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THE BRASCAMP-LIEB INEQUALITIES:
FINITENESS, STRUCTURE AND EXTREMALS

JONATHAN BENNETT, ANTHONY CARBERY, MICHAEL CHRIST
AND TERENCE TAO

Abstract. We consider the Brascamp—Lieb inequalities concerning mul-
tilinear integrals of products of functions in several dimensions. We give
a complete treatment of the issues of finiteness of the constant, and of
the existence and uniqueness of centred gaussian extremals. For arbitrary
extremals we completely address the issue of existence, and partly address
the issue of uniqueness. We also analyse the inequalities from a structural
perspective. Our main tool is a monotonicity formula for positive solutions
to heat equations in linear and multilinear settings, which was first used
in this type of setting by Carlen, Lieb, and Loss [CLL]. In that paper, the
heat flow method was used to obtain the rank-one case of Lieb’s fundamen-
tal theorem concerning exhaustion by gaussians; we extend the technique
to the higher-rank case, giving two new proofs of the general-rank case of
Lieb’s theorem.

1 Introduction

Important inequalities such as the multilinear Holder inequality, the sharp
Young convolution inequality and the Loomis—Whitney inequality find their
natural generalisation in the Brascamp-Lieb inequalities, which we now
describe.

DEFINITION 1.1 (Brascamp-Lieb constant).  Define a Fuclidean space
to be a finite-dimensional real Hilbert space H, endowed with the usual
Lebesgue measure dz; for instance, R" is a Euclidean space for any n. (It is
convenient to work with arbitrary finite-dimensional Hilbert spaces instead
of just copies of R™ in order to take advantage of invariance under Hilbert
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space isometries, as well as such operations as restriction of a Hilbert space
to a subspace, or quotienting one Hilbert space by another. In fact one could
dispense with the inner-product structure altogether and work with finite-
dimensional vector spaces with a Haar measure dz, but as the notation in
that setting is less familiar, especially when regarding heat equations on
such domains, we shall retain the inner-product structure for notational
convenience.) If m > 0 is an integer, we define an m-transformation to be
a triple
B := (H, (Hj)1<j<m, (Bj)1<j<m)

where H, Hy,..., Hy, are Euclidean spaces and for each j, B;: H — H;
is a linear transformation. We refer to H as the domain of the m-trans-
formation B. We say that an m-transformation is non-degenerate if all
the B; are surjective (thus H; = B;H) and the common kernel is trivial
(thus ﬂ;nzl ker(B;) = {0}). We define an m-ezponent to be an m-tuple
P = (pj)i<j<m € R of non-negative real numbers. We define a Brascamp-
Lieb datum to be a pair (B, p), where B is an m-transformation and p is
an m-exponent for some integer m > 0. When we are in a situation which
involves a Brascamp-Lieb datum (B, p), it is always understood that the
objects H,Hj,Bj,p; denote the relevant components of this Brascamp—
Lieb datum. If (B, p) is a Brascamp-Lieb datum, we define an input for
(B, p) to be an m-tuple f := (f;)1<;j<m of nonnegative measurable functions
fi + Hi — R* such that 0 < ij fj < o0, and then define the quantity

0 < BL(B, p;f) < 400 by the formula
~ Ju % (fy 0 By)Ps
H;'n:1 (fHJ fj)p]

Note that if (B, p) is non-degenerate and the f; are bounded with com-
pact support, then BL(B, p;f) < +00. We then define the Brascamp—Lieb
constant BL(B,p) € (0,4+0o0] to be the supremum of BL(B, p;f) over all
inputs f. Equivalently, BL(B, p) is the smallest constant for which the
m-linear Brascamp—Lieb inequality

/Hjlj(fj o Bj)Pi < BL(B,P)jﬁ (/H fj)pj (1)

holds for nonnegative measurable functions f; : H; — R™.

BL(B, p;f) :

REMARK 1.2. By testing (1) on functions which are strictly positive near
the origin, one can easily verify that the Brascamp—Lieb constant must be
strictly positive, though it can of course be infinite. We give this definition
assuming only that the inputs f; are non-negative measurable, but it is
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easy to see (using Fatou’s lemma) that one could just as easily work with
strictly positive Schwartz functions with no change in the Brascamp-Lieb
constant. One can of course define BL(B, p) when B is degenerate but it is
easily seen that this constant is infinite in that case (see also Lemma 4.1).
Thus we shall often restrict our attention to non-degenerate Brascamp-Lieb
data.

We now give some standard examples of Brascamp—Lieb data and their
associated Brascamp-Lieb constants.
ExXAMPLE 1.3 (Holder’s inequality). If B is the non-degenerate m-trans-
formation

B := (H, (H)1<j<m, (idr)i<j<m)

for some Euclidean space H and some m > 1, where idyg : H — H de-
notes the identity on H, then the multilinear Holder inequality asserts that
BL(B, p) is equal to 1 when p;+...4+p, = 1, and is equal to 400 otherwise.

EXAMPLE 1.4 (Loomis—Whitney inequality). If B is the non-degenerate
n-transformation
B := (R", (¢ )1<j<n: (Pj)1<j<n)

where eq,...,e, is the standard basis of R", ej- C R" is the orthogonal
complement of e;, and P; : R" — ejL is the orthogonal projection onto ejL,
then the Loomis—Whitney inequality [LoW] can be interpreted as an asser-
tion that BL(B,p) = 1 when p = (ﬁ, e ﬁ), and is infinite for any
other value of p. For instance, when n = 3 this inequality asserts that

1 1 1 i i 1
J[[ 102 gt 2 o) b dy e < 191 911 oy 11 ey 2

whenever f,g,h are non-negative measurable functions on R%. More gen-
erally, Finner [F] established multilinear inequalities of Loomis—Whitney
type involving orthogonal projections to co-ordinate subspaces.

EXAMPLE 1.5 (Sharp Young inequality).  The sharp Young inequality
([Be], [BrL]) can be viewed as an assertion that, if B is the non-degenerate
3-transformation,
B := (R x R, (R%)1¢j<s, (B))i<j<a)
where d > 1 is an integer and the maps B; : R? x R¢ — R¢ are defined for
j=1,2,3 by
Bl('ray) =z, BQ(Iay) =Y, B3(Iay) =T =Y,

then we have

w

BL (B, (p1,p2,p3)) = ( w)d/z

Dj
=1 P
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if p1 +p2 +p3 =2 and 0 < p1,p2,p3 < 1, with BL(B, (p1,p2,p3)) = +oo
for any other values of (p1,p2,p3). (See Example 3.8.)

EXAMPLE 1.6 (Geometric Brascamp-Lieb inequality). Let B be the non-
degenerate m-transformation
B := (H, (Hj)1<j<m; (Bj)i<j<m)

where H is a Euclidean space, Hy,..., H,, are subspaces of H, and B; :
H — Hj are orthogonal projections, thus the adjoint B : H; — H is the
inclusion map. The geometric Brascamp-Lieb inequality of Ball [B] (and
later generalised by Barthe [Ba2]) asserts that BL(B,p) = 1 whenever
p = (p1,-..,pm) € R obeys the identity E;"lejB;fBj = 1. Note that
equality is obtained when we have f;(z) = exp(—7r||:c||%1j) for all j. This
significantly generalises the Loomis—Whitney inequality (Example 1.4) and
the Holder inequality (Example 1.3).

ExAMPLE 1.7 (Rank-one Brascamp-Lieb inequality). Let B be the non-
degenerate m-transformation
B := (H, (R)i<j<m, (v])1<j<m)

where H is a Euclidean space, v1,...,v, are non-zero vectors in H which
span H, and v; : H — R is the corresponding linear functional v (x) =
(vj,z)g. Then the work of Barthe [Ba2] (see also [CLL]) shows that
BL(B, p) is finite if and only if p € R'? lies in the convex polytope
whose vertices are the points (1jcr)1<j<m, where I is a subset of {1,...,m}
such that the vectors (vj);er form a basis of H (in particular, this forces
|I| = dim(H)). Furthermore, if p lies in the (m — 1)-dimensional interior of
this polytope, then equality in (1) can be attained. We shall reprove these
statements as Theorem 5.5.

REMARK 1.8. The rank-one case can differ dramatically from the general
case. In particular, rearrangement inequalities such as that of Brascamp,
Lieb, and Luttinger [BrLL] apply for rank one, that is, when all H; have
dimensions one, but for higher rank are only very rarely applicable.

It is thus of interest to compute the Brascamp-Lieb constants BL(B, p)
explicitly, or at least to determine under what conditions these constants
are finite. A fundamental theorem of Lieb [L] shows that these constants
are exhausted by centred gaussians. More precisely, given any positive
definite transformation A : H — H, we consider the associated gaussian
exp(—m(Az,z)g). As is well known we have the formula

/H exp ( — m(Az,z))dr = (detz A)~1/2, (3)
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where dety is the determinant associated to transformations on the Eu-
clidean space H. Define a gaussian input for (B,p) to be any m-tuple
A = (A;)1<j<m of positive definite linear transformations A; : H; — H;.
(By positive definite, we mean that the transformation is self-adjoint and
that the associated quadratic form (Ax,z) is positive definite. It is in fact
slightly more natural to view A as a transformation from H to H*, the dual
of H, rather than H itself, but of course since H and H* are canonically
identifiable using the Hilbert space structure we will usually not bother to
enforce the distinction between H and H*.) If we now test the inequality
(1) with the input (exp(—m(A;z,2)H))1<j<m for some arbitrary positive-
definite transformations A; : H; — H;, we conclude that
BL(B,p) > BLg(B,p; A)

for arbitrary gaussian input A = (A4;)1<;<m, where BLg(B, p; A) € (0, +00)
is the quantity

(4)

m \P; 1/2
BLg(B,p; A) := HFI(::etHj A7) :
detr (X°7-, p;B;A;Bj)

and B;-‘ : H; — H is the adjoint of H. In particular, if we define

BLg (B, p) = sup {BLg(B,p; A) : A is a gaussian input for (B,p)} (5)
then we have
for arbitrary Brascamp-Lieb data (B, p).

Lieb [L] showed that the above inequality is in fact an equality:

Theorem 1.9 (Lieb’s theorem [L]).  For any Brascamp-Lieb datum
(B,p), we have BL(B, p) = BLg(B, p).

REMARK 1.10. Lieb’s theorem was proved in the rank-one and certain
intermediate cases by Brascamp and Lieb [BrL] in part using rearrangement
techniques from [BrLL]. Lieb gave the first full proof in [L] using, inter alia,
a clever O(2)-invariance and arguments related to the central limit theorem.
Barthe gave an alternative proof using deep ideas of transportation of mass
due to Brenier, McCann and Caffarelli; see [Ba2] and the references therein.
More relevantly to our own approach, Carlen, Lieb and Loss [CLL] gave a
proof of Lieb’s theorem in the rank-one case using heat flow methods. Our
own arguments, though rediscovered independently, can be viewed as an
extension of the arguments in [CLL] to the higher-rank case.

The question of understanding the Brascamp—Lieb constants is solved

by Theorem 1.9, in the sense that the task is reduced to the simpler task
of understanding the (in principle computable) gaussian Brascamp-Lieb
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constants. However, there are still a number of issues that are not easily
resolved just from this theorem alone; for instance, it is not immediately
obvious what the necessary and sufficient conditions are for either BL(B, p)
or BLg(B,p) to be finite. Also, this theorem does not characterise the
extremals for (1) or for (5), or even address whether such extremals exist
at all.

More precisely, we formulate

DEFINITION 1.11 (Extremisability). A Brascamp-Lieb datum is said to
be eztremisable if BL(B, p) is finite and there exists an input f for which
BL(B, p) = BL(B, p;f).

A Brascamp-Lieb datum is said to be gaussian-extremisable if there
exists a gaussian input A for which BLg(B, p) = BLg(B,p; A) (so in par-
ticular, BLg(B, p) is finite).

Note that gaussian-extremisability does not formally imply extremis-
ability. Nonetheless, Lieb’s theorem asserts that every gaussian-extremisable
datum is also extremisable. However it does not give the converse (which
turns out to be true, see Proposition 6.5 below).

In this paper we shall address these issues as follows. Firstly, we shall
use the multilinear heat flow monotonicity formula technique to give two
fully self-contained proofs of the general-rank case of Lieb’s theorem (in
section 5 and section 8 respectively). This technique was first employed in
this setting [CLL] to establish the analogues of most of the results here in
the rank-one case dim(H;) = 1 (and also for more general domains than Eu-
clidean spaces), and our arguments are thus an extension of those in [CLL].
(See also [BaC] for another recent application of the heat flow method to
Brascamp-Lieb type inequalities.) Secondly, we establish a characterisa-
tion of when the Brascamp-Lieb constants are finite; in fact this will be
achieved simultaneously with the first of our two new proofs of Lieb’s the-
orem. Thirdly, we shall give necessary and sufficient conditions for the
Brascamp-Lieb data (B, p) to be gaussian-extremisable. Fourthly we shall
give necessary and sufficient conditions for the Brascamp-Lieb data (B, p)
to possess unique gaussian extremisers (up to trivial symmetries). We shall
achieve these results and others partly with the aid of a two-stage structural
perspective on the Brascamp-Lieb inequalities (1).

In order to describe our criterion for finiteness we first need a defini-
tion. This definition (or more precisely an equivalent formulation of this
definition) was first introduced in the context of the rank-one problem in

[CLL).
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DEFINITION 1.12 (Critical subspace and simplicity [CLL]). Let (B, p)
be a Brascamp-Lieb datum. A critical subspace V for (B, p) is a non-zero
proper subspace of H such that

m
dim(V) =" p; dim(B; V).
j=1
The datum (B, p) is simple if it has no critical subspaces.

Theorem 1.13. Let (B, p) be a Brascamp-Lieb datum. Then BLg(B, p)
is finite if and only if we have the scaling condition

dim(H) = " p; dim(FH;) (7)
and the dimension condition
m
dim(V) < ij dim(B;V') for all subspaces V C H . (8)
j=1

Furthermore, if (B, p) is simple, then it is gaussian-extremisable.

REMARK 1.14. In the rank-one case, a finiteness criterion for BL(B, p)
and BLg(B, p) equivalent to Theorem 1.13 was given by Barthe [Ba2], see
Theorem 5.5 below.

By Lieb’s theorem we have as an immediate corollary:

Theorem 1.15 (Finiteness of Brascamp—-Lieb constant). Let (B,p) be a
Brascamp-Lieb datum. Then the following three statements are equivalent:
(a) BL(B, p) is finite.
(b) BLg(B,p) is finite.
(c) (7) and (8) hold.
Furthermore, if any of (a)-(c) hold, and (B, p) is simple, then (B,p) is
extremisable.

REMARKS 1.16. The conditions (7), (8) imply in particular that B is non-
degenerate, as can be seen by testing on V := H and on V' := (L, ker(B;).
The deduction of (c) from (a) or (b) is very easy, see Lemma 4.1. The
more difficult part of the theorem is to establish the reverse implication in
Theorem 1.13; we shall do so in Proposition 5.2. One can also easily show
that Theorem 1.15 implies all the negative results in Examples 1.3-1.6.

REMARK 1.17. A key element of our analysis is a certain factorisation of
the inequality through critical subspaces. This factorisation method played
a similarly key role in the work of [CLL] in the rank-one case, and also in
the work of Finner [F], who analysed the case of orthogonal projections to
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co-ordinate subspaces. One can view this factorisation method as gener-
alising the arguments of Loomis and Whitney [LoW]. In the companion
paper [BenCCT] we give an alternative proof of the equivalence (c)<(a) in
Theorem 1.15, without recourse to Lieb’s theorem, heat flow deformation,
or related techniques, based on this factorisation together with multilinear
interpolation. Our first proof of Theorem 1.9 (given in section 5) combines
heat flows with the factorisation, while a second proof (in section 8) is a
pure heat flow argument. The factorisation also plays a central role in our
structural perspective.

REMARK 1.18. Theorem 1.15 implies in particular that for any fixed B, the
set of all p for which BL(B, p) or BLg(B, p) is finite is a convex polytope,
with the faces determined by the natural numbers n, n1, ..., ny, for which
an n-dimensional subspace V of H exists with n;-dimensional images B;V.
This is a purely geometric condition, which can in principle be computed
algebraically. However, the problem of determining which n,ni,...,n,,
are attainable seems to be a problem in Schubert calculus, and given the
algebraic richness and complexity of this calculus (see, e.g. [Bel]), a fully
explicit and easily computable description of these numbers (and hence of
the above polytope) may be too ambitious to hope for in general. However
in the rank-one case (Example 1.7) a concrete description of the polytope
has been given by Barthe [Ba2]; some other cases have been considered by
Valdimarsson [V3]. As already observed in [CLL], Barthe’s description of
the polytope is equivalent to that given by Theorem 1.15; we recall this
equivalence in section 5.

Our proofs of Lieb’s theorem and Theorem 1.15 will occupy sections 2-5.
However our methods provide a quite short proof of the geometric Bras-
camp-Lieb inequality (Example 1.6) which does not rely on Lieb’s the-
orem; this is Proposition 2.8. Moreover, the geometric Brascamp-Lieb
inequality, combined with a simple linear change of variables argument,
is already strong enough to obtain many of the standard applications of
the Brascamp-Lieb inequality, such as the sharp Young inequality (Exam-
ple 1.5), as well as the special case of Theorem 1.15 and Lieb’s theorem
when (B, p) is simple. It will also be one of two pillars of our first proof
of Lieb’s theorem, the other pillar being the aforementioned factorisation
argument.

In the work of Barthe [Ba2] (Example 1.7), a structural analysis of the
rank-one Brascamp-Lieb functional (4) was given, involving in particular
a decomposition of the rank-one Brascamp-Lieb data into indecomposable
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components. Barthe also considered the question of when extremals to (5)
exist, and when they are unique. The uniqueness question was answered
based upon this decomposition and upon an explicit algebraic description
of the gaussian Brascamp-Lieb constant (5) in the rank-one case. Part of
the purpose of this paper is to extend (albeit by different methods) Barthe’s
programme to the higher-rank case. Barthe’s decomposition of Brascamp—
Lieb data is different from the factorisation method used here (and also
in [CLL], [F]); the difference is analogous to the distinction between direct
product and semi-direct product in group theory. Barthe’s decomposition
depends only on the data B while ours depends also upon p. We will
combine a higher-rank analogue of Barthe’s decomposition of Brascamp—
Lieb data into indecomposable components with our notion of factorisation
in order to answer the question of when Brascamp-Lieb data is gaussian-
extremisable. For precise definitions see section 7 below.

Theorem 1.19. Let (B,p) be a Brascamp-Lieb datum for which (7)
and (8) hold. Then (B,p) is gaussian-extremisable if and only if each
indecomposable component for B is simple.

For the full story see Theorem 7.13 below. It is also shown in Proposi-
tion 6.5 that extremisability is equivalent to gaussian-extremisability. This
latter equivalence uses Lieb’s theorem and an iterated convolution idea of
Ball. Thus extremisability can be viewed as a kind of semisimplicity for
the Brascamp-Lieb datum.

