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This paper studies the spatial structure of decaying chemical fields generated by a chaotic-advection flow
and maintained by a spatially smooth chemical source. Previous work showed that in a regime where diffusion
can be neglected �large Péclet number�, the structures are filamental or smooth depending on the relative
strength of the chemical dynamics and the stirring induced by the flow. The scaling exponent, �q, of the
qth-order structure function depends, at leading order, linearly on the ratio of the rate of decay of the chemical
processes, �, and the average rate of divergence of neighboring fluid parcel trajectories �Lyapunov exponent�,
h̄. Under a homogeneous stretching approximation, �q /q=max�� / h̄ ,1� which implies that a well-defined

filamental-smooth transition occurs at �= h̄. This approximation has been improved by using the distribution of
finite-time Lyapunov exponents to characterize the inhomogeneous stretching of the flow. However, previous
work focused more on the behavior of the exponents as q varies and less on the effects of � and hence the
implications for the filamental-smooth transition. Here we set out the precise relation between the stretching
rate statistics and the scaling exponents and emphasize that the latter are determined by the distribution of the
finite-size �rather than finite-time� Lyapunov exponents. We clarify the relation between the two distributions.
We show that the corrected exponents, �̃q, depend nonlinearly on � with �̃q��q for �̃q�q. The magnitude of
the correction to the homogeneous stretching approximation, �̃q−�q, grows as � increases, reaching a maxi-

mum when the leading-order transition is reached ��= h̄�. The implication of these results is that there is no
well-defined bulk filamental-smooth transition. Instead it is the case that the chemical field is unambiguously
smooth for ��hmax, where hmax denotes the maximum finite-time Lyapunov exponent and unambiguously

filamental for �� h̄, with an intermediate character for � between these two values. Theoretical predictions are
confirmed by numerical results obtained for a linearly decaying chemistry coupled to a renewing type of flow
together with careful calculations of the Crámer function.

DOI: 10.1103/PhysRevE.81.016322 PACS number�s�: 47.52.�j, 47.70.Fw, 92.10.Lq, 47.51.�a

I. INTRODUCTION

It is now recognized that transport and stirring by chaotic
advection in a smooth �differentiable� time-dependent in-
compressible flow is a problem that is relevant to a broad
range of geophysical and engineering applications for which
the flows are governed by their large-scale component �1�. In
many of these applications, the advected concentration fields
are not just passively advected but are chemically or biologi-
cally active. Important examples may be found in atmo-
spheric chemistry �e.g., stratospheric ozone� and in marine
ecosystems �e.g., interacting nutrient and plankton popula-
tions� where the biological population dynamics may be
viewed as a kind of chemical reaction. More recent examples
may be found in the areas of biofluidics and material pro-
cessing �see, e.g., Ref. �2� and references therein�.

Chaotic advection implies that nearby trajectories separate
exponentially fast and conversely that fluid parcels originat-
ing in distant parts of the fluid are brought into close prox-
imity, leading to rapid scalar mixing �3–5�. Through this pro-
cesses of stirring, fluid elements are continually stretched,
thinned, and folded, thereby converting scalar concentration
fields to increasingly fine-scale filaments �or sheets�. This

increasingly fine-scale structure will ultimately be dissipated
by molecular diffusion, unless it is sustained by a source of
large-scale scalar variability.

Filamental structures also underlie the spatial structures of
concentration fields of chemically active scalars and are in-
herent to all the examples mentioned above. However the
chemical dynamics can have an important influence on these
structures. The simplest case for which this is true is the case
of a linearly decaying chemical field, evolving in a closed
domain, whose distribution is maintained at statistical equi-
librium by a large-scale spatially smooth time-independent
source. Of high relevance to a variety of physical problems,
e.g., sea surface temperature �6�, this problem has been ex-
amined for chaotic-advection flows with finite �7–12� and
vanishing temporal correlation �13� and extended to include
nonlinear chemical reactions of single and multiple chemical
species described by ordinary �14,15� and delay differential
equations �16–18�. In opposition to the effect of chaotic ad-
vection, the decaying chemical dynamics tend to relax the
concentration fields toward the smooth spatial structure of
the source. As the chemical reactions become stronger, a
transition from a filamental to a smooth scaling behavior
takes place �7�.

A natural way to characterize the scaling behavior of the
chemical fields is to consider statistical quantities such as
structure functions, Sq, that describe the fluctuations of the*tzella@lmd.ens.fr
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concentration fields. A theoretical prediction for the scaling
exponents of Sq was deduced in Ref. �7� in which the main
approximation made was the assumption that all infinitesi-

mally small fluid elements stretch at the same rate, h̄, whose
value is given by the most positive Lyapunov exponent as-
sociated with the backward advection dynamics. This ap-
proximation, in this paper called the homogeneous-stretching
approximation, led to the conclusion that, independent of the
details of the flow motion, the scaling exponents should, at

leading-order, depend linearly on both � / h̄ and the order of
the structure function, q, where � denotes the rate of decay
of the chemical processes. As a first approximation, the scal-
ing exponents satisfy

�q = max��/h̄,1�q , �1�

implying that a well-defined bulk filamental-smooth transi-

tion should occur when �= h̄.
A number of ensuing numerical studies performed for

simple chaotic-advection flows and for chosen values of �
suggested that as long as q is small, the theoretical prediction
�1� should remain valid �9�. On the other hand, the higher-
order structure functions were found to exhibit an anomalous
behavior whereby their exponents were shown to depend
nonlinearly on q �9–13�. This behavior was argued in Ref.
�9� to be the direct consequence of the inhomogeneous
stretching statistics of the flow. Employing a Crámer func-
tion to describe the distribution of finite-time stretching rates,
Neufeld et al. �9� corrected the theoretical prediction
�1�. Nonetheless, Neufeld et al. �9� did not explore com-
pletely the effects of varying � on the behavior of the scaling
exponents and therefore did not consider the full implica-
tions for the filamental-smooth transition.

Our main focus in this paper is to �i� understand how the
scaling exponents vary as a function of the chemical decay
rate and �ii� to re-examine the filamental-smooth transition.
The expression for the scaling exponents of Ref. �9� is here
rederived by refining the main assumptions from which they
were derived. We note, following Ref. �10�, that the distribu-
tion that governs the small-scale structure of the chemical
fields is not the finite time but the finite-size Lyapunov expo-
nent distribution. In Ref. �10� an ad hoc approximation was
used to obtain the finite-size distribution in terms of the
finite-time distribution. We examine this approximation care-
fully following the analogy of statistics of the first-passage
times for random walks. The consequence of an inhomoge-
neous stretching distribution is that the homogeneous-
stretching approximation is valid only for vanishingly small
chemical decay ��→0�. We find that the corrected scaling
exponents, �̃q, depend nonlinearly on � with �̃q��q for
�̃q�q with the corrections being most important when the
homogeneous-stretching approximation �Eq. �1�� predicts a

filamental-smooth transition ��= h̄�. One implication is that
there is no single well-defined bulk filamental-smooth tran-
sition.

The outline of the paper is as follows. Section II �comple-
mented by Appendix, Secs. 1 and 2� consists of the theoret-
ical part of the paper where following a careful examination
of the finite-size exponent distribution, the expression for the

scaling exponents is deduced and subsequently explored. To
verify the theoretical predictions of Sec. II, we consider the
example of a renewing type of flow, the widely employed
�see, e.g., Ref. �19�� alternating sine flow. The comparison
between theory and numerics is achieved by careful calcula-
tion of the Crámer function and thus also of the theoretical
expression for the scaling exponents, in regions for which
the stretching statistics are non-Gaussian. This method is de-
scribed in Sec. III �complemented by Appendix, Sec. 3�. The
scaling exponents are subsequently calculated in the first part
of Sec. IV. In the second part of Sec. IV, they are validated
against the scaling exponents obtained from a set of numeri-
cal simulations performed for flows of various shear strength
and a range of chemical decay rates, particularly those in the
neighborhood of the transition predicted by the homoge-

neous stretching theory ��= h̄�. The paper concludes with
Sec. V.

