and σ2

are jointly distributed according to the flat uniform prior density

π(b, σ2) ∝ 1, (4)

reflecting vague prior information. This improper prior can be defined as
the limit of independent proper distributions: bk ∼ N(0, σ2

bk
), as σ2

bk
→ ∞;

and τ = 1/σ2 ∼ Pareto(1, r−1
σ2 ), as rσ2 → ∞. The latter is equivalent to

σ2 ∼ U(0, rσ2), and is commonly considered in Bayesian analysis (e.g. Gelman
and Rubin, 1992; Spiegelhalter et al., 1996; O’Hagan and Forster, 2004). Al-
ternatively, the inverse-gamma prior σ2 ∼ Inv-Ga(ασ2 , βσ2) is often assumed,
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with ασ2 → 0 and βσ2 → 0 providing a non-informative improper prior. At
the limit we obtain π(σ2) ∝ σ−2, that is a uniform prior for the logarithm
of σ2. This prior often leads to a non-integrable posterior density in normal
models (Berger, 1985; Gelman et al., 2004). In our model, as applied to the
insurance data in Section 7, the posterior distribution of σ2 is sensitive to the
choice of very small values for the hyperparameters ασ2 and βσ2 , reflecting
the infinite peak of π(σ2) ∝ σ−2 in the region close to 0, and thus suggesting
that this prior may not always be regarded as non-informative in the class of
models examined here. We also note that the increasing weight attached to
the prior as σ2 → 0, can lead to over-smoothed Poisson estimates, as a result
of excessive shrinking towards the prior mean. This is often not desirable in
problems where infrequent small or zero counts should not be overlooked (as
for example in the analysis of insurance claims or spatial modelling of dis-
ease occurrence). O’Hagan and Forster (2004, p.311) discuss the necessity for
careful consideration of the prior on variance parameters when different weak
priors lead to differences in posterior inferences.

The prior distribution in (3) can also take other forms, defining in the general
case a model which is also known in actuarial science as a compound Poisson
sampling model (Carlin and Louis, 2000), or a mixed Poisson model (e.g.
Grandell, 1997).

3 Bayesian inference

MCMC estimation requires the conditional distribution for each model pa-
rameter, given all other parameters and the data. In terms of the parameteri-
sation λi = log(θi), i = 1, . . . , m, the joint posterior density of the parameters
λ = (λ1, . . . , λm)T, b and σ2 is given by

p(λ,b, σ2|y) ∝ (σ2)−
1

2
m exp

[
m∑

i=1

{
λiyi − Eie

λi −
1

2
σ−2(λi − xT

i b)2
}]

. (5)

Consider the full conditional distribution for the regression coefficients bk,
k = 1, . . . , p. Define b−k as the vector b with its kth component omitted, that
is b−k = (b1, . . . , bk−1, bk+1, . . . , bp)

T, and denote the corresponding ith linear
component by h−k,i, i.e.

h−k,i = b1x1,i + . . . + bk−1xk−1,i + bk+1xk+1,i + . . . + bpxp,i. (6)

Then, using the decomposition xT
i b = h−k,i + bkxk,i the full conditional distri-
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bution of bk given λ, b−k, σ2 and y is given from (5) as

bk|λ,b−k, σ
2,y ∼ N

(∑m
i=1(λi − h−k,i)xk,i∑m

i=1 x2
k,i

,
σ2

∑m
i=1 x2

k,i

)

, (7)

for k = 1, . . . , p. The joint posterior density in (5) also implies that the con-
ditional posterior distribution of σ2 given λ,b is

σ2
∣∣∣∣ λ,b,y ∼ Inv-Ga

(
m − 2

2
,

∑m
i=1(λi − xT

i b)2

2

)

. (8)

Clearly, this distribution is valid when m > 2, which is the case in practice
in all problems related to the one discussed here. Using π(σ2) ∝ σ−2 changes
the shape parameter of the above distribution to m

2
, which does not alter the

algorithms proposed in the remaining of the paper.

As far as the full conditional posterior distribution of the parameter vector λ

is concerned, (5) shows that given b and σ2, the parameters λ1, . . . , λm, have
independent full conditional densities given by

p(λi|b, σ2,y) ∝ exp
{
λiyi − Eie

λi −
1

2
σ−2(λi − xT

i b)2
}

, i = 1 . . . , m.

(9)

Therefore, simulating from the full conditionals of b1, . . . , bp, and σ2 is straight-
forward using normal and inverse gamma distributions. However, as is evident
from the form of (9), this is not the case for the full conditional distribution
of λi, and thus we derive a method for simulating from this distribution in the
following sections.

4 Approximation to the conditional distribution of the event rates

The full conditional density of θi = eλi may be expressed as

p(θi|b, σ2,y) ∝ θyi−1
i e−Eiθi exp





−

(
log θi − xT

i b
)2

2σ2





, (10)

for i = 1, . . . , m. The density in (10) involves a gamma and a log-normal
density and is considerably skewed. To approximate it we propose a flexible
mixture of these two components, which is very accurate for appropriately
selected parameter values. Experimentation with either the gamma or the log-
normal density alone, demonstrated that these approximations are not able
to sufficiently capture the skewness of p(θi|b, σ2,y). Therefore, the proposed