Theorem 7.13 gives a satisfactory description of the Brascamp—Lieb data
for which extremisers or gaussian extremisers exist. We can also show that
these gaussian extremisers are unique (up to scaling) if and only if the data
is simple:

Theorem 1.20. Let (B,p) be Brascamp-Lieb datum with p; > 0 for
all j. Then gaussian extremisers for (B,p) exist and are unique (up to
scaling) if and only if (B, p) is simple.

See Corollary 9.2. As for the uniqueness (up to trivial symmetries) of
general extremisers, this problem seems to be more difficult, and we have
only a partial result (Theorem 9.3). Valdimarsson [V2] has recently solved
this problem completely.

As mentioned above, Carlen, Lieb and Loss in [CLL] have introduced
the idea of using heat flow in the Brascamp-Lieb context in the rank-one
case (and also on the sphere S™ instead of a Euclidean space). We remark
also that prior to the work in [CLL], the known proofs of versions of Lieb’s
theorem relied on methods such as rearrangement inequalities [BrLL] and
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mass transfer inequalities [Ba2]. While such methods are similar in spirit
to that of heat flows — in that they are all ways of deforming non-extremal
solutions to extremal gaussians — they are not identical. For instance the
heat flow method will continuously deform sums of gaussians to other sums
of gaussians, whereas continuous mass transfer does not achieve this; and
it is not obvious how to perform rearrangement in a continuous manner.

Guide to the paper. In section 2 we introduce the heat flow method
and use it to prove the geometric Brascamp—Lieb inequality. In section 3
we consider the gaussian-extremisable case and give a characterisation of
gaussian extremisers, recovering the sharp Young inequality Example 1.5
as an immediate application. Our first approach to the structure of the
Brascamp-Lieb inequalities, via factorisation, is taken up in section 4 where
we also establish the necessity of (8) and (7) for BL(B,p) or BLg(B, p)
to be finite. In section 5 we establish the sufficiency of these conditions
and prove Theorem 1.9 and Theorem 1.15 in the general case. In section 6
we prove that extremisability and gaussian-extremisability are equivalent.
Our second approach to structural issues is made in section 7 where the
main characterisation of extremisability is also given. In section 8 we ex-
amine variants of the Brascamp-Lieb inequalities for regularised inputs in
a gaussian setting, and this leads to our second proof of Lieb’s theorem
via a purely heat-flow method. As a further consequence of our analysis,
we give versions of Theorem 1.9 and Theorem 1.15 in a gaussian-localised
setting in Corollary 8.16 and Theorem 8.17 respectively. Corollary 8.16 is
very much in the spirit of Lieb’s original paper [L]. In section 9 we discuss
uniqueness of extremals. Finally, in section 10 we make some remarks on
the heat flow method in so far as it applies in non-gaussian contexts. We
give a general monotonicity formula for log-concave kernels (the class of
which of course includes gaussians) in Lemma 10.4.

Our work in this paper was motivated by the article [BenCT] in which
almost optimal results were obtained for the multilinear Kakeya and re-
striction problems. It was in this context that the applicability of heat
flows in multilinear inequalities was rediscovered.

Acknowledgements. We are grateful to Assaf Naor for bringing [CLL)]
to our attention. We also thank Rodrigo Bafniuelos for some corrections,
and Eric Carlen for help with the references.
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2 The Geometric Brascamp-Lieb Inequality

In this section we establish Lieb’s theorem in the geometric case (see Propo-
sition 2.8). We begin with a definition.

DEFINITION 2.1 (Geometric Brascamp-Lieb data). A Brascamp-Lieb da-
tum (B, p) is said to be geometric if we have B;B; = idy; (thus B; is an
isometry) and

m

> p;B;B; =idy . (9)

j=1
REMARK 2.2. The datum in Example 1.6 is of this type. Conversely, if
(B, p) is geometric, and we let E; be the range of the isometry B;, then we
may identify H; with E;, and B; with the orthogonal projection from H
to E;, thus placing ourselves in the situation of Example 1.6. The “geom-
etry” here refers to Euclidean or Hilbert space geometry, since the inner-
product structure of H is clearly being used (for instance, to define the no-
tion of orthogonal projection). We remark that the condition BjB;-‘ = idp;
forces B; to be surjective, and (9) implies that 72, ker(B;) = {0}, and
thus geometric Brascamp-Lieb data are always non-degenerate. Further-
more, by taking traces of (9) we conclude (7). More generally, if we let V'
be any subspace of H, and let II : H — H be the orthogonal projection
onto V, then by multiplying (9) by II and taking traces we conclude

m

> pjtr(IIB}B;) = dim(V').

j=1
Since IIB}B; is a contraction and has range B;V, we conclude (8) also.
Thus the assertion that geometric Brascamp-Lieb data have finite Bras-
camp—Lieb constants is a special case of Theorem 1.15; we establish this
special case in Proposition 2.8 below.

REMARK 2.3. Let (B,p) be a Brascamp-Lieb datum with p; > 0 for
all j, and let @;”:1 pjH; be the Cartesian product H;"Zl H; endowed with
the inner product <5‘7’3/>€B;”=1 p;H; = Dje1Pi{Tj,yj)m;; this is thus a Eu-
clidean space. Let V be the image of H in @;-n:lijj under the map
x + (Bjz)i<j<m, and let 7; : V. — H; be the projection maps induced
by restricting the projection maps on @;n:l pjH; to V. Then the state-
ment that (B, p) is geometric is equivalent to the assertion that the map
z — (Bjx)i<j<m is a Euclidean isomorphism from H to V, and that
the projection maps are co-isometries (i.e. surjective partial isometries, or
equivalently their adjoints are isometries). Thus geometric Brascamp-Lieb



12 J. BENNETT, A. CARBERY, M. CHRIST AND T. TAO GAFA

data can be thought of as subspaces in @;":1 p;Hj which lie co-isometrically
above each of the factor spaces H;.

Our approach to the geometric Brascamp-Lieb inequality is via mono-
tonicity formulae, which as observed in [CLL] seems to be especially well
suited for the geometric Brascamp—Lieb setting. Abstractly speaking, if
one wishes to prove an inequality of the form A < B, one can do so by con-
structing a monotone non-decreasing quantity ()(t) which equals A when
t = 0 (say) and equals B when ¢t = oo (say). It is thus of interest to have
a general scheme for generating such monotone quantities, which we will
also use later in this paper to deduce some variants of the Brascamp-Lieb
inequalities. We begin with the following simple lemma.

LEMMA 2.4 (Monotonicity for transport equations). Let I C R be a time
interval, let H be a Euclidean space, let v : I x H — RT be a smooth
non-negative function, and v : I x H — H be a smooth vector field, such
that Yu is rapidly decreasing at spatial infinity |z| — oo locally uniformly
on I. Let o € R be fixed. Suppose that we have the transport inequality

Opu(t,z) + div (3(t, z)u(t, ) > au/t (10)

for all (t,z) € I x H, where div of course is the spatial divergence on the
FEuclidean space H. Then the quantity

Q) :=t¢ /Hu(t,x) dz € [0, +o0]

is non-decreasing in time. Furthermore, if (10) holds with strict inequality
for all z,t, then Q) is strictly increasing in time. Similarly, if the signs are
reversed in (10), then Q(t) is now non-increasing in time.

REMARK 2.5. We allow the velocity field ¥ to vary in both space and time.
This is important as we will typically be dealing with functions u which
solve a heat equation such as d;u = Awu, in which case the natural velocity
field ¥ is given by ¢ = —V log u.

Proof. By multiplying (10) by ¢t* and replacing u by 4 := t~%u, we may
reduce to the case @« = 0. Let ¢; < t9 be two times in I. From Stokes’
theorem we have

/Hu(tz,x)w(x)dx—/ u(ty, z)(z)dz

H

— /t 2 /H (Bpu(t, z)v(x) + div(y(z)T(t, x)u(t, z))da dt
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for any non-negative smooth cutoff function . Using the product rule and
(10) we conclude

/H w(ty, )b (x)dz — / ulty, 2)(x)dz > / ? / Vi(2), 0t @)u(t, z) ) dz .

Letting 1 approach the constant function 1 and using the hypothesis that

Du is rapidly decreasing at spatial infinity, uniformly in [t1,¢2], we obtain

the claim. O
We now generalise this result substantially.

LEMMA 2.6 (Multilinear monotonicity for transport equations). Let
P1,---,pm > 0 be real exponents, let H be a Fuclidean space, and for
each 1 < j <m let u; : R* x H — R* be a smooth strictly positive func-
tion, and U; : RT x H — H be a smooth vector field. Let o € R be fixed.
Suppose we also have an additional smooth vector field 7 : Rt x H — H,
such that T[], u*’ is rapidly decreasing in space locally uniformly on I,

J=17"7
and we have the inequalities
Opuj(t,z) + div (Tju;(t,z)) >0 forall 1<j<m (11)
m
div (5— ijﬁj) > aft (12)
j=1
> (¥ — 1, Viegu)u > 0. (13)

Then the quantity

m
Q) == t_a/ Hu]-(t,x)pjdm (14)
Hj
is non-decreasing in time. Furthermore, if at least one of (11), (12), (13)
holds with strict inequality for all x,t, then @ is strictly increasing in time.
If all the signs in (11), (12), (13) are reversed, then Q(t) is now non-
increasing in time.

Proof. We begin with the first claim. By Lemma 2.4, it suffices to show

that m m m
i s i i
&gHuj’ + div (’UHU/) > ozHuj’ ;
i . .
We divide both sides by the positive quantity HJ 1 gj and then use the
product rule, to reduce to showing that

Z atj—i—dlv() <17,2ij> >«
i/ H
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But the left-hand side can be rearranged as

m

Z_j(@w(taw) + div (T, )))

m
+ div (’17— ijﬁj)

i=1

i=1

m
+ ij<17— ’Uj,VlOng)H,
j=1

and the claim follows from (11), (12), (13). A similar argument gives the
second claim. O

REMARK 2.7. The above lemma shows that in order to show that the
quantity (14) synthesised from various spacetime functions u; is monotone,
one needs to locate velocity fields ¥j, ¥ obeying the pointwise inequalities
(11), (12), (13). In practice the u; will be chosen to obey a transport
equation Oyu; + div(¥ju;) = 0, so that (11) is automatically satisfied. As
for the other two inequalities, in the linear case j = 1 one can obtain (13)
automatically by setting ¥ = ¥}, leaving only (12) to be verified. In the
multilinear case, one would have to set ¥ to be a suitable average of the v;.
This latter strategy seems to only work well in the case when the u; solve
a heat equation dyu; = div(G;Vu,), since in this case the relevant velocity
field 7; = —G;Vlogu; is related to Vlogwu; by a positive definite matrix
and one is more likely to ensure (13) is positive.

We now give the first major application of the above abstract machinery,
by reproving K. Ball’s geometric Brascamp-Lieb inequality (Example 1.6).
We give some further applications in section 8 and section 10.

PROPOSITION 2.8 (Geometric Brascamp-Lieb inequality [B], [Ba2]). Let
(B, p) be geometric Brascamp—Lieb data. Then

BL(B, p) = BLg(B,p) = 1. (15)

Furthermore, (B, p) is both extremisable and gaussian-extremisable.

Proof. We may drop those exponents p; for which p; = 0 as being irrelevant.
By Remark 2.2 we may assume without loss of generality that H; is a
subspace of H and that B; is the orthogonal projection from H to Hj.
By considering (4) with the gaussian input (ids;)1<j<m we observe that
BLg(B,p) > 1. By (6) we see that it suffices to show that BL(B,p) < 1;
note that this will imply that (idx;)1<j<m is a gaussian extremiser and
(exp(—7r||x||%{j))1§j§m is an extremiser.
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By Definition 1.1, it thus suffices to show that, for any non-negative
measurable functions f; : H; — R, we have

/ f[lm o B, sf[( / | fj)pj- (16)

By Fatou’s lemma it suffices to verify this inequality when the f; are
smooth, rapidly decreasing, and strictly positive. Now let u; : RTxH — R*
be the solution to the heat equation Cauchy problem

Oruj(t, ) = Agu;(t, )
u;(0,z) = f; o Bj(x)
where Ag := divV is the usual Laplacian on H. More explicitly, we have
1 2
. - - —llz=yll& /4t £ B.a)du .
We can split y into components in H; and in the orthogonal complement
H j‘, using Pythagoras’ theorem to split ||z — y||%[ correspondingly. The
contribution from the orthogonal complement can be evaluated explicitly
by (3), to obtain
_ 1 1Bzl /4t
u;(t, ) = Wt)(ﬁ—mwj)/z/Hj e ' fi(z)dz (17)
Alternatively, one can verify that u; also solves the above Cauchy problem.

In order to apply Lemma 2.6, we rewrite the heat equation as a transport

equation
8tUj + diV(’UjUj) =0
where ¥; := —Vlogu;; thus (11) is trivially satisfied. Next we set o := 0

and m
U= E P;jU;j
j=1

so that (12) is also trivially satisfied.

Next, we verify the technical condition that ¢ szl w;” is rapidly de-
creasing in space. From (17) and the hypothesis that f; is smooth and
rapidly decreasing, we see that for any ¢ in a compact interval in (0, 0c),
¥j(t,x) = —Vu;/u;(t, ) grows at most polynomially in space. On the other
hand, u; is bounded and rapidly decreasing in the directions || B;x||g;, — oo.

m Dpj

Since B is non-degenerate, HT:I u?j decays rapidly in all spatial directions.
The claim follows.

Now we verify (13). Observe that u;(t,z) depends only on Bjz and not
on z itself, which shows that ¥/; lies in the range H; of the projection B;-‘Bj.
In particular we have

Vieguj = —; = —B; B;; .
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Hence, we have
m

m
> pi(T =, Vieguj)w =Y pi(B;B;(¥ — ¥), )y -
7j=1 7j=1
Also, from (9) we have

m m m
ijB;Bj(’U— ’D}) =7 - ijB;Bji—fj =7 - ijﬁj =0
j=1 j=1 j=1

and hence
m

m
> piF =, Vieguj)u = Y pj(B}Bi(T - 7)), (7~ 7)) - (18)
. e
Since the orthogonal projection BB, is positive semi-definite, we obtain
(13). We may now invoke Lemma 2.6 and conclude that the quantity

m
:/ Hu;?](t,a:)dx
Hj

is non-decreasing for 0 < t < co. In particular we have

limsup Q(t) < liminfQ(t).
t—0+ t—o0
From Fatou’s lemma we have

/ H (fj o Bj)P" <limsupQ(t)

t—0t

(in fact we have equahty, but we will not need this), so it will suffice to

show that
lim inf Q(t) H(/ ) . (19)

(Again, we will have equality, but we do not need this.) Using (17) we can
write

_ 1 " 1Bl /4t "
Q(t) = S A /HH (/H e H; fj(Z)dz> dz .
j=1 N

By taking traces of the hypothesis (9) we obtain (7). Thus by making the
change of variables z = t'/?w we obtain

1/2,12 pj
Q) = (4m) dim H)/Q/ H(/ el /4fj(z)dz> dw .

Since the f; are rapidly decreasmg and (7%, ker(P;) = {0}, we may then
use dominated convergence to conclude

! 7 Bwlig, 4y oy \P
htrgglfQ( )= ﬂ-)dim(H)/Q /Hjl;[l (/HJ € fj(z)dz) dw
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(/ f]-)pj/ e_(z;nzlij;ij,w)Hde_
H; H

Using (9) and (3), the claim (19) follows. O

1 m
- (47r)dim(H) /2 H

Jj=1

REMARK 2.9. It is clear from the above argument that the method extends
to the case when m is countably or even uncountably infinite; in the latter
case the exponents p; will be replaced by some positive measure on the
index set that j ranges over. In this connection see [Ba3].

3 The Gaussian-Extremisable Case

We can now prove Theorem 1.9 and Theorem 1.15 in the gaussian-extre-
misable case.
We begin with a notion of equivalence between Brascamp—Lieb data.

DEerFINITION 3.1 (Equivalence). Two m-transformations B =
(H, (Hj)1<j<ms (Bj)i<j<m) and B' = (H', (H})1<j<m, (Bj)1<j<m) are said
to be equivalent if there exist invertible linear transformations C : H' — H
and Cj : H; — Hj such that B} = Cj_lBjC for all j; we refer to C and
C; as the intertwining transformations. Note in particular that this forces
dim(H) = dim(H') and dim(H;) = dim(H;). We say that two Brascamp-
Lieb data (B,p) and (B',p’) are equivalent if B, B’ are equivalent and
p=p.

REMARK 3.2. This is clearly an equivalence relation. Up to equivalence,
the only relevant features of a non-degenerate m-transformation are the
kernels ker(B;) and how they are situated inside H. More precisely, if one
fixes the dimensions n = dim(H) and n; = dim(H,), then the moduli space
of non-degenerate m-transformations with these dimensions, quotiented out
by equivalence, can be identified with the moduli space of m-tuples of sub-
spaces V; of R", with dim(V}) = n —n; and ﬂ;nzl V; = {0}, quotiented out
by the general linear group GL(R™) of R™. The problem of understanding
this moduli space is part of the more general question of understanding
quiver representations, which is a rich and complex subject (see [DW] for
a recent survey).

The Brascamp-Lieb constants of two equivalent Brascamp-Lieb data
are closely related:

LEMMA 3.3 (Equivalence of Brascamp-Lieb constants).  Suppose that
(B,p), (B',p’) are two equivalent Brascamp-Lieb data, with intertwining
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transformations C : H' — H and C; : H ; — Hj. Then we have

[15%: [ ety g, Gl

BL(B',p') = BL(B, 20
(B, p) [dotgon C| (B,p) (20)
and
[17%: [ dety: g, Cj|Pi
BL,(B'.p/) = = iy BL, (B, p). 21
g( ’p) |detH/_>H Cl g( ’p) ( )

Here of course dety_, g C denotes the determinant of the transformation
C : H' — H with respect to the Lebesgue measures on H', H, and similarly
for dety:_,y; Cj. In particular BL(B’,p’) (or BLg(B',p’)) is finite if and
only if BL(B, p) (or BLg(B, p)) is finite.

Furthermore, (B, p) is extremisable if and only if (B',p') is extremis-
able, and (B, p) is gaussian-extremisable if and only if (B, p') are gaussian-
extremisable.

Proof. To see (20) we simply apply the change of variables z = C 1y
on R", and replace an input (f;)i<j<m for (B,p) with the correspond-
ing input (fj o Cj)1<j<m for (B/,p’). To see the second identity we simi-
larly replace a gaussian input (A4;)1<j<m for (B, p) with the gaussian input
(C7AjCj)i<j<m for (B',p). The corresponding claims about extremisers
are proven similarly. O

REMARK 3.4. The transformation between A; and A;- can be described
using the commutative diagram

. . Bx*
H -2 H 2 HY s B
o e ls e
B Al (BL)"

H —— H; —— (H})* —— (H')*

where we have suppressed the identification between a Hilbert space H and
its dual H* to emphasize the self-adjointness of the above diagram, and the
horizontal rows do not denote exact sequences. The above lemma shows
that the inner product structure of H is not truly relevant for the analysis
of Brascamp-Lieb constants, however we retain this structure in order to
take advantage of convenient notions such as orthogonal complement or
induced Lebesgue measure.

