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GEOMETRIC IDEALIZER RINGS

SUSAN J. SIERRA

Abstract. Let B = B(X,L, σ) be the twisted homogeneous coordinate ring
of a projective variety X over an algebraically closed field k. We construct and

investigate a large class of interesting and highly noncommutative noetherian
subrings of B. Specifically, let Z be a closed subscheme of X and let I ⊆ B
be the corresponding right ideal of B. We study the subalgebra

R = k + I

of B. Under mild conditions on Z and σ ∈ Autk(X), R is the idealizer of I in
B: the maximal subring of B in which I is a two-sided ideal.

Our main result gives geometric conditions on Z and σ that determine the
algebraic properties of R. We say that

{σn(Z)}
is critically transverse if for any closed subscheme Y of Z, for |n| � 0 the sub-
schemes Y and σn(Z) are homologically transverse. We show that if {σn(Z)}
is critically transverse, then R is left and right noetherian, has finite left and

right cohomological dimension, is strongly right noetherian but not strongly
left noetherian, and satisfies right χd (where d = codimZ) but fails left χ1.
This generalizes results of Rogalski in the case that Z is a point in P

d. We also
give an example of a right noetherian ring with infinite right cohomological
dimension, partially answering a question of Stafford and Van den Bergh.

Further, we study the geometry of critical transversality and show that it
is often generic behavior, in a sense that we make precise.
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1. Introduction

One of the contributions of noncommutative algebraic geometry to noncommu-
tative algebra is a gallery of interesting counterexamples: rings with previously
unobserved, unusual, and counter-intuitive properties. Many of these examples are
even noetherian N-graded domains, but their subtler properties, such as whether
or not they are strongly noetherian or satisfy the Artin-Zhang χ conditions, can
be surprisingly pathological. Examples of such rings include the näıve blowup al-
gebras first analyzed by Rogalski in [20] and later studied in [17] and the idealizers
constructed by Rogalski in [21].

In this paper we use noncommutative algebraic geometry to construct and an-
alyze a large class of rings with interesting algebraic behavior. Our rings, like
those mentioned above, will be constructed as subrings of twisted homogeneous
coordinate rings. We recall Artin and Van den Bergh’s construction [3].

Let X be a projective scheme, let L be an invertible sheaf on X, and let σ be
an automorphism of X. We denote the pullback of L along σ by

σ∗L = Lσ.

For any n ≥ 0, we define

Ln = L ⊗ Lσ ⊗ · · · ⊗ Lσn−1

.

Then the twisted homogeneous coordinate ring B(X,L, σ) is defined to be
⊕

n≥0

H0(X,Ln).

If L is appropriately ample (the technical term is σ-ample), then B(X,L, σ) is
noetherian [3, Theorem 1.4].

Recall that if I is a right ideal of a ring B, the idealizer IB(I) of I in B is the
maximal subring of B in which I becomes a two-sided ideal. That is,

IB(I) = {x ∈ B | xI ⊆ I}.

In this paper, we study idealizer subrings of twisted homogeneous coordinate rings.
Our basic construction is the following:

Construction 1.1. Let X be a projective variety, let σ be an automorphism of X,
and let L be a σ-ample invertible sheaf on X. Let Z be a closed subscheme of X.
Let B = B(X,L, σ), and let I be the right ideal of B generated by sections that
vanish on Z.

Our object of study is the idealizer ring

R = R(X,L, σ, Z) = IB(I) = {x ∈ B | xI ⊆ I}.

We refer to R as a geometric idealizer, or more specifically, as the (right) idealizer
in B at Z.
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Our main result gives geometric criteria that determine the algebraic properties
of geometric idealizers. In particular, we characterize when such rings are noe-
therian. We also analyze when idealizers are strongly noetherian, satisfy various χ
conditions, and have finite cohomological dimension. Here we define the properties
that we will investigate.

Throughout, we fix an algebraically closed ground field k. All rings R we consider
will be connected N-graded k-algebras; that is, R is N-graded, with R0 = k.

Definition 1.2. Let R be a finitely generated, connected N-graded k-algebra, and
let j ∈ N. We say that R satisfies right χj if, for all i ≤ j and for all finitely
generated graded right R-modules M , we have

dimk Ext
i
R(k,M) < ∞.

We say that R satisfies right χ if R satisfies right χj for all j ∈ N. We similarly
define left χj and left χ; we say R satisfies χ if it satisfies left and right χ.

Definition 1.3. A k-algebra Rq is strongly right (left) noetherian if, for any com-
mutative noetherian k-algebra C, the ring R⊗k C is right (left) noetherian.

Finitely generated commutative graded rings are always strongly noetherian by
the Hilbert basis theorem and satisfy χ by [4, Corollary 8.12]. For noncommutative
rings, these two conditions are important because their presence allows one to
use powerful techniques inspired by commutative algebraic geometry. The strong
noetherian property, in particular, is needed in order for modules over R to be
parameterized by a (commutative) projective scheme [5]. If R satisfies χ1, then
one may reconstruct R from the noncommutative projective scheme associated to
R [4]. The higher conditions χj for j > 1 are less well understood. However, if a
ring satisfies right or left χ, then it is well-behaved in some important ways. For
example, the χ conditions are needed in order to have a version of Serre duality for
a noncommutative ring R [29, Theorem 6.3], [32, Theorem 4.2]. This is known as
the existence of a balanced dualizing complex.

Examples are known of noetherian rings that are not strongly noetherian on one
or both sides, or which satisfy χd on one side and fail χ1 on the other side. However,
in general, the ways in which it is possible for these properties to fail, and to fail
asymmetrically, are still poorly understood. Thus another goal of the work in this
paper is to gain more insight into situations where some of these properties do not
hold. We study these properties for geometric idealizers and show that, roughly
speaking, if σ and Z are in general position (in a sense we make precise), then
R = R(X,L, σ, Z) is noetherian, strongly right noetherian, and satisfies right χd,
where d = codimZ. On the other hand, R is not strongly left noetherian and fails
left χ1.

We also study the cohomological dimension of geometric idealizers, since there
are many open questions about this invariant. Recall that in noncommutative
algebraic geometry, one often works with the category qgr-R, defined roughly as

{graded right R-modules}/{finite-dimensional modules}.
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The category qgr-R is the appropriate analogue of ProjR for a commutative graded
ring R. It has a global section functor, defined as

Γ(M) = Homqgr-R([R],M),

where [R] denotes the image of R in qgr-R. The cohomological dimension of the
functor Γ is referred to as the right cohomological dimension of R; of course, one may
also define left cohomological dimension. Stafford and Van den Bergh [26, page 194]
have asked if a noetherian graded ring must have finite left and right cohomological
dimension. (This is true for commutative graded rings by a well-known result
of Grothendieck [12].) We answer Stafford and Van den Bergh’s question in the
affirmative for geometric idealizers. We also give the first known example of a right
noetherian graded ring with infinite right cohomological dimension.

Our work generalizes work of Rogalski [21], who used algebraic techniques to
investigate idealizers of maximal nonirrelevant graded right ideals in Zhang twists
of polynomial rings. In our language, Rogalski studied geometric idealizers in the
special setting that X = P

d, L = O(1), and Z = {p} is a point. (His work
generalized earlier work of Stafford and Zhang [27], who studied idealizers on P

1.)
Rogalski discovered that the algebraic behavior of R(X,O(1), σ, {p}) is controlled
by the geometry of the orbit of p, as follows:

Definition 1.4. Let X be a variety, let p ∈ X and let σ ∈ Autk(X). The orbit
{σn(p)}n∈Z is critically dense if it is infinite, and any infinite subset is Zariski dense
in X.

Theorem 1.5 (Rogalski). Let σ ∈ PGLd+1 and let p ∈ P
d. Assume that p is of

infinite order under σ, and let R = R(Pd,O(1), σ, {p}). Then
(1) R is strongly right noetherian.
(2) R fails left χ1.

Further, if the set {σn(p)} is critically dense, then:
(3) R is left noetherian, but not strongly left noetherian if d ≥ 2.
(4) R satisfies right χd−1, but fails right χd.
(5) R⊗k R is right but not left noetherian. �

Rogalski’s work shows that the algebraic conclusions of (3), (4), and (5) are
controlled by rather subtle geometry. In particular, right idealizers at points of
infinite order are automatically right noetherian, but in order for them to be left
noetherian, σ must move p significantly and in some sense uniformly around P

d.
One naturally asks if there is a higher-dimensional analogue of critical density that
controls the behavior of more general idealizers than those studied in Theorem 1.5.
One of the main results of this paper is that the answer is “yes.” We define:

Definition 1.6. Let X be a variety and let Z, Y ⊆ X be closed subschemes. We
say that Z and Y are homologically transverse if

TorXj (OZ ,OY ) = 0

for all j ≥ 1.

Definition 1.7. Let X be a variety and let σ ∈ Autk X. Let Z ⊆ X be a closed
subscheme. The set {σnZ}n∈Z is critically transverse if for all closed subschemes
Y ⊆ X, the subschemes σn(Z) and Y are homologically transverse for all but
finitely many n.
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In this paper, we generalize Theorem 1.5 to arbitrary idealizers in twisted homo-
geneous coordinate rings. We show that critical transversality controls the behavior
of these rings, and we prove:

Theorem 1.8 (Theorem 10.2). Let X be a projective variety, let σ be an auto-
morphism of X, and let L be a σ-ample invertible sheaf on X. Form the ring
R = R(X,L, σ, Z) as above. For simplicity, assume that Z is irreducible and of
infinite order under σ. (We treat the general case in the body of the paper.)

If for all p ∈ Z, the set {n ≥ 0 | σn(p) ∈ Z} is finite, then:
(1) R is strongly right noetherian.
(2) R fails left χ1.

If the set {σnZ}n∈Z is critically transverse, then:
(3) R is left noetherian, but R is strongly left noetherian if and only if all com-

ponents of Z have codimension 1.
(4) Let d = codimZ. Then R fails right χd. If X and Z are smooth, then R

satisfies right χd−1.
(5) If R is noetherian, then R has finite left and right cohomological dimension.
(6) If Z is not of pure codimension 1, then R⊗k R is not left noetherian.

One motivation for undertaking the investigations in this paper was to make
progress on the classification of noncommutative projective surfaces: graded noe-
therian domains of GK-dimension 3. Even for the nicest possible such surfaces,
those that are birational to a commutative surface in the sense of [1], current
classification results such as [22] depend on technical conditions such as being gen-
erated in degree 1. Since ideally a classification effort in noncommutative geometry
would be sui generis, without requiring such conditions, understanding idealizers
in twisted homogeneous coordinate rings has important applications to classifying
noncommutative surfaces. In a future paper, we will give a full classification of bi-
rationally commutative projective surfaces, using many of the results in the current
work.

In the remainder of the introduction, we discuss the geometry underlying the
technical-looking definition of critical transversality. We first explain the use of
the term “transverse.” Let Y and Z be closed subschemes of X. Recall [14,
p. 427] Serre’s definition of the intersection multiplicity of Y and Z along the
proper component P of their intersection:

i(Y, Z;P ) =
∑

i≥0

(−1)i lenP (TorXi (OY ,OZ)),

where lenP (F) is the length of FP over the local ring OX,P . Thus if Y and Z
are homologically transverse, their intersection multiplicity is given by the näıve
formula that

i(Y, Z;P ) = lenP (OY ⊗X OZ).

That is, i(Y, Z;P ) is, as we might hope, the length of the structure sheaf of the
scheme-theoretic intersection of Y and Z over the local ring at P .

Another way of phrasing the critical transversality of {σn(Z)} is that for any Y ,
the general translate of Z by a power of σ is homologically transverse to Y . This
sort of statement is clearly reminiscent of the Kleiman-Bertini theorem, and in
fact the investigations in this chapter have led to a new, purely algebro-geometric,
generalization of this classical result; see [24]. In this paper, we apply the results in
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[24] to obtain a simple criterion for the critical transversality of {σn(Z)} in many
cases.

Theorem 1.9 (Theorem 5.11). Let k be an algebraically closed field of character-
istic 0, X be a variety over k, let Z be a closed subscheme of X, and let σ be an
element of an algebraic group G that acts on X. Then {σnZ} is critically transverse
if and only if Z is homologically transverse to all reduced σ-invariant subschemes
of X.

It is reasonable to say that σ and Z are in general position if Z is homologically
transverse to σ-invariant subschemes of X. Thus, in characteristic 0 and if σ is
an element of an algebraic group, Theorems 1.9 and 1.8 together imply that if σ
and Z are in general position, then R(X,L, σ, Z) has the properties enumerated in
Theorem 1.8.

2. Definitions

Throughout, we let k be a fixed algebraically closed field; all schemes are of finite
type over k.

The starting point of this paper is Rogalski’s work in [21], and specifically The-
orem 1.5. One goal of the current work is to place the results in [21] in a more
geometric context. In that sense, this paper may be viewed as analogous to [17],
which defines näıve blowup algebras and gives a geometric construction of the al-
gebras investigated by Rogalski in [20]. As in [17], one of our main techniques will
be to work, not with the ring R(X,L, σ, Z), but with an associated quasicoherent
sheaf on X. This object is known as a bimodule algebra, and is, roughly speaking,
a sheaf with multiplicative structure.

In this section, we give the definitions and notation to allow us to work with
bimodule algebras. Most of the material in this section was developed in [28] and
[3], and we refer the reader there for references. We will not work in full generality,
however, and our presentation will follow that in [17, Section 2].

A bimodule algebra on a variety X is, roughly speaking, a quasicoherent sheaf
with a multiplicative structure.

Definition 2.1. Let X be a variety; that is, a projective integral separated scheme
(of finite type over k). An OX -bimodule is a quasicoherent OX×X -module F , such
that for every coherent F ′ ⊆ F , the projection maps p1, p2 : SuppF ′ → X are both
finite morphisms. The left and right OX -module structures associated to an OX -
bimodule F are defined respectively as (p1)∗F and (p2)∗F . We make the notational
convention that when we refer to an OX -bimodule simply as an OX -module, we are
using the left-handed structure (for example, when we refer to the global sections
or higher cohomology of an OX -bimodule).

There is a tensor product operation on the category of bimodules that has the
expected properties; see [28, Section 2].

All the bimodules that we consider will be constructed from bimodules of the
following form:

Definition 2.2. Let X be a variety and let σ, τ ∈ Autk(X). Let (σ, τ ) denote the
map

X → X ×X,

x 	→ (σ(x), τ (x)).
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If F is a quasicoherent sheaf on X, we define the OX -bimodule σFτ to be

σFτ = (σ, τ )∗F .