6
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approximating density is of the form

f = ρfLN + (1 − ρ)fGa, (11)

where 0 ≤ ρ ≤ 1, fLN and fGa denote a mixing parameter and the log-normal
density and gamma density components respectively. The density f is calcu-
lated by matching its mean, variance and skewness to those of the full condi-
tional distribution. Specifically, the parameters of a LN(δ, τ 2) and a Ga(a, b)
distribution are chosen so that the mean and the variance of each of these
two distributions are equal to the mean and the variance of the original full
conditional distribution. This gives

δ = log{E(θi|b, σ2,y)} −
τ 2

2
, τ 2 = log

{

1 +
var(θi|b, σ2,y)

E2(θi|b, σ2,y)

}

, (12)

for the log-normal part of the mixture distribution, and

a =
E2(θi|b, σ2,y)

var(θi|b, σ2,y)
, b =

E(θi|b, σ2,y)

var(θi|b, σ2,y)
, (13)

for the parameters of the gamma distribution. Using the parameters in (12)
and (13), the third order moments about zero for the log-normal and gamma
distributions can be computed as µ

′

3,LN = exp(3δ + 9
2
τ 2) and µ

′

3,Ga = a(a +
1)(a+2)/b3 respectively. Then, with the first two moments matched, the mix-
ing proportion ρ is determined in a way such that the mixture distribution also
has the same skewness as the full conditional. This is achieved by equating the
third order moments of the two distributions (Titterington et al., 1985, p.72),
i.e. µ

′

3 = ρµ
′

3,LN +(1−ρ)µ
′

3,Ga, where µ
′

3 denotes the third moment about zero
of the full conditional distribution. Simulating from the log-normal/gamma
mixture is straightforward and simply involves sampling from a LN(δ, τ 2) dis-
tribution with probability ρ and from a Ga(a, b) with probability 1 − ρ.

For the mixture proposal (11) to be a good approximation to the full condi-
tional density of θi, the method requires accurate computation of the moments
of the full conditional distribution involved in (12) and (13). Below we outline
an efficient method for achieving this.

4.1 Entropy distance minimisation

The moments of the full conditional distribution of θi may be conveniently de-
termined by using entropy distance minimising methodology. If we let L(λi|yi)
and π(λi) denote the likelihood and prior density for λi, and p(yi) the marginal

7
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density of a single observation yi, we may write

E
(
θr

i |b, σ2,y
)

=
∫ ∞

−∞
eλir

L(λi|yi)π(λi)

p(yi)
dλi

=
Eyi

i

yi! p(yi)

∫ ∞

−∞
exp

{
λi(yi + r) − Eie

λi

}
π(λi) dλi

=
(yi + r)!

yi! Er
i

p(yi + r)

p(yi)
. (14)

This demonstrates that we can obtain the approximate conditional posterior
moments by deriving an approximation to the marginal density of the data.
Such a density can be determined so that it minimises the entropy distance
between the joint density of (yi, λi) and an approximation of the form

p∗(yi, λi) = p∗(yi) p∗(λi|yi), (15)

where p∗(yi) approximates the marginal density of yi and p∗(λi|yi) is a normal
N(αi, ω

2
i ) density. The entropy distance (also referred to as the Kullback-

Liebler divergence) can be used as a measure of discrepancy between a distri-
bution and an approximation (O’Hagan and Forster, 2004), and expressed in
terms of the parameters αi and ω2

i is given by

DI(αi, ω
2
i ) =E

{

log
p∗(yi, λi)

p(yi, λi)

}

= E

{

log
p∗(yi) p∗(λi|yi)

L(λi|yi) π(λi)

}

=E

{

log p∗(yi) − log

(
Eyi

i

yi!

)

+ log(σ) − log(ωi)

−yiλi + Eie
λi −

1

2
ω−2

i (λi − αi)
2 +

1

2
σ−2(λi − xT

i b)2
}

.

Evaluating expectations with respect to the N(αi, ω
2
i ) distribution we obtain

DI(αi, ω
2
i ) = log p∗(yi) − log

(
Eyi

i

yi!

)

+ log(σ) − log(ωi)

− yiαi + Eie
αi+

1

2
ω2

i −
1

2
+

1

2
σ−2

{
ω2

i + (αi − xT
i b)2

}
, (16)

and the marginal density that sets (16) equal to zero is given by

p∗(yi) = ω̃i σ−1 Eyi

i (yi!)
−1 exp

(
1

2
+ α̃iyi − Eie

α̃i+
1

2
ω̃2

i

)

× exp
[
−

1

2
σ−2

{
ω̃2

i + (α̃i − xT
i b)2

}]
, (17)

where α̃i and ω̃2
i are the values that minimise (16) for any given p∗(yi), as

shown in Appendix A. Finally, the above density can be used in (14) to provide
the required moments.

8
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This approximation may not be sufficiently accurate for our purpose if yi = 0,
as the normal approximations involved in the method can be problematic
in the presence of zero counts (e.g. Leonard and Hsu, 1999). Therefore, we
use an alternative approach for such cases, in which a discretisation of the full
conditional density (10) is employed, with the Poisson likelihood multiplied by
a discrete approximation to the normal prior distribution of λi = log(θi). This
prior approximation relies on matching the first 10 moments of the normal
prior and discrete distributions, using the approach described in Appendix B.
If we let pj , j = 1, . . . , l, denote the probabilities of a discrete approximation
to a standard normal distribution evaluated at the points γj , j = 1, . . . , l, and
allow θi to take the values θij = exp(xT

i b + γjσ), then θij and pj, j = 1, . . . , l,
define an l-point discrete approximation to the prior distribution of θi. If we
also let qij , i = 1, . . . , m, j = 1, . . . , l, denote the posterior probabilities for
θij , then Bayes’ theorem implies that these may be approximated by

qij =
θyi

ij e
−θijpj

∑l
j=1 θyi

ij e
−θijpj

,

for i = 1, . . . , m, j = 1, . . . , l. Thus, an approximation to the rth order condi-
tional moment E(θr

i |b, σ2,y) may be computed directly as
∑l

j=1 θr
ijqij , avoiding

expensive simulation.