We are now ready to give a satisfactory algebraic characterisation of
gaussian extremisable Brascamp-Lieb data.

DEFINITION 3.5 (Ordering of self-adjoint transformations). If A: H - H
and B : H — H are two self-adjoint linear transformations on a Euclidean
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space H, we write A > B if A — B is positive semi-definite, and A > B
if A — B is positive definite. (We recall that A > B and A # B do not
together imply that A > B.)

PROPOSITION 3.6 (Characterisation of gaussian-extremisers). Let (B, p)
be a Brascamp-Lieb datum with p; > 0 for all j, and let A = (A;)1<j<m
be a gaussian input for (B,p). Let M : H — H be the positive semi-
definite transformation M := Zgnzl pjBjA;Bj. Then the following seven
statements are equivalent:

(a) A is a global extremiser to (4) (in particular, BLg(B, p) = BLg(B, p; A)

is finite and (B, p) is gaussian-extremisable).
(b) A is a local extremiser to (4).
(¢c) M is invertible, and we have

A7t —B;M™'Bf =0 forall 1<j<m. (22)

(d) The scaling condition (7) holds, B is non-degenerate, and
A7' > B;M'B} forall 1<j<m. (23)

(e) The scaling condition (7) holds, B is non-degenerate, and
BIA;B; <M forall 1<j<m. (24)
(f) (B,p) is equivalent to a geometric Brascamp-Lieb datum (B’,p’)

1/2, and

with intertwining operators C' := M~/ and C; = A;
BL(B, p) = BL(B',p') BLg(B,p; A);
BLg(B,p) = BLg(Bla p') BLg(B,p;A).

(g) (B,p) is equivalent to a geometric Brascamp-Lieb datum (B’,p’)

with intertwining operators C := M~12 and C; = A]-_I/Q, and H;

equal to the range of Cj, and
BL(B, p) = BLg(B,p) = BLg(B,p; A).

REMARK 3.7. One may wish to view (22) as a commutative diagram

-1
HM , g

n e
ATl
H; —— H;
We shall shortly expand this diagram in the proof below as
M—1/2 id M—1/2

H — H — H — H
K |7 |m |7
—1/2 —1/2
g AN g i g A .
J 4 J ’ J J
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Proof. The implication (a)=(b) is trivial. Now we verify that (b)=(c).
From Lemma 4.1 we see that (., ker(B;) = {0}. Since the A; are positive
definite, this implies that M is also

Taking logarithms in (4), we see that A > 0 is a local maximiser for the
quantity

m m
( ij log det g, Aj> — log det g ijB;Aij .
Let us fix a j in {1,...,m}, and let Q; : H; — H; be an arbitrary self-
adjoint transformation. By perturbing A; by a small multiple of @;, we
conclude that
d% (pjlog dety, (A; + eQ;) — log dety (M + z—:ij;Qij)) ‘5:0: 0.

We can thus subtract off the term p; logdety; A; —logdety M, which does
not depend on ¢, from the above equation and obtain
& (pjlogdetp, (idu; +€A; ' Q;)—log ety (idy +ep; M~ B; Q;B;))|._,=0-
A simple Taylor expansion shows

dis log detH(idH +A)|5:0 = tI“H(A) , (25)
hence . )

Py tI‘H]. (A] QJ) — tI‘H(ij_ B;QJB]) =0.

We rearrange this using the cyclic properties of the trace as

tI‘H]. ((Aj_l - BjMle;-()Qj) =0.
Since @Q; was an arbitrary self-adjoint transformation, and Aj_1 -B;M _1B;-“
is also self-adjoint, we conclude (22).

Now we verify that (c)=>(d). The implication of (23) from (22) is trivial.
From the invertibility of M we conclude (72, ker(B;) = {0}, and from the
surjectivity of A;l and (22) we conclude that B; is surjective. Hence B is
non-degenerate. Finally we compute

m
tI‘H(ldH) = ij tI‘H(MilB_;{Aij)
Jj=1

m
pitra; (A;B;M'B;) =Y pjtry, (idy;)  (26)
j=1

HMS

which is (7).

Now we verify (d)=(c). From the non-degeneracy of B we see that M is
positive definite, hence invertible. From (23) we have trg; (AijM*IBJ‘-‘) <
try; (idg;). Using (7) and reversing the argument in (26) we conclude

tI‘Hj (AJBJMilB;) = tI‘Hj (ldHJ) ,
which together with (23) and the positive definiteness of A; yields (22).



GAFA BRASCAMP-LIEB INEQUALITIES 21

Now we verify that (d)< (e). If we introduce the operators Tj : H — H;
defined by T; := A;/QB]-M_U2 then (23) is equivalent to T;T7 < idu;,
while (24) is equivalent to T;T; < idy. Since T;T; and T;T; have the
same operator norm, the claim follows.

Now we verify that (c)=(f). Let B’ := (H,(H;)i<j<m, (Tj)1<j<m)
where T; was defined earlier, thus (B', p) is equivalent to (B, p) with in-
tertwining maps C = M~/2 and Cj = A]-_l/Q. From the hypothesis (22)
we have T; T} = idg;, and from definition of M we have

m m
S 13Ty = oM B A B = MMM =y,
7=1 7j=1
and hence (B',p) is geometric. The remaining claims in (f) then follow
from Lemma 3.3.
Finally, the implication (f)=(g) follows from Proposition 2.8, and the

implication (g)=-(a) is trivial. o
EXAMPLE 3.8. One can now deduce the sharp Young inequality (Exam-
ple 1.5) from Proposition 3.6 by setting A; := mId for j =1,2,3. In

block matrix notation, one has

3 P2 1
ZPz‘BfAiBi = ( (11—P1)(1—P3)Id l—psﬁ‘f )
i=1 T=ps 14 Tpa)(ipm) 14
and one easily verifies any of the conditions (c)—(e).

From Proposition 3.6 we see in particular that we have proven Theo-
rem 1.9 and Theorem 1.15 in the case when (B, p) is gaussian-extremisable.
However, not every Brascamp-Lieb datum is gaussian-extremisable, even
if we assume the Brascamp-Lieb constants to be finite, as the following
example shows.

ExAMPLE 3.9. Consider the rank-one case (Example 1.7) with H = R?,
m = 3, with any two of v1,v9,v3 being linearly independent; this is the
case for instance with the one-dimensional version of Young’s inequality
(Example 1.5). Then one can verify that the quantity (5) is finite if and only
if (p1, pe2, ps3) lies in the solid triangle with vertices (1, 1,0), (0,1,1), (1,0, 1),
but if (p1,p2,ps) lies on one of the open edges of this triangle then no
gaussian extremiser will exist. However, gaussian extremisers do exist on
the three vertices of the triangle and on the interior; this corresponds to the
well-known fact that extremisers to Young’s inequality || f *gl|, < |/fl|pllgllq
with1/r+1=1/p+1/gand 1 < p,q,r < oo exist when 1 < p,q,r < oo,
or if all of p,q,r are equal to 1 or oo, but do not exist in the remaining
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cases. Observe also that this data is simple if and only if (p1,p2, p3) lies in
the interior of this triangle.

Fortunately, it turns out that when a Brascamp-Lieb datum is not
gaussian-extremisable, then it can be factored into lower-dimensional Bras-
camp—Lieb data, with the corresponding constants also factoring accord-
ingly; this was first observed by [CLL] in the rank-one case. We will
in fact have two means of factoring, which roughly speaking correspond
to the notions of direct product G = H x K and semi-direct product
0 - N — G — G/N — 0 in group theory; they also correspond to the no-
tions of decomposability and reducibility respectively in quiver theory. We
begin with the analogue of semi-direct product for Brascamp—Lieb data in
the next section; the analogue of direct product will be studied in section 7.

4 Structural Theory of Brascamp—Lieb Data I: Simplicity

In this section we begin our analysis of the structure of general Brascamp—
Lieb data, and in particular consider the questions of whether such data
can be placed into a normal form or decomposed into indecomposable com-
ponents.

Readers familiar with quivers (see e.g. [DW] for an introduction) will
recognise an m-transformation as a special example of a quiver representa-
tion, and indeed much of the structural theory of m-transformations which
we develop here can be viewed as a crude version of the basic representation
theory for quivers. It is likely that the deeper theory of such representa-
tions is of relevance to this theory, but we do not pursue these connections
here.

We first make a trivial remark, that if one of the exponents p; in an
m~exponent p is zero, then we may omit this exponent, as well as the
corresponding components of an m-transformation B, without affecting
the Brascamp-Lieb constants BL(B,p) or BLg(B,p) (or the conditions
(7),(8)). Also, the omission of such exponents does not affect extremisabil-
ity or gaussian-extremisability (though it does affect any issues regarding
uniqueness of extremisers, albeit in a rather trivial way). We shall use this
remark from time to time to reduce to the cases where the exponents p;
are strictly positive.

Next, we establish the (a)=>(c) and (b)=(c) directions of Theorem 1.15:

LEMMA 4.1 (Necessary conditions for finiteness). Let (B, p) be Brascamp—
Lieb data such that BL(B,p) or BLg(B,p) is finite. Then we have the
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scaling condition (7) and the dimension inequalities (8). In particular this
implies that B is non-degenerate.

Proof. By (6) it suffices to verify the claim assuming that BLg(B, p) is
finite. Let A > 0 be arbitrary. By applying (5) with the gaussian input
(Midg; )1<j<m We see that
1em . . m 1/2
BLg(B,p) > A2l Pi dlm(Hj)—dlm(H)]/det (ZB;BJ)
j=1

Since X is arbitrary, we see that BLg(B, p) can only be finite if (7) holds.

Next, let V be any subspace in H, and let 0 < € < 1 be a small param-
eter. Let A(6) = (Aj)1<j<m be the gaussian input A; := cidp;y @id(p,y)r-
Then detp,(A;) decays like eim(BiV) as ¢ — 0. Also, we see that
Z;-”Zl Bj; A;Bj is bounded uniformly in &, and when restricted to V' de-
cays linearly in e. Thus detn (32, BjA;B;) decays at least as fast as
edm(V) as & — 0. By (4) we conclude that BLg(B, p; A®)) grows at least
as fast as g3127—1 i dim(B;V)—dim(V)]
is finite, we obtain (8) as desired.

Comparing (8) for V.= H with (7) we conclude that the B; must all
be surjective, and applying (8) with V' = [/, ker(B;) we conclude that
;21 ker(B;) must equal {0}. Thus B is necessarily non-degenerate. o

. Since we are assuming that BLg (B, p)

We remark that by testing (8) on V' := ker B; we conclude that in order
for BL(B, p) or BLg(B, p) to be finite it is necessary that each p; < 1.

To proceed further, we need some notation.
DEFINITION 4.2 (Restriction and quotient of m-transformations). Let
B = (H,(H;)i<j<m,(Bj)i<j<m) be an m-transformation, and let V be
a subspace of H. We define the restriction By of B to V' to be the m-
transformation

By = (V. (B;V)1<j<m, (Bj,v)1<j<m)
where Bjy : V — B;V is the restriction of Bj : H — Hj to V, and we also
define the quotient By y of B to be the m-transformation
Byy = (H/V,(H;j/(BjV)i<j<m, (Bju/v)i<j<m)

where By : H/V — Hj;/(B;V) is defined by setting B gv(z + V)
to be the coset Bjx + B;V. Equivalently, By and Bpy,y are the unique
m-transformations for which the diagram

0 —— V — H - H/V —— 0
lBj,V JBJ' lBj,H/V
0 —— BjV > Hj > j/(BjV) — 0

commutes.
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REMARK 4.3. Using the Hilbert structure, one can of course identify H/V
with V', the orthogonal complement of V', and we will use this identifica-
tion when convenient (particularly for computations). However we prefer
the notation H/V as it reinforces the idea that the inner-product structure
is not truly essential to the Brascamp-Lieb analysis. One can schemati-
cally represent the above commutative diagram by the short ezact sequence
0—By - B — Bpy —0.

While one can restrict or quotient arbitrary m-transformations using
arbitrary subspaces V of H, it turns out for the purposes of analysing
Brascamp-Lieb constants that the only worthwhile subspaces V' to restrict
to or quotient by are the critical subspaces. Recall that a subspace V C H
is a critical subspace for a Brascamp-Lieb datum (B, p) if

m
dim(V) =" p;dim(B;V), (27)
j=1
and V' is non-zero and proper. The trivial subspace {0} satisfies (27), and
the scaling condition (7) is simply the requirement that H itself satisfy
(27). We remind the reader that we call a Brascamp-Lieb datum simple
if there are no critical subspaces. Also observe that equivalent Brascamp—
Lieb data have critical subspaces in 1-1 correspondence; indeed if V is
a critical subspace for (B, p) and (B’,p) is an equivalent Brascamp-Lieb
datum with intertwining maps C and C}, then C~'V is a critical subspace
for (B', p).

EXAMPLE 4.4.  For Holder’s inequality (Example 1.3), every non-zero
proper subspace of R" is critical. For the Loomis—Whitney inequality (Ex-
ample 1.4), any co-ordinate plane (spanned by some subset of {e1,...,e,})
is critical. For Young’s inequality (Example 1.5) with d = 1, there are no
critical subspaces when p1, pa, p3 lie strictly between 0 and 1, but if one of
p1,P2,ps equals 1 then one of the lines {(z,0) : z € R}, {(0,y) : y € R} or
{(z, —z) : z € R} will be critical.

REMARK 4.5. Critical subspaces play a role in Brascamp-Lieb data anal-
ogous to the role normal subgroups play in group theory, as will hopefully
become clearer from the other results in this section.

A crucial observation for our analysis is that the necessary conditions
(7),(8) factor through critical subspaces:

LEMMA 4.6 (Necessary conditions split). Let (B, p) be a Brascamp-Lieb
datum, and let V. be a critical subspace. Then (B, p) obeys the conditions
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(7), (8) if and only if both (By,,p) and (By/y,,p) obey the conditions (7),
(8) for all subspaces V' of V., H/V,. respectively.

Proof. The basic idea is to view B as the semi-direct product of By, and
Bp)v,, as the schematic diagram 0 — By, - B — Bpy, — 0 already
suggests. A similar idea will also underlie the proof of Lemma 4.8 below.

First suppose that (B,p) obeys (7),(8). Then it is clear that (By,, p)
obeys (8), simply by restricting the spaces V' C R" to be a subspace of V.
Also, the scaling condition (7) for (By,, p) is precisely (27). To verify that
(By,,p) obeys (8), we let V be a subspace of H/V.. Applying (8) to the
subspace V + V, followed by (27), we observe

dim(V) = dim(V + V) — dim(V,)

< ij dim(B;(V + V.)) — dim(V,)

m
:ijdlmBV+BV Zp]dlmBV

Q

== ij dlIIl(BJ,H/VC V) 3
j=1
as desired. A similar computation with V' = H/V, shows that (Bg/y,,p)
also obeys (7). This proves the only if direction of the lemma.

Now suppose conversely that (By,,p) and (Bx/y,,p) both obey (7),(8).
Then by adding together the two instances of (7) we see that (B, p) also
obeys (7). Also, forany V C H, we write U := VNV, and W := (V+V,)/V,
and compute using both instances of (8),

dim(V) = dim(V N V;) + dim(V + V;) — dim(V,)
= dim(U) + dim(W)

m
<Y p;jdim(B;yU) + p; dim(Bj, v W)
j=1
m
=" p; dim(B;U) + p; (dim(B; W + B,V,) - dim(B,V,))
7j=1
= ij [dim(BjU) + dim(BjV + Bch) - dim(Bch)] ,
7j=1
since W + V., =V + V.. Observe that
dim(B;U) = dim (B;(V NV,)) < dim(B;V N B;V,).
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Since dim(B;V N B;V;) + dim(B;V + B;V,) — dim(B;V,) = dim(B;V), we

see that (B, p) obeys (8) as desired. o
Another key fact is the submultiplicativity of Brascamp—Lieb constants

through critical subspaces; this was already observed in [CLL] (in the rank-

one case) and Finner (in the case of orthogonal projections to co-ordinate

spaces).

LEMMA 4.7 (Submultiplicativity of Brascamp-Lieb constants). If (B, p)

is a Brascamp—Lieb datum and V is a critical subspace with respect to this

datum, then

Proof. We may assume that BL(By, p) and BL(B /v, p) are finite. Let f =

(fj)1<j<m be an arbitrary input for (B, p). We may normalise [, f; = 1.

- = J
We have to show that

/HH(ijBj)pj < BL(By,p) BL(By,v,p).
j=1

By the Fubini-Tonelli theorem, the left-hand side can be rewritten as

/VL (/ij[l(fjij)pj(v—{—w)dv)dw.

But we can write fj o Bj(v +w) = fjw o Bjv(v), where fj,: BjV — RT
is the function

fj,w(vj) = fj(vj + ij) for all v; € B;V.
Applying (1) we conclude that

m T p;
[ o B+ <sL@ew ([ 5w)
Vit j=1 \/B;V
and we are reduced to showing that
m

Pi

/ H (/ fj,w) dw < BL(Bp,v,p)- (29)
Vit \JBv

We then identify V1 with H/V and observe that [ BV fiw

fi,ayv o Bjav(w), where f; gy : Hj/(B;V) — RT is the function

fj,H/V(wj) :/ fj-

w;+B;V
Applying (1) again, we can bound the left-hand side of (29) by

m

P
BL(By,v,p) H (/H'/(B'V) fj,H/V) )

j=1
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and the claim follows from the Fubini—Tonelli theorem and the normali-
sation [ H, fi = 1. Note the same argument also shows that if (B,p) is
extremisable, then (By,p) and (By/v, p) are also extremisable, because if
equality is attained in (1) then all the inequalities above must in fact be
equalities. O

This result will be used to prove the finiteness theorem ((c)=(a) in The-
orem 1.15) in the next section. In fact, the Brascamp-Lieb constants and
their gaussian versions are not just submultiplicative, but multiplicative:

LEMMA 4.8 (Brascamp-Lieb constants split). If (B,p) is a Brascamp—
Lieb datum and V is a critical subspace with respect to this datum, then
BL(Ba p) = BL(Bv, p) BL(BH/V7 p)

and

BLg(Ba p) = BLg(BVa p) BLg(BH/Va p) .
Moreover, if (B,p) is extremisable, then (By,p) and (Bg/y,p) are also
extremisable. Similarly, if (B, p) is gaussian-extremisable, then (By,p)
and (Byy,p) are also gaussian-extremisable.

