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Raced Profiles: Efficient Selection of Competing Compiler
Optimizations

Abstract
Many problems in embedded compilation require one set of op-
timizations to be selected over another based on run time per-
formance. Self-tuned libraries, iterative compilation and machine
learning techniques all compare multiple compiled program ver-
sions. In each, program versions are timed to determine which has
the best performance.

The program needs to be run multiple times for each version
because there is noise inherent in most performance measurements.
The number of runs must be enough to compare different versions,
despite the noise, but executing more than this will waste time
and energy. The compiler writer must either risk taking too few
runs, potentially getting incorrect results, or taking too many runs
increasing the time for their experiments or reducing the number
of program versions evaluated. Prior works choose constant size
sampling plans where each compiled version is executed a fixed
number of times without regard to the level of noise.

In this paper we develop a sequential sampling plan which can
automatically adapt to the experiment so that the compiler writer
can have both confidence in the results and also be sure that no
more runs were taken than were needed. We show that our system
is able to correctly determine the best optimization settings with
between 76% and 87% fewer runs than needed by a brute force,
constant sampling size approach. We also compare our approach to
JavaSTATS(10); we needed 77% to 89% fewer runs than it needed.

1. Introduction
Measuring the execution time of a program is used in a num-
ber of ways to select the best compiler optimizations. In iterative
compilation(2; 6; 12), different versions of a program are created
with different optimization settings. Each version is profiled and
the best is used for the final delivery of the program.

Although iterative compilation produces excellent results, the
costs can be prohibitive for ordinary use. Machine learning tech-
niques (1; 22; 17; 18) have been used to solve this problem. Heuris-
tics are tuned ‘at the factory’ so that thereafter the optimization
space does not need to be searched. Machine learning has success-
fully tuned heuristics for embedded applications that out-perform
their expert derived counterparts. The training data for the machine
learning tools, however, must be generated by large scale itera-
tive compilation. The compute time to profile all the different ver-

[Copyright notice will appear here once ’preprint’ option is removed.]

sions of the training benchmarks can be on the order of weeks or
months(9).

Each variation of a program must be run multiple times because
of noise in performance measurements; everything from the other
processes running on the machine or the state of the file system to
the temperature of the computer can have an effect. This becomes
more of a problem as the granularity of the measurements becomes
finer. When individual functions and loops are measurement tar-
gets, the noise to signal ratio can be significant(17).

Different approaches are taken to circumvent the noise problem.
In some instances, researchers have chosen a fixed sample size
plan, running each program version a constant number of times
without observing how the results are shaping up as they go(1; 6).
The hope is that the constant number of runs is sufficiently large
to yield good results but not too large to waste effort. Often there
is no analysis presented as to whether this number of runs is truly
sufficient or if it is too many; confidence intervals and standard
error bars rarely feature on performance graphs.

It may be tempting to use simulation to overcome noise, but not
only are simulators slow and incompletely accurate, they are also
subject to measurement bias (19). To overcome that bias random
variations in setup must be effected and simulations run multiple
times; the result is noise in the measurements, just as there is noise
for direct execution.

What is needed is a technique which provides statistically rig-
orous results in the presence of noisy data and simultaneously re-
duces the cost of searching a large space of optimization settings.
To the best of our knowledge, there is little prior work in this area.
The closest to our work are (10; 3) where the authors recommend
statistical rigor. They examine each point in the compiler optimiza-
tion space in isolation and propose performing executions until an
estimate of the sample’s inaccuracy is tolerably small or some max-
imum number of executions is reached. While this gives accurate
measurements, it does not reduce the total number of executions
needed for the whole optimization space. Indeed, we will show
that their approach can require more executions than a perfectly
selected constant sized sampling plan.

An algorithm for selecting the number of times to execute each
program version is called a sampling plan(26). Sequential sampling
plans(24), used in medical trials(27), adjust the sample size dynam-
ically as data is gathered. These sequential systems adapt to ensure
both that sample sizes are large enough for good results and that
sampling stops when enough data have been collected.

This paper develops an algorithm which:

• Determines a subset of the optimization settings or program
versions which are ‘better’ than all others, to some user supplied
confidence level.

• Minimizes the number of runs required, dropping poorly per-
forming versions early and finishing when sufficient data has
been gathered for a decision.

• Provides statistically rigorous results.
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Figure 1. Typical distribution for the run time of a program. All
programs have a minimum amount of work to achieve, giving a
lower bound to the distribution. The shape of the distribution may
vary but very often long tails can be observed. If small samples
include observations from the tail then means can be thrown off.
Without statistically rigorous techniques such situations will not be
detected.

• Allows more points in the compiler optimization space to be
examined.

Our algorithm ‘races’ different program versions, allowing those
performing poorly to fall by the wayside with minimal sample size,
whilst those fighting for the winning position are allowed more
rein, increasing their sample size until either one wins or several
draw.

We show that our adaptive, sequential sampling plan can dra-
matically reduce the number of runs needed to find the best pro-
gram version. In this way, a greater part of the optimization space
can be explored than would otherwise be possible.