The approximation produced when we employ the strategy outlined in this sec-
tion is shown in Fig. 1. The mixture approximation is almost indistinguishable
from the exact density, which has been computed with expensive numerical
integration. Even in the case of Fig. 1b, where yi = 0 and the variation of θi

is large, the approximation is very good.

5 MCMC schemes based on the proposed approximation

5.1 Approximate Gibbs sampler

The simulation of b1, . . . , bp and σ2 is easy using standard techniques, as noted
in Section 3. Now, from the results of Section 4, we use the mixture density
(11) as an approximation to the full conditional distribution of θi, i = 1, . . . , m,
allowing the implementation of a Gibbs sampling algorithm which results in
accurate posterior analysis. Therefore, in summary, at each iteration of the
algorithm we can employ Gibbs steps to sample from the full conditional
distributions of b1, . . . , bp, σ2 as well as θi, i = 1, . . . , m, from (7), (8) and the
mixture distribution given in (11) respectively.

9



Acc
ep

te
d m

an
usc

rip
t 

Fig. 1. Mixture approximation (dashed line) to p(θi|b, σ2,y) (solid line) with various
yi and (b, σ2) values. The latter determine the coefficient of variation (cv) of the
log-normal prior distribution of θi: (a) yi = 0, cv = 0.5; (b) yi = 0, cv = 1.0;
(c) yi = 8, cv = 1.5; (d) yi = 8, cv = 2.0. The approximation is produced using
the approach of Section 4. The exact full conditional is computed from (10) with
numerical integration.
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5.2 Independence Metropolis–Hastings chain

In addition to the above approximate scheme, an exact analysis can eas-
ily be obtained by using a single-component Metropolis–Hastings algorithm,
in which the log-normal/gamma mixture approximation to p(θi|b, σ2,y) will
serve as the proposal density for updating the Poisson parameters in a hy-
brid MCMC strategy. This forms an independence Metropolis–Hastings chain
(Tierney, 1994), since the proposal distribution of θi at the current iteration
does not depend on the previous iteration value of θi, and vice versa. The ac-
ceptance probability of the chain involves terms that can be viewed as ratios
of the target density and the importance function in an importance sampling
scheme, and therefore the acceptance probability is expressed as a ratio of the
so-called ‘importance weights’ (Geweke, 1989). The use of the gamma/log-
normal approximation to (10) as the proposal distribution ensures that the
acceptance ratio is always approximately 1, as verified with the application in
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Section 7 and various other examples using real and simulated data.

The risk performance and efficiency of both approaches described above are
compared to other common methods in Sections 6 and 7. It is demonstrated
that they are superior to a standard Metropolis-within-Gibbs algorithm that
employs a normal proposal density which is matched to the full conditional dis-
tribution. However, the approximate Gibbs sampling chain is expected to mix
more efficiently than the Metropolis–Hastings algorithm, since it totally avoids
rejections. This offers a convergence advantage to the approximate method,
as demonstrated by the quantitative comparisons in Section 7.

6 Simulation study of risk properties

We investigate the performance of the approximate hierarchical Bayes (AHB)
method and the exact mixture-proposal independence Metropolis–Hastings al-
gorithm described in Section 5, by assessing the performance of the estimators
in terms of their Bayes risk

EθEY |θ{L(θ̂, θ)}, (18)

under a loss function L(θ̂, θ), where θ̂ denotes an estimator of θ. Here we
consider the special case in which the exposures Ei, i = 1, . . . , m, in (1) are all
equal to 1, and λi = log(θi) ∼ N(η, σ2), where η is a scalar. We consider the
squared error loss function

L(θ̂, θ) =
1

m

m∑

i=1

(θ̂i − θi)
2, (19)

and the normalised squared error loss function

L(θ̂, θ) =
1

m

m∑

i=1

(θ̂i − θi)
2

θi

. (20)

Additionally, to investigate the behaviour of the Bayes estimators when the
averaging over the m components of the vector parameter θ is ignored, we
employ the maximum component squared error loss function

L(θ̂, θ) = max
1≤i≤m

{(θ̂i − θi)
2}. (21)

For comparison purposes we also evaluate the risk of the hierarchical Bayes
(HB) estimator resulting from a Metropolis-within-Gibbs algorithm which uses
a normal proposal distribution with mean and variance equal to those of the
full conditional, two empirical Bayes (EB) estimators which are based on a
linear shrinkage rule, and the maximum likelihood estimator (MLE). The first
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EB estimator is derived in a way such that it minimises the Bayes risk among
all linear estimators of the same form (Efron and Morris, 1973), and is given
by

θ̂i

EB
= (1 − c) yi + c ȳ, (22)

where ȳ denotes the sample mean of the data, and c ∈ [0, 1] is given as
E(θi)

var(θi)+E(θi)
and is estimated in the EB context by min{ (m−1)ȳ∑m

i=1
(yi−ȳ)2

, 1}. The

second EB estimator multiplies the coefficient c by a factor of m−3
m−1

, and is
a modification to (22) proposed by Morris (1983) to resemble the shrinkage
behaviour of the HB estimator. Candel (2006) investigates the risk properties
of similar EB estimators in a multilevel normal analysis, while Haastrup (2000)
compares HB and EB estimators in a Poisson model for actuarial data.