Proof. If (B, p) fails to obey (7) or (8), then Lemma 4.1 and Lemma 4.6
show that all expressions in this lemma are infinite and so the conclu-
sion trivially holds. Thus we may assume that (B,p) obeys (7),(8). By
Lemma 4.6 we see that (By,p) and (Bg,y,p) also obey (7),(8). In par-
ticular all of these data are non-degenerate.
Having proved (28) above, let us first establish the reverse inequality

BL(B,p) > BL(By,p) BL(Bg/y,p) - (30)
Let 0 < Cy < BL(By,p) and 0 < Cyyy < BL(Bp,y,p) be arbitrary
constants. Then by definition of Brascamp—Lieb constant and homogeneity,
we can find inputs fyy = (fj,V)lgjgm and fH/V = (fj,H/V)lSjSm for (Bv, p)
and (Bp,y, p) respectively, such that

BL(By,p;fv) > Cv; BLBgv,p; fav) > Cuyv -

We may normalise

/ fj,V = / f],H/V =1 fOI‘ all j .
B;V H;/(B;V)

Let A > 1 be a large parameter. We define the input f*) = (f;)1<j<m for
(B, p) by the formula

filv+w):= fj,v(vj)fj,H/V()\wj) whenever v; € B;V;w; € (BjV)J‘,
where we identify H;/(B;V) with (B;V)® in the usual manner. Then by
the Fubini-Tonelli theorem and the normalisation of fy, fy,,, we observe
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that .
/}'I f] — Adlm(BjV)f'nj' (31)
J

Now we investigate the expression H;”:l fj o Bj(v + w) where v € V and
w € V*, where we identify V1 with H/V in the usual manner. Observe
for any v € V, w € V- that

m m
11 /e Bi(w+ 2" w) =[] fiv (Bjvv + A", v (Bjw)) f5,/v (B vw)
7j=1 7j=1

and thus by the Fubini—Tonelli theorem and rescaling

\dim(V)—dim() / fjoB,
o

— /VL /VH fiv (Bjyv + A‘lejv(ij))de Fimpv (B yw)dw .
j=1

7j=1
From this, (31),(1) and (27) we conclude
BL(B, p)

m m

> /VJ— (/VHfj,v(Bj’vv+)\_17rBjV(ij))dv> Hfj,H/V(Bj,H/V'w)dw.
j=1 j=1

Since By and B,y are non-degenerate, we have

m m
(ker(Bj mv) = ] ker(B;,v) = {0}
j=1 j=1

Thus in the above integrals, v and w range over a compact set uniformly
in A > 1. We may thus take limits as A — oo (using the smoothness of the

fj,v) to conclude

BL(B,p) > /w (/v Hfj,v(Bj,VU)dU) 1_[fj,vL (Bj,zjvw)dw .
j=1

- j=1
By construction of the inputs fy, f/; we thus have
BL(B,p) > CvCyv
and upon taking suprema in Cy,C/y we obtain (30) as desired.

We observe that the corresponding inequality for the gaussian Bras-
camp-Lieb constants follows by an identical argument, with the fj v, f; m/v
(and hence f;) now being centred gaussians instead of test functions. Note
that one can still justify the limit as A — oo using dominated convergence.
Thus one has

BLg(Ba p) > BLg(BVa p) BLg(BH/Va p) . (32)
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Turning now to the analogue of (28) for the gaussian case, we first
observe that the argument given above does not quite work in the gaussian
case because if f; is a centred gaussian then f;, is merely an uncentred
gaussian except when w = 0. For this reason it is pertinent to introduce
the uncentred gaussian Brascamp-Lieb constant BL, (B, p) defined as the
best constant in (1) when the input is restricted to consist of uncentred
gaussians. The argument now shows that the analogue of (28) holds for
BLy(B, p). The proof of the inequality corresponding to (30) for BL, (B, p)
follows by the identical argument, with the f; v, f; g/y (and hence f;) now
being uncentred gaussians instead of test functions. Note that one can
still justify the limit as A — oo using dominated convergence. Thus the
constants BL, (B, p) are multiplicative; that is

BLy(B, p) = BLu(By, p) BLu(Bg/v,P) - (33)

It therefore suffices to show that the centred and uncentred gaussian
constants coincide, that is BLg(B,p) = BLy(B,p). Clearly BLg(B,p) <
BLu(B, p) so it is enough to show BLg(B,p) > BLy(B,p). While this
is an obvious consequence of Lieb’s theorem, an elementary argument is
available.

Consider an m-tuple of gaussians f;(z) := exp(—m(4;(z —¢&;), (x—&;)))
centred at {; € R" . Since B; is surjective we may take £; = Bjw;, for some
w; € R". Let w = M1 Zm_lp]B*A iBjw;, where M = E;" 1PiBjA;Bj,
so that Z] 1piB;A;Bj(wj —w) = 0. Now by a simple change of Varlables

/ny )\ dz = /exp{ —ﬂij<Aij(x—wj),Bj($ —wj)>}dx

=1

- /exp{ - Wipj<A]'Bj($ = (wj =), Bj(w = (w; _w)»}dx

=1

= exp { - Fipj<Aij(wj - E),Bj(wj - E)>}
j=1
. /exp { o zm:pj<AjB,-x, Bja:)}d:c

Jj=1

m
< /exp{ - prj(Aija:,ij)}da:.
j=1
Hence []]f;(Bj(z))? dz is maximised when all of the ¢;’s are zero, and
thus BL, (B, p) < BLg(B, p).
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The assertion concerning extremisability of (B, p) is made at the end
of the proof of Lemma 4.7 above. Similarly, if (B, p) is gaussian-extre-
misable, with A a gaussian input extremising (4), then with f;(z) =
(det A;)'/? exp(—7(A;z, x)) we can follow the proof of (28), to see that for
all w the uncentred gaussians (f;)1<j<m attain BLy(By, p) =BLg(By, p),
and the centred gaussians (f; i/v)1<j<m attain BLg(Bg/y,p). In particu-
lar, taking w = 0, both (By, p) and (By,y, p) are gaussian-extremisable. O

REMARK 4.9. We note that the above proof of BLg(B,p) > BLy4(B, p)
shows that if members of a collection of uncentred gaussians are extrem-
isers, then they are obtained from the corresponding centred gaussians by
translation by B;w for a fixed w € H, and that any such translations also
furnish extremisers. This will complement Theorem 9.3.

REMARK 4.10. Recall that a Brascamp-Lieb datum is simple if it has no
critical subspaces. Lemma 4.6 and Lemma, 4.8 allow us to reduce the prob-
lem of finiteness of Brascamp-Lieb constants (or of proving Lieb’s theorem)
to the case of simple Brascamp-Lieb data. As we shall see later, simple data
obeying the necessary conditions (7),(8) are always gaussian-extremisable
and hence equivalent to geometric Brascamp-Lieb data, and thus Lieb’s
theorem reduces entirely to checking the geometric Brascamp-Lieb case,
which was already done in Proposition 2.8.

REMARK 4.11. The question of whether gaussian extremisers exist in gen-
eral is a little bit more complicated; the correct characterisation is not
simplicity but semi-simplicity (the direct sum of simple data). We shall
study this issue in depth in section 7.

5 Sufficient Conditions for Finiteness, and Lieb’s Theorem

We are now ready to prove Theorem 1.15 and the general case of Theo-
rem 1.9. We begin with a lemma.

LEMMA 5.1. Let (B,p) be a Brascamp-Lieb datum such that

m
dim(H/V) > ) p;dim (H;/(B;V)) (34)

j=1
for all subspaces V' of H. (In particular, (34) is equivalent to (8) if (7)
holds.) Then there exists a positive real number ¢ > 0, such that for every
orthonormal basis ey, . .. ,e, of H there exists a set I; C {1,...,n} for each
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1 < j <m with |I;| = dim(H}) such that
m
> opilLn{L.. kY| <k foral 0<k<m (35)
=1
and

| A\ e

’iEIj

HZC forall 1<j<m. (36)
Here \;c;; Bje; denotes the wedge product of the vectors Bje;, and the
|| |z norm is the usual norm on forms induced from the Hilbert space
structure. In particular, if (7) holds, we have

m
ij‘Ijﬁ{k+1,...,n}|2n—k forall 0 <k<mn. (37)
j=1

If furthermore there are no critical subspaces, then we can enforce strict
inequality in (37) for all 0 < k < n.

Proof. If (7) holds then n = 377", p; dim(H), and (37) follows from (35)
and the fact that |I;| = dim(H;). Thus we shall focus on proving the
claim (35). The case kK = 0 of (35) is trivial, and the k = n case follows
from (34), so we restrict attention to 0 < k < n. From the hypotheses we
know that the B; are surjective.

The space of all orthonormal bases is compact, and the number of pos-
sible I; is finite. Thus by continuity and compactness we may replace the
conclusion (36) by the weaker statement

/\Bjei#() foralll1 <j<m.

i€l
In other words, we require the vectors (Bje;)icr; to be linearly independent
in Hj for each j.

We shall select the I; by a backwards greedy algorithm. Namely, we
set I; equal to those indices ¢ for which Bje; is not in the linear span of
{Bjey :i <’ < n} (thus for instance n will lie in I; as long as Bje, # 0).
Since the Bj are surjective, we see that |I;| = dim(H;). To prove (35), we
apply the hypothesis (34) with V' equal to the span of {eg41,...,en}, to
obtain

> pjdim(H;/B;V) < k.
j
But by construction of I; we see that dim(B;V) = |[I;N{k+1,...,n}| and
hence dim(H;/B;V) = |I; N {1,...,k}|. The claim (35) follows.

If (7) holds and there are no critical spaces, then one always has strict

inequality in (8) or (34), hence in (35) or (37) when 0 < k < n. m
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We can now prove the sufficiency of (7) and (8) in Theorem 1.15 for the
finiteness of the gaussian Brascamp-Lieb constant.

PROPOSITION 5.2. Let (B,p) be a Brascamp—-Lieb datum such that (7)
and (8) hold. Then BLg(B,p) is finite. Furthermore, if (B,p) is simple
(i.e. there is no critical subspace), then (B, p) is gaussian-extremisable.

We remark that this proposition was established in the rank-one case

by [CLL].
Proof. We may discard those j for which p; = 0 or for which H; = {0}, as
these factors clearly give no contribution to the Brascamp—Lieb constants
(or to (7) or (8)), nor do they affect whether (B, p) is simple or not. In
particular B will still be non-degenerate after doing this.

Fix a gaussian input A = (4;)1<j<m, and let M := Zj p;jB;A;B;. This
transformation is self-adjoint; since B is non-degenerate and p; > 0, we also
see that it is positive definite. Thus by choosing an appropriate orthonormal
basis {e1,...,e,} C H we may assume that M = diag(\,...,\,) for some
A1 > .. > A > 0.

Applying Lemma 5.1, we can find I; C {1,...,n} for each 1 < j < m of
cardinality |I;| = dim(H;) obeying (37) and (36). For each i € I;, we have

(Aije,-, Bjei)H]. = <€ia B;AJBJGZ>H S pij<ei’ Mez)H = ;}—; -
On the other hand, from (36) we see that (Bje;)cr; is a basis of H; with a
lower bound on the degeneracy. We thus conclude that
det(4;) < C I M
i€l
for some constant C' > 0 depending on the Brascamp—Lieb datum. Thus
m

n m . . N
[T (et 457 < A==
j=1 i=1
We can telescope the right-hand side (using (7)) and obtain
m

[T(det 457 < A7 JT (g /)2 a0t L

j=1 0<k<n—1
where we adopt the convention \g = A\1. Applying (37) we conclude
m
[[(det 4P <Xt T ega /)™ "
j=1 0<k<n—1
which by reversing the telescoping becomes
m
[ (det 4;)P < Cxi ... X\ = Cdet(M).
j=1

Comparing this with (4) we conclude that BLg (B, p) is finite.
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Now suppose that (B,p) is simple. Then we have strict inequality

in (37). We may thus refine the above analysis and conclude that
m

[[(@et 45 < Cdet(dr)  T[ Osa/M)°

j=1 1<k<n—1
for some ¢ > 0 depending on the Brascamp-Lieb data. This shows that the
expression in (4) goes to zero whenever A, /A; goes to zero. Thus to evaluate
the supremum it suffices to do so in the region A\; < CA,. Also using the
scaling hypothesis (7) we may normalise A\, = 1. This means that M is
now bounded above and below, which by surjectivity of B; implies that A;
is also bounded. We may now also assume that A; is bounded from below
since otherwise the expression (4) in the supremum in (5) will be small.
We have thus localised each A; to a compact set, and hence by continuity
we see that an extremiser exists. Thus (B, p) is gaussian-extremisable as
desired. O

We can now prove Theorem 1.9 and Theorem 1.15 simultaneously and

quickly.
Proof of Theorem 1.9 and Theorem 1.15. As in [CLL], we induct on the
dimension dim(H). When dim(H) = 0 the claim is trivial. Now suppose
inductively that dim(H) > 0 and the claim has already been proven for
smaller values of dim(H). In light of Lemma 4.1 we may assume that (7)
and (8) hold. From Proposition 5.2 we know that BLg (B, p) is finite; our
task is to show that BL(B, p) is equal to BLg(B, p).

We divide into two cases. First suppose that (B, p) is simple. Then by
Proposition 5.2 the datum (B, p) is gaussian-extremisable, and the claim
then follows from Proposition 3.6. Now consider the case when (B,p) is
not simple, i.e. there is a proper critical subspace V. Then we can split the
Brascamp-Lieb datum (B, p) into (By,p) and (Bg/y,p). By Lemma 4.6
and the induction hypothesis we see that

BL(By,p) = BLg(By,p) < o
and
BL(Bpv,p) = BLg(By,v,p) < 00.
Applying Lemma 4.8 we conclude
BL(B,p) = BLg(B,p) < o0
thus closing the induction. O

Let us now fix the m-transformation B, and let the m-exponent p =
(p1,--.,pm) vary. Let us define the following subsets of R™:
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m
S(B) := {p € R™:p; > 0forall j; ij dim(H;) = dim(H)} ,
7j=1

m
II(B) := {p eR™: ij dim(B;V) > dim(V) for all {0} CV C H},
j=1

II°(B) := {p €R™: ) p;dim(B;V) > dim(V) for all {0} CV C H} :
j=1

Observe that even though there are an infinite number of vector spaces V,
there are only a finite number of possible values for the dimensions
dim(V),dim(B;V’). Thus II(B) is a closed convex cone with only finitely
many faces, and II°(B) is the m-dimensional interior of that cone.

Theorem 1.15 thus asserts that the Brascamp-Lieb constant BL(B, p) =
BLg (B, p) is finite if and only if p lies in S(B) NII(B), and furthermore if
p lies in S(B) NII(B)° then (B, p) is also gaussian-extremisable. This of
course implies that equality in (1) can also be attained.

REMARK 5.3. It is perfectly possible for S(B) NII(B) or S(B) NII°(B) to
be empty. For instance for the Loomis-Whitney inequality (Example 1.4),
S(B) NII(B) consists of a single point (-15,..., =), and S(B) NII(B)°
is empty. If B is degenerate, then S(B) NII(B) is empty.

An alternative proof that the hypotheses (7) and (8) characterise the
Brascamp-Lieb constant BL(B,p) is given in the companion paper
[BenCCT]. That proof does not involve gaussians, extremisers, or mono-
tonicity formulae, but instead uses multilinear interpolation, Holder’s in-
equality, and an induction argument on dimension based on factorisation
through critical subspaces. Such an induction and factorisation argument
had previously appeared in [CLL] (for the rank-one case) and [F] (for the
case of orthogonal projections to co-ordinate spaces).

We now connect the above results to the work of Barthe [Ba2], who
considered the rank-one case (Example 1.7). This connection was also
noted in [CLL], though our treatment here differs slightly from that in
[CLL]. We are assuming B to be non-degenerate, thus the v; are non-zero
and span H. The condition (7) in this case simplifies to Z;nzl pj = n, while
(8) in this case simplifies to

dm(V)< Y p;.
1<j<miv;¢V+

Subtracting this from the scaling identity Z;”Zl pj = n, we see that (8) has
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now become
> pi<dim(V%).
lgjgm:vjEVJ-
Since we can set V' to be any subspace, and in particular to be the span
of any set of vectors v;, we thus easily see that the constraints (8) are then
(assuming (7)) equivalent to the assertion

D pj<d; forallIC{l,...,n}, (38)
jel
where dj is the integer d; := dimspan((v;);er). In particular we have

0 < p; <1 for all j (which, as we have noted above, is in general a
necessary condition). Thus in the rank-one case, we have characterised the
polytope where the Brascamp-Lieb constant is finite as S(B) N II(B)

= {(pl,...,pm) eRT: Z pj = mn; ij <djforall I C {1,...,m}}
1<j<m jeI

Let us now characterise the extreme points of this polytope.

LEMMA 5.4 [CLL]. Suppose H;j = R for all j. Let (p1,...,pm) be an

extreme point of S NII. Then all of the p; are equal to 0 or 1.

Proof. We induct on n + m. When n + m = 0 the claim is trivial, so
suppose that n + m > 0 and the claim has been proven for all smaller
values of n + m. If one of the p; is already equal to zero, say p, = 0,
then we can remove that index m (and the associated vector v,) from
B to form an (m — 1)-transformation B, and observe that (pi,...,Pm_1)
is an extreme point of S(B) NTI(B). Thus the claim follows from the
induction hypothesis. Now suppose that one of the p; is equal to one, say
pm = 1. Let H' := H/Ruy, be the quotient of H by v, and let v},..., v}, _;
be the image of v1,...,v,, under this quotient map. We let B’ be the
associated (m — 1)-transformation. If we then let d7 := dimspan((v})jer)
for all I C {1,...,m — 1}, then we have

S(B') NII(B') = {(ql, cgmo1) €ERTTEST gi=n-1;
1<j<m-1

qu <djforall I C {1,...,m}}.
jelI

dopi= > pi—1<digmy —1=4di.

jel jeru{m}

Thus (p1,---,pm—1) € S(B') NII(B’). Conversely, if (g1,...,qn-1) €
S(B’) N II(B’) then reversing the above argument shows that
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(q15---,9m-1,1) € S(B) NII(B). Since (p1,...,Pm—1,1) was an extreme
point of S(B) NII(B), this implies that (pi,...,pm—1) iS an extreme point
of S(B’) NTI(B’). Thus we can again apply the induction hypothesis to
close the argument.

Finally, suppose that none of the p; are equal to 0 or 1. Call a proper
subset 0 C I C {1,...,m} of {1,...,m} critical if > ,.;p; = dr. Since
dr has to be an integer, we see that no singleton sets are critical. On the
other hand, the entire set {1,...,m} is critical. Thus if we let Ini, be a
non-empty critical set of minimal size, then I ,;, has at least two elements.
Now suppose that I is another critical set which intersects Iy;,. Then

dr,, +dr = Z pj—l-ij

J€Imin Jjel
= D bt Y b
jeIminmI jEImanI

< digunr +drur
< dim [ span((v)) jer,,;,) N span((v))jer)]

+ dim [span((vj)jefmin) + span((vj)je[)}
=d.. td1,
and hence all the above inequalities must in fact be equality. In particular
this implies that the non-empty set I i, N1 is critical, which by minimality
of I'min forces Imin C I. Thus all the critical sets either contain Ip,;, or are
disjoint from it. Now recall that I, has at least two elements, and that
p; lies strictly between 0 and 1 for all j in Iimin. Thus one can reduce one
of the p;, j € Inin, by an epsilon and increase another pj, j € Inin, by
the same epsilon, and stay in S(B) NII(B), or conversely. This shows that
(p1,---,Pm) is not an extreme point of S(B) NII(B), a contradiction. O

Note that if (p1,...,pm) € S(B) NII(B) consists entirely of 0’s and 1’s,
then the set {v; : p; = 1} is a basis for H (because it has cardinality n
by (7), and any subset of this set of cardinality k& must span a space of
dimension at least k£ by (38)). Conversely, if I C {1,...,m} is such that
{v; : j € I'} is a basis for H, then the m-tuple (1jc7)1<j<m is easily verified
to lie in S(B) NII(B). If one takes the convex hull of all these points, then
any one of these points (1jer)1<j<m Wwill be vertices of these convex hull,
as can be seen by maximising the linear functional > jerpj on this convex
hull. Combining all these facts, we have reproved the following theorem of
Barthe.

