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Abstract Criminal courts are today frequently confronted with statistical
evidence, notably in relation to DNA profiling. Recent experience tends to
confirm both widespread perceptions and more systematic research indicating
that probability and statistics are not handled confidently, or always
competently, by lawyers, judges, jurors or even by forensic scientists. Conceived
as a primer for legal professionals, this article reviews basic statistical
terminology and its forensic applications, and explores the options for
presenting statistical information to fact-finders effectively. In raising
awareness of the issues and by encouraging improved comprehension of
probability and statistics amongst legal and forensic science professionals, we
aim to contribute directly to the administration of justice by promoting more
successful applications of forensic statistics in legal adjudication.
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FUNDAMENTALS OF STATISTICAL EVIDENCE

E riminal courts have frequently been confronted with statistical evidence
in recent years, not least in relation to proof of identification through
DNA profiling.' One of the best illustrations is R v Dentis Adams,2 in which

the accused was charged with rape. The evidence linking Adams to the crime was,
first, a match between his DNA and that of semen obtained from the victim and,
second, the fact that he lived locally. A 'match probability' of 1 in 200 million for
the DNA was reported. The defence challenged this, countering that a figure of 1
in 20 million or even 1 in 2 million could be more appropriate.

More ambitiously, the defence attempted to invite the jury to employ formal

statistical methods in their deliberations on the evidence presented in the case. In
particular, the jury were instructed in the statistical calculus known as Bayes'
Theorem. In order to apply Bayes' Theorem to the factual scenario presented in
Adams it was necessary to assign numerical values, not only to the explicitly proba-
bilistic DNA evidence, but to all pertinent information before the jury. For
example, the victim gave a description of her attacker which was hard to reconcile

with the defendant. She also failed to pick out Adams at an identity parade. For the
purposes of illustration, a probability of 0.1 was assigned to this (palpably weak)
identification evidence on the assumption that Adams was guilty, as against a
probability of 0.9 assuming his innocence. This gives a 'likelihood ratio' of 9 in
support of innocence. In addition, a former girlfriend of Adams gave an alibi

which was not challenged at trial. This evidence was assigned a probability of 0.25

if the defendant were guilty and a probability of 0.50 if he were innocent. The jury
were then instructed in how to combine these probabilities with 'prior odds' of
guilt of 200,000 to 1 against and DNA evidence of 1 in 20 million (as calculated by

the defence).

The jury returned a verdict of guilty. In allowing Adams' first appeal against

conviction, the Court of Appeal was dismissive of the attempt to introduce proba-
bilistic reasoning into court, objecting that 'it trespasses on an area peculiarly and
exclusively within the province of the jury'. The court continued:

[W]hatever the merits or demerits of the Bayes Theorem in mathe-
matical or statistical assessments of probability, it seems to us that it is

not appropriate for use injury trials, or as a means to assist the jury in
their task ... [T]he attempt to determine guilt or innocence on the basis
of a mathematical formula, applied to each separate piece of evidence,

1 On the broader significance of probability, as the basis of all juridical evidence, see e.g. R. Allen and
P. Roberts (eds), Special Issue on the Reference Class Problem (2007) 11 E & P 243--317.

2 RvAdams[1996] 2Cr AppR467,C\ k;RvAdamns(No. 2) [1998] 1 CrAppR377,CA k.
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FUNDAMENTALS OF STATISTICAL EVIDENCE

is simply inappropriate to the jury's task. Jurors evaluate evidence and
reach a conclusion not by means of a formula, mathematical or

otherwise, but by the joint application of their individual common

sense and knowledge of the world to the evidence before them ... [T]o
introduce Bayes Theorem, or any similar method, into a criminal trial

plunges the jury into inappropriate and unnecessary realms of theory
and complexity deflecting them from their proper task?

A retrial was ordered, at which further attempts were made to describe the
Bayesian approach to the integration of all the evidence. Once again the jury
convicted, once again the case went to appeal and once again the Bayesian

approach was rejected as inappropriate to the courtroom: but this time Adams'
appeal was dismissed. InAdams (No. 2) the Court of Appeal was even more emphatic

in its condemnation of probabilistic approaches to non-statistical evidence:

[We regard the reliance on evidence of this kind ... as a recipe for
confusion, misunderstanding and misjudgment, possibly even
among counsel, but very probably among judges and, as we conclude,
almost certainly among jurors. It would seem to us that this was a case

properly approached by the jury along conventional lines ... We do not
consider that [juries] will be assisted in their task by reference to a

very complex approach which they are unlikely to understand fully

and even more unlikely to apply accurately, which we judge to be
likely to confuse them and distract them from their consideration of
the real questions on which they should seek to reach a unanimous

conclusion. We are very clearly of opinion that in cases such as this,
lacking special features absent here, expert evidence should not be
admitted to induce juries to attach mathematical values to probabil-

ities arising from non-scientific evidence adduced at the trial.4

Whether or not jurors would in practice be assisted by explicit reference to it, the

probabilistic foundation of evidence is a fact of life, with apparently increasing

salience for criminal courts reflected in cases such as Adams and Sally Clark' (to
which we return in conclusion). An alternative to the Court of Appeal's reflex defen-

siveness and suspicion of statistics is for lawyers and courts to try to get to grips with

the fundamentals of probabilistic reasoning and its associated terms of art,
including Bayes' Theorem, 'prior odds', 'likelihood ratio' and 'match probability'.

3 [1996]2CrAppR467at481-2.

4 [199811CrAppR377at384-5.

5 R v Clark [2003] EWCA Crim 1020.
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FUNDAMENTALS OF STATISTICAL EVIDENCE

This article offers a primer for legal scholars and practitioners with limited
background in statistical method. Section 1 introduces basic conceptions of
evidential value from a probabilistic perspective. Section 2 then proceeds to
explore these ideas through a glossary of statistical terminology, culminating in a
proof of Bayes' Theorem. In Section 3 we consider the competing merits of five

alternative ways of presenting statistical information to jurors at trial. Although
we endorse the likelihood ratio as our preferred approach, continuing difficulties
of juror (and lawyer) comprehension must be acknowledged. Finally, the threads
of the discussion are drawn together in Section 4, where we emphasise the crucial
importance of renewed efforts to provide lawyers, judges, jurors and scientific
experts with a basic knowledge and understanding of probability and statistics.

1. Probabilistic conceptions of evidential value

The admission of evidence describing the relative frequency of a DNA profile has
encouraged the courts to be somewhat more open to the admission of probabil-
istic evidence in general than perhaps they were before the advent of DNA

profiling. However, there is still much confusion surrounding the interpretation
of evidence to which a measure of uncertainty is attached in explicitly probabil-
istic terms. It is notable that uncertainty in relation to such evidence can be

measured quantitatively, in contrast to other types of evidence such as eyewitness
identification, for which there is no mathematical metric for gauging reliability.