For the simulation study we first generated a number of m true θi values,
independently from a log-normal distribution having a specified mean E(θi)
and variance var(θi). Two different values, m = 10 and m = 30 were used. For
each θi, i = 1, . . . , m, a random variate Yi was then drawn from a Poisson(θi)
distribution, and the estimates of θi, were computed. The Bayes risk (18) was
then estimated for each of the loss functions in (19)–(21) by

1

N

N∑

t=1

{
L(θ̂t, θt)

}
, (23)

where θ̂t is the estimator of θt at repetition t, t = 1, . . . , N . The entire proce-
dure was repeated for various different true E(θi) and var(θi) combinations. In
the MCMC algorithm for the hierarchical Bayes estimators we employed 1200
simulated values, with the first 200 used as a burn-in. Although this relatively
small number of MCMC updates does not necessarily guarantee convergence,
inspection of the trace and autocorrelation of the chain did not reveal any
problems. Relevant plots using the AHB method are presented in Fig. 2 and
show good mixing behaviour even when y = 0. Plots with the other MCMC
methods considered here, again did not suggest any problems. However com-
parisons with the chain autocorrelation of the approximate method showed
superior performance for the latter, similar to that discussed in Section 7.

Tables 1–3 demonstrate that the risk properties of the AHB estimator are
similar to those of the exact HB methods, verifying the remarkably accurate
performance of our approximate Gibbs sampling approach. Note however, that
in most cases the AHB estimator outperforms the exact algorithms; this can
be explained by the better convergence properties of the approximate method,
as discussed later in Section 7. The results also reveal that both algorithms
using the approximation developed in Section 4 (i.e. the AHB and mixture-
proposal HB), have lower risk than the more commonly used normal-proposal
Metropolis-within-Gibbs scheme. This underlines the importance of employing
a good proposal distribution in the chosen MCMC algorithm.
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Fig. 2. (a) MCMC trace and (b) autocorrelation plots of the approximate Gibbs
sampling method for a simulated data set generated with E(θi) = 5 and var(θi) = 10.
The data values are: y1 = 14, y2 = 9, y3 = 11, y4 = 0, y5 = 2, y6 = 14, y7 = 4,
y8 = 0, y9 = 12, y10 = 3.
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Table 1
Estimated Bayes risk (23) of the approximate hierarchical Bayes and the indepen-
dence Metropolis–Hastings estimator of Section 5 under squared error loss (19),
normalised squared error loss (20) and maximum component squared error loss
(21). Number of observations is m = 10. The estimated risk of a hierarchical Bayes
estimator using a normal proposal, the empirical Bayes estimator (22), the Morris
modification and the MLE are also given. The number of simulations for the eval-
uation of (23) was N = 104; simulation standard errors are reported in brackets.

E(θi) 5.0 10.0

var(θi) 2.5 10.0 5.0 20.0

Squared error loss

Approximate HB 2.532 (.002) 3.689 (.002) 5.043 (.003) 7.443 (.004)

HB (mixture prop.) 2.549 (.002) 3.702 (.002) 5.074 (.003) 7.460 (.004)

HB (normal prop.) 2.704 (.005) 3.718 (.003) 6.796 (.044) 7.530 (.006)

Empirical Bayes 2.329 (.001) 3.784 (.003) 4.728 (.003) 7.669 (.004)

EB (Morris) 2.407 (.002) 3.700 (.002) 4.891 (.003) 7.509 (.004)

MLE 4.975 (.003) 4.955 (.003) 10.058 (.005) 9.936 (.005)

Normalised squared error loss

Approximate HB 0.498 (.000) 0.723 (.000) 0.500 (.000) 0.737 (.000)

HB (mixture prop.) 0.501 (.000) 0.727 (.000) 0.504 (.000) 0.738 (.000)

HB (normal prop.) 0.536 (.001) 0.732 (.000) 0.678 (.004) 0.749 (.001)

Empirical Bayes 0.466 (.000) 0.781 (.000) 0.475 (.000) 0.777 (.000)

EB (Morris) 0.477 (.000) 0.741 (.000) 0.488 (.000) 0.750 (.000)

MLE 0.995 (.001) 0.992 (.001) 1.006 (.001) 0.995 (.001)

Max. component squared error loss

Approximate HB 10.490 (.089) 17.114 (.170) 20.051 (.153) 31.855 (.259)

HB (mixture prop.) 10.542 (.090) 17.206 (.163) 20.085 (.148) 32.055 (.253)

HB (normal prop.) 11.193 (.169) 17.260 (.168) 25.125 (.872) 32.310 (.299)

Empirical Bayes 9.524 (.079) 17.485 (.170) 18.514 (.131) 32.892 (.353)

EB (Morris) 9.860 (.084) 17.037 (.163) 19.176 (.142) 32.044 (.254)

MLE 20.053 (.143) 21.889 (.186) 39.486 (.250) 41.195 (.294)

Table 1 shows that for m = 10 the AHB and the mixture-proposal HB esti-
mators possess smaller risk than the EB methods when the true variance of
θi, i = 1, . . . , m, is large, as expected due to the vague hyperpriors used. For
m = 30, Table 2 demonstrates that as the number of observations increases
the risk is greatly reduced, and the suggested estimators perform better than
the EB methods for almost all examined true prior distributions and loss
functions.
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Table 2
Estimated Bayes risk (23) of the approximate hierarchical Bayes and the indepen-
dence Metropolis–Hastings estimator of Section 5 under squared error loss (19),
normalised squared error loss (20) and maximum component squared error loss
(21). Number of observations is m = 30. The estimated risk of a hierarchical Bayes
estimator using a normal proposal, the empirical Bayes estimator (22), the Morris
modification and the MLE are also given. The number of simulations for the eval-
uation of (23) was N = 104; simulation standard errors are reported in brackets.