Theorem 5.5 [Ba2, §2]. Let v1,...,v, be non-zero vectors which span
a Euclidean space R", and let B; : R" — R be the maps Bj;x := (x,v;).
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Let P C R'! be the set of all exponents p for which the Brascamp-Lieb
constant BL(B, p) is finite. Then P is a convex polytope, whose vertices
are precisely those points (1;cr)1<j<m) Where (vj) ey is a basis for R™. If p
lies in the (m — 1)-dimensional interior of this polytope, (B, p) is gaussian-
extremisable.

REMARK 5.6. Barthe’s proof of this theorem relies upon an analysis of
the constant (5). The sup in (5) is now over (0,00)™ and the Cauchy—
Binet theorem gives an explicit formula for the denominator in (4). This
facilitates a direct analysis of (5) in the rank-one case.

6 Extremisers

In this section we analyse extremisers to the Brascamp—Lieb inequality, and
connect these extremisers to the heat flow approach used previously.

We now recall an important observation of K. Ball (which can be found
for instance in [Bal]) which can be used to motivate the monotonicity
formula approach. If f = (f;)1<j<m and ' = (f])i<j<m are inputs for a
Brascamp-Lieb datum (B, p), we define their convolution f*f’ to be the m-
tuple £+f' := (f;*f})1<j<m, where of course f; * g;(x fH filz—y)g;(y)dy.
Observe from the Fubini-Tonelli theorem that f * f’ will also be an input
for (B, p).

LEMMA 6.1 (Convolution inequality [Bal]). Let (B,p) be a Brascamp—
Lieb datum with BL(B, p) finite, and let f, f' be inputs for (B, p). Then
BL(B, p; f) BL(B, p; f')

BL(B, p) '

BL(B,p;f *f') >

Proof. Write f = (fj)1<j<m and f' = (f})1<j<m After normalisation we can
then assume fH fi= fH fj = 1. Thus

/H fj o B;)?I = BL(B, p;f) /Hf]oB )Pi = BL(B, p; ).

Convolvmg these together we obtain

1L H o By « [[(fL 0 By = BL(B, p; ) BL(B, p; ')
j=1
The left- hand side can be rewritten using the Fubini-Tonelli theorem as

/H (/H ﬁ(g? o Bj)pj)dx
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where for each = € H, gf : H; — R" is the function gf(y) :=
fi(Bjz —y)fi(y). Applying (1) to the inner integral we conclude that

m pj
BL(B, p;) BL(B, p: ') < BL(B,p) [ H( / g;-) dr
H H;
J:l J

But clearly ij 9% = fj * f}(Bjz), hence
m
BL(B,p)? <BLB.p) [ T] (5= £) 0 B)".
7j=1
On the other hand, from (1) we have
m m P
/ H ((fj*fj'-)ij)pj = BL(B, p; f+f’) H (/ f]*fj'> = BL(B, p; f+f’)
H - H
j=1 j=1

since by the normalisation we have [ f; * f} = ([ f3)([y f}) = 1. Com-
bining these inequalities we obtain the claim. O

REMARK 6.2. Lemma 4.8 can be viewed as a degenerate version of this
inequality, in which f’ is Lebesgue measure on the subspace V.

By applying this lemma we can conclude the following closure properties
of extremisers.

LEMMA 6.3 (Closure properties of extremisers). Let (B, p) be a Brascamp—
Lieb datum with BL(B, p) finite.

e (Scale invariance) If f = (f;)i1<j<m is an extremising input, then so
is (fj(A-))1<j<m for any non-zero real number A.

o (Homogeneity) If f = (fj)1<j<m Is an extremising input, then so is
(¢jfj)i<j<m for any non-zero real numbers cy, ..., Cp.

e (Translation invariance) If f = (f;)i<j<m is an extremising input,
then so is (f;(- — B;xo))1<j<m for any xo € H.

e (Closure in L) If f(®) = (fj(n))lgjgm is a sequence of extremising
inputs, which converges in the product L' sense to another input
f = (fi)i<j<m, so limp o0 ||f](n) — filler;) = 0 for all 1 < j < m,
then f is also an extremising input.

e (Closure under convolution) If f and f' are extremisers, then so is
fxf.

e (Closure under multiplication) If f and ' are extremisers, then the in-
put (f;(-— Bjzo) f;(-))1<j<m is an extremiser for almost every zo € H
for which [y fj(x — Bjxo) fj(x)dz > 0 for all j. If furthermore f and
f/ are bounded, then the “almost” in “almost every” can be removed.
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Proof. From Lemma 4.1 we see that (7) holds, which guarantees the scale
invariance property. The closure in L' follows from standard arguments
since one can use (1) and the hypothesis that BL(B, p) is finite to show that
Iy H;"Zl(f](n) oB;)Pi converges to [ [172,(fjoB;)P. The homogeneity and
translation invariance can be verified by direct computation. The closure
under convolution follows from Lemma 6.1. Now consider the closure under
multiplication. Let us write f](ac) := fj(—=), and let us repeat the proof
of Lemma 6.1 with f = (f;)1<j<m replaced by f= (fj)1§j§m- Note from
scale invariance that f is still an extremiser. We then argue as before to
obtain

BL(B, p)? :/H (/H ﬁ(ggij)pj)dx < BL(B,p)/Hﬁ (/H g;.”)pjdx
j=1 =1 !

= BL(B, p) BL(B, p; f '),
where g% (y) == fj(y — Bjz)f;(y). Since BL(B, p;f * ') < BL(B, p), the
above inequality must in fact be equality, and thus

/ [1(s% o Bj)Pidz = BL(B,p) [ | (/ g;”)
H 1 j=1 \/H;

for almost every x. Also from the Fubini—Tonelli theorem we know that
f H, g;-” is finite for almost every x. This proves the first part of the closure
under multiplication. Also, since f; and fJ'- are integrable and bounded,
the convolution g7 lies in L'(Hj) continuously in z. Since we are assuming
BL(B, p) to be finite, this means that the left-hand side of the above ex-
pression also depends continuously on x. Thus in fact we have equality for
every x, not just almost every z, and the second part of the closure under
multiplication follows. O

If we specialise the above lemma to the case of centred gaussian ex-
tremisers and use Theorem 1.9, observing that the convolution or product
of two gaussians is again a gaussian, we conclude
COROLLARY 6.4 (Closure properties of gaussian extremisers). Let (B, p)
be a Brascamp—Lieb datum with BLg(B, p) finite.

e (Scale invariance) If A is a gaussian extremiser, then so is AA for any
A>0.

e (Topological closure) If A(™ is a sequence of extremising gaussian
inputs which converge to a gaussian input A, then A is also an ex-
tremiser.

e (Closure under harmonic addition) If A = (4;)i<j<m and A’ =
(A%)1<j<m are extremisers, then so is ((Aj_1 + (A ™) Dicji<m.
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e (Closure under addition) If A and A’ are gaussian extremisers, then
sois A+ A

Note that these properties can also be deduced from Proposition 3.6 (or
Proposition 9.1 below), although the closure under harmonic addition is
not particularly obvious from these propositions. By applying all of these
closure properties we can now conclude

PROPOSITION 6.5. Let (B,p) be an extremisable Brascamp—Lieb datum
(B,p). Then BL(B, p) = BLg(B, p) and (B, p) is gaussian-extremisable.

Carlen, Lieb and Loss have proved this in the rank-one case; see Theo-
rem 5.4 of [CLL].

Proof. Intuitively, the idea (which was first discussed in Barthe [Ba2]) is
to start with an extremising input f and repeatedly convolve it using the
closure under convolution property of extremisers, rescale these convolu-
tions using the scale invariance, and then take limits using the central limit
theorem and the closure under L' to obtain a gaussian extremiser. How-
ever there is a technical difficulty because the central limit theorem requires
some moment conditions on the input f which are not obviously available,
and so we will instead proceed in stages, starting with an arbitrary ex-
tremiser f and successively replacing f with increasingly more regular and
well-behaved extremisers, until we end up with a centred gaussian extrem-
iser.

Let f = (fj)i<j<m be an extremising input for a Brascamp-Lieb da-
tum (B,p). To begin with, all we know about the f; are that they are
non-negative, integrable, and that [ H, f;j > 0. However we can use the fol-
lowing trick to create a more regular extremiser. Observe that the reflection
f(z) = ( fi(=x))1<j<m is also an extremiser (by scale invariance). Using
closure under convolution we conclude that f * f is also an extremiser, and
is also symmetric around the origin, and is strictly positive at zero. In fact
it must be strictly positive on a small ball surrounding zero; this is because
for each j there must exist a set E; of positive finite Lebesgue measure such
that f; > cl E; for some constant ¢ > 0, and the convolution cl E; * Clg; is
continuous and positive at zero. Thus, replacing f with f « £ if necessary,
we can (and shall) assume that f is symmetric, and strictly positive near
the origin.

Now let 1 < XA <2 and xy € H be parameters with ||zo||g < & for some
small ¢, and consider the m-tuple f) ;, = (f;(z)fj(Ar —Bjzo))1<j<m- From
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the Fubini—Tonelli theorem one verifies that
/ £5(@) ;0\ — Byao) do < 00 (39)
H;

for almost every A,zg, and by previous hypotheses we know that
fi(@)fj(Ax — Bjxg) is strictly positive near the origin if ¢ is sufficiently
small. In particular f) ;, is an input for almost every A, zo with ||zo||x
small. From closure under multiplication we thus see that f) , is an ex-
tremiser for almost every A, zo. We now claim that f) ;, obeys the moment
condition

/H [i(@) fi(Az — Bjzo) (1 + ||ac||H])dx < 00
for each j. To see this, we fix j. By (39) we only need to show that
/ 13(2) £ = Bao) e, do < oo
Hj:l|z||a;>1

By the Fubini—Tonelli theorem it then suffices to show that

2
/ / / £3(2) f;(\e — Bjao)|ll, dz ddzo < oo.
zo€H:||zo||lp<e /1 erj:||z||Hj>1

In fact we claim that

2
/ / fj()\I — le‘())d)\ d.l‘() S L/ fj
zo€H:||zo||g<e J1 ”xHHJ H;

for all z € H; with ||z|[z; > 1, and some finite constant C' = C(¢, B}, H;)
depending only on ¢,B;, and H;. To see this, we divide the interval
{1 < X <2} into O(1/||z]|#;) intervals I of radius O(||z||g;). For each
interval I, we observe that

/ f,(\e = Byao)ddaro < C / £3(y)dy
zo€ H:||zo| | <e lly—Arz|lm; <C(1+e)

where A7 is the midpoint of I and the constants C' can depend on €, B, H;.
The claim then follows by integrating in A € I, then summing in I, observ-
ing that the balls {y € H; : |ly — A\rz||g; < C(1+¢)} have an overlap of at
most C.

To conclude, we have located an extremiser f which is positive near
the origin, and obeys the moment condition ij(l + |z]|a;) fi(z)dz < oo.
We can then use closure under multiplication again, replacing the f; by
fi(x)fj(x — Bjxo) for some small o € H and arguing as before, to improve
this moment condition to ij (1+ ||x||fq])f](x)dac < 00. Indeed by iterating

this we can ensure that [,, (1+ ||ar:||gj)fJ (z)dr < oo for any specified N (e.g.
J
N =100dim(Hj;)). In particular, each f; is square integrable, which implies
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that the Fourier transforms fj are also square-integrable. It is also bounded,
since f; is integrable. One can then replace \fj(§)|2 with |f](£)|2|f]()\§)\2
for any 1 < A < 2, by convolving each f; with a rescaled version of itself;
this may slightly reduce the amount of moment conditions available but this
is of no concern since we can make NN arbitrary. Note that the new input
will still be an extremiser, thanks to Lemma 6.3. By arguing as before (but
now in the Fourier domain) we see that we have the moment conditions
ij |75 (&) P15 (A)2(|€]| m, d€ for almost every . Thus by replacing f if nec-
essary we can assume that the extremiser f obeys the regularity condition
ij |£5(©)2(1 + ||€]|a,)dé < oo for each j. Indeed one can iterate this ar-

gument and obtain an extremiser for which ij \fj 21+ ||£||%] )d€ < o0.
To conclude, we have now obtained an extremiser which has any specified
amount of Sobolev regularity and decay.

We can now convolve f with its reflection f as before to recover the
symmetry of f. We may also normalise | H, fj = 1 for all j.

The input f now obeys enough regularity for the central limit theorem.
If we set £(") = ( f](n))lgjgm to be the rescaled iterated convolution

f](n) (z) :== n(dimHJ’)/ij * ... x fi(v/nz)
where f; % ... x f; is the n-fold convolution of f;, then each of the £(*) are
extremisers thanks to Lemma 6.3. Also, the central limit theorem shows
that f}") converges in the L! topology (for instance) to a centred gaussian,
normalised to have total mass one. Applying Lemma 6.3 again we conclude
that we can find an extremiser which consists entirely of centred gaussians,
which thus implies that every extremisable Brascamp-Lieb datum is gaus-
sian extremisable as desired. O

REMARK 6.6. Proposition 6.5 implies Lieb’s theorem (Theorem 1.9) for
extremisable data (B,p), though this is not directly interesting since it
is difficult to verify that (B, p) is extremisable without first using Lieb’s
theorem. However, if one assumes Lieb’s theorem as a black boz, then the
above results do shed some light on why the monotonicity formula approach
worked in the gaussian-extremisable case, as follows. Suppose that (B, p)
is gaussian-extremisable with some gaussian extremiser A = (A4;)1<j<¢-
Using Lieb’s theorem we see that (exp(—m(A;z,z)n;))1<j<m is then an
extremiser. By Lemma 6.3, for any ¢ > 0 the heat kernel

Ka(t)(z) := (det(A;/t)"/? exp(—m(A;z,z) g, /D) 1< <k

is also an extremiser. Define the heat operators Ua(t) on inputs f by
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Ua(t)f :=f « Ka(t). Applying Lemma 6.1 we see that

BL (B,p;Ua(t)f) > BL(B,p; f) forallt>0.
Indeed, thanks to the well-known semigroup law

Ua(t+s) =Ua(t)Ua(s) forall s,t >0

for the heat equation, we conclude that BL(B, p; Ua (¢) f) is non-decreasing
in time. Also, one can compute (using (7)) that lim;, . BL(B, p; Ua (¢)f)
< BLg(B, p; A) for all sufficiently well-behaved f (e.g. rapidly decreasing f
will suffice). From this we can recover the type of heat flow monotonicity
that was so crucial in the proof of Proposition 2.8.

7 Structural Theory II: Semisimplicity and Existence of
Extremisers

Let (B, p) be a Brascamp-Lieb datum obeying the conditions (7),(8), which
we have shown to be necessary and sufficient for the Brascamp-Lieb con-
stant BL(B,p) = BLg(B,p) to be finite. We now explore further the
question of when (B, p) is gaussian-extremisable. We already have Theo-
rem 1.15, which shows that when there are no critical subspaces then (B, p)
is gaussian-extremisable. However it is certainly possible to be gaussian-
extremisable in the presence of critical spaces; consider for instance Holder’s
inequality (Example 1.3), which has plenty of gaussian extremisers but for
which every proper subspace is critical. To resolve this question more sat-
isfactorily we need the notion of an indecomposable m-transformation.

DEFINITION 7.1 (Direct sum). IfB = (H, (Hj)1§j§m7 (Bj)lgjgm) and
B' = (H', (H})1<j<m, (B})1<j<m) are m-transformations, we define the di-
rect sum B @ B’ to be the m-transformation
BoB' = (Ho H',(H; ® Hj)i<j<m, (Bj ® Bj)i<j<m)

where HOH' := {(z,2') : € H,z' € H'} is the Hilbert space direct sum of
H and H' with the usual direct sum inner product {(z,z'), (y,9¥'))von' =
(z,y)u + (2,9 ), and B; ® B} : H ® H' — H; ® Hj is the direct
sum (B; ® Bj)(z,2') := (Bjz,B;z'). We say that an m-transformation
B is decomposable if it is equivalent to the direct sum B; @ By of two
m-transformations B1, Bs whose domains have strictly smaller dimension
than that of B, in which case we refer to B, and B as factors of B. We
say that B is indecomposable if it is not decomposable.

It is easy to verify that if (B, p), (Bo, p) are Brascamp-Lieb data with
domains Hj, Hy which obey (7), and (B,p) = (B1 @ B, p) is the direct
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sum (with domain H; & Hp), then the subspaces H; @ {0} and {0} © Hs
of H; ® H are critical subspaces with respect to (B, p). Furthermore, the
restriction of B to Hy @ {0} is equivalent to B1, and the quotient of B by
H, @ {0} is equivalent to Bg; similarly with the roles of 1 and 2 reversed.
In particular this implies (from Lemma 4.8 and Lemma 3.3) that

BL(B;1 @ By, p) = BL(B1,p) BL(B2,p) . (40)

We of course have a similar assertion for the gaussian Brascamp—Lieb con-
stants.

REMARK 7.2. The Krull-Schmidt theorem for quiver representations (see
e.g. [ARS]) implies (as a special case) that every m-transformation has a
factorisation (up to equivalence) as the direct sum of indecomposable m-
transformations, and furthermore that this factorisation is unique up to
equivalence and permutations. The question of classifying the indecom-
posable factors of a given m-transformation, however, is quite difficult. In
the rank-one case (Example 1.7) a satisfactory description was given by
Barthe [Ba2, Prop.1]. In fact the indecomposable (and prime) compo-
nents can be described explicitly in this case as follows. Let us introduce
the relation >t on {1,...,m} by requiring ¢ 1 j whenever there exists a
collection I C {1,...,m}\{7,j} such that (vg)reruqiy and (vi)rerugy) are
bases for H. Let ~ be the transitive completion of <. Then the inde-
composable components of H take the form span(v; : j € I), where I is
any equivalence class for ~. In the higher-rank case we cannot expect such
a completely explicit factorisation; at a minimum, we must allow for fac-
torisation to only be unique up to equivalence. For instance, for Holder’s
inequality (Example 1.3), any decomposition of H into dim(H) indepen-
dent one-dimensional subspaces will induce a factorisation of the associated
Brascamp-Lieb datum into indecomposables; these factorisations are only
unique up to equivalence.

We now give a geometric criterion for indecomposability.

DEFINITION 7.3 (Critical pair). Let B be an m-transformation. A pair
(V, W) of subspaces of H is said to be a critical pair for B if V and W are
complementary in H (thus VNW = {0} and V+ W = H), and for each j,
B;V and B;W are complementary in H;. We say the critical pair (V, W)
is proper if {0} CV,W C H.