If σ = 1 is the identity, we will often omit it; thus we write Fτ for 1Fτ and F for
the OX -bimodule 1F1 = Δ∗F , where Δ : X → X ×X is the diagonal.

We quote a lemma that shows how to work with bimodules of the form σFτ and,
in particular, how to form their tensor product. If σ is an automorphism of X and
F is a sheaf on X, recall the notation that Fσ = σ∗F . Thus σ acts on functions
by sending f to fσ = f ◦ σ.
Lemma 2.3 ([17, Lemma 2.3]). Let X be a variety, let F , G be coherent OX-
modules, and let σ, τ ∈ Autk X. Then:

(1) τFσ
∼= (Fτ−1

)στ−1 .
(2) Fσ ⊗ Gτ

∼= (F ⊗ Gσ)τσ.
(3) In particular, if L is an invertible sheaf on X, then L⊗n

σ = (Ln)σn . �
Definition 2.4. Let X be a variety and let σ ∈ Autk X. An OX -bimodule algebra,
or simply a bimodule algebra, B is an algebra object in the category of bimodules.
That is, there are a unit map 1 : OX → B and a product map μ : B ⊗ B → B that
have the usual properties.

We follow [17] and define

Definition 2.5. Let X be a variety and let σ ∈ Autk X. A bimodule algebra B is
a graded (OX , σ)-bimodule algebra if:

(1) there are coherent sheaves Bn on X such that

B =
⊕

n∈Z

1(Bn)σn ;

(2) B0 = OX ;
(3) the multiplication map μ is given by OX -module maps Bn ⊗ Bσn

m → Bn+m,
satisfying the obvious associativity conditions.

Definition 2.6. Let X be a variety and let σ ∈ Autk X. Let R be a graded
(OX , σ)-bimodule algebra. A right R-module M is a quasicoherent OX -module M
together with a right OX -module map μ : M⊗R → M satisfying the usual axioms.
We say that M is graded if there is a direct sum decomposition

M =
⊕

n∈Z

(Mn)σn

with multiplication giving a family of OX -module maps Mn ⊗ Rσn

m → Mn+m,
obeying the appropriate axioms.

We say thatM is coherent if there are a coherentOX -moduleM′ and a surjective
map M′ ⊗R → M of ungraded OX -modules. We make similar definitions for left
R-modules. The bimodule algebra R is right (left) noetherian if every right (left)
ideal of R is coherent. By standard arguments, a graded (OX , σ)-bimodule algebra
is right (left) noetherian if and only if every graded right (left) ideal is coherent.

We alert the reader to a technicality of notation. Suppose that R is a bimodule
algebra on X, that M is a right R-module, and that F is a subsheaf of M. We
will denote the image of F ⊗R under the multiplication map

F ⊗R �� M⊗R
μ

�� M
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by F ·R. In the case that F ⊆ OX is also an ideal sheaf on X, to avoid ambiguity
we will denote the image of F ⊗R under the canonical map

F ⊗R �� OX ⊗R = R
by FR.

Coherence for R-modules should be viewed as analogous to finite generation, but
it is unknown whether, for a general noetherian bimodule algebra, every submodule
of a coherent module is coherent! Fortunately, in our situation the usual intuitions
do hold. We restate [17, Proposition 2.10] as:

Lemma 2.7. Let X be a variety and let σ ∈ Autk X. Let R =
⊕

n∈Z
(Rn)σn be

a graded (OX , σ)-bimodule algebra such that each Rn is a subsheaf of an invertible
sheaf. Then R is right (left) noetherian if and only if all submodules of coherent
right (left) R-modules are coherent. �

We recall here some standard notation on module categories over rings and
bimodule algebras. Let R be an N-graded ring. We define Gr-R to be the category
of Z-graded right R-modules; morphisms in Gr-R preserve degree. Let Tors-R be
the full subcategory of modules that are direct limits of finite-dimensional modules.
This is a Serre subcategory of Gr-R, so we may form the quotient category

Qgr-R := Gr-R/Tors-R.

(We refer the reader to [11] as a reference for the category theory used here.) There
is a canonical quotient functor π : Gr-R → Qgr-R.

We make similar definitions on the left. Further, throughout this paper, we
adopt the convention that if Xyz is a category, then xyz is the full subcategory of
noetherian objects. Thus we have gr-R and qgr-R = π(gr-R), R-qgr, etc. If X
is a variety, we will denote the category of quasicoherent (respectively coherent)
sheaves on X by OX -Mod (respectively OX -mod).

Given a module M ∈ gr-R, we define M [n] =
⊕

n∈Z
M [n]i, where

M [n]i = Mn+i.

If M,N ∈ gr-R, let

Homgr-R(M,N) =
⊕

n∈Z

Homgr-R(M,N [n]).

Similarly, if M,N ∈ qgr-R, we define

Homqgr-R(M,N ) =
⊕

n∈Z

Homqgr-R(M,N [n]).

The Hom functors have derived functors Extgr-R and Extqgr-R.
For a graded (OX , σ)-bimodule algebra R, we likewise define Gr-R and gr-R.

The full subcategory Tors-R of Gr-R consists of direct limits of modules that are
coherent as OX -modules, and we similarly define

Qgr-R := Gr-R/Tors-R.

We define qgr-R in the obvious way.
If R is a graded (OX , σ)-bimodule algebra, we may form its section algebra

H0(X,R) =
⊕

n≥0

H0(X,Rn).
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Multiplication on H0(X,R) is induced from the multiplication map μ on R; that
is, from the maps

H0(X,Rn)⊗H0(X,Rm)
1⊗σn

�� H0(X,Rn)⊗H0(X,Rσn

m )
μ

�� H0(X,Rn+m).

If M is a graded right R-module, then

H0(X,M) =
⊕

n∈Z

H0(X,Mn)

is a right H0(X,R)-module in the obvious way; thus H0(X, ) is a functor from
Gr-R to Gr-H0(X,R).

If R = H0(X,R) and M is a graded right R-module, define M ⊗R R to be the
sheaf associated to the presheaf V 	→ M⊗RR(V ). This is a graded right R-module,
and the functor ⊗R R : Gr-R → Gr-R is a right adjoint to H0(X, ).

The fundamental result on when one can more closely relate Gr-R and Gr-R is
due to Van den Bergh. We first give a definition:

Definition 2.8. Let X be a projective variety, let σ ∈ Autk X, and let {Rn}n∈N

be a sequence of coherent sheaves on X. The sequence of bimodules {(Rn)σn}n∈N

is right ample if for any coherent OX -module F , the following properties hold:
(i) F ⊗Rn is globally generated for n � 0;
(ii) Hq(X,F ⊗Rn) = 0 for n � 0 and all q ≥ 1.

The sequence {(Rn)σn}n∈N is left ample if for any coherent OX -module F , the
following properties hold:

(i) Rn ⊗Fσn

is globally generated for n � 0;
(ii) Hq(X,Rn ⊗Fσn

) = 0 for n � 0 and all q ≥ 1.
We say that an invertible sheaf L is σ-ample if the OX -bimodules

{(Ln)σn}n∈N = {L⊗n
σ }n∈N

form a right ample sequence. By [15, Theorem 1.2], this is true if and only if the
OX -bimodules {(Ln)σn}n∈N form a left ample sequence.

The following result is a special case of a result due to Van den Bergh [28,
Theorem 5.2], although we follow the presentation of [17, Theorem 2.12]:

Theorem 2.9 (Van den Bergh). Let X be a projective scheme and let σ be an
automorphism of X. Let R =

⊕
(Rn)σn be a right noetherian graded (OX , σ)-

bimodule algebra, such that the bimodules {(Rn)σn} form a right ample sequence.
Then R = H0(X,R) is also right noetherian, and the functors H0(X, ) and

⊗R R induce an equivalence of categories

qgr-R  qgr-R.

�

Example 2.10 (Twisted bimodule algebras). Let X be a projective scheme, let
σ ∈ Autk(X), and let L be an invertible sheaf on X. We define the twisted bimodule
algebra of L to be

B = B(X,L, σ) =
⊕

n≥0

Ln.

Then B is an (OX , σ)-graded bimodule algebra. Taking global sections of B(X,L, σ)
gives the twisted homogeneous coordinate ring B(X,L, σ).
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Assume now that L is σ-ample. Here we record some important properties of
B and B. By Theorem 2.9, the categories qgr-B and qgr-B are equivalent. This
was originally proved by Artin and Van den Bergh [3], who also observed that both
categories are equivalent to OX -mod. The equivalence between qgr-B and OX -mod
is given as follows. Define a functor

Γ∗ : OX -mod → gr-B,

F 	→
⊕

n≥0

H0(X,F ⊗ Ln).

The composition πΓ∗ has a quasi-inverse, induced by the functor

˜ : gr-B → OX -mod .

To define this functor, let M ∈ gr-B. There is a unique coherent sheaf F such that

F ⊗ Ln = (M ⊗B B)n for all n � 0. Define M̃ = F .
Since σ-ampleness is left-right symmetric, there is also an equivalence B-qgr 

OX -mod. The quasi-inverses between these two categories are defined by letting

Γ∗(F) =
⊕

n≥0

H0(Ln ⊗Fσn

) ∈ B-gr

and letting M̃ be the unique F such that Ln ⊗Fσn

= (B ⊗B M)n for all n � 0.
We note that the shift functors ( )[n] on gr-B induce autoequivalences of

OX -mod. By [26, (3.1)], if N ∈ gr-B, then

(2.1) Ñ [n] ∼= (Ñ ⊗ Ln)
σ−n

for all n ≥ 0.

Throughout this paper, we will work with sub-bimodule algebras of the twisted
bimodule algebra B = B(X,L, σ). Here we note that the invertible sheaf L makes
only a formal difference.

Lemma 2.11. Let X be a projective scheme with automorphism σ, and let L be
an invertible sheaf on X. Let

R =
⊕

n≥0

(Rn)σn

be a graded (OX , σ)-sub-bimodule algebra of the twisted bimodule algebra B(X,L, σ).
Let Sn = Rn ⊗ L−1

n for n ≥ 0.
(1) Let S be the graded (OX , σ)-bimodule algebra defined by

S =
⊕

n≥0

(Sn)σn .

Then the categories gr-R and gr-S are equivalent, and the categories S-gr and R-gr
are equivalent.

(2) Let H be an invertible sheaf on X and let k ∈ Z. Then the functor Hσk ⊗
that maps

M =
⊕

n∈Z

(Mn)σn 	→
⊕

n∈Z

(H⊗Mσk

n )σk+n = Hσk ⊗M

is an autoequivalence of gr-R.
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Proof. (1) By symmetry, it suffices to prove that gr-R  gr-S. For n < 0, define

Ln = (L−1)σ
n ⊗ (L−1)σ

n+1 ⊗ · · · ⊗ (L−1)σ
−1

.

Define a functor F : gr-R → gr-S as follows: if

M =
⊕

n∈Z

(Mn)σn

is a graded right R-module, define

F (M) =
⊕

n∈Z

(Mn ⊗ (Ln)
−1)σn .

The inverse functor G : gr-S → gr-R is defined as follows: if

N =
⊕

n∈Z

(Nn)σn

is a graded right S-module, let

G(N ) =
⊕

n∈Z

(Nn ⊗ Ln)σn .

It is trivial that GF ∼= Idgr-R and that FG ∼= Idgr-S .
(2) By Lemma 2.3(2), we have that

(
(Hσ−k

)−1
)
σ−k ⊗Hσk

∼= 1

(
(Hσ−k

)−1 ⊗Hσ−k

)1 ∼= OX .

Thus the functor ((Hσ−k

)−1)σ−k ⊗ is a quasi-inverse to Hσk ⊗ . �

To end this section, we give the sheaf-theoretic versions of some standard results
on primary decomposition of ideals in a commutative ring. Let X be a locally
noetherian scheme and let I be a proper ideal sheaf on X. We will say that I is
prime if it defines a reduced and irreducible subscheme of X. We say that I is
P-primary if there is a prime ideal sheaf P such that some Pn ⊆ I, and for all
ideal sheaves J and K on X, if JK ⊆ I but J �⊆ P, then K ⊆ I.

Since primary decompositions localize, the theory of primary decomposition of
ideals in a commutative ring translates straightforwardly to ideal sheaves on X. In
particular, any ideal sheaf I has a minimal primary decomposition

I = I1 ∩ · · · ∩ Ic,
where each Ii is Pi-primary for some prime ideal sheaf Pi, the Pi are all distinct,
and I may not be written as an intersection with fewer terms. If Pi is a minimal
prime over I, then we will refer to Ii as a minimal primary component of I. If Pi

is not minimal over I, we will refer to Ii as an embedded primary component. As is
well known, the primes Pi and the minimal primary components of I are uniquely
determined by I, while the embedded primary components are not necessarily
unique.

Now let Z be a closed subscheme of X and let I be the ideal sheaf of Z. Let
I = I1 ∩ · · · ∩ Ic be a minimal primary decomposition of I. We will refer to the
closed subschemes Zi defined by the minimal primary components Ii of I as the
irreducible components of Z. We will refer to the subschemes defined by embedded
primary components as embedded components of Z. Together, the irreducible and
embedded components make up the primary components of Z.
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For any two ideal sheaves K and J on X, we define the ideal quotient

(J : K)

to be the maximal coherent subsheaf F of OX such that KF ⊆ J . We record the
following elementary lemmas for future use.

Lemma 2.12. Let I = I1 ∩ · · · ∩ Ic be a primary decomposition of the ideal sheaf
I on the locally noetherian scheme X, where each Ii is Qi-primary for some prime
ideal sheaf Qi.

(1) If K and J are ideal sheaves so that K �⊆ Qi for some i, then
(
I : (K ∩ J )

)
⊆ (Ii : J ).

(2) If K is not contained in any Qi, then (I : K) = I.

Proof. (1) We have
(
I : (K ∩ J )

)
JK ⊆

(
I : (K ∩ J )

)
(K ∩ J ) ⊆ I ⊆ Ii.

As K �⊆ Qi and Ii is Qi-primary,
(
I : (K ∩ J )

)
J ⊆ Ii, and so by definition

(
I : (K ∩ J )

)
⊆ (Ii : J ).

(2) Applying (1) with J = OX , we see that

(I : K) ⊆
c⋂

i=1

(Ii : OX) =
c⋂

i=1

Ii = I.

The other containment is automatic. �

Lemma 2.13. Let P and I be ideal sheaves on the locally noetherian scheme X,
where P is prime and I is P-primary. If J is an ideal sheaf on X that is not
contained in I, then (I : J ) is also P-primary.