The remainder of this paper is organized as follows. The next
section presents examples showing the problem of noisy measure-
ments. Section 3 gives an overview of our algorithm for the adap-
tively managed sampling plan and section 4 gives an in depth de-
scription of the technique. Then, section 5 shows the set up for our
experiments, the results of which are given in section 6. Finally,
sections 7 and 8 discuss related work and our conclusions respec-
tively.

2. Motivation
Performance measurements on real systems are invariably noisy,
an issue which becomes more problematic as the granularity of
the measurement decreases. Figure 1 shows a typical distribution
of cycle counts taken from function run_length_encode_zeros

in the MediaBench epic-encode program. There is a minimum
amount of work that the program must do, so there is a lower bound
to the run time. On the other hand, there is no clear upper bound and
the distribution features a long tail. The long tail of the distribution
extends well beyond the median point and outliers from that tail, if
included, can throw out the mean of small samples.

2.1 Confidence Intervals
Attempts to measure performance must be aware of the shape of its
distribution. Certainly, a single observation will be insufficient to be
confident that we have a good approximation for the performance;
it might be nowhere near the mean. As the sample size grows,
containing more and more observations of real measurements, we
can be progressively more confident that the sample mean models
the true mean of the distribution. As the sample size tends to infinity
the difference between the sample mean and the true mean tends to
zero.

Confidence intervals can be used to assess whether samples are
sufficiently large. These statistical ranges show where the likely
value of the true mean falls. A confidence interval always contains
the sample mean and extends for some distance from it in each

direction. As the number of observations in a sample increases
the width of the confidence interval decreases; we become more
confident that we can pin down the true mean to be closer to the
sample mean.

Confidence intervals are also parametrized by a probability or
confidence level. A confidence interval with a confidence level of
99% indicates that we are 99% sure that the true mean is inside
the interval; only in 1% of trials should the true mean fall outside.
Higher confidence levels require wider confidence intervals; con-
versely, if only low confidence is demanded the interval can be very
small.

The difficulty in doing experiments with performance measure-
ments is deciding how many observations are needed for each sam-
ple so that a confidence interval around the mean is sufficiently
small. Typical, fixed size sampling plans require that this number
of observations be fixed before any data is actually gathered and
before any estimates of the noise are available.

The next section shows an example in which confidence inter-
vals can prove or disprove the adequacy of different sample sizes.

2.2 Choosing a Sufficiently Large Sample Size
Figure 2 shows the number of cycles used by a loop in the function
run_length_encode_zeros in the MediaBench epic-encode

program. The loop was unrolled a different numbers of times, to see
which unroll factor most improved performance. For each unroll
factor, the program was run a certain number of times (2, 4, 8 or
32) and the number of cycles was recorded. We plot, in each of
the four graphs, the mean of the samples together with their 95%
confidence intervals (note that the axes change between figures).

When the sample size is only 2 (top left graph in figure 2) we
cannot say which unroll factor is the best. We can already be sure
that some unroll factors are doing badly (for example, factor 4 is
bested by factor 9). However, the confidence intervals for some
factors are so wide that we cannot be certain which has the lowest
mean. With a constant sized sampling plan we have found that our
sample size was too small.

As the sample sizes increase the confidence intervals become
narrower. By the time we have sample sizes of 32 (bottom right
graph in figure 2), we see that the complete interval for unroll factor
8 is lower than all the others and we thus find that factor to be
the best. 32 executions of the program for each unroll factor are
sufficient to tell which one to choose.

However, this simple, constant sized sampling plan does more
work than necessary. Looking at the graph for sample size 4, we
can see that the majority of the unroll factors were worse than
factor 8; for all but factors 2, 9 and 10 the confidence intervals
lay completely outside1 the one for factor 8. If we had stopped
executing those factors after sample size 4 and continued to 32
for the remaining 4 factors, we would only have executed each
unroll factor an average of 7 times, a 78% reduction in the cost
of sampling.

2.3 Choosing When to Stop Sampling
For some programs there will be no clear winner between two
different versions. Alternatively, the difference might be so small
compared to the noise that a huge sample size might be required to
separate the program versions. In such a case we would like to stop
early to avoid wasting effort. Consider the graph in figure 3; this
graph shows the 95% confidence intervals of a different loop in
MediaBench epic-encode. Again, the loop is unrolled different
amounts, from 0 to 16, but this time the sample size is 1000. Even
with this huge increase in sample size, only a few unroll factors (0,

1 We do not advocate performing statistical tests visually in this fashion.
Rather, bona fide Student’s t-tests, ANOVA, etc. should be used.
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Figure 2. Confidence intervals at different sample sizes.
Data is from function run_length_encode_zeros in MediaBench epic-encode. Cycle counts are shown for different unroll factors of a
particular loop. Only when the sample size is 32 per unroll factor does an unambiguous winner emerge.
The confidence interval is 95%. Note that the cycle count axis changes in each sub-figure.

1 and 11) can be excluded because their confidence intervals are
completely disjoint to the one for unroll factor 4.

However, if we look at the worst case for unroll factor 4 and
compare it to the best case for the other unroll factors we find a
ratio of no more than 1.0065. In other words, if we chose factor 4 as
the best factor, we could be fairly confident that if we are wrong it
would be by not much more than 0.65%. The user, searching for the
best program version might consider such a small error acceptable
and agree that we need not execute the programs more times.