E(θi) 5.0 10.0

var(θi) 2.5 10.0 5.0 20.0

Squared error loss

Approximate HB 1.907 (.000) 3.431 (.000) 3.810 (.000) 6.954 (.001)

HB (mixture prop.) 1.948 (.000) 3.436 (.000) 3.864 (.000) 6.934 (.001)

HB (normal prop.) 1.959 (.000) 3.453 (.001) 3.886 (.000) 6.939 (.001)

Empirical Bayes 1.973 (.000) 3.499 (.001) 3.931 (.000) 7.014 (.001)

EB (Morris) 1.967 (.000) 3.483 (.001) 3.917 (.000) 6.991 (.001)

MLE 5.006 (.001) 4.998 (.001) 9.977 (.001) 10.022 (.001)

Normalised squared error loss

Approximate HB 0.379 (.000) 0.686 (.000) 0.382 (.000) 0.694 (.000)

HB (mixture prop.) 0.387 (.000) 0.684 (.000) 0.386 (.000) 0.694 (.000)

HB (normal prop.) 0.389 (.000) 0.686 (.000) 0.387 (.000) 0.695 (.000)

Empirical Bayes 0.397 (.000) 0.710 (.000) 0.395 (.000) 0.709 (.000)

EB (Morris) 0.394 (.000) 0.703 (.000) 0.393 (.000) 0.704 (.000)

MLE 1.000 (.000) 0.997 (.000) 0.999 (.000) 1.003 (.000)

Max. component squared error loss

Approximate HB 13.095 (.083) 28.397 (.218) 23.857 (.135) 49.812 (.309)

HB (mixture prop.) 13.292 (.084) 28.289 (.211) 24.090 (.132) 49.371 (.316)

HB (normal prop.) 13.478 (.087) 28.466 (.221) 24.518 (.138) 49.320 (.306)

Empirical Bayes 13.368 (.085) 28.852 (.223) 24.441 (.136) 49.954 (.330)

EB (Morris) 13.227 (.083) 28.345 (.216) 24.255 (.132) 49.297 (.320)

MLE 31.832 (.177) 36.282 (.235) 59.739 (.295) 65.836 (.366)

In Table 3 we investigate the robustness of our methods when the true θi

values are generated from a gamma distribution with its parameters suitably
chosen to match the selected combinations of the true mean and variance. The
table reveals that the suggested methodology is robust under the assumption
that the data come from a Poisson/gamma model, as the results are similar
to those of Table 2. However, we notice that the large true variance no longer
favours the HB methods as strongly as before, as the linear rule used for the EB
estimators gives exactly the posterior mean under the conjugate formulation.
Finally, the reduced risk of the Bayes methods under the maximum component

15



Acc
ep

te
d m

an
usc

rip
t 

loss function (21) when Poisson/gamma data are considered, may be explained
by the less likely presence of possible outliers under this assumption.

Table 3
Estimated Bayes risk (23) of the approximate hierarchical Bayes and the indepen-
dence Metropolis–Hastings estimator of Section 5 under squared error loss (19),
normalised squared error loss (20) and maximum component squared error loss
(21), when data are generated from a Poisson/gamma model. Number of observa-
tions is m = 30. The estimated risk of a hierarchical Bayes estimator using a normal
proposal, the empirical Bayes estimator (22), the Morris modification and the MLE
are also given. The number of simulations for the evaluation of (23) was N = 104;
simulation standard errors are reported in brackets.

E(θi) 5.0 10.0

var(θi) 2.5 10.0 5.0 20.0

Squared error loss

Approximate HB 1.948 (.000) 3.609 (.000) 3.876 (.000) 7.103 (.001)

HB (mixture prop.) 1.970 (.000) 3.589 (.000) 3.893 (.000) 7.098 (.001)

HB (normal prop.) 1.977 (.000) 3.614 (.000) 3.913 (.000) 7.146 (.001)

Empirical Bayes 1.976 (.000) 3.541 (.000) 3.939 (.000) 7.046 (.001)

EB (Morris) 1.972 (.000) 3.528 (.000) 3.928 (.000) 7.025 (.001)

MLE 5.022 (.001) 5.002 (.001) 10.007 (.001) 9.985 (.001)

Normalised squared error loss

Approximate HB 0.408 (.000) 0.883 (.000) 0.396 (.000) 0.760 (.000)

HB (mixture prop.) 0.408 (.000) 0.858 (.000) 0.396 (.000) 0.762 (.000)

HB (normal prop.) 0.409 (.000) 0.865 (.000) 0.398 (.000) 0.763 (.000)

Empirical Bayes 0.419 (.000) 0.869 (.000) 0.406 (.000) 0.766 (.000)

EB (Morris) 0.414 (.000) 0.843 (.000) 0.403 (.000) 0.755 (.000)