Proof. Since J �⊆ I, we have that (I : J ) �= OX . Suppose that F and G are
ideal sheaves with F �⊆ P and FG ⊆ (I : J ). Thus FGJ ⊆ I, and since I is
P-primary, GJ ⊆ I. This precisely says that G ⊆ (I : J ). Since for some m we
have Pm ⊆ I ⊆ (I : J ), we see that (I : J ) is P-primary. �

3. Right noetherian bimodule algebras

LetX, L, σ, and Z be as in Construction 1.1, and let R be the geometric idealizer
ring

R = R(X,L, σ, Z).

In this section, we begin the study of R by working with the corresponding bimodule
algebra. Here we introduce the notation we will use.

Notation 3.1. Let X be a projective variety, let σ ∈ Autk X, and let L be an
invertible sheaf on X. Let Z be a closed subscheme of X and let I = IZ be its
defining ideal. Let

B = B(X,L, σ) =
⊕

n≥0

(Ln)σn ,

and let R = R(X,L, σ, Z) be the graded (OX , σ)-sub-bimodule algebra of B defined
by

R = R(X,L, σ, Z) =
⊕

n≥0

(
(I : Iσn

)Ln

)
σn .

Licensed to University of Edinburgh. Prepared on Tue Aug 12 08:29:20 EDT 2014 for download from IP 129.215.104.50.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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It is easy to see that R is the maximal sub-bimodule algebra of B such that IB+

is a two-sided ideal of R, and we will write

R = IB(IB+)

and speak of R as an idealizer bimodule algebra inside B. As usual we write

R =
⊕

n≥0

(Rn)σn ,

so

Rn = (I : Iσn

)Ln.

In the next two sections, we give geometric conditions on the defining data
(X,L, σ, Z) that determine when R(X,L, σ, Z) is left or right noetherian. In this
section, we consider when R(X,L, σ, Z) is right noetherian; we will show this is
controlled by a straightforward geometric property of the intersection of Z with
σ-orbits.

Definition 3.2. Let x ∈ X and let σ be an automorphism of X. The forward
σ-orbit or forward orbit of x is the set

{σn(x) | n ≥ 0}.

If Z ⊂ X is such that for any x ∈ X the set

{n ≥ 0 | σn(x) ∈ Z}

is finite, we say that Z has finite intersection with forward orbits. In particular, if
Z has finite intersection with forward orbits, it contains no points of finite order
under σ.

Recall that if R is a Z-graded or N-graded ring, and 1 ≤ n ∈ N, then the nth
Veronese of R is the graded ring R(n) defined by

R
(n)
i = Rni.

We note here that

B(X,L, σ)(n) ∼= B(X,Ln, σ
n)

and that

R(X,L, σ, Z)(n) ∼= R(X,Ln, σ
n, Z).

We will show:

Theorem 3.3. Assume Notation 3.1. Let

(3.1) I = J1 ∩ · · · ∩ Jc ∩ K1 ∩ · · · ∩ Ke

be a minimal primary decomposition of I, where each Ji is Pi-primary for some
prime ideal sheaf Pi of finite order under σ, and each Kj is Qj-primary for some
prime ideal sheaf Qj of infinite order under σ. Let W be the closed subscheme of
Z defined by the ideal sheaf K = K1 ∩ · · · ∩Ke, and let J = J1 ∩ · · · ∩Jc. Then the
following are equivalent:

(1) R = R(X,L, σ, Z) is right noetherian;
(2) there is some n so that J σn

= J , and either W = X or W has finite
intersection with forward σ-orbits.
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Furthermore, if (2) and (1) hold, then R is a finite right module over R(n), and
there are an integer n0 and a closed subscheme W ′ of W , with ideal sheaf K′, so
that (W ′)red = W red, and such that

R(X,Ln, σ
n, Z)≥n0

= R(X,Ln, σ
n,W ′)≥n0

= K′(B(n))≥n0
.

That is, any right noetherian right idealizer is a finite right module over a right
idealizer at a subscheme without fixed components.

Before proving Theorem 3.3, we give some preliminary lemmas.

Lemma 3.4. Let X be a projective variety, let σ ∈ Autk X, and let L be an
invertible sheaf on X. Let B be a graded (OX , σ)-sub-bimodule algebra of B(X,L, σ),
and let R and R′ be graded (OX , σ)-sub-bimodule algebras of B. Suppose that R
is right noetherian and contains a nonzero graded right ideal of B and that there is
some n0 so that

R≥n0
⊆ R′

≥n0
.

Then R′ is right noetherian. If R ⊆ R′, then R′ is a coherent right R-module.

Proof. By Lemma 2.11, without loss of generality we may assume that L = OX .
We note that R≥n0

also contains a nonzero graded right ideal of B. Further,
R ∩ R′ is also right noetherian, as (R ∩ R′)≥n0

= R≥n0
. Thus without loss of

generality we may assume that R ⊆ R′.
Let J be a nonzero graded right ideal of B that is contained in R, and let m

be such that Jm �= 0. Since X is a variety, there is an invertible ideal sheaf H
contained in Jm. As R is right noetherian and H · R′ ⊆ Jm · B ⊆ R, we see that
H·R′ is a coherent right R-module. Lemma 2.11 now implies that R′ is a coherent
right R-module.

Any right ideal of R′ is also a right R-submodule, and so it is coherent as an R-
module. It is thus also coherent as an R′-module. Thus R′ is right noetherian. �

The next few lemmas involve translating general results on idealizers to the
context of bimodule algebras. The proofs are all easy generalizations of the original
proofs.

The following result is originally due to Robson [19, Proposition 2.3(i)], although
we will follow Stafford’s restatement of it.

Lemma 3.5. [25, Lemma 1.1] Let I be a right ideal of a right noetherian ring
B, and let R = IB(I). If B/I is a right noetherian R-module, then R is right
noetherian. �

Our version of this is the following lemma.

Lemma 3.6. Let X be a projective variety, let σ ∈ Autk X, and let L be an
invertible sheaf on X. Let B = B(X,L, σ), and let I =

⊕
(In)σn be a nonzero

graded right ideal of B. Let R = IB(I). Then B/I is a noetherian right R-module
if and only if R is right noetherian.

Proof. The proof is a straightforward translation of [19, Proposition 2.3(i)] into
sheaf terminology. By Lemma 2.11, without loss of generality we may let L = OX .
Thus all Rn and all In are ideal sheaves on X.

By Lemma 3.4, if R is right noetherian, certainly BR and thus (B/I)R are also
right noetherian. So suppose that B/I is a noetherian right R-module. Let J be
a right ideal of R; we will show that J is coherent. Because B is right noetherian,
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GEOMETRIC IDEALIZERS 471

we may choose a coherent sheaf J ′ ⊆ J such that J ′ · B = J · B. It suffices to
show that J /(J ′ · R) is a coherent right R-module.

Now, J /(J ′ ·R) is a submodule of ((J ′ ·B)∩R)/(J ′ ·R). Further, it is killed by
I and so is a subfactor of J ′ ⊗ (B/I). Since B/I is a noetherian right R-module,
so is J ′ ⊗ (B/I). Thus the subfactor J /(J ′ · R) is coherent. �

The criterion in Lemma 3.5 can be hard to test. Stafford [25, Lemma 1.2] gave a
different criterion for an idealizer to be noetherian; it was later slightly strengthened
by Rogalski [21, Proposition 2.1]. We give the following version, which is adequate
for our needs.

Lemma 3.7. Let B be a right noetherian domain, let I be a right ideal of B, and
let R = IB(I). Then the following are equivalent:

(1) R is right noetherian;
(2) BR is finitely generated, and for all right ideals J of B such that J ⊇ I, the

right R-module (or R/I-module) HomB(B/I,B/J) is noetherian.

Proof. (2) ⇒ (1) is [25, Lemma 1.2]. For (1) ⇒ (2), note that if R is noetherian,
as B is a domain we have BR ↪→ RR, and so BR is finitely generated. The rest of
the argument is [21, Proposition 2.1]. �

Our version of this is the following lemma:

Lemma 3.8. Let X be a projective variety, and let σ ∈ Autk X. Let B be a
right noetherian graded (OX , σ)-sub-bimodule algebra of the twisted bimodule algebra
B(X,OX , σ), and let I =

⊕
(In)σn be a nonzero graded right ideal of B. Let

R = IB(I). Suppose that for all graded right ideals J ⊇ I of B, for n � 0,

Bn ∩
⋂

m≥0

(Jn+m : Iσn

m ) = Jn.

Then R is right noetherian.

Proof. We follow Stafford’s proof of [25, Lemma 1.2]. Assume that the hypotheses
of the lemma hold; we claim that B/I is a noetherian right R-module.

Let G be a graded right R-module with I ⊆ G ⊆ B. We seek to prove that G/I
is coherent. Let J be the largest graded right ideal of B of the form G′ · I for some
coherent graded OX -submodule G′ of G. (J exists because B is right noetherian.)
By maximality of J , we have I ⊆ J .

Using Zorn’s lemma, let C be the maximal quasicoherent subsheaf of B such that
C · I ⊆ J . Obviously, C is graded. Note that

Cn = Bn ∩
⋂

m≥0

(Jn+m : Iσn

m ).

Since C · R · I ⊆ C · I ⊆ J , we have that C · R ⊆ C and C is a right R-submodule
of B. Since by assumption Cn = Jn for n � 0, the right R-module C/J is in fact
a coherent OX -module.

We claim that G ⊆ C. Suppose not. We may choose a coherent graded OX -
submodule G′′ of G such that G′′ �⊆ C, and so G′′ · I �⊆ J . Then (G′ + G′′) · I � J
by choice of G′′, contradicting the maximality of J . Thus G ⊆ C.

Since C/J is a coherent OX -module, so is the submodule G/J . Since JR is
coherent and G/J is a coherent OX -module, GR is coherent. Thus (G/I)R is also
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coherent. Since G was arbitrary, we have shown that B/I is a right noetherian
R-module, as claimed.

Applying Lemma 3.6, we obtain that R is a right noetherian bimodule algebra.
�

We are almost ready to give the proof of Theorem 3.3. One technical difficulty in
the proof is that if Z has multiple components, it may be difficult to compute (I :
Iσn

) and thus R. However, if Z is irreducible, then computingR is straightforward;
we record this in the next lemma.

Lemma 3.9. Assume Notation 3.1. Suppose in addition that Z is irreducible
and without embedded components. If Zred has infinite order under σ, then R =
OX ⊕ IB+.

Proof. Let P be the ideal sheaf of Zred. For n ≥ 1, clearly Iσn �⊆ P, since Iσn

is Pσn

-primary and Pσn �= P. The result follows from Lemma 2.12(2) and the
identification Rn = (I : Iσn

)Ln. �
We can now show that Theorem 3.3 holds under some additional assumptions

on Z.

Lemma 3.10. Assume Notation 3.1. Let

I = K1 ∩ · · · ∩ Kc

be a minimal primary decomposition of I = IZ , where each Ki is Qi-primary for
some prime ideal sheaf Qi. For i = 1, . . . , c, let Zi be the primary component of Z
corresponding to Ki, and let

Ri = IB(KiB+) = R(X,L, σ, Zi).

Suppose that for all 1 ≤ i, j ≤ c the set

{m ≥ 0 | Kσm

j ⊆ Qi}
is finite. (In particular, we assume that the Qi are of infinite order under σ.) Then
Rm = ILm for m � 0. Further, the following are equivalent:

(1) R is right noetherian;
(2) Ri is right noetherian for i = 1, . . . , c;
(3) Z has finite intersection with forward orbits;
(4) if J is an ideal sheaf on X such that J ⊇ I, then (J : Iσm

) = J for m � 0;
(5) the bimodule algebra OX ⊕ IB+ is right noetherian.

We note that the assumptions of the lemma are satisfied if Z consists of one
primary component such that Zred is of infinite order under σ.

Proof. By Lemma 2.11, we may without loss of generality assume that L = OX .
By Lemma 2.12(2),

(I : Iσm

) = I
for m � 0. Thus Rm = I for m � 0, as claimed. Note that this implies that (1)
⇐⇒ (5).

(1) ⇒ (2). Fix 1 ≤ i ≤ c. By Lemma 3.9, (Ri)m = Ki for all m ≥ 1. As Rm = I
for m � 0, there is some m0 so that for m ≥ m0,

R(X,OX , σ, Z)m = I ⊆ Ki = (Ri)m.

By Lemma 3.4, Ri is right noetherian.
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(2) ⇒ (3) Since Z is the set-theoretic union of finitely many irreducible com-
ponents, it is enough to prove (3) in the case that I is itself primary; that is, in
the case that i = 1. In this case, since R = R1 is noetherian by assumption, by
Lemma 3.4 BR is coherent. By Lemma 3.9, R = OX ⊕ IB+.

Fix x ∈ X, and let Ix be its ideal sheaf. Let

M =
⊕

n≥0

(Ix : Iσn

)σn ⊆ B =
⊕

n≥0

(OX)σn .

Let m ≥ 1 and n ≥ 0. By Lemma 3.9, Rm = I. Therefore,
(Mn · R)m+n = (Ix : Iσn

)Iσn ⊆ Ix ⊆ Mm+n,

so M is a right R-submodule of B. It is therefore coherent, and the quotient
M/IxB is as well. Since M·IB+ ⊆ IxB, the R-action on M/IxB factors through
R/IB+ = OX . In other words, M/IxB is a noetherian and therefore coherent
OX -module, and so the ideal sheaves (Ix : Iσn

) and Ix are equal for n � 0. For
fixed n, this is true if and only if x �∈ σ−nZ or σn(x) �∈ Z. Thus {n ≥ 0 | σn(x) ∈ Z}
is finite.

(3) ⇒ (4). Let P be a nonzero prime ideal sheaf, defining a reduced and irre-
ducible subscheme W ⊂ X. Since for any m ∈ Z we have that Iσm ⊆ P if and only
if σm(W ) is (set-theoretically) contained in Z, we see that the set

{m ≥ 0 | Iσm ⊆ P}
is finite.

Now let J ⊇ I be an ideal sheaf on X, and let J = J1 ∩ · · · ∩ Je be a primary
decomposition of J , where Ji is Pi-primary for a suitable prime ideal sheaf Pi.
For m � 0 and for i = 1, . . . , e, we have Iσm �⊆ Pi. Therefore by Lemma 2.12(2),
(J : Iσm

) = J for m � 0.
(4) ⇒ (1). Suppose that for all I ⊆ J ⊆ OX , we have (J : Iσn

) = J for n � 0.
Let F ⊇ IB be a graded right ideal of B, and for all m ≥ 0 let

Cm =
⋂

n≥0

(Fn+m : Iσm

).