A small probability for finding incriminating evidence on an innocent person does

not imply a large probability of guilt for a person on whom the evidence is found.
This seemingly innocuous statement has been the source of much confusion in the
interpretation of evidence in which probabilities have been mentioned. John

Darroch, an Australian statistician, used the following example in his evidence to
an Australian Royal Commission.' Consider a town in which a woman has been
raped. Trace evidence has been found at the crime scene which indicates that there

was one, and only one, perpetrator. It is also known that the assailant was a miner.
There are 200 miners in the town and 19,800 other men capable of having

committed the crime. Now, there is obviously room here for a debate as to the

number of people in the population to which the criminal may be presumed to
belong, i.e. the relevant population for our purposes. It is a matter of contention

whether such a population may be defined and, if so, whether its size may be deter-
mined.7

6 J. Darroch, 'Probability and Criminal Trials: Some Comments Prompted by the Splatt Trial and the

Royal Commission' (1987) 6 The Professional Statistician 3; J. Darroch, 'Probability and Criminal

Trials' (1985) 30 Newsletter of the Statistical Society ofAustralia 1.
7 Generally, see C. G. G. Aitken and F. Taroni, Statistics and the Evaluation ofEvidenceforFor ensic Scientists

(Wiley: Chichester, 2004) 274-81.
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In the example, suspects may be identified by means other than consideration of

the trace evidence. Any individual suspect must work as a miner, otherwise he
would have been excluded from the investigation earlier. Trace evidence is found

in his environment (on his clothes, in his car, in his home, etc.) which in some
sense matches the trace evidence at the crime scene but which is trace evidence

that is also associated with all other miners in the town. This numerical infor-
mation can be represented in a table with two rows and two columns, known as a

two-by-two (or '2 x 2') table, as shown in Table 1:

Table 1. Data on the frequency of trace evidence amongst miners and other males

Trace evidence Guilt Innocence Total

Present 1 199 200

Absent 0 19,800 19,800

Total 1 19,999 20,000

Table 1 illustrates why a small probability for finding incriminating evidence on
an innocent person does not imply a large probability of guilt for a person on

whom the evidence is found. Consider the 'Innocence' column, containing in total

19,999 males. Of these, 199 have trace evidence present in their environment. The
ratio of these two numbers is 199119,999, which approximately equals 1/100 or
0.01. This small number is an estimate of the probability of finding the trace

evidence on an innocent person. To reiterate: there is this small probability of finding

the evidence on an innocent person.

Now consider the probability of guilt of a person for whom trace evidence is found
in his environment. There are 200 such people, as shown in the row labelled
'Present'. Yet ex hypothesi one, and only one, of these individuals is guilty. The ratio

of these two numbers (1/200, or 0.005) estimates the probability of guilt of a person
on whom the evidence is found. Thus, we can now clearly see that the small proba-

bility (0.01) of finding the evidence on an innocent person is not equivalent to a
large probability that a person on whom the evidence is found is actually guilty. In

other words, the probability 199/19,999 is not the probability of innocence, but the
probability that trace evidence will be detected on an innocent person.

Conversely, the complement of this fraction, 1 - 199/19,999 or 19,800/19,999, is

obviously not the probability of guilt. To the contrary, given that there are 199
'false positives' in the total sample of 20,000 males and only one truly guilty

individual, it is very likely (199/200) that any person chosen at random with trace

evidence in their environment is innocent.

THE INTERNATIONAL JOURNAL OF EVIDENCE & PROOF 185



FUNDAMENTALS OF STATISTICAL EVIDENCE

The crucial consideration is to distinguish correctly between (1) the event about

whose outcome one is uncertain, and (2) the known-or presumed known-event
on which one is conditioning an assessment of probability. Suppose that the event

on which one is conditioning is the innocence of the person of interest. We might

then say: assuming that this individual is innocent, what is the probability of trace
evidence being found in his environment? There are 19,999 innocent people in the
relevant sample, as depicted in Table i's 'Innocence' column. The event, the

outcome of which one is uncertain, is the presence or absence of the evidence.
There are 199 people, known by assumption to be innocent, on whom the evidence
is present. The probability of the event of interest (presence of the evidence on an
innocent person) is therefore 199119,999.

Now consider, again, the probability of guilt of a person on whom the evidence is

found. The event on which one is conditioning is the discovery of the evidence,

that is, we are now assuming that trace evidence has been found on a particular
individual. We can see from Table l's 'Present' row that there are 200 people on
whom the evidence will be discovered. The event which is uncertain is the guilt or
innocence of the suspect. There is one, and only one, person, known by

assumption to have the evidence on him, who is guilty. The probability of the
event of interest (guilt of a suspect with trace evidence in his environment) is then
11200. The complementary probability, the probability of innocence, given

discovery of the evidence, is 1 - 11200, or 199/200.

The fallacy of equating (1) the probability of the presence of the evidence,
assuming innocence, to (2) the probability of innocence, assuming presence of the

evidence, is known to mathematicians as the fallacy of the transposed conditional.
In legal circles, it is more popularly known as 'the prosecutor's fallacy'. The prose-

cutor's fallacy was denounced by the Court of Appeal in Adams, but the lesson has
apparently not always been properly understood or taken to heart.8

The crucial distinction between different forms of conditioning is further illus-

trated by another memorable example. The statement 'If I am a monkey, then I
have two arms and two legs' is true. However, the statement 'If I have two arms

8 A recent report produced by the Nuffield Council on Bioethics states that '[t]he prosecutor's fallacy
has bedevilled the use of DNA evidence in courts': The Forensic Use of Bioinfornmation: Ethical 1ssues
(Nuffield Council on Bioethics: 2007) para. 5.20. During the course of its investigations, the
Nuffield Council made the startling discovery that one accredited forensic laboratory was
routinely committing the prosecutor's fallacy in its written reports adduced in evidence in
criminal trials. As the Council remarks (ibid. at paras. 5.30-5.32), if forensic scientists can make
such errors, it is hardly surprising that lawyers, judges and-presumably-jurors are susceptible to
making them as well.
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and two legs, then I am a monkey' is not always true! There is a direct analogy to

the interpretation of DNA profiles in a forensic context. The statement 'If I am
guilty, then my DNA profile will match that of the DNA profile at the crime scene'

(let us stipulate) is true. The statement 'If my DNA profile matches that of the

crime scene DNA profile, then I am guilty' is not always true. This is not a question
of innocent contamination or deliberate evidence tampering, etc., possibilities
which can be set aside for present purposes. The point is that DNA evidence is
inherently probabilistic, such that the simple fact of a match does not exclude

even a strong likelihood of innocence-as Table 1 demonstrated.

2. The language of probability

The examples presented in the last section made use of terminology which statisti-
cians routinely employ when discussing probability. Since this terminology is
probably unfamiliar to most lawyers, but comes naturally to statisticians-not

least when they are testifying in court as expert witnesses-it may be helpful for
readers to have statistical jargon explained more systematically. In providing such
an explanation, this section also simultaneously further explores basic concepts

of probability and their forensic applications.

As a starting point we suppose, simplistically, that before any evidence is heard

'innocent until proven guilty' means that every person in the relevant population
is equally likely to be guilty. If the relevant population were taken to be the

population of the whole world it is fairly straightforward to think of evidence that
will eliminate most of the people in the world from serious consideration as
potential suspects.