II. THEORETICAL FORMULATION

A. Evolution equations and structure descriptions
for chemical concentration fields

The spatial and temporal evolution of a passively ad-
vected chemically active concentration field, c�x , t�, is de-
scribed by the advection-diffusion-reaction �ADR� equations.
Their general form is given by

�c�x,t�
�t

+ v�x,t� · �c�x,t� = F + ��2c�x,t� , �2�

where � is the molecular diffusion coefficient and v�x , t� is
assumed to be a large-scale velocity field that is incompress-
ible and spatially smooth �i.e., � ·v=0 and ��v���� varying
on a scale, Lv, that we take as the unit length scale. We will
consider flows that are random in time which have no trans-
port barriers such that even if the velocity field is a smooth
function of space, the Lagrangian trajectories are chaotic
�see, e.g., Ref. �3��. To simplify the analysis, we will only
consider two-dimensional flows. However, the theory is
readily extendable to higher dimensions.

The forcing term F describes the chemical reactions as
well as the effect of sources and sinks. We will here concen-
trate on a forcing term whose form is such that, in the ab-
sence of advection, Eq. �2� has a single stable fixed point
�see Ref. �20� where a more complicated chemical behavior
is explored�. As it will be clear later, this stability is neces-
sary for the chemical fields to reach a statistical equilibrium
at sufficiently large t. Following previous investigations �7�,
we consider the simple example of a continually forced lin-
early decaying chemical field with

F � ��F0�x� − c� , �3�

where F0�x� is some spatially smooth source that introduces
variability at some large scale, LF0

, that we again take as the
unit length scale, i.e., the same length scale as that of the
flow, and ��0 is the rate at which the chemical field relaxes
toward this source. Note that the spatial dependence of the
forcing term is crucial for the generation of a nontrivial spa-
tial structure in the chemical field.
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The main focus of this paper is to examine the scaling
behavior of the chemical concentration field once this has
reached a statistical equilibrium �the limit of t→��. The lo-
cal scaling behavior may be described in terms of the Hölder
exponent, ��x�, that characterizes the strength of the singu-
larity of c�x , t� at a point x. For an nondifferentiable �e.g.,
filamental� field ��x� satisfies

�c�x + �x,t� − c�x,t�� 	 �x��x�, �x 	 1, �4�

with 0���1 while for a smooth �i.e., differentiable� field
�=1. Note that �x���x�. The average scaling behavior of
c�x , t� may be described in terms of the structure functions
defined for q�0 as

Sq��x� � lim
t→�


�c�x + �x,t� − c�x,t��q� , �5�

where 
 . . . � denotes a spatial average over the local scaling
behavior of the field. For small length scales, Sq��x� typi-
cally exhibits a power-law behavior such that

Sq��x� 	 �x�q, �x 	 1, �6�

where �q is the qth order scaling exponent, satisfying
0
�q
q.

B. Scaling behavior: From local to global

For cases for which advective transport dominates diffu-
sion, i.e., large Péclet number, a natural approach is to set
�=0. In this case, the chemical evolution of any fluid parcel
is independent of the rest of the parcels that constitute the
fluid �see, e.g., Ref. �7��. Equation �2� is thus reduced into a
low-dimensional dynamical system, given by

dCX�t��t�

dt
= F„CX�t��t�,X�t�… , �7a�

dX�t�
dt

= v„X�t�,t… , �7b�

where X�t� denotes the fluid parcel’s trajectory and CX�t��t� is
its chemical concentration, satisfying CX�t��t�=c�x=X�t� , t�.
Note that the neglect of diffusion means that any predictions
concerning the spatial structure of the chemical field apply
only above a certain spatial cut-off scale whose value ap-
proaches zero for smaller and smaller diffusivities �see Ref.
�21� where this argument is developed for a linearly decay-
ing chemical field�.

The concentration difference between two points can
therefore be estimated by considering the concentration dif-
ference between two neighboring fluid parcels with

c�x + �x,t� − c�x,t� = CX�t�+�X�t��t� − CX�t��t� � �C�X�t�;X�t��t� .

�8�

The asymptotic behavior of �C�X�t�;X�t��t�, denoted by �C�,
can be obtained by using the variation of constants formula
�see, e.g., Ref. �22��, taking into account the source term �3�,

�C� = �
0

�

e−�t�XF0�− t�dt , �9�

where �XF0�t��F0(X�t�+�X�t�)−F0(X�t�). Note that for
ease of notation we have suppressed ��x=�X�0� ; x=X�0��,
the label for the concentration difference at the final time that
for convenience of notation we have taken to be t=0.

An approximate expression for �XF0�t� can be obtained
by first noting that because the source depends smoothly on
space, �XF0�−t�	�X�−t����X�−t�� for �X�−t�	LF0

=1. An
expression for �X�−t� in terms of �x can be obtained by
linearizing Eq. �7b� from where it is found that the evolution
of �X�−t� is dictated by a set of �two in the case of a two-
dimensional flow� exponentials whose exponents determine
the rate of growth of �X�−t� �or rate of decrease if �x is
oriented along the contracting direction�. The value of these
exponents are closely related to the �infinite-time� Lyapunov
exponents, the largest of which is defined by

h̄ = lim
t→�

ht�x� = lim
t→�

lim
�x→0

1

t
ln

�X�− t�
�x

, �10�

where ht�x� is the finite-time Lyapunov exponent �FTLE�
�see, e.g., Ref. �23��. The value of ht�x� depends on the initial
condition, in this case the final �t=0� fluid parcel position x.
The Oseledec multiplicative ergodic theorem �24� states that,

as long as the flow is ergodic, the value of h̄ is independent
of x, thus allowing the system to be globally characterized.

The exponential increase of �X�−t� can be valid only for
the time period for which ��X�−t��	Lv=1. For larger length
scales, linearizing Eq. �7b� is no longer valid and finite-size
effects become important. At the same time, at these length
scales, �X�−t�	LF0

and thus the value of �XF0�−t� saturates.
It follows that qualitatively,

�XF0�− t� 	 min��X�− t�,1� . �11�

The time it takes for �XF0�−t� to saturate is equal to the time
it takes for �X�−t� to exit the exponential regime and varies
with the pair’s final position and orientation. To calculate this
time, it is useful to define the stir-down time, T�x�x�, as the
time it takes for �X�−t�, initially with value �x, to first reach
Lv=1. We may thus express the rate of growth of X�−t� from
�x to 1 in terms of T�x�x� as

h�x�x� =
1

T�x�x�
ln

1

�x
, �x 	 1, �12�

which we define as the finite-size Lyapunov exponent
�FSLE�. We use this term following Refs. �25,26� though
they focused on its ensemble average �42�.

Once we have substituted expression �11� into �9�, we can
deduce that for �x	1, the integral of Eq. �9� is dominated by
the maximum value of its integrand whose value and loca-
tion depend on whether � is larger or less than h�x. If �
�h�x, the maximum occurs at t=0 while if ��h�x, the
maximum occurs at t=T�x. Thus,

SMOOTH AND FILAMENTAL STRUCTURES… PHYSICAL REVIEW E 81, 016322 �2010�

016322-3



�C���x� 	 �xmin��/h�x,1�, �x 	 1, �13�

in all but the direction the filaments grow, in which case,
h�x�0 and �C�	�x for all �. We may therefore conclude
that the nature of the local scaling behavior of the field,
smooth or filamental, where a filamental field is defined �7�
to be nondifferentiable in all but one directions, depends on
the ratio of � to h�x.

