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Decay Properties of Restricted Isometry Constants
Jeffrey D. Blanchard*, Coralia Cartis, and Jared Tanner

Abstract—Many sparse approximation algorithms accurately
recover the sparsest solution to an underdetermined system of
equations provided the matrix’s restricted isometry constants
(RICs) satisfy certain bounds. There are no known large deter-
ministic matrices that satisfy the desired RIC bounds; however,
members of many random matrix ensembles typically satisfy RIC
bounds. This experience with random matrices has colored the
view of the RICs’ behavior. By modifying matrices assumed to
have bounded RICs, we construct matrices whose RICs behave in
a markedly different fashion than the classical random matrices;
RICs can satisfy desirable bounds and also take on values in a
narrow range.

Index Terms—Compressed sensing, restricted isometry con-
stants, RIP, sparse approximation

I. INTRODUCTION

A central task in sparse approximation and compressed
sensing [1], [2], [3], is to approximate or recover a compress-
ible or sparse signal from only a limited number of linear
observations. Using an underdetermined measurement matrix
and having knowledge of these measurements, the sparsest
vector giving rise to these measurements is sought. In this
context, Candès and Tao [2] introduced the restricted isometry
constants of a matrix, otherwise known as restricted isometry
property (RIP) constants.

Definition 1. Let A be an n×N matrix with n < N . The k-
restricted isometry constant of A, δAk , is the smallest number
such that (

1− δAk
)
‖x‖22 ≤ ‖Ax‖

2
2 ≤

(
1 + δAk

)
‖x‖22 (1)

for every vector x ∈ χN (k) :=
{
x ∈ RN : ‖x‖0 ≤ k

}
, where

‖x‖0 counts the number of nonzero entries in x.

Since χN (k) ⊂ χN (k + 1), it is clear that δAk ≤ δAk+1 for
any k. For sparse approximation and compressed sensing, it is
desirable to have matrices with bounded k-restricted isometry
constants for k proportional to n as n grows. Computing the
restricted isometry constants of a matrix is a combinatorial
problem and thus intractable for large matrices. Fortunately
many random matrix ensembles, for example Gaussian, typ-
ically have bounded k-restricted isometry constants for k
proportional to n as n grows; moreover, bounds on these
constants are known [2], [4].
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By determining the magnitude of the restricted isometry
constants it is possible to make quantitative statements as
to when various sparse approximation algorithms are guar-
anteed to recover the sparsest solution; here we focus on `1-
regularization. We show (constructively) that there are matrices
whose restricted isometry constants have strikingly different
decay rates (with respect to k as k decreases) than are observed
for the random matrix ensembles typically used in sparse
approximation.

Throughout, let A be an n × N matrix with n < N . Let
x ∈ χN (k) for k < n and y = Ax. We seek to recover the
sparsest vector x from (y,A), namely,

min ‖x‖0 subject to y = Ax. (2)

Rather than solve (2) directly through a combinatorial search,
the problem is relaxed to solving [5]

min ‖x‖1 subject to y = Ax. (3)

If (2) and (3) both have a unique solution which is x,
we call x a point of `1/`0-equivalence. A major endeavor
in compressed sensing is determining when every x ∈ χN (k)
is a point of `1/`0-equivalence.

Donoho [6] has provided a necessary and sufficient (geo-
metric) condition on the measurement matrix A so that every
x ∈ χN (k) is a point of `1/`0-equivalence. Consider CN ,
the `1-ball in RN , whose 2N vertices are the canonical basis
vectors {±ej : j = 1, . . . , N}. Associated to the matrix A,
there is a convex polytope PA obtained by applying A to CN ;
PA = ACN . A polytope P is k-central-neighborly when every
set of k+ 1 vertices (which do not include an antipodal pair)
span a k-dimensional face of P .

Theorem 1. (Donoho [6]) Every x ∈ χN (k) is a point of
`1/`0-equivalence if and only if PA = ACN has 2N vertices
and is k-central-neighborly.

Random matrices with Gaussian entries typically provide
k-central-neighborly measurement matrices for k proportional
to n as n grows [6], [7]. This geometric perspective inspires
the proofs of theorems of Section 2 concerning the RIP and
`1/`0-equivalence.