We saw in Example 2.10 that the categories qgr-B and OX -mod are equivalent, and
that there is an ideal sheaf J ⊆ OX such that, for some k, we have

F≥k =
⊕

m≥k

(J )σm .

By construction, J ⊇ I. For m ≥ k, we have Cm = (J : Iσm

). By assumption,
this is equal to J = Fm for m � k, and so the hypotheses of Lemma 3.8 hold. By
Lemma 3.8, R is right noetherian. �

We now prove Theorem 3.3.

Proof of Theorem 3.3. We recall our notation:

I = J1 ∩ · · · ∩ Jc ∩ K1 ∩ · · · ∩ Ke

is a minimal primary decomposition of I, where each Ji is Pi-primary for some
prime ideal sheaf Pi of finite order under σ, and each Kj is Qj-primary for some
prime ideal sheaf Qj of infinite order under σ. The ideal sheaf K = K1 ∩ · · · ∩ Ke

defines the closed subscheme W of X, and J = J1 ∩ · · · ∩ Jc.
By Lemma 2.11, we may without loss of generality assume that L = OX .
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(1) ⇒ (2). Suppose that R is right noetherian. We first show this implies that
there is some n so that all Ji are fixed by σn. Suppose, in contrast, that for some
i there is no n with J σn

i = Ji. Since Veronese rings of R are also right noetherian
and Pi has finite order under σ, we may assume without loss of generality that Pi

is fixed by σ.
Let m ≥ 1. Since (Ji)

σm �= Ji, by minimality of the primary decomposition
(3.1), it is clear that Iσm �⊆ Ji. By Lemma 2.13 (Ji : Iσm

) �= OX is Pi-primary.
Therefore

Rm = (I : Iσm

) ⊆ (Ji : Iσm

) ⊆ Pi

for all m ≥ 1.
Let B = B(X,OX , σ). For any k ≥ 0, we have

(B≤k · R)k+1 =

k∑

j=0

(Rk+1−j)
σj ⊆ Pi �= OX = Bk+1.

We see that BR is not finitely generated; by Lemma 3.4, this contradicts the as-
sumption that R is right noetherian. Thus Ji is of finite order under σ.

As this holds for all i, there is some n so that J σn

= J . Suppose that W �= X.
Since W has finite intersection with forward σ-orbits if and only if W has finite
intersection with forward σn-orbits, without loss of generality we may replace R by
the Veronese R(n) and assume that J is σ-invariant. Suppose that W has infinite
intersection with some forward σ-orbit. We will derive a contradiction.

For i = 1, . . . , e, let Wi be the primary component of Z defined by Ki, and let
Yi = W red

i be the subvariety defined by the prime ideal sheaf Qi. We claim that
there is some i so that

(i) Yi �⊆ σ−m(W ) for m ≥ 1;
(ii) for some x ∈ X, the set {m ≥ 0 | σm(x) ∈ Yi} is infinite.

To see this, note that we may define a strict partial order ≺ on the set of the Yi by
defining

Yi ≺ Yj if Yi ⊆ σ−m(Yj) for some m ≥ 1.

The order ≺ is strict because each Yi has infinite order under σ. Now (ii) holds for
some Yi by assumption. Thus (ii) holds for some Yi that is maximal under ≺. But
(i) holds for any such maximal Yi, as the ideal sheaf of Yi is prime.

Let Yi satisfy (i) and (ii). We thus have Kσm �⊆ Qi for any m ≥ 1. As

Iσm

= Kσm ∩ J σm

= Kσm ∩ J ,

by Lemma 2.12(1) we have

Rm = (I : Iσm

) ⊆ (Ki : J )

for all m ≥ 1. By minimality of the primary decomposition (3.1) and Lemma 2.13,
the ideal sheaf (Ki : J ) is Qi-primary.

Let V be the closed subscheme of X defined by (Ki : J ). By Lemma 3.9,

R(X,OX , σ, V ) = OX ⊕ (Ki : J )B+,

so
R(X,OX , σ, Z) ⊆ R(X,OX , σ, V ).

Thus by Lemma 3.4, R(X,OX , σ, V ) is right noetherian. But V also has infinite
intersection with some forward σ-orbit. This is impossible, by Lemma 3.10.

Thus W has finite intersection with forward σ-orbits.
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(2) ⇒ (1). Suppose that (2) holds. We claim that

(3.2) (I : Iσm

) = Rm = (I : J σm

) for m � 0.

If W = X, then I = J and (3.2) holds for all m. IfW �= X has finite intersection
with forward σ-orbits, then for m � 0, Kσm

is not contained in any minimal prime
over I. Thus by Lemma 2.12(1) we have that

(I : Iσm

) ⊆ (I : J σm

)

for m � 0. As the other containment is automatic, we see that (3.2) holds.
Now, if n|m, then

(I : J σm

) = (I : J ) = (K : J ),

and so (3.2) implies in particular that R(n) and OX ⊕ (K : J )(B(n))+ are equal in
large degree.

If W = X, then (K : J ) = OX and R(n) = B(n). If W has finite intersection
with forward σ-orbits, then note that (K : J ) is the intersection of the Qi-primary
ideal sheaves (Ki : J ). Let W ′ be the closed subscheme of X defined by K′ =
(K : J ). Then W ′ also has finite intersection with forward σ-orbits, and (W ′)red =
W red. Applying Lemma 3.10 to R(n), we obtain that R(n) is right noetherian. By
Lemma 3.4, B(n) is a coherent right R(n)-module.

Thus in either case, B(n) is a coherent right R(n)-module. Therefore, for any m
the right ideal

(I : J σm

)(B(n))

of B(n) is a coherent right R(n)-module. Applying (3.2) for m = 0, . . . , n − 1,
we obtain that R is a finitely generated right R(n)-module, and so R is right
noetherian. �

Example 3.11. We give an example illustrating what goes wrong when J is of
infinite order under σ. Let X = P

2 and let

σ =

⎡

⎣
1

p
q

⎤

⎦

for some p, q ∈ k
∗ that are not roots of unity. Let B = B(X,O(1), σ). It is easy to

see that B may be presented by generators and relations as

B ∼= k〈X,Y, Z〉/(XY − pY X,XZ − qZX, Y Z − (qp−1)ZY ).

Let a = [0 : 0 : 1] and let O = OX,a. Let m be the maximal ideal of O. As
σ(a) = a, the automorphism σ acts on O via

σ(x) = x,

σ(y) = py,

where (x, y) is an appropriate system of parameters for O.
Let I be the ideal sheaf cosupported at a so that Ia = (x+ y,m2). Then for any

n we have

(Iσn

)a = (x+ pny,m2).

Let M be the ideal sheaf of a. We leave to the reader the computation that

(I : Iσn

) = M.
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Thus, if Z is the subscheme defined by I, we have that

R(X,O(1), σ, Z) = k+ xB + yB.

This ring is not finitely generated, and so not right or left noetherian. Neither is
the bimodule algebra R(X,O(1), σ, Z) = OX ⊕MB+.

4. Left noetherian bimodule algebras

We now turn to considering when R(X,L, σ, Z) is left noetherian. Since one of
our main goals is to understand when idealizers are noetherian, from now on we
will assume the condition

Assumption-Notation 4.1. Let X be a projective variety, let σ ∈ Autk X, and
let L be an invertible sheaf on X. Let Z be a closed subscheme of X and let I = IZ
be its defining ideal. Let

B = B(X,L, σ)
and let

R = R(X,L, σ, Z) =
⊕

n≥0

(
(I : Iσn

)Ln

)
σn .

We assume that (I : Iσn

) = I for n � 0; that is, that Rn = ILn for n � 0.

Assumption-Notation 4.1 is satisfied in the situations of most interest to us.
In particular, by Theorem 3.3, any right noetherian idealizer bimodule algebra is,
up to a finite extension, one whose defining data satisfies Assumption-Notation 4.1.
Furthermore, if Z is irreducible and Zred is of infinite order under σ, then Lemma 3.9
implies that Assumption-Notation 4.1 is satisfied. More generally, we have:

Lemma 4.2. Assume Notation 3.1. Let Z1, . . . , Zc be the primary components of
Z. For i = 1, . . . , c, let Yi = Zred

i . If {n ≥ 0 | σn(Yi) ⊆ Z} is finite for all i, then
Rn = ILn for n � 0, and so Assumption-Notation 4.1 is satisfied.

Proof. This follows directly from Lemma 2.12(2). �

As in the previous section, we will translate results on idealizer subrings to the
context of bimodule algebras. We quote a result of Rogalski; we note that the
original result was stated for left ideals of noetherian rings.

Proposition 4.3 ([21, Proposition 2.2]). If R = IB(I) for some right ideal I of a
noetherian ring B, then R is left noetherian if and only if R/I is a left noetherian

ring and for all left ideals J of B, the left R-module TorB1 (B/I,B/J) is noetherian.
�

We note that if R/I is finite-dimensional, this result reduces to saying that R is

left noetherian if and only if TorB1 (B/I,B/J) is a finite-dimensional vector space
for all left ideals J of B.

We now prove a version of Proposition 4.3 for the bimodule algebra R.

Proposition 4.4. Assume Assumption-Notation 4.1. Then R is left noetherian if
and only if for all graded left ideals H of B, we have

ILn ∩Hn = (IH)n

for n � 0.
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Proof. We follow Rogalski’s proof of Proposition 4.3.
Since (IB ∩ H)/IH is a subfactor of RR that is killed on the left by IB, if R

is left noetherian, then this is a coherent module over R/IB and so is certainly a
coherent OX -module.

For the other direction, suppose that for all graded left ideals H of B we have

ILn ∩Hn = (IH)n

for n � 0. Let K be a graded left ideal of R. Since B is noetherian, we may choose
a graded coherent OX -submodule K′ of K such that B ·K = B ·K′. Since K/(R·K′)
is a submodule of ((B ·K′)∩R)/(R·K′), it is enough to show that ((B ·K)∩R)/K
is a noetherian left R-module for any coherent graded left ideal K of R.

But now consider the exact sequences of left R-modules

(4.1) 0 → K
IB · K → (B · K) ∩R

IB · K → (B · K) ∩R
K → 0

and

(4.2) 0 → (B · K) ∩ IB
IB · K → (B · K) ∩R

IB · K → (B · K) ∩R
(B · K) ∩ IB → 0.

Since ((B·K)∩R)/((B·K)∩IB) is a coherentOX -module, we see that ((B·K)∩R)/K
is noetherian if ((B · K) ∩ IB)/IB · K is noetherian. Since B · K is a left ideal of B,
by assumption ((B · K) ∩ IB)/IB · K is a coherent OX -module. In particular, it is
noetherian. Thus R is left noetherian. �

This allows us to give a necessary and sufficient condition for R to be left noe-
therian:

Proposition 4.5. Assume Assumption-Notation 4.1. Then R = R(X,L, σ, Z) is
left noetherian if and only if for all closed subschemes Y ⊆ X the set

{n ≥ 0 | TorX1 (OσnZ ,OY ) �= 0}

is finite.

Proof. Let J be an ideal sheaf defining a closed subscheme Y of X. There are
identifications of OX -modules,

IB ∩ (B · J )

IB · J
∼=

⊕

n≥0

I ∩ J σn

IJ σn ⊗ Ln

∼=
⊕

n≥0

TorX1 (OZ ,Oσ−nY )⊗ Ln
∼=

⊕

n≥0

TorX1 (OσnZ ,OY )⊗ Ln,

using [30, Exercise 3.1.3] and the local property of Tor . As R/IB is a coherent
OX -module,

IB ∩ (B · J )

IB · J
is a coherent left R-module if and only if it is a coherent OX -module. This is true
if and only if the set {n ≥ 0 | TorX1 (OσnZ ,OY ) �= 0} is finite. �

We will explore the geometric meaning of the condition from Proposition 4.5 in
the next section. For now, we give it a name for easy reference.
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Definition 4.6. Let X be a variety, let σ ∈ Autk X, and let Z be a closed sub-
scheme of X. We will (provisionally) say that the pair (Z, σ) has property T if for
all closed subschemes Y ⊆ X the set

{n ≥ 0 | TorX1 (OσnZ ,OY ) �= 0}

is finite.

5. Critical transversality

Assume Assumption-Notation 4.1. In the last two sections, we found necessary
and sufficient conditions for R = R(X,L, σ, Z) to be left or right noetherian. We
remark that there is a significant contrast between the two sides. By Theorem 3.3,
forR to be right noetherian depends only on a mild condition on the orbits of points
in Z. In contrast, property T that by Proposition 4.5 determines when R is left
noetherian is, a priori, much less transparent. In this section, we show that property
T does have a natural geometric interpretation. As remarked in the Introduction,
it is an analogue of critical density and can be viewed as a transversality property.
Further, in many settings property T may be interpreted as saying that σ and Z
are in general position. We will see later that in the presence of property T , it is
possible to deduce many further nice properties of R and of Z.

To begin, we define an algebraic generalization of classical transversality.

Definition 5.1. Let X be a variety, and let Y and Z be closed subschemes of X.
We say that Y and Z are homologically transverse if

TorXi (OZ ,OY ) = 0

for all i ≥ 1.

While this appears as an arcane algebraic condition, it does in fact have a geo-
metric basis. As discussed in the Introduction, Serre [23] defines the intersection
multiplicity of two closed subschemes Y and Z of X along the proper component
P of their intersection by

(5.1) i(Y, Z;P ) =
∑

i≥0

(−1)i lenP (TorXi (OY ,OZ)).

The higher Tor sheaves are needed to correct for a possible mis-counting from
the näıve attempt to define i(Y, Z;P ) as lenP (OY ⊗ OZ). We may think of the

nonvanishing of TorX≥1(OY ,OZ) as indicating that Y and Z have an extremely non-
transverse intersection (for example, the codimension of the intersection is smaller
than codimY + codimZ).

Definition 5.2. Let X be a variety, let σ ∈ Autk X, and let Z be a closed sub-
scheme of X. Let A ⊆ Z be infinite. We say that the set {σn(Z)}n∈A is critically
transverse if for all closed subschemes Y of X, σn(Z) and Y are homologically
transverse for all but finitely many n ∈ A.