The qth-order stationary-state structure function, Sq, may
now be obtained by averaging the local scaling behavior �Eq.
�13�� over the ensemble of fluid parcel pairs that constitute
the flow. Since the pairs’ final positions and orientations are
arbitrarily chosen, a probability density function �pdf� for
the finite-size Lyapunov exponent, Q�h ,�x�, can be defined
such that Q�h ,�x�dh is the probability that h�x lies between h
and h+dh. Thus,

Sq��x� 	 �
0

hmax

�xmin�q�/h,q�Q�h,�x�dh, �x 	 1, �14�

where, because ��v���, the value of hmax is finite. Note that
within the homogeneous-stretching approximation,

Q�h ,�x�=��h− h̄� from where expression �1� for �q is
obtained.

C. Finite-size versus finite-time statistics

The pdf for the FTLEs �see Eq. �10��, denoted by P�h , t�,
can be approximated using large-deviation theory �27� and is
given by

P�h,t� � e−G�h�t, as t → � , �15a�

where G�h� is the Crámer function �28� �also called the en-
tropy function—see Ref. �29� for a detailed presentation�.
Fully encapsulating the stretching statistics of the flow, G�h�
is a time-independent positive convex function with a qua-

dratic minimum at h̄, i.e.,

G�h̄� = G��h̄� = 0 and G�h� � 0, G��h� � 0, �15b�

where h̄ is both the mean of the distribution as well as the
�infinite-time� Lyapunov exponent of the flow. The quadratic
minimum corresponds to a Gaussian behavior for P�h , t�, a
consequence of the central limit theorem. Far from this mini-
mum, the form of G�h� depends on the details of the stretch-
ing statistics of the flow. With the exception of a small num-
ber of special cases there exists no analytical expression for
G�h�. In general G�h� has to be estimated numerically �see
Sec. III for more details�.

No corresponding expression for Q�h ,�x�, the pdf for the

FSLEs, has been obtained. An ad hoc approximation for
Q�h ,�x� was given by Boffetta et al. �10�. This approxima-
tion, which we denote by Q0�h ,�x�, is based on �i� approxi-
mating the stir-down time by T�x	 1

h ln�1 /�x� and �ii� using
T�x for t in Eq. �15�. This results in

Q0�h,�x� = P
h,
1

h
ln�1/�x�� , �16a�

from where it may be deduced that

Q0�h,�x� � �xG�h�/hh−1/2. �16b�

However it is difficult to justify this approximation in any
formal way. For example, P�h , t� is a pdf at a fixed t while
Q�h ,�x� is a pdf at a fixed �x.

To examine more carefully the ad hoc approximation
�16�, it is useful to consider the analogous problem of a
particle undergoing a general random walk. Let p�z , t� denote
a pdf such that p�z , t�dz is the probability that the particle is
within the interval �z ,z+dz� at time t, given that it was at
−z0�0 at time t=0. Let q0�t� denote the pdf associated with
the first-passage-time probability, i.e., q0�t��t is the probabil-
ity that the particle attains the origin for the first time during
the interval �t , t+dt�.

An exact relation exists between p�0, t� and q0�t�, given
by

p�0,t� = �
0

t

q0�t��p0�t − t��dt�, �17�

where p0�t� denotes the pdf of the particle position at time t,
released at z=0 and evaluated at z=0 �see, e.g., Ref. �30��.
Using this relation, we can deduce �see Appendix, Sec. 1 a�
that the large-t behavior of q0�t� satisfies at leading order,

q0�t� � exp�− tG�z0/t��, for z0 large �18a�

	p�0,t� , �18b�

where the large deviation form for p�0, t� was used �see Eq.
�15� but now applied to the random walk�.

Determining Q�h ,�x� is analogous to determining the dis-
tribution of the particle’s average velocity over the period
until it first visits z=0. Let this velocity be denoted by V�t�.
Its distribution, Q�v ,z0�, can be obtained from q0�t� by a
change of variables, V�t�=z0 /T, where T denotes the first-
passage time. Determining P�h , t� is analogous to determin-
ing the distribution of the average particle velocity �averaged
over all times prior to t�. Let this velocity be denoted by
U�t�. Its distribution, denoted by P�u , t�, can be obtained
from p�z , t� by a change of variables U�t�= �Z�t�+z0� / t. It
follows that

Q�v,z0� = z0/v2q0�t = z0/v�

	 z0/u2p�0,z0/u�, where from Eq. �18�, t = z0/u and u = v with z0 
 0

=1/uP�u,z0/u�, and from Eq. �16a� ,

� Q0�v,z0� . �19�
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In other words, for z0
0, i.e., �x	1, the ad hoc approxima-
tion �16� for the finite-size distribution is up to a factor cor-
rect. For a particle undergoing a simple random walk with
a constant drift and diffusion �an example that is relevant
for the isotropic Kraichnan flow�, Q�Q0 and thus in this
case, the ad hoc approximation �16� is exact �see Appendix,
Sec. 1 b�.

D. Scaling exponents and filamental-smooth transition

Substituting the approximate expression �16� for Q�h ,�x�
into Eq. �14�, the qth-order structure function may now be
expressed as a sum of two integrals:

Sq��x� � ��
0

�

�xf�h�h−1/2dh + �
�

hmax

�xg�h�h−1/2dh� ,

�20�

where the first and second integrals denote, respectively, the
parts of the distribution that contribute to a smooth and a
filamental behavior for c�x , t�. The functions f and g are
equal to

f�h� = G�h�/h + q , �21a�

g�h� = �G�h� + q��/h �21b�

and have the following stationary points

f��h̄� = 0 ⇒ G��h̄�h̄ = G�h̄� , �22a�

g��hq�� = 0 ⇒ G��hq��hq� = G�hq�� + q� , �22b�

where to deduce Eq. �22a�, we invoke the properties of G�h�
�see Eq. �15b��. A small amount of simple algebra is needed

to show that h̄ and hq� are both unique stationary points at
which the global maximum of −f�h� and −g�h� is, respec-
tively, attained. It is useful to understand where the value of

hq� lies relative to h̄. Differentiating Eq. �22b� with respect to
q�,

dhq�/d�q�� = �G��hq��hq��−1 � 0 �23�

the inequality a result of G��0. Thus, for all �q�0, hq�

satisfies hq�� h̄ with

lim
q�→0

hq� = h̄ . �24�

Note that since hmax is the supremum of hqa,

lim
q�→�

hq� = hmax. �25�

An expression for �̃q, the scaling exponents of Sq��x�, can
be obtained using Laplace’s method on Eq. �20�, valid for
�x	1, from where we deduce that �see also Ref. �9��

�̃q = min�q,G��hq���, with G��hq�� = �G�hq�� + q��/hq�.

�26�

Note that for ��hmax, �̃q=q for all q. Note also that
�̃q�q� /hmax. Expression �26� is identical to the expression

obtained in Ref. �9�. However the approach is different:
While Neufeld et al. �9� focus on the inhomogeneities of
P�h , t� as t→�, in particular taking into account the fractal
dimension of those sets of ht�x� that take different values

from h̄ as t→�, our focus, as well as that of Boffetta et al.
�10�, is on the distribution of the recent stretching history, as
given by Q�h ,�x�.

Based on the properties of G�h�, we now examine the
general behavior of �̃q as a function of � and q and compare
it to the behavior of �q, where �q is given by Eq. �1�. The
homogeneous-stretching approximation is only valid in the

limit of q�→0 in which hq�= h̄ and

lim
q�→0

�̃q = �q. �27�

However, as the values of either � or q increase, the correc-
tion to the homogeneous-stretching approximation, defined
by ��q ,����q− �̃q, becomes important.