The restricted isometry approach of Candès and Tao [2]
provides sufficient conditions for when every x ∈ χN (k) is a
point of `1/`0-equivalence. The following is a small sample
of the various conditions placed on the restricted isometry
constants of A.

Theorem 2. (Candès, Tao [2]) If δAk + δA2k + δA3k < 1, then
every x ∈ χN (k) is a point of `1/`0-equivalence.

Theorem 3. (Candès, Romberg, Tao [8]) If δA3k + 3δA4k < 2,
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then every x ∈ χN (k) is a point of `1/`0-equivalence.

Theorem 4. (Chartrand, Staneva [9]) For b > 1 with bk an
integer, if δAbk + bδA(b+1)k < b− 1, then every x ∈ χN (k) is a
point of `1/`0-equivalence.

Theorem 5. (Candès [10]) If δA2k <
√

2 − 1, then every x ∈
χN (k) is a point of `1/`0-equivalence.

This paper explores the possible behavior of the restricted
isometry constants for an arbitrary matrix. Understanding how
δAk may vary with k for a general matrix A is essential in
the search for suitable compressed sensing matrices and for
the comparison of RIP statements involving multiple sparsity
levels. In Section 2 we state the main results and discuss their
implications for compressed sensing. We present the proofs of
the main results and elaborate on their implications in Section
3.

II. MAIN RESULTS

In order to ensure that any k-sparse vector can be recovered
from (y,A), even via an exhaustive search, no two k-sparse
vectors may be mapped by A to the same observation y.
When δA2k < 1, we are assured that A will return a unique
observation y for every x ∈ χN (k) and therefore guarantee1

a unique solution to (2). Restricting δA2k to be bounded by
a constant smaller than one, e.g. Theorem 5, is sufficient to
ensure `1/`0-equivalence; however, the largest bound on δA2k
which guarantees `1/`0-equivalence is not known. Our first
theorem states that δA2k < 1 is not sufficient to guarantee `1/`0-
equivalence. In fact, no restricted isometry constant being less
than one will ensure that 1-sparse vectors can be recovered;
results of a similar nature were also derived by Davies and
Gribonval [11].

Theorem 6. For any l ∈ {1, . . . , n − 1}, δAl < 1 does not
imply that every x ∈ χN (1) is a point of `1/`0-equivalence.

There is no known deterministic class of matrices for
which there is a fixed ρ ∈ (0, 1) such that δAdρne < 1 as
n → ∞ and n/N → τ ∈ (0, 1). However there are random
matrix ensembles whose members are shown to typically
have bounded restricted isometry constants. In particular, for
Gaussian random matrices there exists a constant ρ? ∈ (0, 1)
such that δAdρ?ne < 1 as n → ∞ with n/N → τ ∈ (0, 1) [2].
For these same random matrices, it is known that δA2 ∼ n−1/2

[12]. Moreover, the restricted isometry constants δAl decrease
rapidly from δAdρ?ne (near 1) to near 0 as l decreases from
dρ?ne to 2; we refer to this as the decay rate of the restricted
isometry constants of A. In the search for broader classes
of matrices with bounded k-restricted isometry constants for
k proportional to n as n grows, it may prove beneficial to
know that we need not mimic the restricted isometry constant
behavior of these random matrix ensembles. Moreover, when

1Requiring δA
2k < 1 is not necessary to ensure that there are no two k-

sparse vectors which are mapped by A to the same measurement y. For many
matrices there exists an x ∈ χN (2k) such that ‖Ax‖2 ≥ 2‖x‖2, i.e. δA

2k ≥1,
while there are no 2k-sparse vectors mapped to zero; examples include
Gaussian N (0, 1/

√
n) matrices commonly used in compressed sensing [4].

making quantitative comparisons of Theorems 2-5, how the
restricted isometry constants vary with k plays an important
role. The second result states that δAk < 1 does not imply that
δA1 << 1; indeed δA1 may be arbitrarily close to δAk . That is,
the restricted isometry constants may not exhibit appreciable
decay.

Theorem 7. Given any ε ∈ (0, 1) and k ∈ {1, . . . , n − 1},
there exists a matrix A such that δA1 , . . . , δ

A
k ∈ [1− ε, 1).

At first glance this may seem not to be such a significant
obstacle since having δAl < 1 for any l was already not suffi-
cient to recover a 1-sparse vector. However, it is also possible
to construct a matrix whose RIP constants are all confined to
an interval whose length is equal to the difference between two
consecutive restricted isometry constants of another matrix.