The situation is likely to be different for each program. In some
cases, a small, constant sample size will suffice, in others much
larger sample sizes must be taken. The user cannot, in general,
know ahead of time how large the sample size should be.

This paper presents a mechanism by which the sample sizes
are adaptively managed to ensure statistically valid results while at
the same time drastically reducing the number of executions times
needed to select the best program version.

3. Method
This section presents our sequential sampling method. The essen-
tial idea of our algorithm is that we:

1. Maintain a sample for each program version
2. Determine which versions are worse than any other - these are

losers
3. Finish if there is only one non losing version or the non losers

are close enough to each other
4. Increase the sample size by one in each non loser
5. Repeat from step 2

The algorithm ‘races’ program versions to find out which will win
- i.e. have the best performance. Poorly performing versions are
knocked out of the race while potential winners continue, increas-

ing their sample size. The moment we find there is either one clear
winner or that the front runners are all good enough, we stop.

Figure 4 shows a pictorial example of our algorithm. In the first
panel, (a), the samples are initialized for each program version.
Each version is, at this point a potential candidate to be in the win-
ning set. We ensure that enough observations are in each sample for
our statistical tests to work since they require a minimum sample
size; little can be said statistically about a single observation.

In panel (b) the samples have been tested to see if any can
already be identified as clear losers. A number of statistical tests
are run (described in section 4) and any version shown to be worse
than one of the other versions is taken out of the race. Since
the remaining set of potential candidates contains more than one
version we perform another set of tests to see if the versions are
all approximately equal (detailed in section 4). At this point in the
example there is not enough data to call the versions equal.

In panel (c) another observation is added to each sample and the
process is repeated. As sample sizes grow, the amount of informa-
tion available about each version increases; statistical tests become
more able to make decisions about the relative merits of the differ-
ent versions.

In the last panel, (d), the algorithm has run for several steps and
discarded all the program versions but two. It has decided these are
approximately equal so it returns them both.

3.1 Student’s T-Tests
Our algorithm makes heavy use of statistical testing to determine
which means are unlikely to be in the winning set.

We use a student’s t-test(29) which is a statistical test that can
determine if the means of two samples are significantly different.
It may be that differences observed in the sample means are due to
the sample sizes being too small, rather than because the true means
themselves are different. A t-test can only be used to check that the
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loop in function internal_filter of benchmark MediaBench
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Figure 4. Several steps from our algorithm. In (a) initial samples
are taken. In (b), versions that are clear losers are dropped. In (c),
remaining versions are not deemed equivalent so the samples for
them are grown by one. In (d), several steps have been run and
the two remaining versions are found to be sufficiently good; the
algorithm terminates.

means are different; if it does not declare the means to be different,
that does not necessarily mean that the means are the same, it could
also be that the sample sizes are too small to verify the difference.

The confidence level, α, of a t-test indicates the probability that
the test will assert a difference in the means when none in fact exists
(called a Type-I error). The lower this value the more confident we
can be that a stated difference is real.

The t-test computes a ‘t-statistic’ over the samples and com-
pares this to a point on the cumulative distribution function (CDF)
for the t-distribution (a probability distribution at the heart of the
t-test). The point on the CDF parametrized by the confidence level,
α, and an estimate of the number of degrees of freedom in the sam-
ples. The t-test normally indicates that the means are significantly
different if the t-statistic is greater than the given point on CDF.

A t-test makes assumptions about the shape of the distribution
and prefers it to look as normal as possible. There are also different
variations on the t-test depending upon the exact use and what
additional assumptions can be made. For example, if the sample
sizes are equal or the variances are guaranteed to be equal then
stronger tests can be used. There also alternatives to the t-test,
for example the Mann-Whitney U test(14), which make different
assumptions about the distributions under test. These alternatives,
however, are generally not preferred if the t-test is applicable.

4. Algorithm Details
This section describes the algorithm and it’s component parts in
depth. Pseudo-code is presented in Algorithm 1.

Our algorithm begins with a set of all the program versions, C.
For every version we maintain a sample which consists of the run
time values we have taken so far for the corresponding version;
these are Sc. In reality, we only need to record the sufficient de-

scriptive statistics to determine the mean, confidence intervals and
perform statistical tests, we never need to remember the complete
list of run time observations and so the amount of space required
by the algorithm is linear in the number of program versions.

The loop in lines 3 to 8 forms the bulk of the algorithm. First
we remove any version that is provably worse than any other. Then
we terminate if there is only one candidate left or all the remaining
candidates are equal. Line 6 increases the sample size for remaining
versions. Finally we terminate if some user defined limit is reached,
allowing a hard boundary to be imposed on the total number of
times each program version will ever be executed.

The loop does not remember which program versions were
losers from iteration to iteration. This means that a version which
is found to be a loser in one iteration has the opportunity to reenter
the race later on. It can happen that a version deemed promising
early on turns out to be less so once more information about it has
been gathered. We found that reconsidering losers provided lower
error rates.

A detailed description of the subroutines used by the algorithm
follows.

Initialization At the beginning of the algorithm the sample sets
are initialized to have two observations, the minimum necessary to
make statistical inferences with a t-test. If other statistical tests are
used, the initial number of observations may have to be different.