(a) Proposition
A proposition is taken to be the hypothesis put forward by one side in adversarial
trial proceedings. In criminal cases there are prosecution propositions and

defence propositions. Examples of the prosecution proposition include 'the
defendant is guilty', 'the defendant was at the scene of the crime', 'the DNA at the

scene of the crime is that of the defendant'. The defence does not necessarily need
to have a proposition, since a blanket denial of the charges puts the prosecution to
proof. Where the defence chooses to argue an affirmative case, however, examples

of the defence proposition could include 'the defendant is innocent', 'the
defendant was not at the scene of the crime', 'the DNA at the scene of the crime is

not that of the defendant'. These are all complements of the corresponding prose-
cution proposition, but the defence proposition is not the complement of the

prosecution proposition in every case. Examples include 'my brother committed
the crime' and 'I acted in self-defence'. If the defence does not put forward an

explicit proposition, evaluation of the evidence may proceed on the assumption
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that the defence proposition is simply the complement of the prosecution propo-

sition, whatever that happens to be.

(b) Relevant population

The relevant population is determined from the circumstances of the crime, and

refers to the class of individuals to which the criminal, as yet unknown, can be said
to belong. This population may be used to help determine-or, more strictly
speaking, estimate-the probability of particular evidence, for example DNA
frequencies.

The relevant population is partly defined by the defence proposition, as an
example proposed by Robertson and Vignaux demonstrates. An English tourist
was murdered in Hamilton, New Zealand, in 1992.9 A man of Maori appearance
was seen running away from the scene and subsequently washing himself in a
nearby river. Blood which did not belong to the victim was found at the scene and
analysed to produce a DNA profile. The frequency of DNA profiles is known to vary
from race to race. A Maori male was subsequently arrested and identified by the
eyewitness as the person seen running away from the scene. In this example, the
prosecution proposition is, obviously, that this individual was the perpetrator of
the murder.

The defence might have argued that the accused was indeed the person seen
running away from the crime scene, but that he was not the murderer. If this
proposition were accepted, and the murderer was not, in fact, the man seen

running away from the scene, then it turns out that we have no information about
the murderer. In particular, we have no information about the ethnicity of the
murderer. The conditioning event for the assessment of the DNA profile in this

case should therefore be that the murderer is a person of unknown ethnic origin.
The probability of the DNA profile should be determined from consideration of
the population of New Zealand as a whole (assuming for the sake of argument that
it was a New Zealander who committed the crime).

Alternatively, the defence might argue that the accused was not the person seen
running away from the scene, and that the eyewitness's identification of the
defendant as that man was mistaken. Were this proposition accepted, then the
accused is innocent but there is still reason to believe that the murderer was a man
of Maori origin. The conditioning event for the assessment of the DNA profile in
this case is that the murderer is a person of Maori origin. The probability of the
DNA profile should be determined from consideration of the Maori population of

9 B. W. Robertson and G. A. Vignaux, Interpreting Evidence (Wiley: Chichester, 1995) 36-7.
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New Zealand, not from the entire population containing Maoris and non-Maoris.
The 'relevant population' is thus determined, not only by the nature of the charge

and the evidence adduced to prove it-as reflected in the prosecution propo-
sition-but also by the arguments and evidence advanced by the defence.

(c) Prior odds

The probability that a person chosen at random from the relevant population is

guilty can be calculated, in the absence of any other information, by dividing 1 by
the number of people in the relevant population. Thus, if all we know is that there
are 1,000 individuals in the relevant population, of whom one and only one is

guilty, the probability of any individual chosen at random being the guilty
individual is 1/1000. This may be taken as a numerical representation of the belief

that the person chosen at random is just as likely, and no more likely, to be guilty
as anyone else similarly chosen at random from the relevant population. This is an
obvious simplification of reality, but it nonetheless supplies a useful working
assumption, sometimes designated the 'prior probability' (that is, prior to consid-

ering the impact of any other evidence).

The complement of the (prior) probability of guilt is the (prior) probability that
a person chosen at random from the relevant population is innocent. This

probability may be taken to be the number of people in the population minus 1,
divided by the total number of people in the relevant population. Where there are
1,000 individuals in the relevant population, the prior probability of innocence is

(1,000 - 1)11,000 = 999/1,000. Referring back to Table 1, above, the prior probability

of guilt for a person chosen at random from the relevant population would be
1120,000. The prior probability of innocence for a person chosen at random from

the relevant population would be (20,000 - 1)120,000 = 19,999120,000.

Now, the ratio of these two prior probabilities is 1 to 19,999 (i.e. 1:19,999), which
can also be written as 1119,999 (because [1120,000] /[19,999/20,000] = 1119,999). This
is known as the 'prior odds' in favour of guilt. Notice that the prior odds are very

small, much less than 1 but fractionally larger than 1120,000. The reciprocal of the

prior odds is 19,999 (because 19,99911 = 19,999), which can be read as 19,999 to 1
against guilt. Odds of 1 (sometimes expressed as 50-50) are equivalent to a prior
probability of 0.5 for each of the two relevant events (here, guilt and innocence)

since 0.510.5 = 1. Odds greater than 1 arise when the prior probability of guilt is
greater than the prior probability of innocence. Whenever, conversely, the prior

probability of innocence is greater than the prior probability of guilt (which is the
assumption at the start of all criminal trials), the prior odds will be some fraction
(much) less than 1. As odds are ratios of two probabilities, they are never negative
and only equal to zero when the numerator is equal to zero, i.e. when there are no
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individuals of interest in the relevant population. This is equivalent to saying, in

the forensic context, that the perpetrator is not within the relevant population,
such that the probability of guilt for any individual selected at random is zero.

When the denominator equals zero (no chance of innocence) the corresponding

odds are infinite (guilty by definition).

(d) Posterior odds

The probability of guilt for a person chosen at random from the population on

whom the evidence has been found is taken to be 1 divided by the number of

people in that population. The population of individuals on whom the evidence is
found is always a subset of the relevant population used in the determination of
the prior odds. In other words, the members of the population on whom the

evidence has been found constitute a subset of the initial relevant population. This

subset may be denoted the posterior population. By extension, a probability deter-
mined from this population is known as a posterior probability. It is determined

after the evidence in question has been heard (that is, posterior to the consider-
ation of that evidence).

It is expected that the size of the posterior population will be very much smaller
than that of the original population used in the determination of prior odds. The
complement of the posterior probability of guilt (for a person on whom the

evidence has been found) is the probability that a person chosen at random
from the population on whom the evidence has been found is nonetheless
innocent. This complement is taken to be the number of people in the posterior

population minus 1, divided by the number of people in the posterior

population. In Table 1, above, the probability of guilt for a person chosen at
random from the population on whom the evidence has been found would be

1/200. The probability that a person chosen at random from this population is
innocent would then be (200 - 1)1200 = 1991200. The ratio of these two probabil-

ities is 1:199, or 1/199. This number represents the posterior odds in favour of guilt.
Conversely, its reciprocal is 199, which can be expressed in words as 'the
posterior odds are 199 to 1 against guilt'. Notice that this analysis assumes that

all 200 people on whom the evidence is found are equally likely to be guilty,
without (yet) having taken into account any other evidence that might bear on

the issues in the case. This is a very big assumption, which may or may not be
warranted in the instant case. Reliance should only be placed upon it with appro-
priate circumspection.

(e) False negatives and false positives

Theoretical probabilities are axiomatic, true by definition. In the empirical world,
however, allowance has to be made for errors of various kinds. Two particularly
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significant kinds of error, which we must mention in order to set aside, are known
as 'false negatives' and 'false positives'. These two types of error can be illustrated
by considering the results of comparisons between DNA crime-stain samples and
comparison samples taken from known suspects.