1. Varying �

To understand how ��q ,�� varies with �, consider the
case of ���q

�, where �q
� is defined as the smallest value of �

for which �̃q=q, i.e., the value of � for which G��hq��=q.
Using Eq. �23�, the behavior of �� /�� as � varies �q�0� is
given by

���q,��
��

=�q�1/h̄ − 1/hq�� � 0, for 0 � � � h̄

− q/hq� � 0, for h̄ 
 � � �q
�.
�

�28�

A key point necessary to deduce Eq. �28� is that ��q ,0�=0

and thus for all �� h̄, ��0, and �̃q��q. Therefore, the
smallest value of ��0 that satisfies �̃q=0 must be larger

than h̄, i.e.,

�q
� � h̄, for all q � 0, �29�

with �0
�= h̄. Consequently, ��q ,�� increases as � increases,

reaching a global maximum when �= h̄; the value for which
the homogeneous-stretching approximation predicts a bulk
filamental-smooth transition to take place. Thereafter, its
value decreases until �=�q

� when it becomes equal to 0. It
thus follows that for 0����q

�, �̃q is a nonlinear monotoni-
cally increasing concave function of � that satisfies �̃q�q.

We may thus conclude that the transition from a filamen-
tal to a smooth field behavior is smooth, not sharp as pre-
dicted by the homogeneous-stretching approximation �see
Eq. �1��. Moreover, the value of �q

� varies with q. In particu-
lar, from Eq. �22b�, it can be deduced that for all q�q�,

�q
� � �q�

� , �30�

with limq→� �q
�=hmax. It follows that while we can say

that for �
 h̄, all Sq��x�	�x�̃q are nondifferentiable
�i.e., �̃q�q� and for ��hmax, all Sq��x� are smooth
�i.e., �̃q=q�, the nature of Sq��x� depends on the value of q

for � in between h̄ and hmax. The latter is a direct conse-
quence of the dependence of �q

� on q.
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Neufeld et al. �9� on the other hand argued that a bulk

filamental-smooth transition should take place at �= h̄. To
deduce this, Neufeld et al. �9� used as diagnostic the maxi-
mum of the fractal dimensions, Dmax, of the singular sets of
FTLEs that in the limit of t→� are larger than �. They

showed that while for �� h̄, Dmax�2, for �� h̄, Dmax=2,
i.e., the singular structures become space-filling. This change
in behavior is reflected in the behavior of �̃q which for

�� h̄ satisfies �̃q�q for all q�0. However, such a change
would be very difficult to observe from the chemical fields:
even if they are not space-filling, the singular sets in the

chemical field exist for �� h̄ and contribute to the value of
�̃q. The result is that the transition from smooth to filamental
essentially takes place over some finite range of �. Results
presented in Sec. IV B demonstrate this point.

2. Varying q

Now consider how ��q ,�� varies with q. Two cases are

distinguished: �i� �
 h̄ and �ii� h̄���hmax. For case �i�,
�̃q�q and since �� /�q�0, the difference between �q and �̃q
increases as q increases. �̃q is a nonlinear monotonically in-
creasing function of q. For case �ii�, there exists a q0 such
that �=�q0

� . From Eq. �30� we can deduce that for q�q0,
�q

���q0

� =�. Conversely, for q
q0, �=�q0

� ��q
�. Therefore,

�̃q = q, for q 
 q0, �31a�

�̃q � q, for q � q0, �31b�

and thus as q increases the structure functions are initially
smooth up until q0 after which they become nondifferen-
tiable, implying a filamental behavior for c�x , t�. Since

�0
�= h̄ and limq→� �q

�=hmax, it is easy to deduce that when

�= h̄, q0=0 �i.e., �̃q
q for all q� while as �→hmax
− ,

q0→� �i.e., �̃q=q for all q�. It is possible to obtain an ex-
pression for the large-q behavior of �̃q. For ��hmax, this is
given by �see Appendix, Sec. 2�

�̃q 	
�q

hmax
, as q → � . �32�

Note that this expression corrects expression �4.15� in Neu-
feld et al. �9�.

III. EVALUATING THE SCALING EXPONENTS

In order to verify the theoretical predictions of Sec. II an
accurate evaluation of G�h� is necessary. Since hq� satisfies

hq�� h̄, this evaluation is particularly important for h� h̄.
Care is needed in finding an accurate estimate of G�h�

outside the neighborhood of h̄. The traditional method em-
ployed �31,32� depends on determining the distribution of h
at a given time t through sampling of a large number of
stretching realizations. Thereafter, using expression �15�,
G�h� is estimated. Such a method allows only a part of the
function to be calculated with confidence. This part is asso-
ciated with the values of h that are frequently realized, i.e.,

those values that lie in the neighborhood of h̄ where G�h� is
well approximated by a parabola, and P�h , t�, the finite-time
Lyapunov exponent distribution, is Gaussian. Away from this
neighborhood, the values of h occur scarcely, rendering an
accurate estimate of G�h� difficult to secure. Nevertheless, as
either � or q increase, it is these infrequently realized values
of h that dominate the scaling behavior of the field. The
larger the value of � or q is, the larger and thus the more
infrequent the dominant hq� is, leading to an increasingly
unreliable estimate for G�hq��.

In order to correctly calculate �̃q for any value of � or q,
a more reliable method for calculating G�h� is necessary.
Recently, Haynes and Vanneste �33� developed such a
method which has recently been refined in Vanneste �34� and
successfully tested it for two-dimensional spatially homoge-
neous random-in-time chaotic-advection flows; both for Kra-
ichnan �35� �vanishing temporal correlation with infinite �v�
and for renewing �finite temporal correlation with �v���.
The basis of this method relies on determining ����, a func-
tion closely related to the Legendre transform of G�h�, via an
eigenvalue problem. Unlike previous methods, this one is not
so strongly dependent on the numerical realization of infre-
quent random events and thus should enable a more accurate
determination of G�h� for a larger range of values of h.

The function ���� is defined as

���� � inf
h̃

��� + 1�h̃ + G�h̃�� = − hG��h� + G�h�,

with � = − �1 + G��h�� , �33�

where up to a shift and a change of sign it is the Legendre
transform of G�h�, also known �36� as the free energy. ����
satisfies �����=h with �����=−1 /G��h��0. For incom-
pressible two-dimensional flows, ����=��−�� and therefore
���� has its maximum point at �=0. Using Eq. �33�, it can

also be deduced that ��−1�=0 with ���−1�= h̄ �see Ref.
�33��. The method for calculating � is given in Appendix,
Sec. 3.

�̃q may be directly expressed in terms of �. Eq. �26� for
the scaling exponents becomes

�̃q = min�q,− 1 − �q� with ���q� = − �q . �34�

Two values of interest are here presented in order to intro-
duce the notation:

�̃1 = 0 ⇒ �1 = − 1 ⇔ � = 0,

�̃1 = 1 ⇒ �1 = − 2 ⇔ � = �1
�.

IV. NUMERICAL RESULTS FOR AN EXAMPLE
FLOW

A. Scaling exponents

���� is here determined for a particular type of renewing
flow, the alternating sine flow, first introduced by Pierrehu-
mbert �19� and widely employed by, among others, Neufeld
et al. �7� and Birch et al. �15�. The calculation of G�h� fol-
lows. The scaling exponents, �̃q, are then evaluated as a
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function of � and q. Their values are compared to �q, the
homogeneous-stretching approximation for the scaling expo-
nents �see Eq. �1�� as well as �̃q�, the exponents calculated
from Eq. �26� using a quadratic approximation for G�h�,
given by

G�h� =
�h − h̄�2

4D
, �35a�

leading to

�̃q� =
h̄

2D��1 +
4Dq�

h̄2 �1/2

− 1� , �35b�

where D is a constant. Note that for an isotropic Kraichnan
flow, for which �v is infinite, expression �35a� is exact once

D= h̄ /d, d being the dimension of the flow �35�. These com-

parisons are necessary to see the limitations of previous cal-
culations, thus providing a link with the past literature
�9–12�.