Theorem 8. Suppose there exists a matrix B of size (n−1)×
(N − 1) such that δBk < 1. Then there exists a matrix A of
size n×N such that δA1 , . . . , δ

A
k ∈

[
δBk−1, δ

B
k

]
.

Although we do not know a way to construct or randomly
draw a matrix with δBk − δBk−1 being arbitrarily small for
a specific choice of k, this clustering of restricted isometry
constants is typical of matrices with δBk bounded for k
proportional to n as n → ∞. For any ε > 0 and k = dρne
for some ρ ∈ (0, 1), if δk is bounded as n → ∞ (as is the
case for Gaussian random matrices) then for all but at most a
finite number of j ≤ k, δBj − δBj−1 < ε as n→∞.

From Theorem 8, having a restricted isometry constant, δAk ,
which is strictly bounded away from 1, even for k arbitrarily
large, does not give any indication of the size of the smallest
restricted isometry constants. This lack of decay helps interpret
some previous RIP results.

In general, there exist matrices such that δAk + ε and δA2k+ ε
are greater than δA3k. Unless further information is known
about the restricted isometry constants of A it is appropriate
to collapse Theorem 2 to δA3k < 1/3. In fact, collapsing
RIP statements to a single sparsity level allows for a more
intuitive comparison of the results. In this light, Theorem 5 is
a verifiable improvement of Theorem 2 as it simultaneously
decreases the sparsity level restriction from 3k to 2k and
increases the bound from 1/3 to

√
2 − 1. With Theorem 4,

Chartrand and Staneva point out that the integers 2, 3, and 4
in Theorem 3 can be replaced by b−1, b, and b+1, respectively.
Theorem 8 implies that in the general setting, one may collapse
Theorem 4 to the single sparsity level, ck.

Corollary 9. For c > 2 with ck an integer, if δck < c−2
c , then

every x ∈ χN (k) is a point of `1/`0-equivalence.

Observe that collapsing Theorems 2 and 3 results in special
cases of Corollary 9 with c = 3 and c = 4, respectively.
On one hand, Corollary 9 is less desirable that Theorem 5
as it requires A to act as a restricted isometry on larger
support sizes. However, this trade-off allows the bound on
the restricted isometry constants to approach 1. For example,
if δA100k < .98, then every x ∈ χN (k) is a point of `1/`0-
equivalence for the matrix A. Even more quantitative notions
of the restricted isometry constants [4], [13] suggest that the
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significantly larger support size is not unrealistic; for example,
the current RIP statements involving Gaussian matrices require
n > 317k [4].

Needell and Tropp [14] have shown that the restricted
isometry constants cannot exceed a linear growth rate as k
increases: for positive integers c and k, the restricted isometry
constants of A satisfy δAck ≤ k · δA2c. In particular, for
c = 1, δAk ≤ k · δA2 . Since restricted isometry constants are
nondecreasing, knowledge of either δA2 or δAk implies a bound
on the other; namely that the restricted isometry constants are
contained in the intervals,

δA2 , . . . , δ
A
k ∈

[
δA2 , kδ

A
2

]
(4)

and δA2 , . . . , δ
A
k ∈

[
1
k
δAk , δ

A
k

]
, (5)

respectively. Whereas (4) and (5) indicate large intervals that
contain the restricted isometry constants, Theorem 8 states
that these constants may in fact be contained in an arbitrarily
narrow interval.

Another generic condition on A used in sparse approxima-
tion is its coherence defined by

µA := sup
i,j∈{1,...,N}

i 6=j

|〈Aei, Aej〉| . (6)

Smaller values of µA provide larger values of k for which
it is guaranteed that most x ∈ χN (k) are points of `1/`0-
equivalence [12]. It is known that µA ≤ δA2 [2]. Analogous to
Theorem 7, knowledge of δAk < 1 for k large does not imply
that µA is small.

Theorem 10. For any ε > 0 and any k ∈ {1, . . . , n − 1},
there exists a matrix A with δAk < 1 and µA > 1− ε.

Theorem 7 states that, although δAk < 1 for k large, δA1
may be arbitrarily close to one; Theorem 10 tells us that µA

may also be arbitrarily close to one. Therefore assumptions
regarding the coherence of A are additional assumptions to
those regarding the restricted isometry constants.