In some circumstances a negative (non-match) result may be reported where the
two samples have a common source, and hence should provide a positive (match)
result. This is a 'false negative': the result reported is negative, but that result is
false. A 'false positive' report, conversely, occurs when a positive (match) result is
reported when the two samples in reality have different sources, and therefore
should have been reported as a non-match. False negative and false positive
reports can arise for a host of reasons (the details of which need not concern us
here) including contamination of samples, laboratory testing error and misinter-
pretation of test results.

Analogous terms are employed in medical diagnosis. A false negative outcome
of a test for the presence of a particular disease would be one in which the
patient does, in fact, have the disease but the test appears to rule it out. A false
positive outcome of a test for the presence of a particular disease would be one in
which the patient is actually disease-free but the test indicates they do have the
disease. The consequences of such errors are patently potentially very serious.

Errors in medical diagnosis can lead to inappropriate treatment, or to vital
treatment being withheld until it is too late to intervene successfully. In a
forensic context, a false negative report may result in a guilty suspect being
excluded from an ongoing investigation, whilst a false positive report could
potentially implicate an innocent suspect and precipitate a serious miscarriage
of justice.

(f) Probability of the evidence if the person is guilty (or is innocent)

For the purposes of undertaking probabilistic analyses for DNA profiles with a
stain from a single source, it is conventional to assume that false negatives cannot
occur, since the profile is a discrete entity rather than a measurement with which
random error is associated. On this assumption, if an individual is guilty, then the
evidence found in that individual's environment will be certain to match that
found at the crime scene; for example, it is certain that the suspect's DNA will
match the crime-stain sample. The probability of an event which is certain is 1.
Thus, assuming no false negatives, the probability of the evidence (for example, a
DNA match) if the person is guilty is 1. All our calculations here are premised on
this assumption.
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Referring back to the mining example summarised in Table 1, above, the
assumption of no false negatives is reflected in the fact that trace evidence will

definitely be found on the guilty suspect (depicted by '1' in the first cell of the
'present' row). There are also 19,999 innocent people in the relevant popu-
lation of males in the town. Of these, 199 have evidence on them which is linked

to the crime scene (as shown in the second cell of the 'present' row). Thus, the
probability of finding the evidence in the environment of a person who is
(nonetheless) innocent-the probability of the evidence assuming innocence-

equals 199/19,999.

(g) Likelihood ratio

The ratio of the probability of the evidence if the person is guilty, divided by the
probability of the evidence if the person is innocent, is known as the likelihood ratio.
In the mining example, the likelihood ratio is calculated by dividing 1 by
(199/19,999), which is 19,999/199. This in turn is approximately equal to
20,000/200, or-simply-100. A verbal interpretation of this result is that 'the

evidence is 100 times more likely if the person is guilty than if he is innocent'.

We can once again invoke the mining example to illustrate this important general
result, which in fact underpins the entire probabilistic approach to the evaluation
of evidence:

Prior odds (of guilt, for a person chosen at random) = 1/19,999
Likelihood ratio (of the evidence) = 19,999/199
Posterior odds (of guilt, for a person chosen at random) = 1/199.

Note that:

1/199 = (19,999/199) x (1/19,999)

or in words:

Posterior odds = Likelihood ratio x Prior odds.

This is a numerical verification of the general result known as Bayes' Theorem,
after the 18th century Reverend Bayes who is credited with discovering it." The

10 See e.g. Richard Lempert, 'Some Caveats Concerning DNA as Criminal Identification Evidence:

With Thanks to the Reverend Bayes' (1991) 13 Cardozo Law Review 303. The now-celebrated 'Essay
Toward Solving a Problem in the Doctrine of Chances' was discovered amongst the papers of the
Reverend Thomas Bayes (1702-61), and published posthumously by the Royal Society in 1763: see
David A. Schum, The Evidential Foundations of Probabilistic Reasoning (Wiley: New York, 1994) 47-52.
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likelihood ratio is the factor which converts prior odds into posterior odds. More

fully, the posterior odds in favour of guilt are equal to the product of (i) a ratio of
the probability of the evidence if the suspect is guilty, to the probability of the

evidence if the suspect is innocent; and (ii) the prior odds in favour of guilt.

Consider two propositions, the proposition put forward by the prosecution and
the proposition put forward by the defence. In their most simple forms, these two
propositions may be, respectively, that the suspect is guilty and that the suspect is

innocent. There could just as easily be other pairs of propositions: the suspect was
at the scene of the crime and the suspect was not at the scene of the crime; or
the DNA of the crime-stain sample came from the suspect and the DNA of the

crime-stain sample came from some other person (unrelated to the suspect), for
example. The general result given by Bayes' Theorem may then be written as:

the posterior odds in favour of the prosecution's proposition are equal to the
product of (i) a ratio of the probability of the evidence if the prosecution's
proposition is true, to the probability of the evidence if the defence propo-

sition is true; and (ii) the prior odds in favour of the prosecution's
proposition.

This result has several interesting implications, some of which have important

forensic applications:

(i) A likelihood ratio greater than one means that the posterior odds
are greater than the prior odds. Evidence for which the likelihood
ratio is greater than one may be said to support the prosecution's

proposition.
(ii) A likelihood ratio less than one means that the posterior odds are less

than the prior odds. Evidence for which the likelihood ratio is less
than one may be said to support the defence proposition.

(iii) A likelihood ratio equal to one means that the posterior odds are

equal to the prior odds. Evidence for which the likelihood ratio equals
one may be said to be irrelevant, both logically and legally, in that the
evidence leaves the probability of the truth of either proposition

exactly the same as it was before the evidence was taken into account.
Evidence which is incapable of affecting the prior odds, either in
favour of the prosecution (likelihood ratio greater than 1) or in favour

of the defence (likelihood ratio smaller than 1), has no utility in
adjudication. It cannot logically assist the fact-finder to arrive at a

decision, because the probability of the accused's guilt or innocence is

wholly unaffected by that evidence.
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(iv) As we have already seen, a likelihood ratio is a ratio of two probabil-

ities which takes a value between zero (when the probability of the
evidence if the prosecution proposition is true equals zero, implying

that its complement, the defence proposition, is certainly true) and
infinity (when the probability of the evidence if the defence propo-

sition is true equals zero, implying that the prosecution proposition is
definitely true). Note that, whereas probabilities take values between
0 and 1, likelihood ratios take values between 0 and infinity. The

likelihood ratio is sometimes taken to be a measure of support for the
relevant proposition.

(v) There is symmetry about 1 in the values of the likelihood ratio. A value

of, say, 1000 means that the posterior odds are greater than the prior
odds by a factor of 1000. As a numerical illustration, prior odds of
1110, for example, would be converted to posterior odds of 1000/10,

that is, 100. A value of 1/1000, by contrast, means that the posterior
odds are smaller than the prior odds by a factor of 1000: thus, prior
odds of 10 would be converted to posterior odds of 10/1000, that is,

11100.
(vi) Evaluation of a relative frequency does not require a study of the

entire population, of which the relevant population is a subset. A
sample from the entire population is sufficient. Thus, frequencies

derived from forensic databases of fingerprints, shoe-prints, glass,
and DNA samples, etc., can be used for probabilistic inference. It is not

necessary to collect samples from every conceivable source or donor.
(vii) In criminal adjudication, the values of the prior odds and the

posterior odds are matters for the judge and jury, in accordance with

the normal division of labour in forensic fact-finding. The value of the
likelihood ratio, however, is a matter for the forensic scientist or

other expert witness, as it is an assessment of the objective probative
value of their evidence. Assessments of prior and posterior odds
require subjective opinions which are the responsibility of the
fact-finders. The scientist does not need to know values for either the

prior or the posterior odds. The likelihood ratio, or a range of such
ratios, can be calculated on the basis of the assumed truth of the
propositions put forward by the prosecution and defence.