Critical transversality of {σnZ}n∈A is a generic transversality property: for any
closed subscheme Y , it implies that the general translate of Z is homologically
transverse to Y . In this section, we investigate critical transversality. We will see
in particular that critical transversality and property T are equivalent.
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Recall that if F is a coherent sheaf on a projective variety X, we write hdX(F)
for the minimal length of a locally free resolution of F . By [14, Ex. III.6.3], we
have

hdX(F) = sup
x∈X

{pdOX,x
Fx}.

The following lemma is due to Mel Hochster, and we thank him for allowing us
to include it here.

Lemma 5.3 (Hochster). Suppose that Z is homologically transverse to all parts of
the singular stratification of X. Then

hdX(OZ) ≤ dimX.

Proof. Let X = X(0) ⊃ X(1) · · · ⊃ X(k) be the singular stratification of X. By
assumption, Z is homologically transverse to all X(i). By [9, Corollary 19.5],

(5.2) hdX(OZ) = sup{j | for some closed point x ∈ X, TorXj (OZ , kx) �= 0}.

So fix x ∈ X, and let O = OX,x. Let F = OZ,x, considered as an O-module. Let

i be such that x ∈ X(i)
�X(i+1). Let J be the ideal of X(i) in O. By assumption

on i, O/J is a regular local ring; in particular, pdO/J kx = dimX(i) ≤ dimX.

The change of rings theorem for Tor [30, Theorem 5.6.6] gives a spectral sequence

(5.3) TorO/J
p (TorOq (F,O/J), kx) ⇒ TorOp+q(F, kx).

Now by assumption, Z is homologically transverse to X(i), and so (5.3) collapses
for q �= 0. We obtain

TorO/J
p (F ⊗O (O/J), kx) ∼= TorOp (F, kx).

As O/J is a regular local ring of dimension no greater than dimX, we have that

pdO/J kx ≤ dimX, and so TorOp (F, kx) = 0 if p > dimX. By (5.2), hdX(OZ) ≤
dimX. �

We now show that critical transversality and property T are equivalent.

Lemma 5.4. Let A ⊆ Z. The following are equivalent:
(1) For all closed subschemes Y of X, the set

{n ∈ A | TorX1 (OσnZ ,OY ) �= 0}

is finite.
(2) For all reduced and irreducible closed subschemes Y of X, the set

{n ∈ A | TorX1 (OσnZ ,OY ) �= 0}

is finite.
(3) For all closed subschemes Y of X, the set

A′(Y ) = {n ∈ A | σnZ is not homologically transverse to Y }

is finite.
In particular, {σn(Z)}n≥0 is critically transverse if and only if (Z, σ) has prop-

erty T .
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Proof. The implications (3) ⇒ (1) ⇒ (2) are trivial. We prove (2) ⇒ (3).
Assume (2). We may assume that A is infinite. We first claim that for any

coherent sheaf F and for any j ≥ 1, the set

{n ∈ A | TorXj (OσnZ ,F) �= 0}
is finite. We induct on j. As any coherent sheaf on a projective variety has a finite
filtration by products of invertible sheaves with structure sheaves of reduced and
irreducible closed subvarieties, the claim is true for j = 1. Let j > 1 and fix a
coherent sheaf F . Because X is projective, it has enough locally frees, and there is
an exact sequence

0 → K → L → F → 0

where L is locally free and K is also coherent. The long exact sequence in Tor
implies that

TorXj (OσnZ ,F) ∼= TorXj−1(OσnZ ,K)

for any n. By induction, the right-hand side vanishes for all but finitely many
n ∈ A.

The claim implies that Z is homologically transverse to any σ-invariant closed
subscheme of X, and, in particular, that Z is homologically transverse to the sin-
gular stratification of X. By Lemma 5.3, we have hdX(OZ) ≤ dimX. Thus for a
fixed Y ,

A′(Y ) = {n ∈ A | TorXj (OσnZ ,OY ) �= 0 for some 1 ≤ j ≤ dimX}.
By the claim, this is finite. �
Corollary 5.5. Assume Assumption-Notation 4.1. Then the bimodule algebra R =
R(X,L, σ, Z) is left noetherian if and only if {σnZ}n≥0 is critically transverse.

Proof. Combine Lemma 5.4 with Proposition 4.5. �
Next we verify that critical transversality is, as claimed, a generalization of

critical density of the orbits of points. We formally define:

Definition 5.6. Let X be a variety, let x ∈ X, and let σ ∈ Autk X. Let A ⊆ Z.
The set {σn(x) | n ∈ A} is critically dense if it is infinite and any infinite subset is
dense in X.

We first prove:

Lemma 5.7. Let W ⊆ V be closed subschemes of a scheme X. Then

TorX1 (OV ,OW ) �= 0.

Proof. We work locally; let W ′ be an irreducible component of W , and let P =
(W ′)red. Let m be the maximal ideal of the local ring O = OX,P . Let J be the
ideal of O defining V and let I be the m-primary ideal defining W locally at P .
Then we have

TorX1 (OV ,OW )P = TorO1 (O/J,O/I) ∼= (J ∩ I)/JI = J/JI,

as J ⊆ I. By Nakayama’s Lemma, this is nonzero. �
Corollary 5.8. Let X be a variety, let σ ∈ Autk(X), let Z be a 0-dimensional
closed subscheme of X, and let A ⊆ Z be infinite. The following are equivalent:

(1) {σn(Z)}n∈A is critically transverse;
(2) {σn(x)}n∈A is critically dense for all points x ∈ SuppZ.
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Proof. Because TorXj (OσnZ ,OY ) is supported on σnZ ∩ Y for any j, (2) ⇒ (1).
We prove that (1) ⇒ (2). By working locally, we may assume that Z is supported
on a single point x. Suppose that (2) fails, so there is some infinite A′ ⊆ A and
some reduced W ⊂ X such that σn(x) ∈ W for all n ∈ A′. Then there is some, not
necessarily reduced, W ′ supported on W such that σn(Z) ⊆ W ′ for all n ∈ A′. By

Lemma 5.7, TorX1 (OσnZ ,OW ′) �= 0 for any n ∈ A′. Thus (1) also fails. �
We now turn to investigating when critical transversality occurs. As mentioned,

critical transversality is a generic transversality property of the translates of Z,
reminiscent of the Kleiman-Bertini theorem. One naturally asks if there are simple
conditions on Z and σ sufficient for {σnZ} to be critically transverse. In particular,
it is not immediately obvious, even working on nice varieties such as Pn, that critical
transversality ever occurs, except for points with critically dense orbits.

If instead of considering a single automorphism σ, we consider instead the ac-
tion of an algebraic group G on X, then there is a simple condition for generic
transversality to hold for translates of Z. This is

Theorem 5.9 ([24, Theorem 1.2]). Let X be a variety (defined over k) with a left
action of a smooth algebraic group G, and let Z be a closed subscheme of X. Then
the following are equivalent:

(1) Z is homologically transverse to all G-orbit closures in X.
(2) For all closed subschemes Y of X, there is a Zariski open and dense sub-

set U of G such that for all closed points g ∈ U , the subscheme gZ is
homologically transverse to Y . �

(We note that if G acts transitively, then (1) and therefore (2) are automatically
satisfied; this case of Theorem 5.9 was proved by Miller and Speyer [18].)

In the remainder of this section, we apply Theorem 5.9 to obtain a simple crite-
rion for critical transversality, at least in characteristic 0. It turns out that in many
situations, critical transversality is, in a suitable sense, generic behavior.

We will use the following result of Cutkosky and Srinivas.

Theorem 5.10 ([8, Theorem 7]). Let G be a connected abelian algebraic group
defined over an algebraically closed field k of characteristic 0. Suppose that g ∈ G
is such that the cyclic subgroup 〈g〉 is dense in G. Then any infinite subset of 〈g〉
is dense in G. �

Here is our simple condition for critical transversality:

Theorem 5.11. Let k be an algebraically closed field of characteristic 0, let X
be a variety over k, let Z be a closed subscheme of X, and let σ be an element
of an algebraic group G that acts on X. Let A ⊆ Z be infinite. Then {σnZ}n∈A

is critically transverse if and only if Z is homologically transverse to all reduced
σ-invariant subschemes of X.

Proof. If {σnZ}n∈A is critically transverse, then Z is obviously homologically trans-
verse to σ-invariant subschemes. We prove the converse. Assume that Z is homolog-
ically transverse to reduced σ-invariant subschemes of X. We consider the abelian
subgroup

H = 〈σn〉 ⊆ G.

Now the closures of H-orbits in X are σ-invariant and reduced. Thus, by as-
sumption, Z is homologically transverse to all H-orbit closures, and we may apply
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Theorem 5.9. Fix a closed subscheme Y of X. By Theorem 5.9, there is a dense
open U ⊆ H such that if g ∈ U , then gZ and Y are homologically transverse.

Let Ho be the connected component of the identity in H, so the components of
H are Ho = σcHo, σHo, . . . , σc−1Ho for some c ≥ 1. As 〈σc〉 is dense in Ho, it is
critically dense by Theorem 5.10.

Fix 0 ≤ j ≤ c− 1. The set

Uj = σ−j(U ∩ σjHo)

is an open dense subset of Ho. By critical density, the set

{m | σmc �∈ Uj}

is finite. Thus

{n | σn �∈ U} =
c−1⋃

j=0

{n | n ≡ j (mod c) and σn−j �∈ Uj}

is also finite. That is to say, for all but finitely many n we have σn ∈ U , and so
σnZ is homologically transverse to Y . As Y was arbitrary, {σnZ}n∈Z is critically
transverse. Thus {σnZ}n∈A is critically transverse. �

We note that the case of Theorem 5.11 where Z is a point is proved in [17,
Theorem 11.2].

It is reasonable to say that σ and Z are in general position if Z is homologically
transverse to all σ-fixed subschemes of X. Theorem 5.11 suggests the following
conjecture:

Conjecture 5.12. Let k be an algebraically closed field of characteristic 0, and let
X/k be a projective variety. Let σ ∈ Autk X, and let Z ⊆ X be a closed subvariety.
Then {σnZ} is critically transverse if and only if σ and Z are in general position.

If Z is 0-dimensional, then this conjecture reduces to Bell, Ghioca, and Tucker’s
recent result [6, Theorem 5.1] that in characteristic 0, the orbit of a point under
an automorphism is dense exactly when it is critically dense. If σ is an element
of an algebraic group that acts on X, the conjecture is Theorem 5.11. In positive
characteristic, the conjecture is known to be false; see [20, Example 12.9] for an
example of an automorphism σ ∈ PGLn in positive characteristic with a dense but
not critically dense orbit.

Suppose now that k is uncountable (and algebraically closed) and that X is a
variety over k. We say that x ∈ X is very general if there are proper subvarieties
{Yi | i ∈ Z} so that

x �∈
⋃

i

Yi.

We can now show that critically transverse subschemes abound. To make the
statement easier, the following result is phrased in terms of Pd; a similar result
holds for any variety with a transitive action by a reductive algebraic group.

Corollary 5.13. Assume that k is uncountable and char k = 0. Let Z be a sub-
scheme of Pd, and let X be the PGLd+1-orbit of Z in the Hilbert scheme of Pd. Let
Y = PGLd+1 × X . If (σ, Z ′) is a very general element of Y, then σ and Z ′ are in
general position and the set {σnZ ′} is critically transverse.
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Proof. By avoiding a countable union of proper subvarieties of PGLd+1, we may
ensure that the eigenvalues of σ are algebraically independent over Q. This implies
that the Zariski closure of {σn} in PGLd+1 is a torus Td, and that the only reduced
subschemes fixed by σ are unions of coordinate linear subspaces with respect to an
appropriate choice of coordinates. There are finitely many of these; by repeated
applications of Theorem 5.9 with G = PGLd+1 (or by [18]) we see that there is
a dense open U ⊆ PGLd+1 such that for all τ ∈ U , the subscheme Z ′ = τZ
is homologically transverse to all unions of coordinate linear subspaces; that is,
σ and Z ′ are in general position. By Theorem 5.11, the set {σnZ ′} is critically
transverse. �

6. Ampleness

We now return to noncommutative algebra. Our ultimate goal is to study, not
the bimodule algebra R = R(X,L, σ, Z), but the ring R = R(X,L, σ, Z). In order
to apply our knowledge of R to the ring R, we will need to control the ampleness,
in the sense of Definition 2.8, of the sequence {(Rn)σn}. In this section we show
that critical transversality of {σnZ}, together with σ-ampleness of L, is enough to
show sufficient ampleness of the graded pieces of R.

Throughout this section we assume Assumption-Notation 4.1. Thus to prove that
the sequence {(Rn)σn} is left or right ample, it suffices to prove that {(I ⊗Ln)σn}
is left or right ample.

Given σ-ampleness of L, right ampleness of {(Rn)σn} is almost trivial; we record
this in the next lemma.

Lemma 6.1. Assume Assumption-Notation 4.1. Assume in addition that L is
σ-ample. Then {(Rn)σn} is right ample.

Proof. From Assumption-Notation 4.1, we know that Rn = ILn = I ⊗ Ln for
n � 0. Fix a coherent sheaf F . Then for n � 0, we have F ⊗Rn = F ⊗ I ⊗ Ln.
By σ-ampleness of L, for n � 0 this is globally generated and has no higher
cohomology. �

Left ampleness, however, is more subtle. In fact, we do not know when, in
general, {(Rn)σn} is left ample. However, we will see that this does hold when R
is left noetherian.

Proposition 6.2. If L is σ-ample and {σn(Z)}n≥0 is critically transverse, then
{(I ⊗ Ln)σn} is a left ample sequence.

We first prove:

Lemma 6.3. Let L be a σ-ample invertible sheaf.
(1) If M and N are coherent sheaves on X, then there is an integer n0 so that

M⊗Ln ⊗N σn

is globally generated for all n ≥ n0.
(2) If E and F are invertible sheaves on X, there is an integer m0 so that

E ⊗ Lm ⊗Fσm

is ample for all m ≥ m0.

Proof. (1) Using the σ-ampleness of L, take i, j � 0 so thatM⊗Li and Lj⊗N σj

are

globally generated. Then Lσi

j ⊗N σi+j

is also globally generated. Since the tensor

product of globally generated sheaves is globally generated, M⊗Li+j ⊗ N σi+j

is
globally generated.
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(2) In fact, we will show that E ⊗ Lm ⊗ Fσm

is very ample for m � 0. Let
C be an arbitrary very ample invertible sheaf. By (1) we may choose m0 so that
if m ≥ m0, the sheaf K = C−1 ⊗ E ⊗ Lm ⊗ Fσm

is globally generated. By [14,
Exercise II.7.5(d)] the tensor product of a very ample invertible sheaf and a globally
generated invertible sheaf is very ample. Thus E ⊗ Lm ⊗ Fσm ∼= C ⊗ K is very
ample. �

Proof of Proposition 6.2. Let M be an arbitrary coherent sheaf. By Lemma 6.3,
we know that I ⊗ Ln ⊗Mσn

is globally generated for n � 0. We must establish
that Hj(X, I ⊗ Ln ⊗Mσn

) = 0 for all j ≥ 1 and n � 0.