The alternating sine flow is a purely strain flow with ve-
locity field given by

v�x,t� = ����/2 − t mod ��U sin�2�y + �1�
��t mod � − �/2�U sin�2�x + �2� � , �36�

where U controls the strength of the shear and ��t� is the
Heaviside step function defined to be unity for t�0 and zero
otherwise. �1 and �2 are independent random angles uni-
formly distributed in �0,2�� whose value changes at each
period � in order to eliminate the presence of transport bar-
riers in the flow.

Let �−� be the time-� map of the flow such that
X�t−��=�−�X�t�. Then, �X�t−��=S−��X�t� where

S−� = ��−��X=0 = � 1 − A cos �1

− A cos�A sin �1 + �2� 1 + A2 cos�A sin �1 + �2�cos �1
� , �37�

with A=�U�.
A useful estimate was deduced for the �infinite-time�

Lyapunov exponent, h̄ by �15�. This is given by

h̄ �
1

�
ln�1 + A2/5 + 4A4/67� . �38�

A theoretical upper bound for the value of hmax can be de-
rived by determining the largest eigenvalue of S−�. It follows
that

hmax �
1

2�
ln�1 + 3A2 + A4� . �39�

In practice, the upper bound of hmax is a good estimate for
hmax. It turns out that this is because the value of A is the

same in the x and y directions. If the value of A is different,
the upper bound of hmax is no longer a good estimate for hmax
�for a detailed discussion see Ref. �34��.

To determine �, an ensemble of matrices S−� of size 105

�obtained by varying �1 and �2� and a set of 1000 line ele-
ments with orientation � uniformly distributed in �0,2�� is
considered. The resulting curve for ���� obtained for �
varying in step-size 0.1, is displayed for three values of A in
Fig. 1�a�. This result was found to be robust for the range of
values of � shown, once compared to individual values of
���� obtained using both a larger ensemble and a larger set
of line elements.

From Fig. 1�a� it can be observed that � approaches a
linear profile for large �positive or negative� values of �.
This tendency may be confirmed by examining the behavior
of the midpoint derivative of �, plotted in Fig. 1�b�, that

−1 0 1

0

σ

Λ
(σ

)

π/2
π
2π

−6 −4 −2 0−1−3

3.57

2.24

1.28

0

σ

Λ
’(σ

)

π/2
π
2π

(b)(a)

FIG. 1. �a� The function ���� corresponding to the alternating sine flow �Eq. �36�� for A=� /2, �, and 2� �where A=�U�, �=1 and U
varies�. �b� The corresponding derivative of ����.
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beyond a range of values of �, its value saturates �an excep-
tion being the case of A=� /2 for which a larger range of
values of � would be necessary to see this�. This behavior is
of no surprise given that the slope of � is controlled by the
value of h. As the value of � decreases �starting from �=0�,
the value of �� increases until it reaches its largest value,
hmax. Note that for these values of �, the numerically ob-
tained �� is observed to be “wiggly.” This is because these
values of �� are associated with values of h near hmax which
occur extremely infrequently. Thus, in order to obtain a ��
that is less wiggly, both a larger ensemble and a larger set of
line elements, would be necessary. However, the current pre-
cision is sufficient for calculating the smaller order scaling
exponents, particularly �̃1 and �̃2 which are the main focus
of this paper. For these cases, the regimes of interest are
−2��1
−1 ��̃1�1� and −3��2
−1 ��̃2�2�.

The appearance of a saturated �� indicates that � is re-
solved for �almost� all possible range of values of h. This is
confirmed by comparing the numerical values for hmax with
its upper bound �see Table I�. Note the close agreement be-

tween the theoretical and numerical values for h̄. Note also
that because the saturation is reached faster for larger A, the

values of h̄ and hmax lie closer to each other.

1. Crámer function

To determine �̃q it is not necessary to evaluate the Crámer
function �see Eq. �34��. Nevertheless, it is interesting to cal-
culate G�h� and examine how it varies with the flow charac-
teristics. This calculation readily follows from Eq. �33�. The
resulting curve, plotted for positive values of h, is shown in
Fig. 2.

The shape of G�h� is strongly dependent on the shear
strength of the flow. In particular, as A increases, the chances
for larger values of h to occur also increase, leading to a

G�h� that is increasingly skewed about h̄ �see Fig. 2�. Con-
sequently, the region of h for which G�h� is quadratic be-
comes smaller as A increases. Thus, approximating the scal-
ing exponents with expression �35b�, the usual
approximation employed until now �9,11,12�, is not suffi-
ciently accurate. It will shortly be shown that the degree of
inaccuracy depends on the values of both � and q.

2. Varying �

Using expression �34�, the scaling exponents �̃1 and �̃2
are here computed and plotted as a function of � in Figs. 3
and 4 for the same values of A as before. As a means of
comparison, �1 and �2 as well as �̃1� and �̃2� are also plotted
in the same figures �discussion about results obtained from
numerical simulations is postponed until Sec. IV B�.

The results obtained confirm the conclusions of Sec. II.
As is clearly depicted in Figs. 3 and 4, for �→0 �̃q=�q, as
predicted by Eq. �27�. However, as � increases, �̃q varies
nonlinearly with � while �̃q��q for �̃q�q. In agreement
with Eq. �28�, the corrections, �q− �̃q, increase with �, reach-

ing a maximum when �= h̄, the point at which the
homogeneous-stretching approximation predicts a bulk

TABLE I. Numerical values for h̄ and hmax for different values

of A. Also shown in parenthesis the theoretical estimates for h̄
�see Eq. �38�� and an upper bound for hmax �see Eq. �39��.

A � /2 � 2�

h̄ 0.3 �0.31� 1.1 �1.09� 2.33 �2.31�
hmax 1.28 �1.34� 2.24 �2.43� 3.57 �3.71�

0 0.3 1.1 2.33
0

h

G
(h

)

π/2
π
2π

FIG. 2. The Crámer function G�h� corresponding to the alter-
nating sine flow �Eq. �36�� for A=� /2, � and 2� ��=1�.
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FIG. 3. The theoretical prediction for �̃1 �see Eq. �26�� is calculated using Eq. �34� and plotted against � for different values of A
�thick solid line� for �=1. Also plotted �1 �dashed line�, the homogeneous-stretching approximation �Eq. �1�� as well as �̃1� �thin, solid line�,
the quadratic approximation �Eq. �35b��. The theoretical results are in close agreement with the numerical results obtained from a set of
simulations whereby an ensemble of 2000�2000 fluid parcels satisfying Eq. �7� are advected backward in time by Eq. �36� �T=50��. F is
given by Eq. �3� and F0�x� by Eq. �40�. The scaling exponents are determined by calculating S1��x� along a single intersection �y=0� and
for two intervals: 10−5��x�10−2 �squares� and 10−5��x�10−4 �circles�.
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filamental-smooth transition to take place. As expected from
expressions �29� and �30�, the values of � for which �1=1
and �2=2, denoted by �1

� and �2
�, respectively, are both larger

than h̄ with �2
���1

� �see also Table II�.
The relative error induced by the homogeneous-stretching

approximation when predicting the values of �1
� and �2

� can

be measured in terms of �a1
�− h̄� / h̄ and �a2

�− h̄� / h̄, respec-
tively. Its value depends on A, decreasing as A increases �see
Table III�. This is because the larger the value of A is, the

more skewed G�h� is with h̄ and hmax becoming more akin to
each other �see Fig. 2�. In this case, the value of hq� remains

relatively close to h̄ for all A rendering the relative error
small.