(viii) If a value of zero is assigned to the prior probability either of the truth
of the prosecution's proposition or the truth of the defence propo-
sition, the corresponding posterior probability will also necessarily be

zero, regardless of the value of the likelihood ratio. This is a logical

consequence of the arithmetic result that the product of zero and any
number is zero. It follows that any potential juror who believed that
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'innocent until proven guilty' equates to a probability of zero for the

truth of the prosecution's proposition should be barred from jury
service, because such a person is also logically committed to finding a

posterior probability of guilt to be zero, regardless of the strength of the

evidence against the defendant. Al alternative interpretation of the
dictum 'innocent until proven guilty' would be to assume that the
accused is 'just as likely to be guilty as anyone else'." This interpre-

tation has been challenged on the basis that it is not normally realistic
to assume that the accused is just as likely to be guilty, no more and

no less, than any other person in the relevant population, which could

conceivably be the population of the entire world. It must be under-
stood, however, that what is being advocated is a default interpre-
tation to be adopted prior to the consideration of any detailed

information (i.e. evidence) actually bearing on the case. Once evidence
is led, for example in relation to the location of the crime, the vast
majority of theoretical suspects will be eliminated from any further

consideration, and most of those still remaining will have probabil-
ities of guilt considerably lower than the accused (whom the prose-

cution must, presumably, be able to place at the scene, otherwise the

case against him would never have been brought to trial).

3. Presenting statistics in court

It is implicit in the foregoing discussion that uncertainty can be described in

different ways, for example as relative frequencies, likelihood ratios or posterior
odds. This is one way of characterising a central bone of contention in Adams, 2

where the Court ofAppeal seemed drawn to whatever mode of presentation would

best steer clear of mathematical formulae and jargon likely to bemuse jurors.
Moreover, researchers have shown that experimental subjects tend to assign
different degrees of weight to pieces of evidence with identical probabilities

depending merely upon the form of its presentation." Some verbal formulations
are prone to make evidence appear stronger, whilst other formulations make that
same evidence appear weaker in the eyes of laypeople-those same laypeople who

11 For the rejection of a third alternative, see Richard D. Friedman, 'A Presumption of Innocence, Not
of Even Odds' (2000) 52 Stanjbrd Law Review 873.

12 Also see Mike Redmayne, 'Presenting Probabilities in Court: The DNA Experience' (1997) 1 E & P
187; and IanW. Evett, Lindsey A. Foreman, Graham Jackson and James A. Lambert, 'DNA Profiling:
A Discussion of Issues Relating to the Reporting ofVery Small Match Probabilities' [2000] Crim LR
341.

13 F. Taroni and C. G. G. Aitken, 'Probabilistic Reasoning in the Law' (1998) 38 Science & Justice 165-77
and 179-88; Jonathan L. Koehler, 'The Psychology of Numbers in the Courtroom: How to Make
DNA-Match Statistics Seem Impressive or Insufficient' (2001) 74 Southern California Law Review 1275.
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sit on juries and return verdicts in criminal trials. Choice of mode of presentation

for statistical evidence is therefore neither a purely theoretical matter nor a trivial
issue that can be casually brushed aside.

This section examines the relative merits of five competing approaches to
presenting statistical evidence to jurors in criminal trials: (a) profile frequency; (b)

percentage exclusion; (c) numerical conversion; (d) likelihood ratio; and (e)
posterior odds. The analysis is informed by our own empirical research, in which
Scottish law students, forensic science students, practising lawyers and forensic

scientists were exposed to various methods of presenting DNA profile evidence.14

(a) Profile frequency

The profile frequency is the frequency of the characteristic of interest in the
relevant population. For example, the profile frequency of blood evidence found
at a crime scene and associated with the perpetrator might be 10%, meaning that

10% of the relevant population shares that particular blood group. These calcula-
tions assume that individuals in the relevant population are not genetically
related; an assumption which could of course be rebutted in practice, i.e. where

the relevant population includes blood relatives.

(b) Percentage exclusion
The percentage exclusion is the proportion of the population excluded from the

relevant population by particular evidence, for example because their blood group

does not match that of the crime-scene sample. The percentage exclusion is the
complement of the profile frequency, which can also be described as the

proportion of the population not excluded from the relevant population by the
evidence in question. If the profile frequency of blood analysis evidence is 10%, the
percentage exclusion is 90%. If the percentage exclusion is known to be 60%, then

the profile frequency must be 40%.

The percentage exclusion formulation is related to the probability that two people

share the same profile. It is sometimes known as the random man not excluded
(RMNE) mode of analysis.' 5 In Harrison vIndiana,6 for example, the frequency of the

genetic characteristic in the relevant population was 7.4%. The prosecution expert
testified that although her test had been able to exclude all but 7.4% of the

14 Taroni and Aitken, above n. 13.
15 See P. Gill, C. Brenner, J. S. Buckleton, A. Carracedo, M. Krawczake, W. R. M yr, N. Morling, M. Prinz,

P. M. Schneider and B. S. Weir, 'DNA Commission of the International Society ofForensic Genetics
(ISFG): Recommendations on the Interpretation of Mixrures' (2006) 160 Forensic Science International
90-101.

16 Harrison v State, 644 NE 2d 1243 (1995), Supreme Court of Indiana.
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relevant population (13,000 white males living locally) as the source of the

evidential specimen, the defendant had not been excluded. In other words, the
percentage exclusion for the genetic test in Harrison v Indiana was (100 - 7.4)% =

92.6%.

For a suspect who has not been excluded, the weight of the evidence against him
grows in proportion to the size of the percentage exclusion. Evidence with a

percentage exclusion of 99% is plainly more probative than evidence with a
percentage exclusion of 75% for the same relevant population, since in the first
case the accused is amongst only 1% of individuals with a matching profile, as

opposed to 25%-1 in 4-in the second scenario. In Harrison, where the relevant

population numbered 13,000 white males and the evidential specimen could only
have come from one of the 7.4% of that population not excluded by the expert's

test, the accused was one of 962 people (7.4% of 13,000) who may have committed

the crime (or, more correctly, who might have been the source of the specimen). If
the percentage exclusion had been 99%, the field of eligible suspects would have
been further narrowed down to only 130 individuals. Conversely, a profile
frequency of 25%-corresponding to a percentage exclusion of 75%-would have

left 3,250 eligible suspects.

As these examples imply, RMNE gives a broad indication of the probative value of
particular evidence, but limited assistance with drawing inferences and arriving

at conclusions in the specific case under examination. On the facts of Harrison, for

example, the statistical evidence still left the fact-finder with 961 other potential

candidates as the perpetrator in addition to the accused. But the fact-finder needs
to determine whether or not this particular accused currently standing trial is
guilty, not only whether he is a member of a bigger or smaller class of potentially
guilty individuals. RMNE does not offer a balanced or comprehensive assessment
of the evidence, because it is focused on the denominator of the equation, speci-

fying the classes of individuals excluded or not excluded by a particular test. It
does not pay sufficient attention to the numerator, relating to the individual
accused. A more balanced assessment can only be achieved using the likelihood

ratio, as we explain below.