Sampling the Run time The cycle count for the current program
version is measured by the function sampleRuntime. It assumes
that there is some mechanism to profile the program to calculate
the measurement.

Of special note here is that we take the natural logarithm of the
run time. The reason for this is that run time distributions are both
skewed and often suffer from outliers; applying a log transform is
a common way to make the distribution look more ‘normal’ and
to reduce the effects of outliers(4). Having distributions which are
closer to a normal distribution frequently improves the accuracy of
statistical tests. More general transformations, such as a Box-Cox
transform(7) of which the logarithm is a special case, could be used
instead, but we found adequate results from the simple logarithm.

Weeding Out Losers The algorithm needs to determine which
versions are unlikely to be in the final winning set which is handled
by the function, losers. The set of losers consists of any version,
c, for which there is another version, d, that looks to be better
performing. The ‘better performing’ test is a relation, <αLT , over
samples, (Sd, Sc).

To determine membership of the relation, <αLT , we first check
that the mean, µd, of Sd is less than the mean, µc, of Sc. If
that is the case then we perform a student’s t-test to discover if
the difference in the means is significant to some user supplied
confidence level, αLT .

Since we cannot be certain that the variances are equal and since
also the number of observations in each sample may be different,
we use Welch’s t-test(5) where the t statistic is:

t =
µd − µcq

s2d/nd + s2c/nc

and µi, s2i and ni are the sample mean, variance and size of the
ith program version, respectively.

The degrees of freedom are estimated by the Welch-Satterthwaite
equation(21):

d.f. =

`
s2d/nd + s2c/nc

´2
(s2d/nd)

2

(nd−1)
+

(s2c/nc)
2

(nc−1)

As the testing proceeds, any version removed is not used to com-
pare against subsequent versions in the tests for this iteration. In this
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Algorithm 1 Pseudo code for our algorithm
1. C ← {c; c is a compilation strategy}
2. ∀c ∈ C, Sc ← {sampleRuntimec(), sampleRuntimec()}
3. for everdo
4. C′ ← C − losers(C, S )
5. if |C′| = 1or candidatesEqual(C′, S ) then returnC′

6. ∀c ∈ C′, Sc ← Sc ∪ sampleRuntimec()
7. if sampleThresholdReached(C′, S ) then returnC′

8. end for

9. sampleRuntimec()
10. x← execute strategy c and record runtime
11. return ln x

12. loosers(C, S )
13. return {c ∈ C; ∃d ∈ C, d 6= c, Sd <αLT Sc}
14. candidatesEqual(C′, S )
15. B ← {b ∈ C′; µb ≤ µc, ∀d ∈ C′}
16. return

V
b∈B,c∈C′;b6=c Sb =αEQ,ε Sc

17. sampleThresholdReached(C, S )
18. return

W
c∈C |Sc| ≥MAX_SAMPLE_SIZE

way the algorithm guarantees that at least one version survives the
losers function.

Finding the Winners Stopping when enough data has been gath-
ered is important since we may find that some program versions
are either identical to each other or so nearly so that the compiler
writer is content with several winners. Increasing the sample sizes
once we know this is a waste of effort and, left unchecked, may
continue indefinitely.

In the happy case that one version has beaten all others, we can
return that single winner. If more survive then we check to see
if they are all sufficiently close together for the compiler writer,
decided by function candidatesEqual.

Detecting that two distributions are approximately equal is the
domain of equivalence testing(25). The archetypal equivalence test
is based on Westlake intervals(28) wherein a confidence interval is
formed for the difference between two means and if that interval is
completely contained within some ‘indifference region’ about zero
then the distributions are considered equal. Indifference regions
cannot be selected analytically, it is up to the compiler writer to
express when distributions are equivalent.

In our case, the Westlake interval would require the indifference
region to specified as a difference of an absolute number of cycles.
It is more natural, instead, to describe the indifference region as
an upper bound on the ratio of means. Our justification for this is
that speed ups and slow downs are important in compiler fields,
but rarely are absolute cycle counts. We might consider a speed
up of 1.001 to be uninteresting, regardless of whether it represents
one million or ten billion cycles; conversely a speed up of 1.5 is
likely exciting with similar disregard for the number of cycles in
the difference.

We expect compiler writers to be interested in the version re-
turned with the lowest mean (the rest of the set we expect to be
only of cursory interest, except perhaps to machine learning tools).
We use this information to tune our equivalence test to the problem.
Since the compiler writer will choose the one from the non losing
set with the lowest mean, we wish to ensure, to some confidence,
that none of the other non losers could have provided much of a
speed up compared to that choice.

We can determine the most available speed up between two
program versions by taking a confidence interval for each sample:

upper = µ+ t(αEQ,n−1)

q
s2/n

lower = µ− t(αEQ,n−1)

q
s2/n

where t is the student’s t statistic for a given user supplied
confidence, αEQ, and µ, s, and n are as before.