Conversely, as A increases, �̃q� becomes increasingly inac-
curate with �. This inaccuracy becomes larger when q=2.
This is because the value of hq� increases with both q and �.
Thus, for sufficiently large hq�, G�hq�� is no longer well
approximated by Eq. �35a�.

3. Varying q

During all previous work �9–12�, the behavior of the scal-
ing exponents were studied for a fixed value of � �usually

�� h̄ /2� and varying q. To put into context the results ob-
tained here, �̃q, as well as �q and �̃q�, are calculated and

plotted as a function of q for �=0.25h̄ and �= h̄ in Figs. 5
and 6, respectively.

The results obtained confirm the conclusions of Sec. II. In
both figures, for q→0, all three exponents are equal. How-
ever, as q increases, first �q, followed by �̃q�, start to deviate
from �̃q. The deviation between �̃q and �q increases mono-
tonically with q with �̃q��q. For values of � small com-

pared to h̄, this deviation remains small �see Fig. 5�, while

for �= h̄ the deviation is larger �see Fig. 6�. In addition to �,
the magnitude of the deviation also depends on the value of

A. The larger the value of A is, the closer the values of h̄ and
hmax are, leading a smaller difference between �̃q and �q.

Similarly, the deviation between �̃q and �̃q� increases with
q �see Figs. 5 and 6�. This is because the larger q is, the
larger hq� is �see Eq. �23��. If � is chosen to be sufficiently
small, as is the case in Fig. 5, the value of hq� remains close

to h̄ within a range of values of q �in Fig. 5 q
5�. On the
other hand, for larger values of �, as is the case in Fig. 6, hq�

is no more within the immediate neighborhood of h̄ and thus
for a skewed G�h� the deviation is large even for small val-
ues of q. The case of A=� /2 is excluded, as in this case
G�h� is well approximated by a parabola for the range of hq�

considered.
In Sec. II we deduced that for large q, �̃q should exhibit a

linear dependence on q with the value of �̃q /q controlled by
the value � /hmax �see Eq. �32��. This linear dependence is
clearly depicted in Figs. 5 and 6 where a line of slope � /hmax
is plotted against q for q�4. The dependence is less promi-
nent in Figs. 5�a� and 6�a� where higher values of q would be
necessary to attain the large-q linear behavior.

The large-q linear behavior of �̃q should be contrasted
with the large-q q1/2 dependence of the scaling exponents
obtained for a quadratic Crámer function. For the alternating
sine flow �Eq. �36�� or indeed any flow of finite velocity
gradient ��v�, G�h� is quadratic only within a region around

h̄ while it necessarily has an hmax.

B. Simulations

In order to support the theoretical considerations made in
Sec. II and to provide a direct comparison with the results
obtained in Sec. IV A, we here show a set of numerical simu-
lations obtained for a variety of values of � and the same
values of A as before. The stationary-state chemical fields are
reconstructed by following backward in time an ensemble of
fluid parcels with the source F0 given by

TABLE II. Numerical estimates for h̄, �1
�, and �2

� for different
values of A.

A � /2 � 2�

h̄ 0.3 1.1 2.33

a1
� 0.45 1.44 2.78

a2
� 0.58 1.63 2.99

TABLE III. The relative error induced by the homogeneous-
stretching approximation when predicting the values of �1

� and �2
�

for different values of A.

A � /2 � 2�

�a1
�− h̄� / h̄ 0.5 0.31 0.19

�a2
�− h̄� / h̄ 0.93 0.48 0.28
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FIG. 4. Same as Fig. 3 but this time the focus is on the second-order scaling exponent ��̃2 �thick solid line�, �2 �dashed line�, and �̃2�
�thin solid line�.
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F0�x� = 1/2�1 − cos�2��x + y��� . �40�

As before, v�x , t� is given by Eq. �36�. By making the fol-
lowing variable transformation,

ĈX�t��t� = CX�t��t�e�t − c�x,0� , �41a�

Equation �7a� is transformed into

dĈX�t��t�

dt
= �F0„X�t�…e�t, �41b�

Thus, to obtain c�x ,0�, Eq. �41b� can be integrated at the
same time as the parcel trajectories are followed backward in

time up to some time t=−T. Note that Ĉ�0�=0 �recall Eq.

�8��. Thereafter, knowing Ĉ�−T�, c�x ,0� is readily obtained
from Eq. �41a�, where for sufficiently large T, the term in C
vanishes. The novelty of this method is that it allows higher
field resolutions, with the resolution unconstrained by com-
puter limitations �e.g., computer memory�, while at the same
time, significantly reducing the total computation length.

At first we concentrate on the chemical fields obtained for
various values of � and A=� /2 �see Fig. 7�. The system is
let to evolve for a time T=50�, where �=1. This value of T
is large enough to ensure that a statistical equilibrium will be
reached for all values of �. The field’s resolution is
2000�2000, achieved by following this many fluid parcels
with their final positions fixed on a square grid. The integra-
tion is carried out using a second-order Runge-Kutta method
with time step �t=0.01. In all cases, the same sequence of
flow angles �1 and �2 is used.

The values of � depict six cases of interest. The first case,
�=0.1��1

� ��̃1=0.23�, corresponds to the typical filamental
behavior for the chemical field �see Fig. 7�a��. The second
case, �=0.3��1

� ��̃1=0.73�, corresponds to the value of
�= h̄ for which the homogeneous-stretching approximation
predicts a bulk filamental-smooth transition to take place.
Instead, the chemical field is clearly filamental �Fig. 7�b��.
The third and fourth cases �Figs. 7�c� and 7�d��, �=0.35
��̃1=0.83� and �=0.4 ��̃1=0.92�, respectively, correspond to

h̄����1
� while the fifth and sixth cases �Figs. 7�e� and 7�f��

correspond to �=�1
� and �=0.6��1

� �both with �̃1=1�, re-
spectively. Although the overall behavior of the field is
smooth, there still exist some isolated filamental regions
which become increasingly isolated as � increases until
��hmax at which point these filamental regions should cease
to exist. Note that, for this example, hmax=1.28 �see Table I�.
It is therefore difficult to distinguish a single value of � for
which one can say that the field becomes smooth on a mac-
roscopic scale.

The first- and second-order scaling exponents are
determined from the structure functions calculated along a
single intersection �y=0� and over two intervals for
�x: 10−5��x�10−4 and 10−5��x�10−2 �see Figs. 3 and 4�.
The agreement between theory and numerics is very good,
especially for the exponents obtained within the first space
interval. This is expected since the smaller the value of �x is,
the more accurate is the approximate expression for the
finite-size Lyapunov exponent distribution �Eq. �16�� from
which �̃q is deduced. However, the agreement is less good in
the neighborhood of �1

� �Fig. 3� and �2
� �Fig. 4�. The reason

for this is not fully understood. Its origin may lie in the
contribution of higher-order terms when using Laplace’s
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FIG. 5. �Color online� Same as Fig. 3 where this time the scaling exponents are plotted as function of q for �=0.25h̄ so that
�q=0.25q �dashed black line� �see Eq. �1��. Also plotted �̃q �see Eq. �26�—thick solid black line� and �̃q� �see Eq. �35b�—thin solid black
line�. A line in solid light gray �red� of slope equal to �q /hmax is plotted for large q �see also Eq. �32��.
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FIG. 6. �Color online� Same as Fig. 5 but this time �= h̄ so that �q=q �dashed black line� �see Eq. �1��. A line in solid light gray �red�
of slope equal to �q /hmax is plotted for large q �see also Eq. �32��.
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method. Nevertheless, this discrepancy is certainly length
scale dependent. In a similar way, we determine the higher-
order scaling exponents �see Figs. 5 and 6�. Again, the agree-
ment between theory and numerics is very good, especially
for the exponents obtained within the interval that involves
smaller length scales.