Harrison foreshadowed guidelines for presenting DNA evidence at trial laid down

by the English Court of Appeal in Doheny and Adans.1 7 The court suggested that
'provided that the expert has the necessary data, it may ... be appropriate for him

to indicate how many people with the matching characteristics are likely to be
found in the United Kingdom or a more limited relevant sub-group, for instance,

17 RvDoheny and Adams [1997] I CrApp R369 at 375.
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the Caucasian, sexually active males in the Manchester area'. Dubbing this profile

frequency the 'random occurrence ratio', the Court of Appeal endorsed the
following direction as a model for trial judges to adopt, appropriately tailored to

the instant facts, when directing juries on the interpretation of DNA evidence:

Members of the jury, if you accept the scientific evidence called by the
Crown this indicates that there are probably only four or five white
males in the United Kingdom from whom that semen stain could have

come. The defendant is one of them. If that is the position, the
decision you have to reach, on all the evidence, is whether you are
sure that it was the defendant who left that stain or whether it was

possible that it was one of that other small group of men who share
the same DNA characteristics.

Compared to the expert's conclusion in Harrison that the accused was one of 962
men from whom the crime sample might have come, a direction informing the

jury that the accused is one of 'only four or five white males in the United
Kingdom' who could be the crime-stain donor certainly appears more illumi-
nating. However, DNA technology has developed apace since the Court of Appeal's

pronouncement in Doheny, such that the figures associated with a matching DNA
profile are now so small that the Doheny direction makes little sense. For example,

with a 'random occurrence ratio' (probability of a random match) calculated at 1
in a billion, the jury would have to be told that the accused is one of no more than

six people in the world with a matching profile.

(c) Numerical conversion
A third approach to organising and presenting statistical information is to
calculate the expected number of people that would have to be examined before
another person with a profile matching the crime stain and the accused is found.

In Ross v State,1" for example, the frequency of the genetic characteristic in the
relevant population was 1 in 209,100,000. As an explanation of this number, the

expert said he had a database of blood samples from all over the country and he
posed the rhetorical question: 'How many people would we have to look at before

we saw another person like this?' The answer he gave to the jury was 209,100,000.
However, this testimony was in fact an example of 'numerical conversion error',
which we have discussed more fully elsewhere.' 9

18 Ross v State, 1992 WL 23575 (Tex. App.-Hous. (14 Dist.) 13 February 1992), also discussed in Taroni and

Aitken, above n. 13.
19 Aitken and Taroni, above n. 7 at 83-5.
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The question may be rephrased in terms which are more explicitly probabilistic.

Given a profile frequency of 1 in 209,100,000, how many people would need to be
tested such that the probability of finding a matching profile is at least 0.5? The

answer is 145 million. The expert's answer of 209,100,000 overstates the value of

the evidence (by increasing the size of population required to find another match)
in favour of the prosecution by a factor of over 25%, and to that extent was preju-
dicial to the defence. If a total of 209,100,000 people were tested, the probability of
finding at least one other match is actually 0.632, easily better than a 50-50 bet.

Match profiles greater than 0.5 might be specified, to model more closely the
criminal standard of proof beyond reasonable doubt. If a probability of 0.9 were

specified instead, for example, one would expect to have to test around 480
million individuals, more than double the number specified by the expert in Ross,

before encountering a match. The expert's 209 million figure thus understates the

value of a match.

In summary, the expert's conclusion is necessarily problematic, owing to the

inherent uncertainty in the calculations and expressions of probability. With
uncertain events, and a finite set of possible outcomes, it is impossible to state

with certainty how many occurrences would have to be observed before the
outcome of interest, for example a DNA match, would be seen. An example more
familiar to UK readers makes this point explicit. The probability of winning the
jackpot in the UK lottery is approximately 1 in 14 million. However, someone who

plays the lottery regularly is not certain to hit the jackpot only on the 14 millionth
play, and not before. A punter might never win the lottery in many more than 14
million attempts. Alternatively, he could win on the very next draw-which is,

presumably, precisely the allure of lotteries for punters. A win on the next draw is
an outcome that has a probability of 1 in 14 million. However, the probability that
at least one person will win on the next draw if there are 14 million players is

roughly 0.632. For populations larger than the reciprocal of the profile frequency,

the probability that at least one other person has the same profile is greater than
0.632 and the probability increases as the population size increases. Thus for a
frequency of 1 in 1,000 and a population size of 2,000 the probability is 0.865; for a

population of size 5,000, the probability is 0.993. Beyond such discrete probabil-
istic statements, nothing more can be said in terms of predicting concrete

(empirical) outcomes.

This type of analysis may inform further criticisms of the direction endorsed by

the Court of Appeal in Doheny. Consider a hypothetical case in which there is a DNA
match probability of 1 in 1,000 and a relevant population of 1,000. ADoheny ruling
would be to the effect that 'there is probably only one person in the population
from which the stain could have come', which appears to be pretty damning
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evidence against the accused." However, the posterior odds of guilt in this case are
actually approximately 1:1 (evens, or 50:50), 21 equating to a posterior probability

of only 0.5 -which nobody would regard as proof 'beyond reasonable doubt'.

It is difficult to interpret the importance of the value attached to the probability

that there is at least one other individual in the relevant population with a
matching profile. This probability does not contribute directly to an evaluation of

the evidence. What is required, but not supplied by numerical conversions of this
probability, is an explicit statement about the relationship between the odds in
favour of guilt before the presentation of the evidence and the odds in favour of

guilt after the presentation of that evidence. This is the role of the likelihood ratio
in Bayes' Theorem.

(d) Likelihood ratio
The likelihood ratio was defined and explained in Section 2(g). It is the ratio of the
probability of the evidence assuming guilt divided by the probability of the

evidence assuming innocence. In many cases the numerator of the likelihood ratio
equals 1, assuming no false negatives. However, in some important cases this is
not so. Examples include bodily fluid stains consisting of a mixture of contri-

butors or cases involving measurements such as the elemental compositions of
glass fragments or the chemical compositions of drugs. The likelihood ratio allows

prior odds to be updated into posterior odds in accordance with Bayes' Theorem.
Trial judges have occasionally emphasised the likelihood ratio in directing juries.

In the New Zealand High Court case of Pengelly, for example, the forensic scientist
remarked:

In the analysis of the results I carried out I considered two alterna-

tives, either that the blood samples originated from Pengelly or that
the ... blood was from another individual. I find that the results I
obtained were at least 12,450 times more likely to have occurred if the

blood had originated from Pengelly than if it had originated from
someone else.2

20 Also see Mike Redmayne, Expert Evidence and Criminaljustice (Oxford University Press: Oxford, 2001).
21 A match probability of 1 in 1,000 gives a likelihood ratio of [11(111000)] = 1000 When multiplied by

the prior odds of I in 999 ((1/1000)/(999/1000) = 1/999) we obtain posterior odds of 1/999 x 1000
which is approximately 1. This is because the calculation uses a match probability of I in 1,000
with a population of 999 innocent people among whom there is an expectation that one has the
incriminating profile, together with one guilty person who also has the profile.