MLE 1.004 (.000) 1.001 (.000) 1.001 (.000) 1.001 (.000)

Max. component squared error loss

Approximate HB 12.520 (.075) 27.928 (.184) 22.906 (.116) 47.789 (.277)

HB (mixture prop.) 12.599 (.076) 27.517 (.181) 23.254 (.120) 47.619 (.275)

HB (normal prop.) 12.846 (.077) 27.895 (.178) 23.475 (.122) 48.990 (.286)

Empirical Bayes 12.359 (.071) 26.774 (.180) 23.222 (.116) 46.801 (.275)

EB (Morris) 12.346 (.072) 26.585 (.177) 23.186 (.116) 46.549 (.270)

MLE 31.772 (.178) 36.896 (.231) 59.557 (.287) 65.486 (.356)
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7 Application to insurance data

We apply the approach outlined in Sections 3–5 to data on Permanent Health
Insurance claim inceptions for 1999. The data set that we analyse concerns
inceptions based on individual policies (of a deferred period of 26 weeks) for
a female population of all occupational classes, grouped by age. The data are
published by the Continuous Mortality Investigation Bureau (C.M.I.B., 1999)
and presented here in Table 4. The number of observed claims, Yi, is given for
each of 9 age groups (covering a population spanning from 18 to 64 years of
age), together with the total time of exposure (in years), Ei, per group. Col-
umn 5 of the table contains the number of expected claim inceptions calculated
by the Continuous Mortality Investigation Bureau on the basis of estimates
of sickness intensities (σi) and recovery intensities (ρi) using the Male Stan-
dard Experience for individual policies for 1975–1978 (C.M.I.B., 1991). In that
previous analysis the estimation of the parameters of interest was based on
a normal approximation Yi

·
∼ N(Eiρiσi, ViEiρiσi), i = 1, . . . , m, of the Pois-

son distribution of the number of claims. The factor Vi was introduced in the
variance to account for overdispersion due to duplicate policies. The sickness
intensities σi were modelled as an exponential polynomial of xi (the midpoint
of the age of group i), and an iterative generalised linear model procedure was
used for the estimation.

Here we consider the claim intensities θi = ρiσi, under the full hierarchical
Bayesian model in (1)–(4) with b = (b0, b1, b2)

T and xT
i = (1, xi, x

2
i ), i =

1, . . . , 9, assuming a vague prior distribution for the hyperparameters b and
σ2. The parameter θi is now regarded as the probability of an individual claim
in age group i, and its logarithm is modelled as a quadratic function of age as
previously suggested in C.M.I.B. (1991), i.e.

log(θi) = b0 + b1xi + b2x
2
i + εi, i = 1, . . . , 9.

Applying the methods of Sections 3–5, our approximate analysis produced
the posterior estimates presented in Table 4. The posterior estimates of the
claim intensities were virtually identical to estimates obtained using the exact
mixture-proposal algorithm, as demonstrated in Fig. 3. The estimates of the
regression coefficients b0, b1, b2 and that of the variance component σ2 are given
in Table 5. The posterior estimates of b2 suggest that the quadratic term may
not be required when modelling log(θi), and therefore we also considered a lin-
ear function of age for log(θi). However, as Fig. 4 shows, the estimates of the
claim intensities θ1, . . . , θ9, do not change greatly under the linear modelling.
The largest difference is observed in the estimate of θ9, which is expected un-
der the limited flexibility of the linear model to deal with y9 = 0 following an
increasing trend of observed values, and due to the high variability caused by
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Table 4
Insurance claims based on individual policies (of a deferred period of 26 weeks) for
a female population of all occupational classes (C.M.I.B., 1999), grouped by age.
The third column of the table contains the total time of exposure in years for each
of the 9 age groups; the fourth column gives the number of actual (observed) claims
per group; the fifth column shows estimates of expected number of claims obtained
by the C.M.I.B. based on the Male Standard Experience for individual policies for
1975–1978; posterior summaries of expected claims using our hierarchical model are
presented in columns six and seven of the table; the last two columns give posterior
summaries of the claim intensities θ1, . . . , θ9. In the Bayesian analysis log(θi) was
modelled as a quadratic function of age.

Expected claims Claim intensity

Group Age Expos. Claims Posterior Posterior

i group Ei yi C.M.I.B mean sd mean sd

1 18–24 646 1.0 0.5 0.6 1.0 0.0009 0.0010

2 25–29 5665 6.0 5.4 6.1 3.2 0.0011 0.0004

3 30–34 9472 17.0 12.5 16.8 5.6 0.0018 0.0004

4 35–39 8784 21.0 17.5 21.5 6.4 0.0024 0.0005

5 40–44 7176 33.0 22.8 32.4 8.0 0.0045 0.0008

6 45–49 5959 20.0 31.5 21.7 6.6 0.0036 0.0008

7 50–54 4070 37.0 36.9 35.7 8.3 0.0088 0.0014

8 55–59 1635 25.0 26.5 23.3 6.9 0.0142 0.0030

9 60–64 217 0.0 6.4 1.3 1.6 0.0058 0.0049

Table 5
Hierarchical Bayes estimates of the log-normal hyperparameters for the insurance
data, when the logarithm of the claim intensity is modelled as a quadratic polyno-
mial of age.