V. SUMMARY AND CONCLUSIONS

In this paper we have analyzed, in the large-Péclet limit,
the small-scale spatial structure of a linearly decaying chemi-
cal field generated by a chaotic-advection flow and sustained
by a large-scale spatially smooth source. As has been identi-
fied previously �7,9–12�, for sufficiently slow chemical pro-
cesses, the spatial structure of the chemical field is filamen-
tal; as the chemical processes become faster, the spatial
structure becomes progressively smoother. Our aim in this
paper has been to investigate in detail the variation in the

spatial structure of the chemical field with the chemical de-
cay rate, �, paying particular attention to the filamental-
smooth transition. Initially focusing on the local singularities
of the chemical field as measured by the Hölder exponent,
we examined its average scaling behavior as quantified by
the scaling exponents of its qth-order structure functions.

In agreement with previous work �7,9–12�, we found that
the scaling exponents depend both on � and on the stretching
properties of the flow. However our focus on the variation in
� emphasizes that the inhomogeneity in stretching plays an
important role even for moderate values of q, as shown in
Figs. 3 and 4, for example, for q=1 and q=2, where the
strong deviation from the homogeneous-stretching approxi-
mation is clearly visible. �Previous work has tended to em-
phasize variation with q, e.g., our Fig. 5, where the deviation
from the homogeneous-stretching approximation appears
small for moderate values of q.� Our conclusion is that
the homogeneous-stretching approximation is good only for
vanishingly small values of � and q. The inhomogeneous
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FIG. 7. �Color online� Snap-
shots of the reactive field at statis-
tical equilibrium �T=50�� for
various values of � �A=� /2�.
Case �b� corresponds to the value
of � for which the homogeneous-
stretching approximation predicts
a bulk filamental-smooth transi-
tion. The color bars on the right of
each graph give the concentration
values associated with the differ-
ent colors.

SMOOTH AND FILAMENTAL STRUCTURES… PHYSICAL REVIEW E 81, 016322 �2010�

016322-11



stretching can be included via the Crámer function that en-
capsulates the finite-time stretching statistics of the flow. The
relevance of the Crámer function was established after a
careful investigation of the relation between finite-time and
finite-size Lyapunov exponents, where the latter governs the
spatial properties of the chemical field. We found that the
corrected scaling exponents, �̃q, depend nonlinearly on �
and are smaller than �q, the exponents predicted by a
homogeneous-stretching approximation. As � increases, so
does the magnitude of the correction to the homogeneous-
stretching approximation, �q− �̃q, reaching a maximum when
�= h̄, the point at which the homogeneous-stretching ap-
proximation predicts a bulk filamental-smooth transition to
take place �see Eq. �28��. Examining the behavior of the
scaling exponents as a function of � and q we identified the
following regimes:

�i� For �
 h̄, �̃q�q for all q �see Eq. �29��. In this regime
the chemical field can be unambiguously described as fila-
mental. Neufeld et al. �9� had already identified this regime
as one in which the set of points on which the Hölder expo-
nent is less than 1 is space-filling.

�ii� For h̄���hmax, there exists a q0�0 such that
�̃q=q for q�q0 and �̃q�q for q�q0. The value of q0
depends on �, increasing with �, and satisfies q0=0 when

�= h̄ and q0→� as �→hmax
− , where hmax denotes the maxi-

mum finite-time stretching rate �see Eq. �31��. Neufeld et al.
�9� described this regime as one in which the set of points on
which the Hölder exponent is less than 1 has a fractal dimen-
sion that is less than 2 where 2 is the dimension of the do-
main. In this regime the chemical field can be described as
having an intermediate character.

�iii� For ��hmax, �̃q=q for all q, i.e., the chemical field
can be described as unambiguously smooth.

The implication is that there is no sharp bulk filamental-
smooth transition. Instead the transition takes place over a
finite range of � corresponding to regime �ii�. This is con-
firmed by the numerical results shown in Fig. 7 where no
clear sharp transition is visible.

The good agreement between the theoretical and numeri-
cal results obtained in this paper confirmed the approach fol-
lowed and the conclusions reached. The comparison between
theory and numerics was achieved by careful calculation of
the Crámer function for a particular type of renewing flow,
the alternating sine flow. This calculation allowed as to ex-
plore regions where the Crámer function is not described by
a Gaussian approximation. One important implication of this
approximation is that it neglects the existence of a maximum
finite-time stretching rate hmax and therefore misses regime
�iii�. Additionally, it predicts incorrect large-q asymptotics
for �̃q in regimes �i� and �ii�. Neufeld et al. �9� have previ-
ously noted this point. However, their expression for large-q
asymptotics for �̃q �Eq. �4.15� in Ref. �9�� cannot be correct
since G�h� is singular at h=hmax �and not defined for h
�hmax� �see Fig. 2�. In regimes �i� and �ii� it is the case that
for all q, �̃q�q� /hmax and it may be shown �see Eq. �32��
that �̃q	q� /hmax becomes a better approximation as q in-
creases �in the sense that the relative error tends to zero�.

Although the model that we considered is highly simpli-
fied, it can be extended to include multiply interacting

chemical fields. In this case, in addition to the stretching
exponent distribution, the theoretical development should in-
corporate a distribution of chemical Lyapunov exponents.
Our analysis has concentrated on cases for which the char-
acteristic length scale of the source, LF0

, is equal to the char-
acteristic length scale of the flow, Lv. Because the spatial
structure depends on the recent stretching history of the flow,
our analysis should continue to hold for cases for which
LF0

�Lv. Note that for an unforced chemical field, LF0
�Lv

and LF0

Lv are two very different cases �see Ref. �37� for

more details�.
The results of this paper emphasize the stretching statis-

tics of the flow, not just the mean stretching rate, have an
important effect on the stationary-state average scaling be-
havior of the chemical field. Sufficiently accurate calcula-
tions of the stretching statistics of the flow have only re-
cently become possible in both experiments �38,39� and
observations of the surface ocean flow �6,40�. We therefore
anticipate that interpretations of future experiments and ob-
servations will benefit from our conclusions.

ACKNOWLEDGMENTS

It is a pleasure to thank J. Vanneste as well as B. Derrida
for their insight into random processes, S. M. Roper and A.
Alexakis for their useful comments, as well as W. R. Young
and D. Vicenzi for inspiring discussions. In addition, we
would like to thank J. H. P. Dawes and A. P. Martin for their
constructive critique during an early stage of this work and
an anonymous referee whose comments improved the pre-
sentation of this work. AT acknowledges financial support
from the Marie Curie Individual Action HydraMitra Grant
No. 221827.

APPENDIX

1. Finite-size versus finite-time statistics

a. General argument to capture the long-time behavior
of the first-passage-time distribution

Consider the general relation between p�0, t� and q0�t�,
given by Eq. �17�, repeated here:

p�0,t� = �
0

t

q0�t��p0�t − t��dt�. �A1�

The large-t behavior of q0�t� can be obtained by considering
the following argument. For a large value of z0 it is useful to
rescale t and t� by t=z0� and t�=z0��, respectively, where �
and �� are formally O�1�. We now substitute the large devia-
tion form for p�z , t� and p0�t� into Eq. �A1� �see Eq. �15� but
now applied to the random walk� to obtain

exp�− z0�G�1/��� � �
0

�

q0�z0,���exp�− z0�� − ���G�0��d��.