III. PROOFS OF MAIN RESULTS

Throughout this section let z ∈ RN−1\ {0} and α ∈ R.
Recall that ej is the jth standard basis vector of RN and CN

denotes the `1 ball in RN . We refer to a vector with no more
than l nonzero entries as being at most l-sparse.

Theorem 6 states that knowledge of δAk < 1 for k large does
not even guarantee recovery of 1-sparse vectors by solving (3).
This is proved by showing that there are matrices that satisfy
δl < 1 for any l ∈ {1, . . . , n − 1} which are not 0-central-
neighborly.

Proof of Theorem 6. Let 1 ≤ l < n, B be a full rank matrix
of size n× (N − 1) with δBl < 1, and set 0 < ε <

√
1− δBl .

Select any point u with ‖u‖2 ≤ ε that is in the interior of
PB = BCN−1 such that, for any 1 ≤ m < n, u has no m-
sparse representation in terms of the columns of B. (Such a
vector u exists as 0 ∈ intPB and the columns of B span Rn.
Therefore, when m < n, the set of vectors with an m-sparse
representation in terms of the columns of B has measure zero

in Rn while PB has positive measure in Rn.) Define A by
appending u to B: A = [B u]. To show δAl < 1, we first
prove ‖Ay‖22/‖y‖22 > 0, and then ‖Ay‖22/‖y‖22 < 2. Let yT =[
zT α

]
be an at most l-sparse vector. Then z is at most l-

sparse and hence (1 − δBl )‖z‖22 ≤ ‖Bz‖22 ≤ (1 + δBl )‖z‖22.
Since δBl < 1, for α = 0, we have ‖Ay‖2 = ‖Bz‖2 > 0.
When α 6= 0, again we must have ‖Ay‖2 = ‖Bz+αu‖2 > 0
due to our choice of u; otherwise, Bz+αu = 0 would imply
that u admits an at most (n−1)-sparse representation in terms
of the columns of B. Thus in all cases, ‖Ay‖22/‖y‖22 > 0. To
prove ‖Ay‖22/‖y‖22 < 2, note that

‖Ay‖2 ≤ ‖Bz‖2 + |α| · ‖u‖2 ≤
√

1 + δBl ‖z‖2 + ε|α|,

which, by applying Cauchy-Schwarz inequality to the above
right-hand side, gives ‖Ay‖22 ≤ (1 + δBl + ε2)‖y‖22 < 2‖y‖22
due to our choice of ε.

Despite δAl < 1, AeN = u ∈ intPB = intPA, thus PA is not
0-central-neighborly. By Theorem 1, there exists x ∈ χN (1),
for example eN , that is not a point of `1/`0-equivalence. 2

To prove Theorems 7 and 8, we use the following lemma.

Lemma 11. Let B be an (n−1)×(N−1) matrix with δBk < 1,

and A =
[
B 0
0
√
β

]
where β ∈ (0, 1). Then

δA1 ≥ 1− β and δAk ≤ max{δBk , 1− β}. (7)

Proof. Since AeN =
√
β eN , we have β = ‖AeN‖22 ≥

(1−δA1 ) ‖eN‖22 = 1−δA1 . Thus, the first part of (7) follows. To
show the second inequality, let yT =

[
zT α

]
be an at most k-

sparse vector; thus z is at most k-sparse and so (1−δBk )‖z‖22 ≤
‖Bz‖22 ≤ (1 + δBk )‖z‖22. Also, ‖Ay‖22 = ‖Bz‖22 + βα2 and
hence

(1− δBk )‖z‖22 + βα2 ≤ ‖Ay‖22 ≤ (1 + δBk )‖z‖22 + βα2.

Since ‖y‖22 = ‖z‖22 + α2, we have

min{1− δBk , β} ≤
‖Ay‖22
‖y‖22

≤ max{1 + δBk , β},

which together with (1), gives bounds on the lower and upper
restricted isometry constants, min{1 − δBk , β} ≤ 1 − δAk and
max{1 + δBk , β} ≥ 1 + δAk , hence

δAk ≤ max{1−min{1− δBk , β},max{1 + δBk , β} − 1}

which for β ∈ (0, 1) and δBk ≥ 0 reduces to the second
inequality in (7). 2

Theorem 7 shows that no assumption can be made in general
about how the restricted isometry constants vary with k. In
fact these constants may be made arbitrarily close together.
To demonstrate this, we perturb a matrix known to have
a certain restricted isometry constant less than one. Since
these constants are nondecreasing, we construct a matrix that
retains this restricted isometry constant less than 1 but has δ1
arbitrarily close to 1.