b0 b1 b2 σ2

mean −5.811 0.214 −0.002 1.293

sd 0.457 0.259 0.003 3.773

2.5% −6.910 −0.227 −0.009 0.030

median −5.758 0.184 −0.002 0.461

97.5% −5.100 0.841 0.003 7.195

the low exposure. The Bayesian analysis produced smoothed estimates for the
claim intensities and expected numbers of claims, allowing a moderate shrink-
age effect as expected with the use of vague prior information in the model.
Fig. 4 shows 95% credible intervals of the true claim intensities, revealing how
the probability of a claim varies according to age group.
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Fig. 3. Estimated posterior densities of the claim intensities θ1, . . . , θ9, for the insur-
ance data under the approximate Gibbs sampling approach (solid line) and under
the exact independence Metropolis–Hastings algorithm using the mixture proposal
(dashed line).
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Estimation was based on 40000 sampled values, following a burn-in period of
5000 iterations, and the convergence of the algorithm was assessed and verified
using various diagnostic criteria (Cowles and Carlin, 1996). We compare the
convergence performance of the approximate Gibbs sampler and the exact
independence Metropolis–Hastings approach described in Section 5 to that of
the normal-proposal Metropolis-within-Gibbs method introduced in Section
6, and we also consider the widely used Gibbs sampler of WinBUGS. For the
comparisons we employ the effective sample size (ESS; Brooks et al., 2003) and
the Monte Carlo (MC) error of the four methods. ESS is a measure of sample
size adjusted for the autocorrelation of the chain and provides, for a given
parameter, the number of independent sampled values which corresponds to
the number of dependent values produced by the Markov chain. For each
method we consider the minimum ESS and the average MC error among
model parameters. These are shown in Fig. 5 for a range of MCMC iterations,
while the MC error for all θi parameters is given in Table 6. Both plots and the
table demonstrate that the approximate Gibbs sampling approach mixes more
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Fig. 4. 95% posterior credible intervals for the claim intensities θ1, . . . , θ9, in the
insurance data application. Solid and dashed lines correspond to modelling log(θi)
through a quadratic and a linear function of age respectively. The circles indicate
the posterior means.
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Fig. 5. (a) Minimum effective sample size (ESS) and (b) mean Monte Carlo error
under a range of MCMC iterations for the insurance data, using: the approximate
Gibbs sampling approach (solid line); the mixture-proposal independence Metropo-
lis–Hastings chain (dashed line); a normal-proposal Metropolis-within-Gibbs algo-
rithm (dotted line); and WinBUGS (dot-dashed line). A logarithmic scale has been
used on the x axis.
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efficiently than the exact algorithms, while providing almost identical posterior
estimates (as illustrated in Fig. 3). Chain autocorrelation plots for some of
the parameters (with θ9 being the slowest mixing Poisson rate) are shown
in Fig. 6, demonstrating that the methods relying on the suggested mixture
approximation are more efficient than the algorithm using the normal proposal
distribution, while the approximate algorithm also outperforms WinBUGS.
The acceptance rate of the mixture-proposal algorithm was 0.98 (average over
all θ parameters), as compared to 0.87 for the normal-proposal method. We
note in addition that, as expected, the approximate method is faster in terms of
computer running time, requiring 4 seconds for 10000 iterations as compared
to 4.75 seconds for the exact Metropolis–Hastings algorithms (19% relative
increase in speed). The equivalent analysis in the WinBUGS software package
required 5 seconds (approximate method 25% faster).
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Table 6
Monte Carlo standard error (×104) of the posterior means of θ1, . . . , θ9 for the
insurance claims data set (with 45000 MCMC updates).

Approximate Mixture Normal WinBUGS

proposal proposal

θ1 0.2999 0.2621 0.3038 0.2757

θ2 0.0645 0.0560 0.0709 0.0583

θ3 0.0243 0.0221 0.0303 0.0230

θ4 0.0318 0.0325 0.0498 0.0322

θ5 0.0736 0.0797 0.0829 0.0816

θ6 0.0785 0.0819 0.0941 0.0857

θ7 0.0954 0.1020 0.1093 0.0982

θ8 0.2153 0.2384 0.2722 0.2498

θ9 1.8914 2.0024 2.1028 2.0956

8 Discussion

We have presented an efficient approach for a fully Bayesian analysis of count
data considering a Poisson/log-normal model. The log-normal prior distribu-
tion leads to a more dispersed marginal distribution for the data, when com-
pared to other prior assumptions. The assessment of various Poisson models
used to account for overdispersion in actuarial data is an active topic of current
research (e.g. Ntzoufras et al., 2005). Employing a conjugate gamma prior pro-
vides some mathematical tractability through the linearity in the conditional
posterior moments (e.g. Christiansen and Morris, 1997). However this is not
of critical importance when the interest is on the entire posterior distribution
under a fully Bayesian formulation.

Simulation from the conditional posterior distribution of θi using a log-normal
or a gamma distribution as the basis for the approximation (instead of the
mixture in Section 4) did not provide the level of accuracy that is required in
the approximate method, whereas employing a matched normal proposal in a
Metropolis-within-Gibbs scheme was less efficient. Furthermore, none of these
schemes add any substantial computational efficiency to our approach, as most
of the computational effort in the methods is required for the calculation of
the moments E(θi|b, σ2,y). As described in Section 4, matching these with the
moments of a log-normal/gamma mixture is computationally easy, and so is
simulating from such a mixture.