We know that TorXj (OσnZ ,M) = 0 for all n � 0 and j ≥ 1. Thus

TorXj (I,Mσn

) ∼= TorXj (Iσ−n

,M)σ
n ∼= TorXj+1(OσnZ ,M)σ

n

= 0

for all n � 0 and j ≥ 1.
First suppose that M is invertible. By Fujita’s vanishing theorem [10, The-

orem 11] choose an invertible sheaf H such that Hi(X, I ⊗ H ⊗ F) = 0 for all
i ≥ 1 and any ample invertible sheaf F . By Lemma 6.3(2), we may choose m0

such that H−1 ⊗ Lm ⊗ Mσm

is ample for all m ≥ m0. Then I ⊗ Lm ⊗ Mσm

=
I ⊗H ⊗H−1 ⊗ Lm ⊗Mσm

, and so its higher cohomology vanishes.
Now for general M let the cochain complex

· · · → P−2 → P−1 → P0 → M → 0

be a (not necessarily finite!) locally free resolution of M, where each Pi is a direct
sum of invertible sheaves. By tensoring on the left with (I ⊗ Ln)σn , we obtain a
complex Q•, where Qi = I⊗Ln⊗ (Pi)σ

n

. The qth cohomology of Q• is isomorphic

to TorX−q(I,Mσn

)⊗ Ln. By [30, 5.7.9], using a Cartan-Eilenberg resolution of Q•

we obtain two spectral sequences

(6.1) IEpq
1 = Hq(X,Qp)

and

(6.2) IIEpq
2 = Hp(X, Tor−q(I,Mσn

)⊗ Ln).

Since X has finite cohomological dimension d = dimX, these both converge to the
hypercohomology groups Hp+q(Q•).

Now, given p+ q = j ≥ 1, by critical transversality we may take n � 0 so that
Tor−q(I,Mσn

) = 0 for all q ≤ −1; thus (6.2) collapses and we obtain

H
j(Q•) = Hj(X, I ⊗Mσn ⊗ Ln).

On the other hand, since the sheaves Pi are direct sums of invertible sheaves,
applying the invertible case to each summand of Pi we may further increase n if
necessary to obtain that

Hq(X,Qp) = Hq(X, I ⊗ Ln ⊗ (Pp)σ
n

) = 0

for d ≥ q ≥ 1 and 1− d ≤ p ≤ 0. Thus if j ≥ 1, (6.1) collapses to 0. Thus

Hj(X, I ⊗ Ln ⊗Mσn

) = H
j(Q•) = 0

for all n � 0 and j ≥ 1. �
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Lemma 6.1 and Proposition 6.2, together with Theorem 2.9, will allow us to
relate R(X,L, σ, Z) and its section ring. To conclude this section, we show that,
given σ-ampleness of L, the ring R(X,L, σ, Z) is equal to the section ring of the
bimodule algebra R(X,L, σ, Z).

Lemma 6.4. Assume Notation 3.1, and let R = R(X,L, σ, Z) as in Construc-
tion 1.1. If L is σ-ample, then

R = R(X,L, σ, Z) = H0(X,R(X,L, σ, Z)).

Proof. Let I = Γ∗(I) be the right ideal of B(X,L, σ) generated by sections vanish-
ing along Z; thus R = IB(I). Suppose that x ∈ Rn, so xI ⊆ I. Since L is σ-ample,
ILm is globally generated by Im = H0(X, ILm) for m � 0, and so for m � 0

xOX(ILσm

)σ
n

= xOX(ImOX)σ
n ⊆ Im+nOX = ILm+n

for any n. Thus xOX ⊆ (I : Iσn

)Ln and x ∈ H0(X, (I : Iσn

)Ln) = H0(X,Rn).
For the other containment, suppose that x ∈ H0(X,Rn). Then for any m ≥ 0

we have

xIm ⊆ H0((I : Iσn

)Ln) ·H0(X, (ILm)σ
n

) ⊆ H0(X, ILm+n) = In+m.

Thus x ∈ Rn, and we have established the equality we seek. �

7. Noetherian idealizer rings

We are now ready to begin translating our results on bimodule algebras to results
on geometric idealizer rings. We will work in the following setting:

Assumption-Notation 7.1. Let X be a projective variety, let σ ∈ Autk X, and
let L be an invertible sheaf on X, which we now assume to be σ-ample. Let Z be
a closed subscheme of X and let I = IZ be its ideal sheaf. We continue to assume
that (I : Iσn

) = I for n � 0. Let

B = B(X,L, σ)

and let

B = B(X,L, σ).
Let

R = R(X,L, σ, Z) =
⊕

n≥0

(
(I : Iσn

)Ln

)
σn .

Let

I =
⊕

n≥0

H0(X, ILn) = Γ∗(I)

and let

R = R(X,L, σ, Z) = IB(I)

as in Construction 1.1. By Lemma 6.4,

R =
⊕

n≥0

H0(X,Rn).

Our assumptions imply that Rn = ILn and Rn = In for n � 0.
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Assume Assumption-Notation 7.1. In this section, we determine when R is left
and right noetherian. We also consider when R is strongly noetherian and when
R⊗k R is noetherian. We first show that the right noetherian property for R, and
in fact the strong right noetherian property, are equivalent to the simple geometric
criterion from Theorem 3.3.

Proposition 7.2. Assume Assumption-Notation 7.1. Then the following are equiv-
alent:

(1) Z has finite intersection with forward σ-orbits;
(2) R is right noetherian;
(3) R is strongly right noetherian.

Proof. (1) ⇒ (3). By Theorem 3.3, if (1) holds, then the bimodule algebra

R(X,L, σ, Z)

is right noetherian. Now let C be any commutative noetherian ring, and let

XC = X × SpecC

and

ZC = Z × SpecC ⊆ XC .

Also define

BC = B ⊗k C,

RC = R ⊗k C,

and

IC = I ⊗k C ∼= I ⊗B BC .

It is clear that

RC = IBC
(IC)

and that RC/IC is a finitely generated C-module. Let p : XC → X be projection
onto the first factor.

The idea behind our proof is very simple: if Z has finite intersection with forward
σ-orbits, then ZC has finite intersection with forward (σ × 1)-orbits, and so RC

should be noetherian by Theorem 3.3 and Theorem 2.9. However, neither of these
were proved over an arbitrary base ring C; to work scheme-theoretically we instead
follow the proof of [2, Proposition 4.13].

By [2, Proposition 4.13], BC is noetherian. The proof of this proposition uses the
fact that the shift functor in qgr-BC satisfies the hypotheses of [4, Theorem 4.5].
By [4, Theorem 4.5], BC satisfies right χ1. In particular, for any graded right ideal
J of BC , the natural map

(7.1) HomBC
(BC/IC , BC/J) → Homqgr-BC

(π(BC/IC), π(BC/J))

is an isomorphism in large degree, by [4, Proposition 3.5].
As qgr-B  OX -mod, it is clear that

(7.2) qgr-BC  OXC
-mod .

We note that BC/IC corresponds to OZC
under this equivalence.

Let J be a graded right ideal of BC containing IC . We claim that

HomBC
(BC/IC , BC/J)
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is a finitely generated C-module. To see this, let Y ⊆ ZC be the closed subscheme
of XC such that BC/J corresponds to OY under the equivalence (7.2). By (2.1),
(BC/J)[n] corresponds to

(OY ⊗ p∗Ln)
(σ−n×1) ∼= O(σn×1)Y ⊗ p∗(Lσ−n

n )

under (7.2). Thus

Homqgr-BC
(π(BC/IC), π(BC/J))≥0

∼=
⊕

n≥0

HomXC
(OZC

,O(σn×1)Y ⊗ p∗(Lσ−n

n )).

Now, ZC has finite intersection with forward (σ × 1)-orbits, and so for n � 0, no
component of (σn × 1)Y is contained in ZC . Thus

HomXC
(OZC

,O(σn×1)Y ⊗ p∗(Lσ−n

n )) = 0

for n � 0. As the map (7.1) is an isomorphism in large degree, we see that

HomBC
(BC/IC , BC/J)n = 0

for n � 0, and so

HomBC
(BC/IC , BC/J)

is a finitely generated C-module, as claimed. As this is true for any graded J ⊇ IC ,
by Lemma 3.7, RC is right noetherian.

(3) ⇒ (2) is obvious.
(2) ⇒ (1). Let x ∈ X and let J be the right ideal Γ∗(Ix) of B. As B and R are

right noetherian, by Lemma 3.7,

HomB(B/I,B/J) ∼= {r ∈ B | rI ⊆ J}/J
is a noetherian right R/I-module. It is thus finite-dimensional, as R/I is finite-
dimensional by assumption.

As L is σ-ample, Ln is globally generated for n � 0; in particular, Jn � Bn for
n � 0. Now, suppose that

{n ≥ 0 | σn(x) ∈ Z} = {n ≥ 0 | x ∈ σ−n(Z)}
is infinite. For any such n, we have that BnI ⊆ J . Thus

{r ∈ B | rI ⊆ J}/J
is infinite-dimensional, giving a contradiction.

Thus {n ≥ 0 | σn(x) ∈ Z} is finite. �

The left-hand side is very different. If R is left noetherian, then so is R; but
R can only be strongly left noetherian if Z is a divisor. In this case, R is both a
left and a right idealizer, so the strong left noetherian property will follow from the
left-handed version of Proposition 7.2.

Proposition 7.3. Assume Assumption-Notation 7.1. If {σnZ}n≥0 is critically
transverse, then R = R(X,L, σ, Z) is left noetherian.

Proof. By Proposition 6.2 and Corollary 5.5, we have that R = R(X,L, σ, Z) is
left noetherian and that {(Rn)σn} is a left ample sequence. Thus by Theorem 2.9,
the section ring R(X,L, σ, Z) is also left noetherian. �

Unfortunately, we cannot prove the converse to Proposition 7.3 in full generality.
We do give several special cases below where the converse does hold.
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Proposition 7.4. Assume Assumption-Notation 7.1. Suppose that {σn(Z)}n≥0 is
not critically transverse, and either

(1) there is some σ-invariant subscheme Y that is not homologically transverse
to Z or

(2) all irreducible components of Z have codimension 1.
Then R = R(X,L, σ, Z) is not left noetherian.

Before giving the proof, we give a preliminary lemma.

Lemma 7.5. Let X = X(0) ⊃ X(1) ⊃ X(2) ⊃ · · · be the singular stratification
of X. Suppose that Z is a subscheme of pure codimension 1 such that for all j,
TorX1 (OZ ,OX(j)) = 0. Then Z is locally principal.

Proof. Fix x ∈ Z; we will show that Z is locally principal at x. Let O = OX,x.

Let j be maximal so that x ∈ X(j), and let J be the ideal of X(j) in O. Let I be
the defining ideal of Z in O. By Lemma 5.7, I �⊆ J . Thus (I + J)/J locally defines
a hypersurface in X(j). Since O/J is a regular local ring, (I + J)/J is principal in
O/J , and so there is f ∈ I such that (f) + J = I + J .

By homological transversality, I ∩ J = IJ . Thus

I

(f)
⊗O

O
J

∼=
I

(f) + IJ
=

I

(f) + I ∩ J
.

But
(f) + I ∩ J = I ∩ ((f) + J) = I ∩ (I + J) = I.

Thus
I

(f)
⊗O

O
J

∼=
I

I
= 0.

LetK be the residue field of O. Since I/(f)⊗O(O/J) surjects onto (I/(f))⊗OK,
we see that (I/(f))⊗O K = 0. Nakayama’s Lemma implies that I = (f). �
Proof of Proposition 7.4. Suppose (1) holds. Let Y be a σ-invariant subscheme
that is not homologically transverse to Z, and let j ≥ 1 be such that

TorXj (OZ ,OY ) �= 0.

Let J = IY , and let J = Γ∗(J ) be the right ideal of B generated by sections
that vanish on Y . Since σY = Y , J is a two-sided ideal of B. We claim that
TorBj (B/I,B/J)n �= 0 for n � 0.

Form a graded projective resolution

· · · → P−1 → P 0 → B/I → 0

of the right B-module B/I, where each P i is a finitely generated graded free right
B-module. Thus for each i ≤ 0, there is a finite multiset Ai of integers such that

P i =
⊕

a∈Ai

B[a].

Now, for each i let Pi = P̃ i. Since the functor ˜ is exact, the complex

· · · → P−1 → P0

is a resolution of OZ = B̃/I . Furthermore, by the σ-invariance of Y and the
σ-ampleness of L, for −j − d ≤ i ≤ −j + 1 and for n � 0, we have that

(7.3) H0(X,Pi ⊗ Ln ⊗OY ) =
⊕

a∈Ai

(B/J)n+a = (P i ⊗B B/J)n.
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Fix n and let Q• = P• ⊗ Ln ⊗ OY . Reasoning as in Proposition 6.2, from a
Cartan-Eilenberg resolution C•,• of Q• we obtain two spectral sequences,

(7.4) IE2
pq = Hp(Hq(X,Q•))

and

(7.5) IIE2
pq = Hp(X, TorX−q(OZ ,OY )⊗ Ln),

both of which converge (since X has finite cohomological dimension) to the hyper-
cohomology H

p+q(C•,•).
By σ-ampleness of L, by taking n � 0 we may assume that

Hp(X, Tor−q(OZ ,OY )⊗ Ln) = 0 for p ≥ 1 and −j − d ≤ q ≤ −j − 1

and that

Hq(X,Qp) = 0 for q ≥ 1 and −j − d ≤ p ≤ −j − 1.

Thus for p+ q = −j, both (7.4) and (7.5) collapse, and we obtain that

(7.6) H0(X, TorXj (OZ ,OY )⊗ Ln) = H−j(H0(X,Q•)).

Since TorXj (OZ ,OY ) �= 0 and L is σ-ample, for n � 0 the left-hand side of (7.6) is
nonzero. However, (7.3) implies that for n � 0, the right-hand side is equal to

H−j(P • ⊗B B/J)n = TorBj (B/I,B/J)n.