Proof of Theorem 7. Let B be an (n − 1) × (N − 1)
matrix with δBk < 1. Construct A from B as in Lemma 11
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with β := ε ∈ (0, 1). Then the first inequality in (7) provides
δA1 ≥ 1− ε. Since δBk < 1 by design, the second inequality in
(7) yields δAk < 1. 2

Proof of Theorem 8. Construct A from the given B as in
Lemma 11 with β := 1 − δBk−1. The first inequality in (7)
implies δA1 ≥ δBk−1, while the second gives δAk ≤ δBk . 2

The coherence, µA, of the measurement matrix A is often
used in addition to or independent of the restricted isometry
constants to derive results in sparse approximation. While µ ≤
δ2, the restricted isometry constants can be arbitrarily close
together and even arbitrarily close to one, it is natural to ask
if the coherence can also be arbitrarily close to one while
preserving that the restricted isometry constants are all less
than one. Theorem 10 shows this is indeed possible.

Proof of Theorem 10. Let B be a full rank matrix of size
n × (N − 1) with δBk < 1, unit norm columns b1, . . . , bN−1,
and let PB = BCN−1, with vertices {±bi}N−1

i=1 . Consider
0 < ε � 1. Pick any vertex bj . Let ũ = (1 − ε

2 )bj . Then
ũ ∈ intPB and so there exists β ∈ (0, ε/2) so that the ball
Bβ(ũ) of radius β centered at ũ satisfies Bβ(ũ) ⊂ intPB .
Choose u ∈ Bβ(ũ) so that u has no (n− 1)-sparse or sparser
representation in terms of the columns of B (see the proof
of Theorem 6 as to why this choice is possible). Define A
by appending u to B and scaling: A = [B u] /

√
2. To show

δAk < 1, let yT =
[
zT α

]
be at most k-sparse. The argument

for ‖Ay‖22/‖y‖22 > 0 follows similarly to the corresponding
part of the proof of Theorem 6 (with l := k). It remains to
show that ‖Ay‖22 < 2‖y‖22, or equivalently, that ‖Ay‖22 < 2 for
y with ‖y‖2 ≤ 1. To prove the latter, note that u = ũ+(u− ũ)
and so

‖Ay‖2 = ‖Bz + α(1− ε/2)bj + α(u− ũ)‖2/
√

2

= ‖B(z + αej)− α
ε

2
bj + α(u− ũ)‖2/

√
2

≤
(√

1 + δBk ‖z + αej‖2 +
( ε

2
+ β

)
|α|
)
/
√

2

≤
√

1 + δBk + ε <
√

2, for ε sufficiently small,

where in the second inequality, we used |α|, ‖z + αej‖2 ≤√
2 and β < ε/2; in the first inequality above, besides using
‖bj‖2 = 1 and u ∈ Bβ(ũ), we argued that in the nontrivial
case when α 6= 0, z is at most k − 1 sparse and so z + αej
is at most k-sparse and hence (1) provides ‖B(z + αej)‖2 ≤√

1 + δBk ‖z + αej‖2.
Since bj and u are both columns of A, then (6) implies

µA ≥ |〈bj , u〉| = |〈bj , ũ+ (u− ũ)〉|

≥ (1− ε

2
) ‖bj‖22 − |〈bj , u− ũ〉| ≥ 1− ε,

with the last inequality due to ‖bj‖22 = 1 and β < ε
2 . 2

IV. CONCLUSIONS

Sparse approximation results derived from bounds on re-
stricted isometry constants, such as Theorems 2-4, are most

applicable to matrices (or random matrix ensembles) with sig-
nificant decay rates of the restricted isometry constants. For a
general matrix the restricted isometry constants may exhibit no
decay; hence, statements such as Theorem 5 or Corollary 9 are
more appropriate where there is no further knowledge of the
decay properties of the restricted isometry constants. Finally,
an assumption on the coherence of a matrix is additional to
assumptions on the restricted isometry constants.
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