22 R v Pengel, [1992] 1 NZLR 545, NZCA, quoted in Robertson and Vignaux, above n. 9 at 23-4.
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Notice the conditioning on particular propositions. In the Pengelly direction, the

crucial phrases are 'the blood samples originated from Pengelly' and 'from
another individual'. The relevant likelihoods are the likelihoods of obtaining such
results under the assumptions of these propositions. In this instance, the forensic

scientist accurately characterised the strength of the evidence by reference to its
likelihood ratio. Unfortunately, courts and even experts themselves are not always

so commendably careful. In the English case of Gordon, for example, the scientist
summarised their evidence as:

there was a visual match between the critical samples and the appel-
lant's sample which showed a likelihood that the appellant was the
rapist in each case. 3

What the expert in Gordon should have referred to is the likelihood of the evidence if
the accused were the donor of the sample, compared to the likelihood of the

evidence if somebody else donated it, their ratio being the likelihood ratio. By

(apparently) commenting on the likelihood of a conditioning proposition-the
prosecution's proposition of guilt-the expert in Gordon trespassed on the terrain

of the fact-finder and consequently perpetrated the prosecutor's fallacy. If the

Court of Appeal's summary of the evidence is accurate, it would appear that this
error was committed by the defence expert as well as by experts instructed by the
prosecution.

Even if the likelihood ratio is properly presented by expert witnesses and faithfully
summarised by the trial judge, it does not necessarily follow that juries will
interpret it correctly. Indeed, in our survey research respondents were notably

nonplussed by the use of the likelihood ratio in a summary similar to that in
Pengelly, commenting that the likelihood ratio was 'too difficult to understand'

and 'very confusing', or even that they had 'no idea what it means'.24 it is worth
recalling that our respondents were all people associated with legal process, as

students or practitioners of forensic science or law. If likelihood ratios defeat this
relatively well-informed audience, it may well be unrealistic to imagine that lay
jurors could grapple with them successfully (though the Nuffield Council's report
still advocates the education of jurors).

(e) Posterior odds

We saw in the last section that posterior odds can be calculated by multiplying
prior odds by the likelihood ratio. Rather than presenting jurors with likelihood

23 R v Gordon [1995] 1 Cr App R 290 at 295, CA.
24 Taroni and Aitken, above n. 13.
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ratios, which they might not be able to interpret properly, a fifth presentational
alternative is for experts to cite posterior odds. This could be done on an explicitly

conditional basis, to avoid any impression that the expert is attempting to usurp
the role of the fact-finder in calculating prior odds for the other evidence in the
case. For example, an expert might testify:

If your prior odds in favour of guilt were x before you heard this evidence,
then your posterior odds in favour of guilt, after hearing the evidence, would
be the product of V and x (where V is the value of the evidence).

For a value V of 1 million, for example, the expert might explain to the jury:

If your prior odds were 1000:1 against guilt, then your posterior odds, having
heard my evidence, would be 1000:1 in favour of guilt.

It would be possible to express posterior odds in terms of a verbal scale rather than
in raw numbers." In Bilal2" a handwriting expert, testifying to the similarity

between the appellant's script and the writing on stolen cheques, proposed a
10-point scale, with level-i representing a 'conclusive' match and level-10 'did not

write' (conclusive non-match). In the instant case, the degree of similarity between
the appellant's handwriting and the questioned documents (cheques) was
assessed at level-4, defined as 'distinct possibility/could well have been written by'.
It is plausible to suggest that verbal formulations are more easily grasped byjurors
(and doubtless by lawyers and judges, too) than numerical statistics or mathe-

matical probabilities. Whether such intuitive appeal translates into an accurate

grasp of the probative value of evidence is another question, however. In Bal, the
expert further characterised her evidence as demonstrating that it was 'more
likely than not' that the appellant was the author of the writing on the stolen

cheques. One is left to ponder whether this level of confidence is better expressed
as 'distinct possibility' or 'level-4 on a 10-point scale', or in some other way, such as
a likelihood ratio or profile frequency.

Some may suggest that it is better for the jury to hear multiple alternative formu-
lations of statistical evidence, with their accompanying explanations and

divergent meanings. However, we believe that such multiple formulations will
serve only to confuse lay fact-finders. A single statement of a likelihood ratio,

25 As proposed by 1 W. Evett, 'Towards a Uniform Framework for Reporting Opinions in Forensic

Science Casework' (1998) 38 Science andJustice 198-202.
26 R v Blala [2005] EWVCA Crim 1555.
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accompanied by general explanatory information as recommended by the

Nuffield report, will communicate the true value of the evidence more effectively.

4. Conclusions

The manner in which statistical evidence is presented can influence an audience's

assessment of its probative value. In our survey research, students of forensic
medicine and forensic science who received evidence in the form of percentage

exclusions and relative frequencies gave higher posterior assessments of the
proposition that the suspect committed the crime, and were more willing to find
the suspect guilty, than those who received the evidence in the form of a
likelihood ratio or as posterior odds. However, all survey respondents were con-

servative in their assessments of probabilities. In all samples analysed, the
respondents' posterior probabilities were lower than those calculated using Bayes'

Theorem. This suggests that even forensic professionals consistently under-
estimate the true probative value of probabilistic evidence 27

The Bayesian framework set out in this article is a powerful tool for interpreting
evidence, not least for forensic scientists and other experts who write reports

submitted to court and sometimes testify in person at trial. Bayes' Theorem forces

one to think carefully about the events to which probabilities need to be assigned,
and to be explicit about the propositions on which any statement of probability is

conditioned. It also requires the forensic practitioner to view physical evidence
from opposing viewpoints, since, in order to calculate the likelihood ratio, it is
necessary to consider both (i) the probability of the evidence, assuming that the

accused is guilty; and (ii) the probability of the evidence, assuming that the accused is
innocent. It is always salutary to recall, and to articulate expressly, that this proba-

bility calculus necessarily anticipates adventitious matches-false positives,
where the crime-sample matches the profile of an innocent suspect-albeit that

the probability of a random match may be very small for certain kinds of forensic
technology, the most prominent being DNA profiling. The difficulty of assigning
numerical values to the uncertainties surrounding the outcomes of certain events
may be perceived as a practical disadvantage of this approach. However, even the

somewhat arbitrary assignment of quantitative determinations to certain
subjective beliefs (for example the guilt or innocence of a defendant) may facil-

itate illuminating comparative assessments of probative value.