Thus TorBj (B/I,B/J)n �= 0.
But if R is left noetherian, then, using Proposition 4.3 and a similar argument

to that used in the proof of Lemma 5.4, for any finitely generated left B-module
M and for any j ≥ 1, we must have that TorBj (B/I,M) is torsion. Since we have
shown this is false for M = B/J , R is not left noetherian.

Now suppose that (2) holds. Consider the singular stratification

X = X(0) ⊃ X(1) ⊃ · · ·
of X. If Z is not homologically transverse to some X(i), then by (1) R is not left
noetherian. If Z is homologically transverse to all X(i), then by Lemma 7.5 Z is
locally principal. By Lemma 5.4, there is some reduced and irreducible subscheme
Y such that TorX1 (OσnZ ,OY ) �= 0 for infinitely many n ≥ 0. Our assumptions on

Y and Z imply that TorX1 (OσnZ ,OY ) �= 0 if and only if σnZ ⊇ Y .
Thus σn(Z) ⊇ Y for infinitely many n ≥ 0. Let J be the ideal sheaf defining Y

and let

A = {n ≥ 0 | Y ⊆ σnZ} = {n ≥ 0 | J σn ⊇ I}.
Let R′ = k ⊕ H0(X, IB+). It is sufficient to show that R′ is not left noetherian.
Let

J =
⊕

n≥0

H0(X, (I ∩ J σn

)Ln).

We will show that the left ideal J of R′ is not finitely generated.
Fix an integer k ≥ 1. By σ-ampleness of L, we may choose n > k so that n ∈ A

and (I ∩ J σn

)Ln = ILn is globally generated. Then

(R′ · J≤k)n ⊆ H0(X, IJ σn

Ln) � Jn

and R′J is not finitely generated. �
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As a corollary to Proposition 7.4, we obtain that if we are in characteristic 0
and if σ is an element of an algebraic group acting on X, then the converse to
Proposition 7.3 holds.

Corollary 7.6. Suppose that char k = 0. Let X be a projective variety and let σ be
an element of an algebraic group G that acts on X. Let L be a σ-ample invertible
sheaf on X. Let Z be a closed subscheme of X such that the components of Zred

have infinite order under σ. Then the following are equivalent:
(1) the geometric idealizer R = R(X,L, σ, Z) is noetherian;
(2) the set {σnZ}n≥0 is critically transverse;
(3) Z is homologically transverse to all reduced σ-invariant subschemes of X.

Proof. First suppose that there is x ∈ X so that {n ≥ 0 | σn(x) ∈ Z} is infinite.
Then by Proposition 7.2, R is not right noetherian. Furthermore, {σnZ}n∈Z is
certainly not critically transverse, and so by Theorem 5.11 there is a σ-invariant
subscheme that is not homologically transverse to Z, and {σnZ}n≥0 is not critically
transverse. Thus (1), (2), and (3) all fail, and the result holds.

Thus we may assume that no such x exists; by Proposition 7.2, R is right noe-
therian. Note also that by Lemma 4.2, Assumption-Notation 4.1 is satisfied. Then
(1) ⇒ (3) is Proposition 7.4. (3) ⇒ (2) is Theorem 5.11. (2) ⇒ (1) is Proposi-
tion 7.3. �

Since the geometric condition required for a right idealizer to be left noetherian
is fairly subtle, it is not surprising that right idealizers are almost never strongly
left noetherian. To show this, we use the concept of generic flatness as defined in
[2]. Let C be a commutative noetherian domain. We say that a C-module M is
generically flat if there is some f �= 0 ∈ C such that Mf is flat over Cf . If R is a
finitely generated commutative C-algebra, then by Grothendieck’s generic freeness
theorem [13, Theorem 6.9.1], every finitely generated R-module is a generically flat
C-module.

Artin, Small, and Zhang have generalized this result to strongly noetherian non-
commutative rings. They prove:

Theorem 7.7 ([2, Theorem 0.1]). Let R be a strongly noetherian algebra over
an excellent Dedekind domain C. Then every finitely generated right R-module is
generically flat over C. �

Lemma 7.8. Assume Assumption-Notation 7.1. If Z ′ is a component of Z such
that codimZ ′ ≥ 2 and such that

⋃
m≥0 σ

mZ ′ is Zariski dense in X, then for every

open affine U ⊆ X, the finitely generated left R⊗k O(U)-module

M =
⊕

n≥0

R(σ−nU)

is not a generically flat O(U)-module.

Proof. We first verify that M is a left R-module. By [3, Equation 2.5], the multi-
plication rule in R acts on sections via

Rn(V )×Rm(σnV ) → Rn+m(V )

or, writing V = σ−n−mU ,

Rn(σ
−n−mU)×Rm(σ−mU) → Rn+m(σ−n−mU).
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Thus we have a map

Rn ×Mm = R(X)×Rm(σ−mU)
res→ Rn(σ

−n−mU)×Rm(σ−mU) → Mm+n.

Verifying associativity is trivial, and so M is a left R-module.
Let C = O(U). By identifying C with Cop, consider the right action of C on M

given by g � f = g · fσn

= g · (f ◦ σn), where g ∈ Mn, f ∈ C. Note that f ◦ σn acts
on σ−nU and so acts naturally on elements of Mn.

Now since for n � 0 the sheaves I ⊗ Ln are globally generated, the restriction
map R → M is surjective in degree ≥ m for some m. But since M<m is a finitely
generated C-module, M is a finitely generated RC module.

Now let f be an arbitrary element of C and let M ′ = Mf . Since
⋃

m≥0 σ
m(Z ′)

is Zariski dense, there is some m such that σmZ ′ meets Uf , say at a point p. But
then (M ′

m)p = (ILm)σ−mp, which is not flat over Cp, since codim Z ′ ≥ 2. Thus
Mf is not flat over Cf . �

Corollary 7.9. Assume Assumption-Notation 7.1. Then R is strongly left noether-
ian if and only if Z has pure codimension 1 and {σnZ}n≥0 is critically transverse
in X.

Proof. If {σnZ}n≥0 is critically transverse, then in particular Z is homologically
transverse to the singular stratification of X. If Z has pure codimension 1, then
by Lemma 7.5, Z is locally principal and I = IZ is invertible. Now, letting L′ =
IL(I−1)σ, we have that ILn = (L′)nIσn

. Since L′ is clearly also σ-ample, we see
that R is also the left idealizer at Z inside the twisted homogeneous coordinate ring
B(X,L′, σ). By assumption on critical transversality, we have in particular that
for any p ∈ X, the set {n ≤ 0 | σn(p) ∈ Z} is finite. Thus by Proposition 7.2, R is
strongly left noetherian.

If Z has pure codimension 1 and {σnZ}n≥0 is not critically transverse, then by
Proposition 7.4(2), R is not left noetherian and so is certainly not strongly left
noetherian.

Now suppose that Z has a component Z ′ such that codimZ ′ > 1. Let Y be the
Zariski closure of {σn(Z ′)}n≥0. Note that there is a chain of containments

Y ⊇ σY ⊇ σ2Y ⊇ · · · .
As this chain terminates, for some j we have σjY = σj+1Y ; applying σ−j we see
that Y itself is σ-invariant. If Y �= X, then Z is not homologically transverse to Y
by Lemma 5.7, and so by Proposition 7.4(1), R is not left noetherian.

We have thus reduced to considering the case that Z has a component Z ′ such
that codimZ ′ > 1 and that

⋃
n≥0 σ

n(Z ′) is Zariski-dense in X. Fix an open affine
U ⊆ X such that X�U has codimension 1. Let M be the module from Lemma 7.8.
As M is not a generically flat left O(U)-module, by Theorem 7.7 R⊗k O(U) is not
strongly left noetherian. Thus R is not strongly left noetherian. �

To end this section, we use Proposition 7.4 to show that the idealizers R =
R(X,L, σ, Z) have the unusual property that R⊗k R is not noetherian. The ideal-
izers constructed by Rogalski in [21] were the first known examples of noetherian
rings with this property.

Proposition 7.10. Assume Assumption-Notation 7.1. Assume in addition that Z
is not of pure codimension 1. Then R⊗k R is not left noetherian.

Licensed to University of Edinburgh. Prepared on Tue Aug 12 08:29:20 EDT 2014 for download from IP 129.215.104.50.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



492 S. J. SIERRA

Proof. Let T = R ⊗k R. Consider the Z-grading on T given by

Tn =
∑

i∈N

Ri ⊗Rn+i.

If T is left noetherian, then T0 must also be left noetherian. Thus we will show
that T0 is not left noetherian.

Let S = T0. The ring S is also known as the Segre product of R with itself and is

sometimes written S = R
s
⊗ R. It has a natural N-grading, given by Sn = Rn⊗Rn.

Let Y = (Z ×X) ∪ (X × Z). It can readily be seen that

S = R(X ×X,L� L, σ × σ, Y ).

Let Δ ⊆ X×X be the diagonal. We claim that Y is not homologically transverse
to Δ. As R is left noetherian, by Proposition 7.4 Z is homologically transverse to
the singular stratification of X. In particular, there is some component Z ′ of Z, of
codimension d ≥ 2, so that Z ′ is not contained in the singular stratification of X.
Thus, if η is the generic point of Z ′, the local ring O = OX,η is a regular local ring
of dimension d. Let J be the ideal of Z in O. By assumption, J is η-primary and
is not principal.

Let O′ = OX×X,η×η. There is a natural embedding O⊗kO → O′. Let x1, . . . , xd

be a system of parameters for the maximal ideal ηη of O. The maximal ideal m of
O′ is generated by the system of parameters x1 ⊗ 1, . . . , xd ⊗ 1, 1⊗ x1, . . . , 1⊗ xd.
Let K be the ideal of Y in O′; note that K is generated by the image of J ⊗ J .

Let H = ({xi ⊗ 1 − 1 ⊗ xi | 1 ≤ i ≤ d}) be the ideal of Δ in O′. Now, by [14,
Theorem A.1.1], the intersection product on X ×X satisfies

i(Y,Δ; η) = i(X × Z,Δ; η) + i(Z ×X,Δ; η).

This is easily seen to be

2 lenη(O/J).

On the other hand, consider O′/K ⊗O′ O′/H ∼= O′/(K +H). Since O′/H ∼= O,
this is isomorphic to O/J2. As J is not principal, we have

(7.7) lenη(O/J2) > 2 lenη(O/J).

By (5.1),

2 lenη(O/J) = i(Y,Δ; η) =
∑

i≥0

(−1)i lenη TorX×X
i (OY ,OΔ).

Using (7.7), we obtain

∑

i≥1

(−1)i lenη TorX×X
i (OY ,OΔ) = i(Y,Δ; η)− lenη(OY ⊗OΔ)

= 2 lenη O/J − lenη O/J2 < 0.

Thus Y and Δ are not homologically transverse.
Now, Δ is σ× σ-invariant, and the proof of [16, Corollary 3.5] shows that L�L

is σ × σ-ample. Thus, by Proposition 7.4,

T0 = S ∼= R(X ×X,L� L, σ × σ, Y )

is not left noetherian. Thus T is not left noetherian. �

Licensed to University of Edinburgh. Prepared on Tue Aug 12 08:29:20 EDT 2014 for download from IP 129.215.104.50.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



GEOMETRIC IDEALIZERS 493

We remark that if Z is reduced at η (so that J = η), then it is easy to directly

see that TorX×X
1 (OY ,OΔ) �= 0. Indeed, the element

x1 ⊗ x2 − x2 ⊗ x1 = (x1 ⊗ 1− 1⊗ x1)(x2 ⊗ 1) + (1⊗ x2 − x2 ⊗ 1)(x1 ⊗ 1)

is in H ∩K �HK; note that HK ⊆ m3.
In the case that Z is a point in P

d that moves in a critically dense orbit, Rogalski
[21, Theorem 1.1] shows thatR⊗kR is right noetherian and R⊗kR

op is left and right
noetherian. Rogalski’s proof depends crucially on the fact that Z is 0-dimensional.
For higher-dimensional Z, we expect that analogous results hold, although we have
not been able to generalize Rogalski’s proof.

8. The χ conditions for idealizers

In this section, we determine the homological properties of graded idealizers;
specifically, we investigate the Artin-Zhang χ conditions, as defined in the Intro-
duction.

We first recall Rogalski’s result that a right idealizer will fail χ1 and all higher
χj on the left.

Proposition 8.1 (Rogalski). Assume Assumption-Notation 7.1. Then R fails left
χ1.

Proof. This is proved in [21, Proposition 4.2]. To see it directly, note that changing
R by a finite-dimensional vector space does not affect the χ conditions, so without
loss of generality we have R = k+ I. Now B/R is infinite-dimensional and is killed
on the left by I; as we have an injection B/R ↪→ Ext1R(k, R), we see that Ext1R(k, R)
is infinite-dimensional. �

To analyze the right χ conditions, our key result is the following, due to Rogalski:

Proposition 8.2 ([21, Proposition 4.1]). Let B be a noetherian ring that satis-
fies right χ. Let I be a a right ideal of B, and let R = IB(I). Assume that
B/I is infinite-dimensional, that BR is finitely generated, and that R/I is finite-

dimensional. Then R satisfies right χi for some i ≥ 0 if and only if ExtjB(B/I,M)
is finite-dimensional for all 0 ≤ j ≤ i and all M ∈ gr-B. �

Rogalski proved that the right idealizer of a point in P
d satisfies right χd−1 and

fails right χd if the orbit of the point is critically dense. Here we extend Rogalski’s
result to idealizers at higher-dimensional subschemes.

Lemma 8.3. Let X be a projective variety, let σ ∈ Autk X, and let L be a σ-
ample invertible sheaf on X. Let Z and Y be closed subschemes of X, and let
B = B(X,L, σ). Let J be the right ideal of B consisting of sections vanishing along
Y , and let I be the right ideal of B consisting of sections vanishing along Z. For
n � 0, there is an isomorphism of k-vector spaces

Extjgr-B(B/I,B/J)n ∼= ExtjX(OZ ,OσnY ⊗ Lσ−n

n ).

Proof. The twisted homogeneous coordinate ring B satisfies χ as a consequence of
[31, Theorem 7.3] and [29, Theorem 6.3] (or alternately, [32, Theorem 4.2]). Thus

the natural map from Extjgr-B(B/I,B/J) to ExtjQgr-B(π(B/I), π(B/J)) has right
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bounded kernel and cokernel by [4, Proposition 3.5]. It therefore suffices to show
that for n � 0, we have

ExtjQgr-B(π(B/I), π(B/J))n ∼= ExtjX(OZ ,OσnY ⊗ Lσ−n

n ).