It is worth noting that using the approximations described in Section 4.1, our
methods perform remarkably well also in cases where the prior variance is large
relative to a small prior mean (e.g. when E(θi) = 5, var(θi) = 10 in Tables 1–
3). This would be the typical situation where the marginal distribution of the
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Fig. 6. MCMC autocorrelation plots for θ2, θ4, θ6 and θ9 in the insurance data ap-
plication, using: the approximate Gibbs sampling approach (first panel from left);
the mixture-proposal independence Metropolis–Hastings chain (second panel); the
normal-proposal Metropolis-within-Gibbs algorithm (third panel); and WinBUGS

(fourth panel).
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data would accommodate a moderate number of zero values in the observed
sample. Analysis of such real and simulated data sets, also confirmed the
efficient performance of the proposed algorithms.
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Regarding potential extensions of our results in related hierarchical models of
different distributional structure, we note that expression (14) holds irrespec-
tive of the form of the prior distribution π(θi). This implies that our method-
ology can also be applied to cases where the distribution of the Poisson rates is
given by other parametric families, once a suitable density to provide the basis
for the approximation of p(θi|b, σ2,y) is identified. For example, in the case
of the usual conjugate gamma prior, the moments in (14) are easily available
noticing that p(yi) is a negative binomial density; however, no approxima-
tion is required in this case as the conditional moments of θi and the entire
conditional density are analytically available. Nevertheless, our work can be
extended to allow for prior uncertainty described by distributions taken, for
example, from the Pareto or Weibull families.

In general, Bayesian methods provide estimators that are based on a given
set of observed data; however, it is also desirable that they display a robust
and repeatable performance. The simulation study showed that our hierar-
chical Bayes estimate of the posterior mean exhibits good risk properties in
various scenarios regarding the true prior distribution and loss function of
interest. Combining the Bayesian methodology with frequentist criteria of re-
peatability performance evaluation can be useful when we wish to derive good
inferential procedures irrespective of the underlying philosophical perspective
(e.g. Samaniego and Reneau, 1994; Carlin and Louis, 2000).
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Appendix A: Minimisation of the entropy distance DI(αi, ω
2
i )

Working in a similar way as in (14), we notice that for any real number t

p(λi|yi) ∝ L(λi|yi) π(λi) = e−tλiL(λi|yi + t) π(λi), (24)

where

L(λi|yi + t) =
Eyi+t

i exp
{
λi(yi + t) − Eie

λi

}

Γ(yi + t)
,
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gives the probability density function of the random variable λi = log(θi), with
θi ∼ Ga(yi + t, Ei). Hence, noting that the logarithm of a gamma variable is
approximately normally distributed (Gelman et al., 2004, p.579; Johnson et al.,
1994, p.383) we approximate L(λi|yi + t) with the probability density function
of a normal N(δi, v

2
i ) distribution, denoted by L∗(λi|yi + t). We consider the

entropy distance (O’Hagan and Forster, 2004)

DI(δi, v
2
i ) = E

{

log
L∗(λi|yi + t)

L(λi|yi + t)

}

,

where the expectation corresponds to the N(δi, v
2
i ) distribution for λi. This

will give

DI(δi, v
2
i ) = −

1

2
log(2π) + log{Γ(yi + t)} − (yi + t) log(Ei)

− logvi −
1

2
− δi(yi + t) + Eie

δi+
1

2
v2

i ,

and setting the first derivatives with respect to δi, v
2
i equal to zero, the entropy

distance is minimised for

δi = log
(

yi + t

Ei

)
−

1

2
(yi + t)−1, v2

i = (yi + t)−1.

Then taking into account the multiplicative factor e−tλi in (24) we obtain a
normal approximation to e−tλiL(λi|yi + t) with mean li = δi−tv2

i and variance
v2

i . Setting t = 1
2
, which is the usual bias correction (Plackett, 1974, p.3), we

can write

li = log

(
yi + 1

2

Ei

)

−
(
yi +

1

2

)−1

, v2
i =

(
yi +

1

2

)−1

.

The conjugacy of the normal N(li, v
2
i ) likelihood with the normal N(xT

i b, σ2)
prior π(λi) implies that, p∗(λi|yi) is a N(α̃i, ω̃

2
i ) density with

α̃i =
v−2

i li + σ−2xT
i b

v−2
i + σ−2

, ω̃2
i =

(
v−2

i + σ−2
)−1

. (25)

Appendix B: Discrete approximation to the standard normal distri-

bution

We derive an l-point discrete approximation to the standard normal distri-
bution by matching the first 10 moments of the exact and the approximating
distribution. For the normal N(0, 1) distribution the moments of odd order are
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equal to zero, while those of even order are provided by the following equation
(Stuart and Ord 1994):

E
(
Z2r

)
=

(2r)!

2rr!
, r = 1, . . . , 5.

For a symmetric distribution of a discrete random variable X evaluated at the
points γ1, γ2, . . . , γl, with probabilities p1, p2, . . . , pl, and if we take the points
γj to be equally spaced on a suitably selected grid with the distance between
two successive points equal to a fixed value γ, the corresponding moments of
even order are given by

E
(
X2r

)
= 2

l−1

2∑

j=0

(jγ)2rpj, r = 1, . . . , 5.

Then by solving the system of equations

(2r)!

2rr!
= 2

l−1

2∑

j=0

(jγ)2rpj, r = 1, . . . , 5,

we obtain the probabilities p1, p2, . . . , p l−1

2

and p0 = 1 − 2
∑ l−1

2

j=1 pj, which cor-

respond to the points lying on the non-negative part of the x-axis. Clearly, the
same probabilities correspond to the equivalent points on the negative axis.
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