Now, if the program version with the lowest mean is b, and we
have another version, c, we can calculate the worst case speed up
of c over b by comparing the upper end of b’s confidence interval
against the lower end of c’s interval. However, we must remember
that we initially transformed our observations with a logarithm
transform. If we simply compare the interval ends directly we will
not be describing speedups; we must apply the inverse transform,
first (note that it is this transformation which prevents us using
Fieller’s theorem(8; 13) for the confidence interval of the ratio of
two means). The speedup is:

worstspeedupb,c =
eupperb

elowerc
= e(upperb−lowerc)

This shows us the speed up in the worst case where the true
value of the mean for version b is at the upper end of its confidence
interval and the true mean for c is at the lower end of its interval.

The compiler writer, having already given a significance level,
αEQ, must also now specify an indifference region, ε. This gives
the maximum worst case speed up for the equivalence test. Putting
this together, we now have a relation, =EQ,ε, used in line 16, over
pairs of samples such that:

(Sb, Sc) ∈=EQ,ε↔ 1 + ε < worstspeedupb,c

Other stopping conditions are possible, but we believe that this
estimate of the nearness of the run times closely matches the re-
quirements of iterative compilation. If the current experiment at
hand needs a different stopping condition it should be easy to ad-
just our algorithm to it.

Limiting Total Sample Size Our algorithm also gives the com-
piler writer the opportunity to place hard limits on the total sam-
ple size through the constant, MAX_SAMPLE_SIZE in function
sampleThresholdReached. This fixed limit makes ours a re-
stricted sampling plan(26); other methods exist to ensure closed
sample boundaries(20) and may be worth considering, although we
have found that the restricted plan is quite adequate.

Having a hard sample size limit allows the compiler writer to
choose how keen they are for correct results. A large limit permits
the algorithm to expend more effort disambiguating difficult cases.
Feedback is given when the limit is reached so that in those cases
the compiler writer can either accept the best estimate so far from
the algorithm or reject, deciding that further effort is not warranted.
With a combination of this limit and the two confidence levels, the
compiler writer can tune the breadth and accuracy of the space they
wish to explore.

5. Experimental Setup
In this section we briefly describe the experimental set up. We per-
formed two different experiments; the first was to find the best un-
roll factor for loops, while the second was to find the best compiler
flags for whole benchmarks.

5.1 Experiments
Loop Unrolling Experiment Loop unrolling has been targeted in
a number of previous machine learning and iterative compilation
works(17; 22). Being a fine grained optimization, there is a wide
range of variation in noise to signal ratios in different loops.

Compiler Flags Experiment Finding the best compiler flags has
also been widely explored in both iterative compilation and ma-
chine learning(9). The very long data gathering phases, often equat-
ing to months of compute time(9), make efficiency of paramount
importance.
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(a) Loop Unrolling. At the 1% failure rate, an adaptive plan with αLT =
0.02 and αEQ = 0.02 needed only 102 samples compared to an optimal
fixed sample plan of 780 samples, a reduction of 87%. JavaSTATS required
956 samples to dip below the 1% failure rate, our reduced that by 89%.
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(b) Compilation Flags. At the 1% failure rate, an adaptive plan with αLT =
0.002 and αEQ = 0.01 needed only 21 samples compared to an optimal
fixed sample plan of 90 samples, a reduction of 76%. JavaSTATS required 92
samples to dip below the 1% failure rate, our reduced that by 77%.

Figure 5. Comparison between our method, constant sized sampling and JavaSTATS(10). Mean failure rates are shown against average
sample sizes. A failure is when the given number of samples fails to find a program version that is within 0.5% of the cycle count of the best
version. Intersection with a failure rate of 1% is shown. The many points of our adaptive sampling plan show results with different values of
αLT , the confidence interval for the losers function, and αEQ, the confidence interval for the candidatesEqual function, for these, θ, the
equivalence threshold, is always 0.5%. Different points from the JavaSTATS algorithm are also shown with varying α and θ.

5.2 Compiler Setup
For both experiments we used GCC 4.3.1. In the first we extended
the compiler to allow unroll factors to be explicitly specified for
each loop in a program. In the second we altered GCC to accept
command line arguments externally, regardless of the benchmarks’
makefile. This allowed us to force different compilation flags to be
used.

5.3 Benchmarks
Loop Unrolling Experiment For the loop unrolling experiment
we took 22 embedded benchmarks from the MediaBench and
UTDSP benchmark suites. Those benchmarks which did not com-
pile immediately, without any modification except updating path
variables, were excluded.

Compiler Flags Experiment For the compiler flags experiment
we added the MiBench suite, extending the number of benchmarks
to 57. Again, we excluded those which did not immediately com-
pile.

5.4 Platform
These experiments were run on an unloaded, headless machine; an
Intel dual core Pentium 6 running at 2.8 GHz with 2Gb of RAM.
We used a fast machine so that we could gather sufficient data for
the naïve, constant sized sampling plans.

5.5 Data Generation
Loop Unrolling Experiment For loop unrolling, we selected each
of the 230 loops in the benchmarks and unrolled them different
number of times. Each loop was unrolled between 0 and 16 times
inclusive, giving a total of 17 different program versions per loop.
Only one loop was modified at any one time, meaning that a
program with ten loops would be compiled 170 times. This allowed
each loop to be considered in isolation.

The current loop being changed was instrumented to record the
cycle count before and after the loop. Each different version of a
program was run 1000 times.