REMARKS 7.4. Observe that the exponents p; play no role in this defini-
tion. If the B; are surjective, then (0, H) and (H,0) are of course critical
pairs, though they are not proper. Furthermore, in this case one can use
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identities such as dim(V) = dim(B;V) + dim(V N ker(B;)) to formulate
an equivalent definition of critical pair by requiring that V, W are comple-
mentary in H, and V N ker(B;) and W N ker(B;) are complementary in
ker(B;). In the rank-one case dim(H;) = 1, this condition was identified
by Barthe [Ba2], who used it in obtaining a factorisation of Brascamp-Lieb
data into indecomposable components. We shall extend that analysis here
to the higher-rank case.

ExAMPLE 7.5.  For Holder’s inequality (Example 1.3), every comple-
mentary pair in R"” is a critical pair. For the Loomis—Whitney inequality
(Example 1.4), any co-ordinate plane and its orthogonal complement will
be a critical pair. For Young’s inequality (Example 1.5) with d = 1, there
are no proper critical pairs (compare with Example 4.4). In the rank-one
case (Example 1.7), (V,W) is a critical pair if and only if V' and W are
complementary, and {v1,...,v,} C VUW. Also, if (V, W) is a critical pair
for B, and B’ is equivalent to B with intertwining transformations C, Cj,
then (C~1V,C~'W) is a critical pair for B'.

ExAMPLE 7.6. If B is an m-transformation with domain H, then the direct
sum B® B on H ® H has (H @ {0},{0} ® H) as an obvious critical pair.
But there is also a diagonal critical pair

({('7"7‘73) HES H}a{(ya _y) Yy € H}) -
By taking tensor products of inputs in the first critical pair and then pro-
jecting onto the second critical pair (in the spirit of Lemma 4.8) one can
recover Ball’s convolution inequality Lemma 6.1, as well as several of the
closure properties in Lemma 6.3. We omit the details.

LEMMA 7.7 (Geometric criterion for indecomposability). An m-transfor-
mation B is indecomposable if and only if it has no proper critical pairs.

Proof. If B is decomposable, then it is equivalent to a direct sum B; ®B5 on
a domain Hi®Hy where H; and Hj are not {0}. The pair (H;®{0},{0}®Hs)
can be easily seen to be a proper critical pair for By @ B, and thus B also
has a proper critical pair by the remarks in Example 7.5.

Now suppose conversely that B has a proper critical pair (V, W). Since
V and W are complementary, we can apply an invertible linear transforma-
tion C on H to make V and W orthogonal complements, while replacing B
with an equivalent m-transformation. Thus we may assume without loss of
generality that V and W are orthogonal complements. Similarly we may
assume that B;V and B;W are orthogonal complements. But then B is
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canonically equivalent to the direct sum By @ By of its restrictions to V
and W, and is thus decomposable. O

REMARK 7.8. The above proof in fact shows that if (V, W) is a critical
pair for B, then B is equivalent to By & Byy.

One feature of critical pairs is that they are universally critical, in the
sense that they are critical for all admissible exponents p:

LEMMA 7.9 (Critical pairs are critical subspaces). Let (B,p) be a
Brascamp—Lieb datum obeying (8), (7), and let (V, W) be a proper critical
pair for B. Then V and W are both critical subspaces for (B, p).

REMARK 7.10. This lemma implies that all simple Brascamp-Lieb data
are indecomposable. The converse is not true however; consider for instance
the indecomposable example in Example 3.9.

Proof. From (8),(7), and the hypothesis that (V, W) is a critical pair, we
have

dim(H) = dim(V') + dim(W)

<Y pjdim(B;V) + ) p; dim(B;W)

m
= p;dim(H;)
j=1
= dim(H),
and hence the inequality above must be equality. This implies that V and
W are critical, as claimed. O

Critical pairs are related to extremisability in two ways. First of all,
extremisability of a product is equivalent to extremisability in the factors:

LEMMA 7.11 (Extremisability factors). Let (B,p) be a Brascamp-Lieb
datum obeying the conditions (7),(8), and let (V,W) be a critical pair
for B. Then (B, p) is extremisable if and only if (By,p) and (By,p) are
both extremisable. Similarly, (B, p) is gaussian-extremisable if and only if
(By,p) and (By,p) are both gaussian-extremisable.

Proof. By Remark 7.8 we know that B is equivalent to By & By,. From
Lemma 3.3 and Lemma 4.8 we thus see that if (B,p) is extremisable
then (By,p) and (By,p) are extremisable, and if (B,p) is gaussian-
extremisable then (By,p) and (By, p) are gaussian-extremisable.
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In the converse direction, if equality is attained in (1) for the input
(fj,V)lSjSm for (Bv,p) and for the input (fj,W)lSjSm) for (Bw,p), then
the direct sums (f; v @ fjw)i<j<m will attain equality in (By & Bw,p),
thanks to (40) (or Lemma 4.8). The claim for the extremisation problem
(5) is similar. O

Furthermore, in the presence of an extremiser one can obtain a converse
to Lemma 7.9.

LEMMA 7.12 (Critical complements for gaussian-extremisable data). Let
(B,p) be a gaussian-extremisable Brascamp—Lieb datum. Then for every
critical subspace V' of (B, p) there exists a complementary space W to V
such that (V, W) is a critical pair for B. If furthermore (B, p) is geometric,
then W is the orthogonal complement of V.

Proof. We may drop exponents for which p; = 0, and thus assume that
p; > 0 for all j. By Proposition 3.6 we may assume without loss of general-
ity that (B, p) is a geometric Brascamp-Lieb datum, thus we may assume
Hj is a subspace of H, B; : H — H; is the orthogonal projection, and (9)
holds.

Now let II : H — V be the orthogonal projection onto V. Observe
that B;II is a contraction from H to B;V and hence has trace at most
dim(B;V). Thus, since V is a critical subspace,

dim(V) = trg (V)

m

= dim(V),
and hence we must in fact have trg(B;II) = dim(B;V) for all j. Thus B;II
is in fact a co-isometry (the adjoint is an isometry), which means that B;V
and B;j(V+) are orthogonal complements in H;. This implies that (V, V<)
form a critical pair, and the claim follows. O
We can now give a characterisation of when extremisers exist.

Theorem 7.13 (Necessary and sufficient conditions for extremisers). Let
(B, p) be a Brascamp-Lieb datum with p; > 0 for all j. Then the following
nine statements are equivalent.

(a) (B, p) is extremisable.
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(b) (B, p) is gaussian-extremisable.

(c) A local extremiser exists to (4).

(d) There exists a gaussian input A = (A;)i1<j<m such that the matrix
M := 3" pjB;A;Bj obeys A;' = B;M~' B for all j.

(e) The scaling condition (7) holds, B is non-degenerate, and there ex-
ists a gaussian input A = (Aj)i<j<m such that the matrix M :=
> piB;jA;Bj obeys A7 > B;M B for all j.

(f) The scaling condition (7) holds, B is non-degenerate, and there exists
a gaussian input A = (A;)1<j<m such that BiA;Bj < Yo piBfA;B;.

(g) (B,p) is equivalent to a geometric Brascamp—Lieb datum.

(h) The bounds (8),(7) hold, and every critical subspace V is part of a
critical pair (V,W).

(i) The bounds (8),(7) hold, and every indecomposable factor of (B, p)
is simple.

One can view the equivalence (a)<(i) as a statement that extremisabil-
ity is equivalent to being semisimple (the direct sum of simple factors).

Proof. The implication (a)=(b) is given by Proposition 6.5, while the
converse direction (b)=-(a) is given by Theorem 1.9. The equivalence of
(b)—(g) follows from Proposition 3.6. The implication (b)=-(h) is given by
Theorem 1.15 and Lemma 7.12. Now let us prove the converse implication
(h) = (b). We induct on the dimension of H. If there are no proper
critical subspaces then the claim follows from Theorem 1.15. Now suppose
that there is a proper critical space V, which is then part of a critical
pair (V, W) of proper subspaces. We then pass to the factors (By,p) and
(Bw,p). By Lemma 4.6 these factors also obey (8),(7). Also, we observe
that every critical subspace V' of V is part of a critical pair (V',W') in
V. To see this, observe from hypothesis that V' is part of a critical pair
(V!,W")in H. Now set W' := VNW"; since V' and W" are complementary
in H, and V! C V, we see that V' and W' are complementary in V. In
particular, B;V' + B;W' = B;V. On the other hand, since B;V’ and
B;W" are complementary in Hj;, and B;W’ is contained in B;W", we have
B;V'n B;W' = {0}. Thus B;V' and B;W' are complementary in B;V,
and hence (V',W') is a critical pair in V as claimed.

Applying the induction hypothesis, we conclude that the supremum in
(5) for (By,p) is attained. Similarly for V replaced by W. The claim now
follows from Lemma 7.12.

Now we show the implication (b)=>(i). Applying Lemma 4.8 we see that
the supremum in (5) is attained for every indecomposable factor of (B, p).
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Applying the equivalence between (b) and (h) already proven, and noting
that indecomposable factors cannot contain proper critical pairs by defi-
nition, we thus see that every indecomposable factor contains no proper
critical subspaces as claimed.

Finally, to show that (h)=(b), we see by the equivalence of (b) and
(h) that the supremum in (5) is attained for every indecomposable factor
of (B,p). Factoring (B, p) in some arbitrary manner as a direct sum of
indecomposable components and using Lemma 7.11 we obtain the claim. O

It should be mentioned that the above equivalences only hold with the
assumption p; > 0. Of course any exponent with p; = 0 can be omit-
ted without affecting most of the properties listed above (specifically, this
does not affect (a)—(g)), but it does affect the factorisation of data into
indecomposable components.

EXAMPLE 7.14. Let us return to Example 3.9. This 3-transformation B
is indecomposable, and the datum (B, p) is simple if (p1, p2,p3) lies in the
interior of the triangle. However if (p1, p2,p3) is on a vertex of this triangle,
then one of the p; vanishes, and on removing this exponent we are left with
a 2-transformation which is now decomposable (with the two components
clearly being simple). This is why extremisers exist on the interior and
vertices of the triangles but not on the open edges.

More generally, the above proposition yields an explicit test as to whe-
ther a given datum (B, p) is extremisable. First, one removes any exponents
for which p; = 0. Then one splits B into indecomposable components
(Bi,p). If p lies in S(B;) NII(B;)° for each component B;, then (B, p) is
extremisable, but if p lies on the boundary of II(B;) for any i then (B, p)
is not extremisable.

8 Regularised and Localised Brascamp-Lieb Inequalities

We have seen a number of connections between Brascamp-Lieb constants,
gaussians, and the heat equation. We now pursue these connections fur-
ther by introducing a generalisation of the Brascamp-Lieb constants. As
a byproduct of this analysis we give an alternate proof of Lieb’s theorem
(Theorem 1.9) that does not rely on factorisation through critical subspaces.
We first examine the situation when the data are regularised at a certain
scale; morally this corresponds to a discrete setting. This allows us to then
examine the situation when the data are gaussian-localised, effected by
appending a fixed gaussian multiplier to the input and then scaling. The
gaussian-localised situation falls in principle under the framework of [L].
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Our first definition formalises our notion of regularity.

DEFINITION 8.1 (Type G functions). Let H be a Euclidean space, and let
G : H — H be positive definite. We define a type G function to be any
function v : H — R™ of the form

u(z) = det 1 (G)"/2 /H exp (— 7(G(z — y), (& — 9))ur)dpu(y)

where p is a positive finite Borel measure on H with non-zero total mass.
If i is a point mass, we say that u is of extreme type G; thus the functions
of extreme type G are simply the translates and positive scalar multiples
of the function exp(—7(Gz,x)m).

REMARK 8.2. Observe that type G functions are smooth and strictly pos-
itive. Also, if G1 > G2 > 0 then every function of type G is also of
type G1, since a gaussian such as exp(—m(Gax,x) ) can be expressed as a
convolution of exp(—n(G1z,z)y) with a positive finite measure (this can
be seen for instance using the Fourier transform). Positive finite measures
themselves can be informally viewed as functions of type +o0.

REMARK 8.3. Type G functions arise naturally in the study of heat equa-
tions. More precisely, if v : RT x H — R is a solution to the heat
equation

up = £ div(G~'Vu)

and u(0) = p is a positive finite measure, then from the explicit solution

u(t, ¢) = det 5 (G/1)"/? /H exp (= m(G(z —y), (v = y))u/t)dp(y)

we see that u(t) is of type G/t for all t > 0. More generally, if u(s) is of
type A for some s > 0 and A > 0, then u(t) is of type (A~ + (¢t —s)G~1)~!
for all t > s, as can be seen for instance by using the Fourier transform,
or alternatively by convolving one fundamental solution to a heat equation
with another using (3). Note that this operation of harmonic addition has
already appeared in Corollary 6.4.

DEFINITION 8.4 (Generalised Brascamp-Lieb constant). If (B, p) is a Bras-
camp-Lieb datum, we define a generalised Brascamp—Lieb datum to be
a triple (B,p, G), where (B,p) is a Brascamp-Lieb datum and G is a
gaussian input for (B, p). We shall refer to G as an m-type. We say that
an input f = (.fj)lgjfm is of type G = (Gj)lgjfm if each fj is of type Gj.
We define the generalised Brascamp-Lieb constant BL(B, p, G) to be

BL(B,p,G) = sup BL(B,p;f). (41)
f of type G
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We also define the generalised gaussian Brascamp-Lieb constant
BLg(B, p, G) by the formula

BLg(Ba P, G) = Sup BLg(Ba P; A) ’ (42)
A<G

where the supremum extends over all gaussian inputs A = (A4;)1<;<m such
that A; < G, for all j. We say that (B, p, G) is eztremisable if BL(B, p, G)
is finite and equality can be attained in (41) for some input f of type G,
and is gaussian-extremisable if BLg (B, p, G) is finite and the supremum in
(42) can be attained for some gaussian input A < G.

REMARK 8.5. One may restrict attention to non-degenerate B for the
following reasons. If (L, ker(B;) # {0} then it is easy to see that both
constants will be infinite. If one or more of the B; is not surjective, one
can simply restrict H; to B;V (and restrict the quadratic form associated
to G; to B;V also) to obtain an equivalent problem.

Clearly we have

BL(Ba P, G) Z BLg(Ba P, G) 5 (43)
we shall later show in Corollary 8.15 that this is in fact an equality, in anal-
ogy with Theorem 1.9. Clearly BL(B, p, G) < BL(B,p) and BLg(B, p, G)
< BLg(B, p), but it is certainly possible for strict inequality to hold for ei-
ther inequality. On the other hand, a simple regularisation argument shows

that
BL(B,p) = lim BL(B,p,\G); BLg(B,p)= lim BLg(B,p,\G) (44)

A—00 A—00

for any m-type G. Furthermore, it turns out that there are analogues
not only of Lieb’s theorem but also of Theorem 1.15 in this generalised
setting. We shall state these results presently, but let us first develop some
preliminary lemmas. We begin with a basic log-convexity estimate.

LEMMA 8.6 (Log-convexity lemma). Let G : H — H be positive definite,
let u be of type G, and let v of be of extreme type G. Then u/v is log-convex
(i.e. V2log(u/v) is positive semi-definite). If u is not of extreme type G,
then u /v is strictly log-convex (i.e. V2 log(u/v) is positive definite).

Proof. By applying an invertible linear transformation if necessary one can
reduce to the case H = R", G = I,,. By translation we may then assume
that v is the extreme type I,, function

v(z) = exp (- 7|z[*) .
We can write the type I, function u(x) as

u@) = [ exp (= le = y)duty)
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and hence u(z)
- / ne%@aw/%*ﬂylzdu(y). (45)

At this point we could argue that u/v is log-convex by observing that the
exponential functions e2™{*¥) are log-convex, and that the superposition
of log-convex functions is again log-convex. However we shall give a more
explicit argument which also yields the second claim. Taking gradients of
the above equation we obtain

ua) g, )

v(x) v(x)
and hence by (45) again

/ (V log ulz) 27ry) 62”<$’y)6_”|y‘2du(y) =0.

n v(x)
We multiply this by an arbitrary transformation A : R® — R"™ and take
divergences, to conclude

/ (div AV log %+<27TAy,Vlog %—2wy>) e2n(z,y)e—w|y|2du(y) =0.

Rearranging this using (45) again, we conclude

:/ gﬂye%(w,y)e—ﬂylzdu(y)

div AV log %

B [z (A(V1og 1583 —2my), iV log Z% - 27ry>62”<m’y)e_”|y‘2d,u(y)

fR" 627T<$:y>e_7r‘y|2d/1,(y)
Observe that if A is positive semi-definite, then the right-hand side is non-
negative. This shows that V2 logu/v is log-convex as claimed. Also, if A is
positive definite, then we see that for any fixed x there is at most one y for
which the integrand in the numerator is zero. Thus if y is not a point mass
then the numerator is always strictly positive, and hence u/v is strictly
convex in this case. This concludes the proof. O

u
v

COROLLARY 8.7. Let G : H — H be positive definite, lIet v : H — R be

of type G, and let A: H — H be positive semi-definite. Then
div(AVlogu) > =27 trg(AG).

If A is not identically zero, then equality occurs if and only if u is extreme

type G.

REMARK 8.8. Intuitively speaking, this corollary asserts that positive so-
lutions to the heat equation cannot diverge too rapidly, and can be viewed
as an explanation for the monotonicity for heat flows.
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Proof. Let v : H — R" be the extreme type G function v(z) :=
exp(—7m(Gz,z)g)). Observe that div(AVlogv) = —27try(AG), and from
Lemma 8.6 we have div(AV logu/v) > 0, with strict inequality if A is not
identically zero and u is not extreme type G. The claim follows. O
We can now give the monotonicity formula for multiple heat flows. We
begin with a rather general statement.
PROPOSITION 8.9 (Multilinear heat flow monotonicity formula). Let
(B, p, G) be a generalised Brascamp-Lieb datum with all the B; surjective,
and suppose that there is a gaussian input A = (A;)i<j<m with A < G,
such that the transformation M : H — H defined by M := }" | p; B A;B;
is invertible and obeys the inequality
A7 = B;M~'B; >0 (46)
and the identity
(A;' = B;M™'B})(G; — A;) =0 (47)
for each 1 < j < m. Also, for each 1 < j < m, let 4;(1) : H; - R" be of
type Gj, and let u; : [1,00) x Hj — R be the solution to the heat equation
Bty = 1= div(A; ' Vi)
with initial data @;(1) at ¢t = 1. Then the quantity

Q(t) =+ P dim(;)—dim(11))/2 /H [ (@; o By
j=1

is monotone non-decreasing in time for t > 1.
Furthermore, if there is a j for which equality in (46) does not hold, and
@;(1) is not of extreme type G, then Q(t) is strictly increasing for t > 1.

Proof. We have
iy(1,) = det 1, (G5)'7* [ exp (= w(Gylr =) (o = ) ) ds (o) (48)

for some positive finite Borel measure ;. A simple computation using the
Fourier transform then shows that

(t, ) = det gz, (G2 + (t — 1) A7) /2
X / exp (—7((G;1 + (= DAz —y), (@ — )y )duy(y) - (49)
:

By a Fatou lemma argument we may assume without loss of generality that
the measures p; are compactly supported. We may also assume p; > 0 for
all j as the degenerate exponents p; = 0 can be easily omitted.