The recent report by the Nuffield Council on Bioethics concluded that:

27 A finding replicated by D. A. Nance and S. B. Morris, 'Juror Understanding of DNA Evidence: An
Empirical Assessment of Presentation Formats for Trace Evidence with a Relatively Small

Random-Match Probability' (2005) 34Jouirnal ofLegal Sta dies 395-444.
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In view of the difficulties with the presentation of complex statistical
information in the courtroom, we recommend:

- that professionals (including judges) working within the criminal
justice system should acquire a minimum standard of understanding
of statistics, particularly with regard to DNA evidence;

- that trial judges ensure statistical evidence is accurately presented
during trials, and that the decision in the R. v. Dolieny and (Gary) Adams

(1997) 1 Cr App R 369 judgment regarding the correct presentation of
DNA evidence is adhered to; and

" that in all cases where bioinformation evidence is adduced, intro-
ductory information should be made available to july members, to
ensure some basic understanding of the capabilities, and also the
limitations, of such evidence.28

Although we have argued in this article that the Doheny direction is no longer
viable for DNA evidence with veiy small match probabilities, we welcome the
general thrust of the Nuffield Council's recommendations. Basic training in statis-
tical method is essential for criminal justice professionals, who increasingly
encounter statistics in their daily working lives. Fact-finders must also grasp the
rudiments of statistical interpretation if their decisions are to be securely rooted
in logic and evidence. Contrary to some of the pronouncements of the Court of
Appeal in Adams, common sense is not always a reliable guide to probative value;
many probabilistic results are counter-intuitive. Bayes' Theorem is superior to
common sense in this regard.29

Debate about the role of statistics and probabilistic reasoning in the courts
rumbles on. The extent of the confusion still routinely engendered by forensic
statistics is encapsulated in the well-known case of Sally Clark. At Clark's trial for
murdering her two infant sons, an expert paediatrician testified that the proba-
bility of two cases of sudden infant death syndrome (SIDS) occurring in the same
family was 1 in 73 million. This figure was arrived at by squaring the relative
frequency of a single SIDS case, calculated at 1 in 8,543 live births for a
middle-class family like the Clarks. With around 650,000 live births per annum in

28 'the Forensic Use of Bioinforniation: Ethical Issues (Nuffield Council on Bioethics: 2007) para. 534.

29 In the recent case of Keran Henderson, a childminder was convicted of shaking a baby to death
after the jury heard evidence from a dozen medical and forensic experts. One juror reportedly

commented: 'Ultimately, the case was decided by laymen and laywomen using that despicable
enemy of correct and logical thinking, that wonderfully persuasive device, common sense': The
Tines, 19 December 2007.
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England and Wales, an instance of double-SIDS could be expected to occur once in
about 100 years (100 x 650,000 = 65 million births in 100 years).

At Clark's first appeal against conviction," written evidence was considered by the

court on the relative frequency of infant homicides. This evidence established that
there are between 20 and 30 infant homicides a year in England and Wales. Put
together with a figure of 650,000 live births annually, these figures suggest upper
and lower estimates of the probability that an infant will be murdered of roughly

1 in 21,700 and 1 in 32,500. The overall rate of SIDS (for all socio-economic groups)
was roughly 1 in 1,300 in the same period. Dividing that SIDS rate by the infant
murder rates produces ratios of approximately 17 (based on the lower

boundary-estimate of 20 infant homicides per year) and 25 (based on the upper
estimate of 30 infant homicides). In other words, it can be said that an infant is
somewhere between 17 and 25 times more likely to be a SIDS victim than a

homicide victim. Al exact analogue with the figure of 118,543 for families like the
Clarks is difficult to determine since infant homicide rates for families like the
Clarks are difficult to determine. However, it is a reasonable assumption that the

ratio in favour of homicides will still be greater than 1.

On appeal, it was argued for Clark that the jury might have taken a different view

of the evidence if they had been presented with this statistical comparison

directly. Instead:

the prosecution invited the jury to adopt the figure of 73 million as
having a significance in itself when, without reference to the
likelihood of a competing possibility, the figure has no significance or

relevance.

Dismissing Clark's appeal on all grounds, the Court of Appeal specifically found

no merit in the statistical argument being advanced. Observing that the
'competing possibility' in question was 'double infant murder by a mother', the

court continued:

That maybe capable of being expressed in terms of a statistical proba-

bility, but legally speaking the exercise is not realistic ... [I]t is not an
exercise the courts would perform.

30 R v Clark, 2 October 2000, CA (LEXIS Transcript).

31 Quoted from the appellant's skeleton argument, ibid. at [168].
32 Ibid. at [176].
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No explanation was given as to why the exercise was not 'legally' realistic. The
court referred with approval to Adams (No. 2), where it was said, emphatically, that
'expert evidence should not be admitted to induce juries to attach mathematical

values to probabilities arising from non-scientific evidence adduced at the trial'."

The Court of Appeal's final conclusion in Clark (No. 1) was unequivocal:

If there had been no error in relation to statistics at the trial, we are
satisfied that the jury would have convicted on each count. In the
context of the trial as a whole, the point on statistics was of minimal

significance and there is no possibility of the jury having been misled
so as to reach verdicts they might not otherwise have reached. 4

Despite the conclusory appearance of this determination, this was not the end of
the legal drama. At the second attempt, Sally Clark's appeal was allowed, her
convictions were quashed and she was released from prison." The Court of
Appeal's change of heart was mainly inspired by fresh medical evidence. This fresh
evidence cast doubt on the original post-mortem reports which had been

presented to the trial jury and which had indicated foul play. The court
nonetheless went out of its way to comment on the statistical evidence which the
jury had heard, and was particularly critical of the figure of 1 in 73 million
invoked by Professor Sir Roy Meadow:

If there had been a challenge to the admissibility of the [statistical]
evidence we would have thought that the wisest course would have
been to exclude it altogether. Quite what impact all this evidence

will have had on the juiy will never be known but we rather suspect
that with the graphic reference by Professor Meadow to the chances of
backing long odds winners of the Grand National year after year it
may have had a major effect on their thinking notwithstanding the

efforts of the trial judge to down play it.... Thus it seems likely that if
this matter had been fully argued before us we would, in all proba-
bility, have considered that the statistical evidence provided quite a

distinct basis upon which the appeal had to be allowed.M

So, in the space of two appeals in the same case, statistical evidence which was of
such 'minimal significance' that there was 'no possibility of the jury having been
misled so as to reach verdicts they might not otherwise have reached' was

33 Rv Adams (No. 2) [1998] 1 CrApp R 377 at 385, CA.
34 Rv Clark1, 2 October 2000, CA, at [272].

35 Rv Clark [2003] EVCA Crim 1020.

36 Ibid. paras. 177-178, 180.
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transformed into 'a distinct basis upon which the appeal had to be allowed'! It is a
notable feature of this litigation histoiy that the expert witnesses involved in the

Sally Clark case proved no more adept in their handling of statistics than the

lawyers (defence as well as prosecution), judges or-one must presume-the jurors
who grappled, evidently with limited success, with the evidence they were called

upon to interpret.

A broad education in forensic statistical method cannot be acquired overnight, or

imparted through a single journal article. But it is necessary to start somewhere,
and the broad dissemination of such learning is urgently required. Conceived as a
primer for legal professionals, this article has reviewed basic statistical termi-

nology and its forensic applications and explored the options for presenting
statistical information to fact-finders effectively. Some problems remain
unresolved. Although Bayes' Theorem and likelihood ratios are in principle our

preferred methods for presenting probabilities in court, it remains to be seen
whether information presented in this form can be interpreted correctly by lay
fact-finders, or by the judges who direct them on the evidence. Meanwhile, in

raising awareness of the issues and by encouraging improved comprehension of
probability and statistics amongst legal and forensic science professionals, we
hope that this article may contribute directly to the administration of justice by

promoting more successful applications of forensic statistics in legal adjudi-

cation. 7

37 The Royal Statistical Society has established a Worldng Group on Statistics and the Law, under the
chairmanship of the first author, to improve the understanding and use of statistics in the
administration of justice. The group provides an interface for the Society with the legal, forensic
scientific and justice communities. It is working with forensic scientists, barristers, advocates and
members of the judiciary to develop educational programmes on the role of statistics and

probabilistic reasoning in the law and forensic science. It welcomes comments on any of these
matters at any time.
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