�A2�

A leading-order approximation for q0�t� can be deduced us-
ing Laplace’s method, valid for large z0. There exist two
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possibilities: The first possibility is that the integral is domi-
nated by ��=� in which case

q0�z0�� � exp�− z0�G�1/��� . �A3a�

The second possibility is that the integral is dominated by
��=��� in which case

q0�z0�� � exp�z0�� − ��G�0� − z0�G�1/��� . �A3b�

We now examine which possibility is viable. The first possi-
bility is self-consistent. Since G is a convex function and
����,

�G�1/�� � ��G�1/��� + �� − ���G�0� . �A4�

Hence, for q0�z0�� satisfying Eq. �A3a�, the integrand in Eq.
�A2� has a maximum at ��=�. The second possibility leads to
a contradiction. To see this consider Eq. �A3b�. Its right-hand
side should be independent of �. But this cannot be true as
this would imply that for all �, G�0�=G�1 /��. We therefore
deduce that the correct leading order approximation for q0�t�
is given by Eq. �A3a� and thus, the long-t behavior of q0�t� is
given by

q0�t� � exp�− tG�z0/t��, for z0 
 0. �A5�

b. Connection with the diffusion-drift problem

Consider a particle undergoing a simple random walk
with a constant drift and diffusion. Let p�z , t� be the pdf
associated with the probability that the particle is at point z at
time t, given that it was at −z0�0 at t=0. The corresponding
Fokker-Planck equation �FPE� is given by

�tp�z,t� + u0�zp�z,t� = D�z
2p�z,t� , �A6a�

with u0 ,D�0 the drift velocity and kinematic diffusion co-
efficient, respectively. The FPE �A6a� is equivalent �41� to
the following Langevin equation:

Ż�t� = u0 + ��t� , �A6b�

where ��t� is a white noise, i.e., ��t�=0 and
��t���t��=2D��t− t��, with the bar denoting a temporal aver-
age and the dot a derivative. Note that for Z�t�=ln(X�t�) and
D=u0 /d, where d is the dimension of the domain, the Lange-
vin Eq. �A6b� describes the evolution of parcel pair distance,
�X�t�, in an isotropic Kraichnan flow �35�.

It is easy to calculate the pdf associated with the first-
passage-time probability, q0�t�, i.e., q0�t��t is the probability
that Z�t�=0 for the first time during the interval �t , t+dt�. The
FPE �A6a� has the following solution:

p�z,t� =
1

�4�Dt
exp�−

t

4D
� z + z0

t
− u0�2� . �A7�

To determine q0�t�, consider p̃�z�0, t�, where p̃�z�0, t� is
the solution of Eq. �A6a� in the presence of an absorbing
boundary such that p̃�0, t�=0 for all t�0. A standard result
�30� is that

p̃�z,t� = p�z,t��1 − exp� zz0

Dt
�� . �A8�

It can be deduced �30,41� that

q0�t� = − �t�
−�

0

p̃�z,t�dz �A9a�

=− D�zp̃�z,t��z=0 =
Dz0

t
p�0,t� �A9b�

=
z0

�4�Dt3
exp�−

t

4D
� z0

t
− u0�2� . �A9c�

Determining Q�h ,�x�, the pdf for the FSLEs, is analo-
gous to determining the distribution of the particle’s average
velocity over the period until it first visits the origin. Let this
velocity be denoted by V�t�. Its distribution, Q�v ,z0�, can be
determined from q0�t� by a change of variables, V�t�=z0 /T,
where T denotes the first-passage time. This results into

Q�v,z0� =
z0

v2q0�t = z0/v� =
1

�4�Dz0v
exp�−

z0�v − u0�2

4Dv
� .

�A10�

Determining P�h , t� is analogous to determining the distribu-
tion of the average particle velocity �averaged over all times
prior to t�. Let this velocity be denoted by U�t�. Its distribu-
tion, denoted by P�u , t�, can be obtained from p�z , t� �see Eq.
�A7�� by a change of variables U�t�= �Z�t�+z0� / t which leads
to

P�u,t� = tp�z = ut − z0,t� =� t

4�D
exp�−

�u − u0�2t

4D
� .

�A11�

Approximation �16� is equivalent to setting t=z0 /u and
u=v in Eq. �A11� from where we obtain that

Q � Q0. �A12�

Thus, for this example of a one-dimensional diffusive ran-
dom walk �a corresponding one-dimensional stretching pro-
cess�, approximation �16� is exact for all z0�0.

2. Expression for the large-q behavior of �̃q

The large-q behavior of �̃q can be obtained by considering
H�h��G�h� /h, which is singular at hmax. From Eq. �26�, the
minimum of q� /h+H�h� occurs at h=hq�, where hq� satis-
fies

H��hq�� = q�/hq�
2 . �A13a�

This implies that

H��hq�� � q�/hmax
2 , �A13b�

and thus, H��hq��→� as q→�. Now consider
q� /hq�+H�hq��. First suppose that H�hq�� dominates
the expression such that H�hq���cq� /hq�, where c�0 is
some constant. Using Eq. �A13a� it follows that
H��hq�� /H�hq���c /hq� from where we can deduce that
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H�hq�� � H�h1���hq�

h1�
�c

� H�h1���hmax

h1�
�c

, �A14�

i.e., H�hq�� is bounded as q increases. Equation �A14� is in
contradiction with Eq. �A13b� as for a reasonable H, a
bounded H implies a bounded H�. Therefore, for all c�0,
H�hq���cq� /hq�. Using Eq. �25� we may thus deduce that
for ��hmax,

�̃q 	
�q

hmax
, as q → � . �A15�

3. Determining �

For a flow that is spatially homogeneous and random in
time, � can be evaluated by considering the time-� map of
the flow, �−�, that relates the fluid parcel positions at two
times t and t−� by X�t−��=�−�X�t�. As X�t�→0,

�X�t − �� = ��−��X=0�X�t� = S−��X�t� , �A16�

where � denotes the time necessary for the flow to become
uncorrelated and S−� is a random matrix with det S−�=1.

Let p��x , t�d�x be the probability that the value of �X�t�
lies between �x and �x+d�x at time t. An approximate ex-
pression for p��x , t� may be deduced using its dependence
on P�h , t�, whose large-deviation form was given in Eq. �15�.
p��x , t� may then be assumed to be proportional to both
P�h , t� as well as q�� ;h , t�, a function weakly dependent on h
and t that incorporates the dependence of the evolution of the

line element on its orientation. Since �x�eht, a change of
variables results in

p��x,t� 	
1

��x�2t
P�h,t�q��;h,t� , �A17�

where �x=�x�cos � , sin ��.
From Eq. �A16� it follows that p��x , t� obeys the follow-

ing recurrence relation,

p��x,t� =� 
��S−��x − �x−���p��x−�,t − ��d�x−�,

�A18�

where 
 . . . � denotes averaging over the ensemble of random
matrices and �x−���x−��cos��−�� , sin��−���=S−��x.

Once expression �A17� is substituted into Eq. �A18�, the
problem is at leading order transformed into a one-
dimensional eigenvalue problem of the form


�x−�
�−1q��−��� = �����x�−1q��� , �A19a�

with

� = − �1 + G��h�� and ���� = exp�− ��G�h� − hG��h��� .

�A19b�

The eigenvalue ���� can now be numerically determined
for a range of values of � by evaluating Eq. �A19� for an
ensemble of random matrices S−�. The function ���� is then
obtained using the relation

���� = − ln������/� . �A20�
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