Compiler Flags Experiment For the compilation flags experi-
ment, we took 86 of GCC’s flags and generated random collections
of them. Each flag had a 5% chance of being set in each collection.
Each benchmark was compiled using the flags from each new col-
lection. If that produced a different binary than had already been
seen for the benchmark, then the binary was run at least 100 times
with the cycle count recorded.

On some benchmarks, particularly small ones, the compiler
would generate identical binaries for many different flag col-
lections. Thus, the number of different points in the compiler
optimization space varied across the benchmarks, from 34 for
mibench.telecomm.adpcm to 288 for mediabench.pegwit.

5.6 Failure Rate
We need a method to compare the different sampling plans. We
want to ensure that the result of a sampling run chooses a program
version which, if it is not the best, is slower than the best by no
more than a given amount. If the version chosen by a sampling run
is further from the best, then we call the run a failure, else we call
it a success. This allows, by repeated running of the sampling plan,
to generate mean failure rates and hence compare the quality of
different plans; a better plan will have a lower mean failure rate.

Specifically, we desire that the true mean of the performance
of whatever program version is finally selected by a plan should
be sufficiently near to the true mean of the best possible version.
The true mean is estimated by taking the mean of the full data set.
We distinguish the estimated true mean as

∗
µi for the ith program

version, as opposed to the sample mean, µi.
If some sampling plan selects a version, c, and the best possible

version according to the complete data set is b, then we compare
ratio of the estimated true means,

∗
µb/ ∗µc, which gives the slowdown

caused by choosing version c over version b. If the ratio is greater
than 1 − θ, for some positive θ, then we call the trial a success,
otherwise it is a failure. In our experiments we fix θ to 0.5%, which
means that, to be successful, a sampling run must choose a program
version whose true mean is no more than 0.5% slower than the true
mean of the best possible version.
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5.7 Techniques Evaluated
Profiled Races To evaluate our approach, we explored differ-
ent values of the parameters which define our algorithm. Both
the confidence level for the less than test in the losers func-
tion, αLT , and αEQ, the confidence level for the equality test in
candidatesEqual, were allowed to range over the set {0.0001,
0.005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. The set
of confidence levels gives a broad spectrum of confidences from
extremely high confidence at 0.0001 to very low confidence at the
other end. For example, when αEQ = 0.5, the confidence inter-
vals for two samples, even small ones, will likely be very narrow,
so the algorithm will be very generous considering if two versions
are equivalent. Conversely, if αLT = 0.0001, then the confidence
interval for two samples will be wide unless either the samples are
large or there is a very small standard deviation; the algorithm will
be very sure before deciding that one program version outperforms
another.

In all cases, the threshold, θ, which determines how far from
the best is acceptable in function candidateEqual, is set to 0.5%,
matching the boundary for failure. The MAX_SAMPLE_SIZE con-
stant is set to the maximum amount of data available in each ex-
periment; in day-to-day use this constant may not be so large. Each
parameter setting was run 100 times to determine the mean failure
rate and average sample size for those values.

Constant Sized Sampling Plan The first technique we compared
against is a straight forward constant sized sampling plan. Here a
fixed number of observations is taken of each program version’s
runtime or cycle count. Again, we ran plans for each sample size
100 times to generate mean failure rates.

JavaSTATS The second method for comparison is the statisti-
cally rigorous approach, JavaSTATS(10; 3). JavaSTATS runs each
program version until an estimate of the sample’s inaccuracy is
sufficiently small. The inaccuracy metric is a confidence interval
divided by the sample mean. This metric provides a unit-less indi-
cator of the accuracy of the current sample; a value near to zero is
an accurate sample. As the sample size grows to infinity the metric
generally approaches zero.

Several parameters are required: α, the confidence level for the
confidence intervals; θ, the threshold at which the metric indicates
an accurate sample and minimum and maximum sample sizes. We
allowed the confidence level and threshold to both range over the
set {0.0001, 0.005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,
0.5}. The minimum and maximum sample sizes were set at 2 and
the maximum size of the data respectively, just as for our own
algorithm.

6. Results
For each of our two experiments we compared average sample
sizes and mean failure rates of the different techniques with their
different parameter values.

6.1 Loop Unrolling Experiment
Figure 5(a) shows the performance of the different techniques for
the loop unrolling experiment. A horizontal line indicates a 1%
mean failure rate, an arbitrarily chosen point of comparison.

Constant Size Sampling Plan On average, a sample size of 780
or more is needed per unroll factor to achieve a failure rate less
than 1%. In practice the size will have to be greater since the
compiler writer cannot have prior, perfect knowledge of how many
observations are needed in the samples.

JavaSTATS Sampling Plan To manage the 1% failure rate,
JavaSTATS needed tight settings of α = 0.0005, θ = 0.0001.

At these settings, the average sample size was 957, nearly all the
data and worse than the constant plan. We attribute this to the fact
that it will sometimes fail early, damaging the mean failure rate;
punitive settings are needed to compensate, which while stopping
the early failures also force large sample sizes when no early failure
has occurred. On the other hand, with such aggressive settings, the
compiler writer gets good results without perfect knowledge of the
right sample size as is required for the constant sampling plans.