Let Dj : Hj — H be any linear right-inverse to Bj, thus B;D; = idg;.
Such an inverse exists since Bj; is assumed to be surjective. The exact choice
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of D; will not be relevant; for instance one could take D; = B (BjB;-‘)_l.
We will apply Lemma 2.6 with

I:=(0,400)
uj 1= ujo Bj
’Uj = —ﬁD]AJ_l(V log ﬂ]) (e} Bj

m
Jj=1

= % (dim(H) - ]i: pj dim(Hj)> .

Let us first verify the technical condition that ¥ H;"Zl u?j is rapidly de-
creasing in space. Because the y; are compactly supported, one can verify
that Vlogu; grows at most polynomially in space, locally uniformly on I.
Hence ¢ also grows at most polynomially in space. Since M is invertible,
we have ﬂ;nzl ker(Bj;) = 0. Since each of the ; are rapidly decreasing in
space, locally uniformly on I, we see that H;"Zl u:;] is also, and the claim
follows.
By Lemma, 2.6, we will now be done as soon as we verify the inequalities
(11), (12), (13). We begin with (11). On the one hand, we have
8tuj = (Btﬂj) o Bj = ﬁ diV(AEIVﬂj) o Bj .
On the other hand, from the chain rule and the choice of D; we have
diV(ﬁjUj) = —div ([ﬁD]AJ_l(V log ﬂj)ﬂj] o Bj)
= —ﬁ div (D]A]_l(VaJ) e} BJ)
= —ﬁ d1v(BJD]A;1V11j) o Bj
= — 4 div(4; Vi) o B;
and so the left-hand side of (11) is zero.
Next we verify (12). We expand the left-hand side as

m m
div (17 = pjﬁj> > pjdiv(M ' B} A;B;#; — )

j=1 i=1

m
=—L Z p;div (M~'B;A;B; — ide)DjAj_l(V log i;) o B;)
j=1

m
= -2 Y _p;div(B;(M~'B;A;B; — idy;)D;A; *(Vlog i) o B;
7j=1



GAFA BRASCAMP-LIEB INEQUALITIES 55

m
=i ij div ((A7' — B{M ™' B;)V logii;) o B;.
j=1

From (49) we see that @;(t) is of type (Gj_1 +(t— 1)A]71)_1. Since G; >
Aj>0andt > 1, we have (Gj_1 + (t— 1)Aj_1)*1 < G;/t. Thus @,(t) is also
of type G;/t. Applying (46) and Corollary 8.7 we have
div ((A;' = B;M ™' B})Vlogi;) > —2m try; ((A;' — B;M ™' B})G;/t) .
Using (47) we conclude that
div ((A;' = B;M 'B})Vlogi;) > =2 try; ((A;' — B;M 'B})4;).
Inserting this into the preceding computation, we conclude

m m
- " 1 _ ~
div (7 — 5 piv;) > ~% 5 pjtra; ((Aj ' B;M lB;)Aj)
Jj=1 Jj=1

1 & 1 )
=5 > pi(tru(M~'B; A;B;) — dim(Hj))
j=1

1

= o (trn (M) - 2_; p; dim(Hj))

| =

" (dim(H) - p; dim(H))
j=1

+[Q

as desired.
Finally, we verify (13). From the chain rule we have
Vloguj = B;(Vlogiy) o B;
and hence by definition of @; and D
Vlog U; = —B;Aij’Uj .
Thus we can write the left-hand side of (13) as
m
> _pil BjA;B; (T — 7)), ~Tj) y
i=1
On the other hand, by definition of ¥ and M we have

m m
> piBjA;B;(5 — #;) = MT — Y p;BjA;B;i; =0.
Thus we can write the left-hand side of (13) as

m
S " pi(BIA;B (T — ), (T ), -
7j=1
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Since A; is positive definite, we see that this expression is non-negative
as desired. This completes the proof of monotonicity. The proof of strict
monotonicity when equality does not hold in (46) for some j, and @;(1) is
not of extreme type G, follows by a minor variation of the above argument
which we omit. O

Let us compute the limiting behaviour of Q(t) as t — 0o, under the as-
sumption that the p; are compactly supported. After a change of variables
we have

Q(t) = $571 s dim(H;) /2 / [] it t2 By da
and then after applying (49) we can write this as

Hj—l

_ 11,1 1 ki
/ exp (—7r<(Gj 1+(t—1)Aj Y=l (t2 Bjz—y), (t2Bja:—y)>Hj)duj(y) dz .
Via another change of variables we may rewrite this as

/ 11 [det (G (-t A) T
H -
7j=1

| e (—rli6s + (= A (B - 1),
H

(Bjxz — t_1/2y)>Hj)duj(y):| jda:.

Taking limits as ¢ — oo using dominated convergence (which can be
justified since p; is compactly supported) we conclude

m pPj
. —1y=1
tliglo Q) :/Hl_ll[det H; (Aj ) 2/}fxp (—W(Aija:,ij)Hj)duj(y)] dx ,
]= J
which simplifies using (3) to
[17%, detp, (A;)Pi/? =

Jlim Q(t) = doin M)1/2 jl;[luj([{j)pj
I dety, (Ay)P/2 RN
-t 11 (f )"

In particular we have

[T, det j(A-)pJ'/Q m B Pj
Q) = = clle’cH(Iij)lj2 11 (/HJ Uj(1)> '

=1
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We thus conclude (using a Fatou lemma argument to eliminate the hypoth-
esis that p; is compactly supported)

COROLLARY 8.10 (Towards a generalised Brascamp-Lieb inequality). Let

(B, p, G) be a generalised Brascamp-Lieb datum with all the B; surjective,

and let A = (A;j)i<j<m be a gaussian input with A < G, such that the

transformation M : H — H defined by M := Z;n:1 p;jB;A;Bj is invertible

and obeys the inequality (46) and the identity (47) for all1 < j < m. Then
BL(B,p,G) = BLg(B,p;A).

One special case of this corollary is when G = A, as in this case the con-
dition (47) is automatic. Another special case is the limiting case G — +o0,
which recovers portions of Proposition 3.6. For instance:

COROLLARY 8.11 (Lieb’s theorem generalised, gaussian-extremisable case).

Let (B, p, G) be a generalised Brascamp-Lieb datum which is non-dege-
nerate and gaussian-extremisable. Then BL(B,p,G) = BLg(B,p,G). In
particular BL(B, p, G) is finite in this case.

Proof. We may assume that p; > 0 for all j since otherwise we can simply
omit any exponents for which p; = 0. Let Ay,..., A, > 0 be an extremiser
0 (42). Since B is non-degenerate, we have ﬂ;’;l ker(B;) = {0}. In partic-
ular if we set M : H — H to be the transformation M := Z;":lij;Aij
then M is positive definite.

Taking logarithms in (42), we see that A is a local maximiser for the
quantity m m
(ij log det g, Aj> —logdet ijB;-‘Aij

j=1 j=1
subject to the constraint A < G. Now let us fix a j. Let V; C H denote
the kernel of the positive definite operator G; — A;, let +; : V; — H;
be the inclusion map, and let Q; : H; — H; be an arbitrary self-adjoint
transformation which is negative definite on V; (i.e. 1jQ;t; < 0). Then
0 < Aj +eQ; <G for all sufficiently small € > 0, and hence
4 pjlogdet g, (Aj + €Q;) — log det (M + ep; B;Q;B;)|e—0 > 0.

Arguing as in Proposition 3.6 we then conclude that
trar; (A;'=B;M 'B})Q;) >0 whenever Q; is negative definite on V;.
In particular, this trace is positive whenever (); is negative definite on Hj,
which implies (46), Also, by considering both Q; and —Q; we see that

try; ((Aj_1 - BjM_lB;f)Qj) =0 whenever ;;Q;i; =0, Q; = Q]
which by negative definiteness of A;l - B;M _IBJ’-‘ implies that

—1 -1
Aj — BjM B; = LijL;f
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for some transformation N; : V; — V;. In particular, since Gj — A; vanishes
on Vj, so 1;(Gj — A;) = 0 and hence by self-adjointness ¢;(G; — A;) = 0.
Thus we obtain (47). Applying Corollary 8.10, and the hypothesis that A
extremises (42), we conclude

and the claim follows from (43). O

Notice that if in addition to the hypotheses of Corollary 8.11 we im-
pose (7), then any gaussian extremiser for (B, p, G) is also one for (B, p)
since (46) and invertibility of M together imply gaussian-extremisability
by Proposition 3.6.

Now we remove the condition that an extremiser exists. The analy-
sis here is in fact somewhat simpler than in the non-regularised case, be-
cause it turns out there is a large class of generalised Brascamp-Lieb data,
namely the localised generalised Brascamp-Lieb data, which are gaussian-
extremisable and are in some sense dense in the space of all generalised
Brascamp-Lieb data. (The reason for the nomenclature localised will be-
come clear below.)

DEFINITION 8.12 (Localised data). A generalised Brascamp-Lieb datum
(B, p, G) is said to be localised if there exists 1 < j < m such that p; = 1,
Hj = H, and Bj = idH.

LeEMMA 8.13. Let (B, p, G) be a localised generalised Brascamp—Lieb da-
tum. Then (B, p, G) is gaussian-extremisable, and thus (by Corollary 8.11)
we have BL(B, p, G) = BLg(B, p, G) < 0.

Proof. We may assume that p; > 0 for all j, since we can drop all indices
for which p; = 0. We can also assume that m > 1 since the m = 1 case is
trivial. Without loss of generality we may assume that m is the localising
index, thus p,, = 1, H,,, = H, and By, = idg. We can rewrite (42) as

m—1
BLg(B,p, G) = sup det,'*(idy +MY2A; MY2) T (dets, 4;)7/?
A<G ,
S j=1

where A = (4;)1<j<m and M := 37710 p]B A;Bj. Observe that for fixed

At,..; A1, the quantity det ;2 (id g +MY2AZ1MY?) with 0 < Ay < G
is maximised when A,, = G,,. Thus we have

m—1
BLg(B,p,G) = sup det;ll/Q(idH —{—Ml/ZanlMl/2 H (detp, A pJ/2
0<A; <G;

=1
(1<j<m-—1) !
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Observe that this expression extends continuously to semi-definite A;, and
thus

m—
BLy(B,p,G) = sup dety/*(idy + MG, M'/?) H (det g, A;)Pi/?
0<A; <Gj -
(1<j<m—1) B
Thus an extremiser exists in the range 0 < A; < G;. But the expression
in the supremum vanishes when det(A;) = 0 for some j, and hence at the

extremum we have A; > 0 for all 1 < j <m — 1. The claim follows. O

LEMMA 8.14 (Approximation by localised data). Let (B,p, G) be a gen-
eralised Brascamp—Lieb datum. Let (B,idy) be the (m+1)-transformation
formed by appending the identity operator Bp,11 = idg : H — H to the
m-transformation B (thus Hp,+1 = H), and for any real number A\ > 0, let
(G, \idg) be the (m + 1)-type formed by appending the dilation operator
Aidg : H — H to the m-type G. Then
BL(B,p,G) = lim A~ dim(H)/2 g1, (B, idg), (p, 1), (G, Aidg))

and

BLg (B, p, G) = lim A~ dim(H)/2 BL, ((B,idg), (p,1), (G, Nidg)) .

Proof. We begin with the first equality. Let f = (f;)1<j<m be a normalised
input of type G. Then from (41) and (3) we see that

m
/H exp (- Allzli%) H 2)da

< A dmE/2 B, ((B,idg), (p, 1), (G, Mid#))
for all A > 0. Letting A — 0 and using monotone convergence and (41) we
conclude

BL(B,p,G) < li§1_)i(1)1f)\_dim(H)/2 BL ((B,idu), (p,1), (G, Aidg)) .  (50)

Conversely, let A > 0 and f,,4+1 : H — R be a function of type \idy,
then we can write

Fr (1) = AG(ED/2 /H exp (— Mz - yl%)du(y).

By the Fubini-Tonelli theorem and (3) we have [}, fm41 = p(H). Now if
(fj)i<j<m is of type G and we set By,;1 = idg and pp41 = 1, then by the

Fubini-Tonelli theorem again
m+1

/ H fj o Bj)Pi (z)dx
AdlmH)/Z Y _ d %
eXp lz = yll%) dp(y) [T (5 da

Jj=1
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Ade)/?/ (/ H fj o Bj)Pi( dﬂc)du()

pj

2dim(H)/2 B1,(B, p, G ( ) H
< (B,p )1;[ /Hf u(H)

+1 p;
Adlm(H)/2 BL(B pa H (L fJ) '

J=1
We thus conclude that
AT BL ((B,ida), (p, 1), (G, Aidg)) < BL(B,p,G).
Combining this with (50) we obtain the first equality of the lemma. The
second equality is proven in exactly the same way but with all the f; (and
fm+1) constrained to be centred gaussians. (The fact that exp(—\||z — y||%)
is not centred is of no consequence as we are simply bounding it by 1). O

Observe that the data ((B,idg), (p,1), (G, Aidg)) is manifestly locali-
sed. Thus if we combine Lemma 8.14 w1th Lemma 8.13, we immediately
obtain

COROLLARY 8.15 (Lieb’s theorem generalised). Let (B, p, G) be a gener-
alised Brascamp-Lieb datum. Then BL(B, p, G) = BLg(B, p, G).

Combining this corollary with (44) we obtain another proof of Lieb’s
theorem (Theorem 1.9). A different proof of this result (along the lines of
[Ba2]) has recently been obtained by Valdimarsson, [V1]. Another applica-
tion — moving now to the setting of localised data — is the following result,
which can also be found implicitly in [L].

COROLLARY 8.16 (Lieb’s theorem localised). Let (B, p) be a Brascamp—
Lieb datum, and let G : H — H be positive definite. Then the best

constant 0 < K < oo in the estimate
m
(/ f]) (51)
H;

/Hexp (- m(Gz,z)m) H (fj o Bj(z))"dzx < KH

j=1 j=1
is given by
H (detH A; )p] 1/2
K:= sup ( ) .
AtyAm>0 \detg (G + 377 p; B A;Bj)

Proof. By testing (51) on centred gaussians we certainly see that we cannot
replace K by any better constant. Thus it will suffice to prove (51) with
the specified value of K.
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Let A > 0 be a large parameter. An inspection of the proof of Lem-
ma 8.14 shows that if each f; is of type Aidp;, then we have

/Hexp (- n(Gz,z)p) li (f; 0 Bj(2))Pdw < K/\ﬁ (/H] fj)pj

=1

here
w n ( H;n:1(detHj Aj)Pi >1/2
2= sup -
0<A;<\idp, dety (G + E;'n:l p;B}A;Bj)
Taking limits as A — oo, we obtain the claim. O

We can also obtain a localised version of Theorem 1.15.

Theorem 8.17 (Localised necessary and sufficient conditions). Let (B, p)
be a Brascamp—Lieb datum with B non-degenerate, and let G : H — H be
positive definite. Then the estimate (51) holds for some finite constant K
if and only if the inequalities (34) hold for all subspaces 0 CV C H.

Proof. Recall that (34) asserts that dim(H/V') > >3 | p; dim(H;/(B;V)).
We can discard those j for which p; = 0 or H; = {0} as they have no
impact on either claim in the theorem. By a linear transformation we may
take G = idy.

The necessity of the conditions (34) can be seen by testing (51) for
functions f; which lie in an e-neighbourhood of the unit ball in B;V" and
letting € — 0; we omit the easy computations. Now suppose conversely
that (34) holds. Applying Corollary 8.16, we reduce to showing that

m

[[(detm, Aj)P < K*dety(idg +M)
i=1
for all gaussian inputs A = (A4;)i<j<m for some finite constant K, where
M := 375 pjBjA;B;.
We now repeat the proof of Proposition 5.2. By choosing an appropriate
orthonormal basis ey, ..., e, € H we may assume that M = diag(A1,..., )
for some \; > ... > A\, > 0. Our task is thus to show that

m n

[1(det 1, 4;)7 = 0(]‘[(1 + )\i)>.

j=1 i=1

Here we allow the constants in O( ) to depend on the Brascamp-Lieb da-
tum. Applying Lemma 5.1, we can find I; C {1,...,n} foreach 1 < j <m
of cardinality |I;| = dim(H;) obeying (35) and (36). From the arguments

in Proposition 5.2 we have
m

n .
H(det AP < CH )\ZZJ'=1PJ'|IJ'“{Z}I_

j=1 i=1
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Writing p; == 1+ A; and ¢; :== }37% pj|I; N {i}], it then suffices to show

that n n
Hﬂf < H,Ui-
i=1 i=1

We can telescope the right-hand side as

(ZHI“@) 1 (H)

Kk

where we adopt the convention p, 1 := 1. But from (35) we have k — ¢ —
..—c¢k > 0 for all k, and from construction we have py1 1/, < 1 for all k.
The claim follows. O

9 Uniqueness of Extremals

In Theorem 7.13 we gave necessary and sufficient conditions for gaussian
extremisers or extremisers to exist. In this section we address the issue of
whether these extremisers are unique.

One trivial source of non-uniqueness is if p; = 0 for some j, then f;
can clearly be arbitrary. However one can simply omit these indices j to
eliminate this source of non-uniqueness, and thus we shall only consider the
case where p; > 0 for all j.

From Theorem 7.13 (and Lemma 3.3) it now suffices to consider the
case of geometric Brascamp-Lieb data (B, p), which has the obvious gaus-
sian extremisers (\idg,)i1<j<m for any A > 0, and similarly the obvious
extremisers (c; exp(—A\|lz — Bjx0||%1j))1§j§m for any A, c1,...,¢n > 0 and
Ty € H; compare with Lemma 6.3 and Lemma 6.4. The natural question
is whether any other extremisers exist.

In the gaussian case, the answer is provided by the following proposition,
which can be viewed as a continuation of Proposition 3.6 in the geometric
case.

PROPOSITION 9.1 (Characterisation of gaussian extremisers). Let (B, p)
be a geometric Brascamp—-Lieb datum with p; > 0 for all 1 < j < m. Let
A = (Aj)i<j<m be a gaussian input, and let M : H — H be a positive
definite transformation. Then the following seven statements are logically
equivalent:

(a) A is a gaussian extremiser, and M = Z;n:l ij;-‘Aij.

(b) M =37 p;BjA;Bj, and A;' = B;M ' B; for all 1 < j < m.

(c) BjM = A;Bj and A;' = B;M~'B; for all 1 < j < m.
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(d) MBj = BA;j and A;' = BiM~'Bj for all1 < j < m.

(e) M leaves the space BiH; invariant for all 1 < j < m, and Aj_1 =
BjM_lB;-‘ for all1 < j < m.

(f) M leaves the space ker(Bj) invariant for all 1 < j < m, and Aj_1 =
BjM_lB;-‘ for all1 < j <m.

(g) Each proper eigenspace of M is a critical subspace for (B,p), and
A7t = B;M™!B; for all 1 < j < m.

We remark that in (g), we use the term eigenspace to denote a mazimal
subspace consisting of eigenvectors of M with a common eigenvalue.