In fact, we show that we have this isomorphism for all n ≥ 0.
Using the equivalence between qgr-B and OX -mod, we have that

ExtjQgr-B(π(B/I), π(B/J))n ∼= ExtjQgr-B(π(B/I), π((B/J)[n]))

∼= ExtjX(B̃/I, ˜(B/J)[n]).

Now, B̃/I = OZ , and by (2.1),

˜(B/J)[n] ∼= (OY Ln)
σ−n ∼= OσnY Lσ−n

n .

The result follows. �

We have seen that for R to be right noetherian is relatively straightforward, but
the left noetherian property for R depends on the critical transversality of {σnZ}.
It turns out that the right χj properties, for j ≥ 1, also depend on the critical
transversality of {σnZ}. In particular, we have:

Proposition 8.4. Assume Assumption-Notation 7.1. Let d = codimZ.
(1) If {σnZ}n≤0 is critically transverse, and either
(a) X is nonsingular and Z is Gorenstein or
(b) Z is 0-dimensional,

then R satisfies right χd−1 but fails right χd.
(2) More generally, if Z contains an irreducible component of codimension d that

is not contained in the singular locus of X, then R fails right χd. In particular, if
R is left noetherian, then R fails right χd.

Proof. By Proposition 8.2, R satisfies right χi if and only if for all finitely generated
MB we have dimk Ext

j
gr-B(B/I,M) < ∞ for all j ≤ i. Furthermore, using the

equivalence of categories between qgr-B and OX -mod, without loss of generality
we may assume that M = B/J , where J is a right ideal of B consisting of sections
vanishing along a reduced, irreducible subscheme Y of X.

By Lemma 8.3, for n � 0 we have isomorphisms

Extjgr-B(B/I,B/J)n ∼= ExtjX(OZ ,OσnY ⊗ Lσ−n

n ).

Thus we have

(8.1) R satisfies right χi ⇐⇒ for all Y ⊆ X,

ExtjX(OZ ,OσnY ⊗ Lσ−n

n ) = 0 for all j ≤ i and n � 0.

By [12, Prop 4.2.1], for any coherent sheaves E and F there is a spectral sequence

(8.2) Hp(X, ExtqX(E ,F)) ⇒ Extp+q
X (E ,F).

We consider the special case

(8.3) Epq = Hp(X, ExtqX(OZ ,OσnY ⊗ Lσ−n

n )) ⇒ Extp+q
X (OZ ,OσnY ⊗ Lσ−n

n ).

We first suppose that (1)(a) holds, and show that R satisfies right χd−1.

Fix a closed subscheme Y of X and consider the sheaf ExtjX(OZ ,OσnY ). This
is supported on Z; we compute it by working locally at some closed point x ∈ Z.
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Gorenstein rings are Cohen-Macaulay and therefore locally equi-dimensional [9,
Corollary 18.11], so we may assume that Z is pure-dimensional of codimension
d′ ≥ d. Let J ⊆ O be the ideal defining Z locally at x.

By [9, Corollary 21.16], O/J has a self-dual free resolution as an O-module

0 → Qd′ → · · · → Q0 → O/J.

We write this resolution as Q• → O/J .
For a given n, let K ⊆ O be the ideal defining σnY at P . Let M = O/K. Then

we have isomorphisms of complexes

HomO(Q•,M) ∼= HomO(Q•,O)⊗M ∼= Q• ⊗M,

where the final isomorphism follows from the fact that Q• is self-dual. The right-
hand complex of this equation computes TorOd′−j(O/J,M). Thus we obtain isomor-
phisms

(8.4) ExtjX(OZ ,OσnY ) ∼= TorXd′−j(OZ ,OσnY ) ∼= TorXd′−j(Oσ−nZ ,OY )
σ−n

for all j.
We return to the Grothendieck spectral sequence (8.3). By [14, III.6.7],

ExtqX(OZ ,OσnY ⊗ Lσ−n

n ) ∼= ExtqX(OZ ,OσnY )⊗ Lσ−n

n .

Using critical transversality and (8.4), choose n0 such that ExtjX(OZ ,OσnY ) = 0 for
all n ≥ n0 and j < d ≤ d′. Then Epq = 0 for q < d; so we see that if p+ q = j < d,

then (8.3) collapses to 0 and we have ExtjX(OZ ,OσnY ⊗ Lσ−n

n ) = 0 for n � 0. By
(8.1), R satisfies χd−1.

Let Xsing be the singular locus of X. We now suppose that (2) holds; that is, Z
contains an irreducible component of codimension d that is not contained in Xsing.
We show that in this situation R fails right χd.

We consider the special case of (8.3) where Y = X:

(8.5) Hp(X, ExtqX(OZ ,Lσ−n

n )) ⇒ Extp+q
X (OZ ,Lσ−n

n ).

Let x ∈ Z be a nonsingular point of X such that the codimension of Z at x is d.
Since X is nonsingular at x, by [7, Theorem 1.2.5]

(8.6) ExtjX(OZ ,OX)x = 0 for j < d

and

(8.7) ExtdX(OZ ,OX)x �= 0.

Now (8.6) implies that for p+ q = d, (8.5) collapses, and we obtain that

ExtdX(OZ ,Lσ−n

n ) ∼= H0
(
X, ExtdX(OZ ,OX)⊗Lσ−n

n

) ∼= H0
(
X, ExtdX(OZ ,OX)σ

n⊗Ln

)
.

This is nonzero for n � 0 by (8.7) and by σ-ampleness of L. Thus by (8.1), R fails
right χd.

We have seen that if (2) holds, then R fails right χd. We note that if {σnZ}n≤0

is critically transverse, then Z is homologically transverse to all σ-invariant sub-
schemes, and certainly no component of Z is contained inXsing. If R is left noether-
ian, then using Proposition 7.4 and Lemma 5.7, we again have that no component
of Z is contained in the singular locus of X. Thus if (1)(a) or (1)(b) hold, or if R
is left noetherian, then (2) holds and R fails right χd.
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It remains to show that if (1)(b) holds, then R satisfies right χd−1. We have
seen that X is nonsingular at all points of Z, and so (8.6) holds. Let j ≤ d − 1.

By (8.5) we have that ExtjX(OZ ,Lσ−n

n ) = 0. On the other hand, if Y ⊂ X is a
proper subvariety, then critical transversality of {σnZ}n≤0 and Corollary 5.8 show

that σnY and Z are disjoint for n � 0, and so certainly ExtjX(OZ ,OσnY ⊗Ln) = 0
for n � 0. By (8.1), R satisfies right χd−1. �

9. Proj of graded idealizer rings and cohomological dimension

Assume Assumption-Notation 7.1. We end this paper by investigating the co-
homological dimension of the (right) noncommutative projective scheme associated
to R; we briefly review the definitions here.

Let R be a (noncommutative) N-graded ring, and recall that the category Qgr-R
is the noncommutative analogue of Proj of a commutative graded ring. In [4], Artin
and Zhang define Proj-R to be the pair (Qgr-R, πR), where π : Gr-R → Qgr-R is
the quotient functor. The cohomology groups on Proj-R are defined by setting

Hi(Proj-R,M) = ExtiQgr-R(πR,M)

for any M ∈ Qgr-R. The cohomological dimension of Proj-R or the right cohomo-
logical dimension of R is

cd(Proj-R) = max{i | Hi(Proj-R,M) �= 0 for some M ∈ Qgr-R }.
That is, cd(Proj-R) is the cohomological dimension of the functor H0(Proj-R, ).
We similarly define the left cohomological dimension of R, or cd(R-Proj).

If R is a finitely generated commutative graded k-algebra, then its cohomological
dimension is finite and in fact bounded by the dimension of ProjR. The proofs of
this are geometric, for example relying on Čech cohomology calculations, and do
not generalize to the noncommutative situation. Stafford and Van den Bergh have
asked [26, page 194] if every connected graded noetherian ring has finite left and
right cohomological dimension.

In this section, we answer Stafford and Van den Bergh’s question for geometric
idealizers. We prove:

Theorem 9.1. Assume Assumption-Notation 7.1. If R = R(X,L, σ, Z) is noe-
therian, then R has finite left and right cohomological dimension.

Thus, while we have seen that the χ conditions and the strong noetherian prop-
erty are quite asymmetrical for geometric idealizers, cohomological dimension ap-
pears to behave better, at least in the (two-sided) noetherian case. This, unsurpris-
ingly, breaks down for non-noetherian rings, and we give an example of a right, but
not left, noetherian ring with infinite right cohomological dimension. Amusingly,
this ring has finite left cohomological dimension.

To begin, we review Rogalski’s results on the cohomological dimension of ideal-
izers.

Proposition 9.2 ([21, Lemma 3.2]). Let B be a noetherian connected graded finitely
N-graded k-algebra, and let I be a graded right ideal of B such that R/I is infinite-
dimensional. Assume that BR is finitely generated and R/I is finite-dimensional.
Then there are isomorphisms of pairs

(9.1) R-Proj = (R-Qgr, πR) ∼= (B-Qgr, πB) = B-Proj
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and

(9.2) Proj-R = (Qgr-R, πR) ∼= (Qgr-B, πI).

�
Because of (9.1), it is clear that cd(R-Proj) = cd(B-Proj) = dimX, and this

was observed by Rogalski. We thus focus on calculating cd(Proj-R).

Lemma 9.3. Assume Assumption-Notation 7.1. Then cd(Proj-R) is infinite if
and only if hdX(OZ) is infinite.

Proof. Let I = Γ∗(I) ⊆ B. Since (Qgr-B, πI) ∼= (OX -Mod, I), by (9.2) cd(Proj-R)
is infinite if and only if for any k ≥ 0, there is some quasi-coherent F such that
ExtkX(I,F) �= 0.

Suppose that hdX(OZ) and therefore hdX(I) are infinite. Thus for any k >

0, there is some G such that ExtkX(I,G) �= 0. But let O(1) be any very ample

invertible sheaf on X. By [14, III.6.9] we may choose n so that ExtkX(I,G(n)) =
H0(X, ExtkX(I,G) ⊗ O(n)) �= 0. Thus cd(Proj-R) ≥ k, and since k was arbitrary,
cd(Proj-R) is infinite.

Now suppose that hdX(I) is finite, say equal to N , and let G be an arbitrary
coherent sheaf. We apply (8.2) to obtain a spectral sequence

(9.3) Hp(X, ExtqX(I,G)) ⇒ Extp+q
X (I,G).

The left-hand side has nonzero terms only for 0 ≤ p ≤ dimX and 0 ≤ q ≤ N .
Thus if p+ q is large (in particular p+ q > N +dimX), then all the groups on the
left-hand side are 0, and so (9.3) collapses to 0. Thus cd(Proj-R) ≤ N+dimX. �

Proof of Theorem 9.1. If R(X,L, σ, Z) is left noetherian, then by Proposition 7.4
we have that {σnZ}n≥0 is homologically transverse to all σ-invariant subvarieties
of X, and in particular, to the singular stratification of X. Thus by Lemma 5.3,
hdX(OZ) is finite. By Lemma 9.3, cd(Proj-R) is finite. �

We now give the promised example of a right noetherian ring with infinite right
cohomological dimension.

Example 9.4. Assume that char k = 0. Let Y be the cuspidal cubic, and let
X = Y × P

1. Let τ : P1 → P
1 be the automorphism τ ([x : y]) = [x+ y : y], and let

σ = 1× τ ∈ Autk X. Let P be the singular point of Y , and let Z = P × [0 : 1] ∈ X.
Let L be any ample invertible sheaf on X, and let R = R(X,L, σ, Z). Since the
numerical action of σ is trivial, by [15, Theorem 1.2] L is σ-ample.

Now Z is certainly of infinite order under σ, and R is right noetherian by Propo-
sition 7.2. On the other hand, Z is contained in the singular locus of X, and so
Proposition 7.4(1) and Lemma 5.7 imply that R is not left noetherian. Since X
is not regular at Z, we have that hdX(OZ) is infinite. Lemma 9.3 implies that
cd(Proj-R) = ∞.

We note that Proposition 9.2 implies that the left cohomological dimension of R
is 2.

Remark. Suppose that R = R(X,L, σ, Z) is a left noetherian idealizer. Together,
Lemma 9.3 and Lemma 5.3 imply that the right cohomological dimension of R is
bounded by 2 dimX−1. We conjecture that in fact the left cohomological dimension
of R is precisely dimX. It is easy to see that cd(Proj-R) ≥ dimX.
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10. Conclusion

Here we collect our results on geometric idealizers, and prove Theorem 1.8 and
its promised generalization. Throughout, we make the following assumptions.

Assumptions 10.1. Let X be a projective variety, let σ be an automorphism of
X, and let L be a σ-ample invertible sheaf on X. Let Z be a closed subscheme of
X such that for any irreducible component Y of Z,

σn(Y red) �⊆ Z

for n � 0.
Given this data, we let

R = R(X,L, σ, Z).

Let I = IZ be the ideal sheaf of Z on X.

We note that since by Theorem 3.3 any noetherian right idealizer is up to a finite
extension an idealizer at a scheme whose defining data satisfies Assumptions 10.1,
these assumptions are not unduly restrictive.

We now summarize our results.

Theorem 10.2. Assume Assumptions 10.1.
(1) R is right noetherian if and only if for any x ∈ X, the set {n ≥ 0 | σn(x) ∈ Z}

is finite.
(2) If R is right noetherian, then R is strongly right noetherian.
(3) R fails left χ1.
(4) If {σn(Z)}n≥0 is critically transverse, then {(ILn)σn}n≥0 is a left and right

ample sequence of bimodules, and R is left noetherian.
(5) R is strongly left noetherian if and only if Z has pure codimension 1 and

{σnZ}n≥0 is critically transverse.
(6) Let d = codimZ. If {σnZ}n≤0 is critically transverse and either d = dimX

or X and Z are both smooth, then R satisfies right χd−1. If R is noetherian, then
R fails right χd.

(7) If R is noetherian, then R has finite left and right cohomological dimension.
(8) If Z does not have pure codimension 1, then R ⊗k R is not left noetherian.

We note that Theorem 1.8 is a special case of Theorem 10.2.

Proof. By Lemma 4.2, the defining data of R satisfy Assumption-Notation 4.1.
Then (1) and (2) are Proposition 7.2. (3) is Proposition 8.1. (4) is Lemma 6.1,
Proposition 6.2 and Proposition 7.3. (5) is Corollary 7.9. (6) is a special case of
Proposition 8.4, and (7) is Theorem 9.1. (8) is Proposition 7.10. �
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