Since each program version in the compiler optimization space
is considered independently of the others, JavaSTATS will spend
as much effort producing accurate estimates for the poor ones as
for the best. JavaSTATS brings only statistical rigor, not efficient
iterative compilation search.

Profile Races Our algorithm performed very well compared to
both of the other plans. At αLT = 0.02 and αEQ = 0.02 our
adaptive algorithm first dips below an average failure rate of 1%,
getting a failure rate of only 0.94% for an average sample size of
only 102. This is 87% less than for the fixed size plan and 89% less
than JavaSTATS.

Even applying very strict confidence levels of αLT = 0.0001
and αEQ = 0.0001, our algorithm attained a tiny mean failure rate
of just 0.056% for a small increase in sample size to only 257.

6.2 Compiler Flags Experiment
Figure 5(b) shows the performance of the different techniques for
the compiler flags experiment. The graph looks very similar to that
of the loop unrolling experiment.

Constant Size Sampling Plan To achieve a failure rate less than
1%, an average sample size of 90 was needed per program version.

JavaSTATS Sampling Plan Once more, JavaSTATS did slightly
worse than the constant plans. At settings of α = 0.001, θ =
0.0001 the failure rate dipped below 1% with an average sample
size of 92. Again, it is still better to use JavaSTATS than the
constant plan since it does not require knowing the perfect sample
size ahead of time.

Profile Races At αLT = 0.002 and αEQ = 0.01 our algorithm
gets a failure rate of less than 1%, needing only 21 observations on
average in each sample. This is 76% less than the constant plan and
77% less than JavaSTATS.

Again, cautious use of very strict confidence levels, αLT =
0.0001 and αEQ = 0.0001, is not costly. With these values, our
algorithm needs a sample size of just 27 and gets a mean failure
rate of 0.021%.

6.3 Parameter Sensitivity
Figure 6 shows a few contours for different fixed values of the
αLT and αEQ confidence levels, demonstrating the role those
parameters play in controlling the sample size and failure rates. The
contours in the figure are for the loop unrolling experiment, but are
very similar to those in the compilation flags experiment.

The points with the highest mean failure rate are those with
high values of αLT and αEQ. When these are 0.5, for example,
the algorithm never increases the samples more than the minimum
since at that level confidence intervals are very small. The points
with the lowest failure rate are those where αLT and αEQ are also
the smallest, as is expected since they demand more confidence
before either discarding versions or determining equality.

6.4 Individual Cases
In the previous section we showed that our adaptive algorithm
significantly out-performs a simple, constant sized sampling plan.
In this section we show how our sequential sampling plan performs
on a number of individual cases, giving a flavor of what to expect.
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Figure 6. Parameter sensitivity. Contours of the two confidence levels, αLT and αEQ, are shown for the loop unrolling experiment in
figure 5. αLT is the the confidence level for the less than test in the losers function; αEQ is the confidence level for the equality test in
candidatesEqual

Figures, 7 to 10, show the behavior of our technique over par-
ticular examples of the loop unrolling data set. The settings of αLT
and αEQ are both 0.02, the point at which the failure rate is 1%.

In each figure, the left hand graph shows the mean cycle count
after all data (1000 executions) are considered; the variability of the
data is shown with error bars at one standard deviation.

The right hand graph shows how our sequential sampling plan
performs, averaged over 100 simulations. The average sample size
for each unroll factor is shown together with a one standard devia-
tion error bar to indicate variability.

6.4.1 Low Variability, Single Winner
The first example, figure 7, shows a scenario where the variabil-
ity in the cycle count (left hand graph) is very small and there is
a single program version which significantly out performs all of
the others. The algorithm excludes the poor versions, often with-
out needing to execute them beyond the minimum number; it only
needs to execute from the best three perhaps once more. The av-
erage sample size was 2.15, compared to a minimum sample size
of 2. This example shows how the well the algorithm handles easy
cases.

6.4.2 Low Variability, Multiple Winners
The next example, figure 8, is only a little harder. Unroll factors 1
and 3 are very close together but the others are poor by compari-
son. The poorly performing versions are removed very quickly and
focus is left on the two remaining candidates. These two are, on av-
erage, found to be equivalent after 35 executions each. The average
sample size was 6.05.

6.4.3 High Variability, Multiple Winners
In figure 9, the different versions are more difficult to distinguish.
The algorithm needs larger samples to come to a conclusion, but
still is able to reduce efforts on poorer versions. For this problem,
average sample size was 161.8 with no failures in 100 simulations.
On average, the algorithm returned 8 of the 17 unroll factors in the
winning set.

6.4.4 Sample Exhaustion
Finally, figure 10, shows a much harder case. Here some of the ver-
sions could not be culled and, at the same time, could not be proved
to be equal. In 97% of the sampling runs the algorithm terminated
because the maximum sample size limit was reached. The average
number of samples was 454.9 and again there were no failures.

7. Related Work
Iterative compilation has been explored for some time(2; 6; 12) and
efforts have been made to reduce the cost of it(1), albeit by reducing
the number of versions that need to be searched to find the best.
Machine learning approaches to compilers attempt to automatically
tune heuristics and require large sets of data, captured through
iterative compilation(18; 17; 23). These works, to the best of our
knowledge, all use only fixed sized sampling plans.