Proof. For purposes of visualisation, the reader may wish to follow the
arguments below in the case when the H; are subspaces of H and B, is
an orthogonal projection, so that B} is simply the inclusion map from
H to Hj. (The general case is in fact equivalent to this case after some
Euclidean isomorphisms.) However for notational reasons it is slightly more
convenient for us to keep H; and H separate from each other.

The equivalence of (a) and (b) follows from Proposition 3.6. Now to
see that (c)=(b), we observe that if BjM = A;B; then Z;-n:lij;Aij =
Z;”Zl pjB;B;M = M by (9).

From duality we see that (c) and (d) are equivalent. Next we prove that
(b)=>(d). Using the hypothesis M = } 7" | p; B;A;B; and (9), we compute

Zp] try (M~ (MB} — BjA;)(MB; — BJA;))*)

ZIH(

trH( ij;BjM—ij—lB;AijM—ij;fAijerjM—lB;A;Bj)
j=1

(M M — M+MIZpJBA2 )

Ms

piM ' (MB] — B;Aj)(BjM—Aij)>
1

Il
NNER:

j=1
m m
= pjtru(BjA;B;)+ > pjtry(M B AZB;)
j=1 j—l

Z try, (A;B;BY) —I—Zp]trg (B;M~'B; A?).
: ] 1



64 J. BENNETT, A. CARBERY, M. CHRIST AND T. TAO GAFA

1

Since B;B; = idy; and BjM_lB;’-‘ = A. ", we conclude

J

> pjtrn (M~ (MB] — BjA;)(MB; — B} 4;)")
7j=1

==Y pitru;(4)) + > pjtra;(4)
j=1 j=1

=0.
On the other hand, M ! and (MB; — BjA;)(MB; — BjA;)* are posi-
tive semi-definite operators, and thus their product has non-negative trace.
Since p; > 0, we conclude that
try (M~'(MB} — BjA;)(MB} — B;A;)*) =0 forall j.
Since M ! is positive definite, we conclude that
(MB; — B;A;)(MB; — B;A;)* =0 for all j,
and hence M B} — BiA; = 0. This gives (d).

The implication (d)=>(e) is immediate, since MB;H; = BjA;H; =
BiH;. Now we show that (e)=(c); thus suppose that M leaves B;H,
invariant. Since B; is an isometry, we have (BjH )1 = ker(B;); since M
is self-adjoint we conclude that M also leaves ker(B;) invariant. Since M
is invertible, we see that M ~! will then also leave the spaces B;H; and
ker(B;) invariant. From Aj_1 =B;M _lB]’-k we conclude that

(4jBj — BjM)(M~'Bj) = A;B;M~'B; — BB} = A;A;' —idy; =0
and hence A;B; — BjM vanishes on M_IBJ’-*H]- = BjHj. Also, since M1
preserves ker(B;) we see that B;M and A;B; both annihilate ker(B;). Thus
A;Bj — B;jM vanishes identically, and we conclude (c).

By duality we see that (e) and (f) are equivalent. Now we show that
(e) and (f) together imply (g). Let V be a proper eigenspace of M. Let
Wj = BjH;. Since M leaves W; invariant and V' is maximal, we have
W; = (W; nV)® (W; N V1Y), Similarly we have WjL = (WjL nv)ae
(Wi-nV+). Thus H = Wy @ Wit = (W;nV)a (W;nVEH @ (W
V)e (WJ-J‘ NV4Y). Now let II : H — H be the orthogonal projection
onto V; BiB; : H — H is the orthogonal projection onto Wj;. Then II
and B;-‘Bj have a common orthonormal set of eigenvectors and hence they
commute. Consequently, B 5 B;1I1 is the orthogonal projection onto BfB;V/,
and dim(B} B;V) = try (Bj B;II). Now B, being an isometry, is injective.
So dim(B;V) = dim(B}B;V) = try (B} B;II). Multiplying this by p; and
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summing, we see from (9) That

m m
> pjdim(B;V) = try (Z ij;BjH> = try (1) = dim(V).
j=1
Thus V is a critical subspace as desired.

Finally, we show that (g) implies (e) and (f). Decomposing M as a direct
sum of scalar dilation maps on the eigenspaces, we see that it suffices to
show that each eigenspace V' splits as the direct sum of a subspace of ker(B;)
and a subspace of the orthogonal complement B H;. But by hypothesis

j=1

the eigenspace V is a critical subspace, and hence by Lemma, 7.12, (V, V+)
is a critical pair. The claim follows. O

The equivalence of (a) and (g) provides a means to construct all the
gaussian extremisers A of a geometric Brascamp-Lieb datum (B,p).
Namely, we first decompose B into the direct sum of indecomposable mu-
tually orthogonal spaces, and then let M be the direct sum of arbitrary
positive scalar dilations on these indecomposable components. One then
defines the A; by the formula Aj_1 = B;M _1B;-‘. As a corollary we obtain

COROLLARY 9.2 (Uniqueness of gaussian extremisers). Let (B,p) be a
gaussian-extremisable Brascamp—Lieb datum with p; > 0 for all j. Then
the following three statements are equivalent.

(a) The gaussian extremisers A of (B,p) are unique (up to scaling
A — )A).

(b) B is indecomposable.

(¢) (B,p) is simple.

We remark that this result was obtained in the rank-one case by Barthe
[Ba2].

Proof. The implication (b)=(c) follows from Theorem 7.13 (or Lem-
ma 7.12).

Now we prove (c)=>(a). If (B,p) is simple, then by statement (g) of
Proposition 9.1 there are no proper eigenspaces of M. Consequently the
unique eigenspace of M must be the whole of H, i.e. M is a scalar multiple
of the identity. Proposition 9.1 now gives the desired uniqueness.

Now we prove (a)=-(b). Conversely, if B is decomposable, then by
Lemma 7.7 we have a proper critical pair (V, W), which we can choose to
be orthogonal complements, from Lemma 7.12. One can now define a two-
parameter family of positive-definite operators M with eigenspaces V, W,
and each one generates a gaussian extremiser by Proposition 9.1. The claim
follows. g
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Now we address the issue of uniqueness of extremisers which are not
gaussian. Here the situation appears to be significantly more complicated,
especially in the decomposable case. For instance, for the Loomis—Whitney
inequality (2) the extremisers take the form

f(y,2) =aG(y)H(2); g(x,2) =bF(x)H(2); h(z,y) = cF(x)G(y),
for arbitrary scalars a, b, c > 0 and non-negative integrable functions F, G, H
of one variable. Even in the indecomposable case there can be plenty
of extremisers. For instance, as is well known, for Hoélder’s inequality
(Example 1.3) one has an extremiser whenever the functions f; are scalar
multiples of each other, even in the one-dimensional case which is irre-
ducible and thus has unique gaussian extremisers up to scaling. However,
in the rank-one case it is known that for any irreducible Brascamp-Lieb
datum whose domain H has dimension strictly larger than one, the only
extremisers are the gaussian ones; see [Ba2, Th.4]. Further analysis of the
extremisers in the rank-one case was conducted to [CLL]. We cannot fully
generalise this analysis to the higher-rank case. We do however have the
following partial result (which is subsumed in [V2] where this problem is
solved completely).

Theorem 9.3 (Uniqueness of extremisers). Let (B, p) be an extremisable
Brascamp—Lieb datum with 0 < p; < 1 for all j. Suppose also that the
spaces B} Hj are all disjoint except at 0, thus B; H;N B} H; = {0} whenever
1 <i<j<m. Then iff = (f;) is an extremising input, then all the
fj are gaussians, thus there exist real numbers c¢; > 0, positive definite
transformations A; : H; — Hj;, and points x; € H; such that fj(z) =
cjexp(—m(Aj(z — x;), (x — ;) m;)-

REMARK 9.4. Remark 4.9 tells us that the permitted z;’s in the conclusion
of the theorem are precisely of the form B;w as w varies over H.

REMARK 9.5. The condition p; < 1 is automatic if one also assumes that
(B,p) is simple, dim(H) > 1, and that dim(H;) > 0 for all j, as can
be seen by testing (8) on one-dimensional subspaces of H not in the kernel
of Bj. In the rank-one case (Example 1.7), the condition that the B} H; are
all disjoint amounts to the assertion that no two of the vectors vy,..., vy,
are scalar multiples of each other. But in the case when two of the wv;
are multiples of each other they can easily be concatenated using Hoélder’s
inequality; if the concatenated extremiser is gaussian, then by the converse
Holder inequality we see that the original extremisers are also gaussian.
Using this observation we can recover the result of [Ba2, Th. 4] that in the
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simple rank-one case in dimensions two or greater, the only extremisers are
given by gaussians. We also recover the well-known fact that for the sharp
Young’s inequality (Example 1.5) with p1,po, ps strictly less than 1, the
only extremisers are gaussians.

Proof. Our arguments here are based on a more careful analysis of the heat
flow monotonicity argument, as in [CLL]. By Theorem 7.13 it suffices to
consider the case when (B, p) is geometric. In particular we already have
fo = (exp(—7r||:c||%{j))1§j§m as an extremising input. From Lemma 6.3 we
see that f is any extremising input for (B, p), then so is (f * fy)fy. But
since fy is Schwartz and f is integrable, we see that (f * fy)fy is Schwartz
and strictly positive (in fact it is of type idy;). Also one can easily verify
(using the Fourier transform) that (f «fy)fy consists of gaussians if and only
if f consists of gaussians. Thus to prove the claim, it suffices to do so for
inputs f which are Schwartz strictly positive functions of type idg; .

We now review the proof of Proposition 2.8, which among other things
proves BL(B, p;f) < 1 = BL(B,p). But since f is extremising, we must
have equality at every stage of the proof of this proposition. In particular,
since this proof needed (18) to be non-negative, we now see that in fact
(18) needs to be zero everywhere:

> Pi{BiB;(T — ), (7 = 7))y = 0.

Since p; > 0 for all j, we conclude that
HBj(’J— EJ)HH =0 for all ] .
Since 7 = Y ;" | piU;, we thus have

m
B; Y pi = Bt forall j.
Since pj is strictly less than 1, and ¥; lies in the range of B} Bj, we conclude

that
#j = Bj Z B " Bji;

£
Next, observe from the chain rule that 7; takes values in BfH; C H, and
we can write ¥; = w; o B; for some function w; : H; — B} H;, thus

wjoBj=Bjy P B:Bjw; o B;. (52)

iz DI
The disjointness of the spaces B;H; will now force a lot of structure on
these functions w;; this is easiest to establish using Fourier analysis and
the theory of distributions. (An alternate approach, which exploits the
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smoothness of the w;, is to differentiate (52) in various directions, designed
to eliminate the terms on the right-hand side but not on the left.) First
observe that since f is Schwartz and strictly positive, it is not hard to see
from the definition of ¥’ that the w; are continuous and grow at most lin-
early (thus we have ||w;(z)||z < Ct;i(1 + ||z]|g;) for all z € H; for some
constant Cg; depending on the input f and the index 4). In particular w;
is a tempered distribution. We can now take distributional Fourier trans-
forms of (52) in the Euclidean space H. The left-hand side is a tempered
distribution supported in B;Hj, while the right-hand side is supported in
U, £ B;H;. Thus by hypothesis, both distributions are in fact supported
on {0}. Inverting the Fourier transform, we conclude in particular that
wj o B; (and hence w;) is a polynomial. But since w; has at most linear
growth, we conclude that w; is a linear polynomial. We now specialise to
the limiting time case ¢ = 0, in which v; = —Vlog f;, taking advantage of
the fact that f; is of type idpy;, to conclude that Vlog f; is a linear polyno-
mial. Integrating this we see that log f; must be a quadratic polynomial;
since f; is integrable, the leading term must be strictly negative definite.
The claim follows by completing the square of the quadratic polynomial. O

10 Sliding Kernels

We now recast the monotonicity formulae obtained earlier as a monotonic-
ity property of sliding gaussians. This leads naturally to the question of
whether such monotonicity also holds for other kernels than gaussians; in
the linear case, we will show that this is true for log-concave kernels.

Let us first return to Proposition 2.8. A key component of the proof of
that proposition was the claim that the quantity

m
i
Q) = /H T] % (t2)dz
=1
was monotone non-decreasing in time for ¢ > 0, where

oy 1 —[|Bjz—zII%, /4t
U](t,.l‘) - (47Tt)dim(HJ')/2 /Hje f](z)dz

and (fj)i<j<m Wwas an arbitrary input. Making the change of variables
s = (4mt)"1/2, y := sz, and v := 2z, and dp;(v) = f;(v)du(v), we thus see
that the quantity

L TL( [, o0 (==t ) "o
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is monotone non-increasing in s for s > 0. We view s as a time parameter,
y as a position variable, v as a velocity variable, and u; as a velocity
distribution. Each function exp(—=| By — Us||%1j) then becomes a sliding
gaussian which equals exp(—7r||Bjy||%{j) at time s = 0 and then moves
with velocity v (where we embed H; into H using the isometry B;‘) The
above monotonicity then represents the intuitively plausible fact that the
multilinear LP norm of these sliding gaussians is maximised at time s = 0,
at which time all the gaussians are centred at the origin.

In light of Proposition 3.6, there should be an analogous monotonicity

of sliding gaussians for any Brascamp-Lieb datum (B,p) for which one
can locate a gaussian input A obeying (7) and the inequalities BfA;B; <
Yo piBfA;B; for all j. Indeed, in light of Proposition 8.9 (in the special
case G = A), the scaling condition can be dropped:
ProprosITION 10.1. Let (B,p) be a Brascamp-Lieb datum with all
the B; surjective, and let A = (Aj)i<j<m be a gaussian input such that
B;A;B; < ZZ’;I piBf A;B; for all j. Then for any positive finite Borel
measures dyj on Hj, the quantity

/, H( [, 0 (= s By =0, By = v )

is monotone non-increasing in s for s > 0.

Proof. An easy scaling argument shows that it suffices to prove this when
0 < s < (47)~Y2. The claim then follows from Proposition 8.9 in the case
G = A, after the change of variables s := (4nt) /2,y := sz, and v := z as
in the preceding discussion. O

Now we turn to log-concave kernels. We begin with a divergence esti-
mate, which is a weak analogue to Corollary 8.7.

ProproOSITION 10.2 (Divergence estimate for log-concave kernels).  Let
1 : R™® — R™ be a smooth, strictly positive, absolutely integrable function
which is log-concave (thus V*y(x) > 0 for all ). Let u be a non-zero
positive finite Borel measure, and let if : R™ — R™ be the centre-of-mass

vector field
_ S (@ — )y dp(y)

f]Rn d:“( )
Then div ¢ > 0, with equality if and on]y 11" W is a point mass.

Proof. From the definition of §/ we have
/ ¥z —y) (§7(z) — y)du(y) = 0 for all z € R". (53)
R
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Taking divergences of both sides and writing Vi = ¥V log ¥, we obtain
[ 4@ =) [(Vlog (e =), ) ) + div@)(@)] du(y) = 0.

On the other hand, from (53) again we have
[ e = u)(T1og (@ = 7. 0) — y)du(s) =

Combining these two equations we obtain
o n y)(Vilogi(z — )—Vlog¢(w—y),ﬁ—y>du(y)
div(§)(z) = Jur ¥ -
f]R" y)du(y)
Since V2logty > 0, we see from the mean-value theorem that

(Viogy(z — §) — Vlogy(z — y), 7 — y) is non-negative, and the claim fol-
lows. O

REMARK 10.3. In the gaussian case 9(z) = exp(—n(Gz,z)) the above
proposition follows from the A = G~! case of Corollary 8.7 after some
simple algebraic manipulations which we omit here.

As a consequence of this divergence estimate we obtain the following
monotonicity formula.
LEMMA 10.4 (L? monotonicity for log-concave kernels). Let : R® — R™
be a strictly positive log-concave function which vanishes at infinity. Then
for any positive finite Borel measure y on R™ and any p > 1 the quantity

e[ ([ ve-oiins)) ao

is non-increasing in time for t > 0.

REMARK 10.5. The intuition here is that the travelling waves 9 (z — vt)
are diverging from each other as t > 0 increases, and the total mass of
Jgn ¥(z — vt) du(v) is constant, so the higher L” norms should decrease.

Proof. We may assume of course that g is not identically zero. By a
limiting argument we can also assume that y is compactly supported and
1) is rapidly decreasing. We set

u(t,x) := A P(z —ot) dp(v)
Jzn m/) x — vt) du(v)
Jgn (@ — vt) du(v)
(note that the denominator is strictly positive by our assumptions on v, du).
A simple calculation then shows that we have the transport equation

Oyu + div(vu) = 0.

and

o(t,z) :==
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From Proposition 10.2 we also have

div(7) > 0.
Also by our assumptions on 1, u we see that ¥u? is rapidly decreasing in
space. The claim now follows from Lemma 2.6 with m =1, a = 0, u; := u,
and 9] := ¥, and with the reversed signs. O

REMARKS 10.6. A similar argument shows that when 0 < p < 1 the
quantity @(t) is non-increasing in time. Note that @ is constant in the
boundary case p = 1. One can easily prove a similar result when f is merely
a positive finite measure rather than a Schwartz function by a standard
limiting argument which we omit here. In the case when 1 is strictly log-
concave, a more refined analysis in the p # 1 case also shows that @ is
strictly monotone unless f is a point mass; we again omit the details.

REMARK 10.7. In the gaussian case 9(x) = exp(—n(Ax,z)) this proposi-
tion is a special case of Proposition 10.1. Indeed, the above arguments
can be easily modified to give a direct proof of Proposition 10.1 from
Lemma 2.6, using Corollary 8.7 instead of Proposition 10.2; we omit the
details.

We can apply this lemma to concrete log-concave kernels such as the
. . 2
one-dimensional heat kernel ¢(z) := e™ ™.

COROLLARY 10.8. Let f : R — R™ be a positive finite measure and

p > 1. Similarly, if u : Rt x R — R™ denotes the heat extension

u(t,z) == \/%/Reuy'z/%f(y) dy

then t1/27|| (-, 1)|| e (r) is non-decreasing int. If f is not a point mass, then
these quantities are strictly increasing in t. Here p' is the dual exponent
of p, defined by 1/p+1/p' = 1.

This innocuous-sounding result does not appear to be previously in the
literature; it can be derived by explicit computation when p > 1 is an integer
but is not trivial to prove for other values of p; one can also establish these
results directly from Lemma 2.6 of course. It is an interesting question to
ask whether an analogous result holds for the harmonic extension ¢(¢,x) of
u (with ¢/ 2’ replaced by ¢/ 1"'); this corresponds to setting ¥ (x) = m,
which is not log-concave. In this regard, it is a classical result, essentially
due to Hardy and Littlewood [HL] (see also [Du, Th.5.9]) that if p > 1,
then ¢'/7'||4(-,t)||, is bounded as a function of s, and in fact it tends to
zero as s decreases to zero. A similar claim can also be proven easily
for the heat extension. It is also amusing to note that there is a dyadic



72 J. BENNETT, A. CARBERY, M. CHRIST AND T. TAO GAFA

analogue of these monotonicity formulae: if for each integer k we let Eg(f)
denote the orthogonal projection of f onto functions which are constant
on dyadic intervals of length 2%, then it is easy to verify that the quantity
Qk/p’HEk(f)HLp(R) is non-decreasing in k.
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