Efforts to promote statistical rigor in execution time measure-
ments have been made(10; 3). In these, a program version is run
multiple times until either an estimate of inaccuracy is sufficiently
small or some maximum number is reached. Each point in the op-
timization space is executed until we have a good estimate of its
mean so the data is statistically valid. However, this effort does not
take into account the relative merits of each point. A point that is
clearly bad will be refined just as much as the most promising point
in the space. Since their technique considers each point in isolation
it can perform worse than an optimally chosen constant sized ap-
proach.

In (19), the difficulties of avoiding measurement bias are de-
scribed. The authors demonstrate that, even with a simulator, ap-
parently innocuous modifications (such as sizes of irrelevant envi-
ronment variables) can affect the performance of a program. They
suggest that random changes must be made to the set up state so
that multiple measurements are required. Even in simulators, previ-
ously a haven of noise free data, must correct measurements handle
noise.

Sequential analysis, however, has been used reduce the cost
of sampling in contexts from industrial processes(24) to medical
trials(27). Our work is most similar to (15; 16) wherein machine
learning models are raced to find the best. Their work, however, re-
lying on Hoeffding’s inequality(11), requires that the random vari-
ables under consideration are all bounded - which is not the case
for run times. Moreover, their work only concentrates on remov-
ing poor performers, it does not consider the situation where some
of the random variables are equivalent for practical purposes. To
the best of our knowledge, our paper is the first to bring sequential
sampling to iterative compilation.

8. Conclusion and Further Work
In this paper we have shown that using fixed sized sampling plans
can have unintended consequences for performance measurement
and iterative compilation. Too small a sample can generate incor-
rect results. Noisy data can make a small sample appear to have
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Figure 7. A loop from MediaBench gsm-encode, function Gsm_preprocess. If the winner is clear very early on, then very small sample sizes will result.
Error bars are, in both graphs, one standard deviation.
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Figure 8. A loop from MediaBench adpcm-decode, function adpcm_decoder. Poorly candidates are quickly discarded and effort focused on the
remaining set.
Error bars are, in both graphs, one standard deviation.
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Figure 9. A loop from MediaBench jpeg-encode, function emit_eobrun. When the relative noise is large more samples must be taken.
Error bars are, in both graphs, one standard deviation.
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Figure 10. A loop from UTDSP fft_1024, function main. Sometimes the noise will case the sample limit restriction to be reached.
Error bars are, in both graphs, one standard deviation.
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a promising mean where a larger sample would give a very dif-
ferent answer. It is not enough to only look at the means of perfor-
mance measurements, the statistical significance of the results must
be taken into account.

Too large a sample wastes excessive work since program ver-
sions are executed an unnecessary number of times. Often, some
program versions could be discarded early but a fixed sampling
plan is oblivious to these opportunities. With fixed sampling plans,
the user must choose, ahead of time, how many runs each version
needs to get good data. This is very difficult to do without already
having data to examine.

We have provided an algorithm which automatically adapts to
the requirements of the problem at hand. In cases where there is
little noise and a clear winner is visible early the algorithm will take
very few samples. When particular versions require larger sample
sizes to disambiguate them the algorithm does just that. Finally,
the algorithm terminates when versions are equivalent so that no
further work is done trying to tell identical versions apart.

We applied our technique to finding the best loop unrolling
factor for a number of loops from different benchmarks and also
to finding the best compiler flags for whole programs. Some loops
and programs generated noisy data while others had relatively clean
data. Our method was able to adapt to these differences, choosing
different sample sizes in each case. We reduced the cost of iterative
compilation by between 76% and 87% compared to a fixed sized
sampling plan. Compared to JavaSTATS(10), we reduced the cost
by between 77% and 89%.

There are other possible formulations of the algorithm, using
different criteria to remove versions and decide when to stop. We
will explore these in the future.
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DevelopersŚummit, June 2008.

[10] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically
rigorous java performance evaluation. SIGPLAN Not., 42(10):57–76,
2007.

[11] Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Association,
58(301):13–30, March 1963.

[12] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho,
David Whalley, Jack Davidson, Mark Bailey, Yunheung Paek, and
Kyle Gallivan. Finding effective optimization phase sequences. SIG-
PLAN Not., 38(7):12–23, 2003.

[13] M.A.Creasy. Confidence limits for the gradient in the linear functional
relationship. Journal of the Royal Statistical Society, 18:64–69, 1956.

[14] H. B. Mann and D. R. Whitney. On a test of whether one of two
random variables is stochastically larger than the other. Annals of
Mathematical Statistics, 18:50–60, 1947.

[15] Oded Maron and Andrew W. Moore. Hoeffding races: Accelerating
model selection search for classification and function approximation.
In Advances in neural information processing systems 6, pages 59–66.
Morgan Kaufmann, 1994.

[16] Oded Maron and Andrew W. Moore. The racing algorithm: Model
selection for lazy learners. Artificial Intelligence Review, 11:193–225,
1997.

[17] A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach
to automatic production of compiler heuristics, 2002.

[18] Eliot Moss, Paul Utgoff, John Cavazos, Doina Precup, Darko Ste-
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