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Abstract
In this paper we develop a new approach to sparse principal component analysis (sparse PCA).
We propose two single-unit and two block optimization formulations of the sparse PCA problem,
aimed at extracting a single sparse dominant principal component of a data matrix, or more com-
ponents at once, respectively. While the initial formulations involve nonconvex functions, and are
therefore computationally intractable, we rewrite them into the form of an optimization program
involving maximization of a convex function on a compact set. The dimension of the search space
is decreased enormously if the data matrix has many more columns (variables) than rows. We then
propose and analyze a simple gradient method suited for the task. It appears that our algorithm
has best convergence properties in the case when either the objective function or the feasible set
are strongly convex, which is the case with our single-unit formulations and can be enforced in
the block case. Finally, we demonstrate numerically on a setof random and gene expression test
problems that our approach outperforms existing algorithms both in quality of the obtained solution
and in computational speed.

Keywords: sparse PCA, power method, gradient ascent, strongly convexsets, block algorithms

1. Introduction

Principal component analysis(PCA) is a well established tool for making sense of high dimensional
data by reducing it to a smaller dimension. It has applications virtually in all areas of science—
machine learning, image processing, engineering, genetics, neurocomputing, chemistry, meteorol-
ogy, control theory, computer networks—to name just a few—where largedata sets are encountered.
It is important that having reduced dimension, the essential characteristicsof the data are retained.
If A∈Rp×n is a matrix encodingp samples ofn variables, withn being large, PCA aims at finding a
few linear combinations of these variables, calledprincipal components, which point in orthogonal
directions explaining as much of the variance in the data as possible. If the variables contained in
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the columns ofA are centered, then the classical PCA can be written in terms of the scaledsample
covariance matrixΣ = ATA as follows:

Find z∗ = arg max
zTz≤1

zTΣz. (1)

Extracting one component amounts to computing the dominant eigenvector ofΣ (or, equiva-
lently, dominant right singular vector ofA). Full PCA involves the computation of the singular
value decomposition (SVD) ofA. Principal components are, in general, combinations of all the
input variables, that is, theloading vector z∗ is not expected to have many zero coefficients. In most
applications, however, the original variables have concrete physical meaning and PCA then appears
especially interpretable if the extracted components are composed only froma small number of the
original variables. In the case of gene expression data, for instance,each variable represents the
expression level of a particular gene. A good analysis tool for biological interpretation should be
capable to highlight “simple” structures in the genome—structures expected toinvolve a few genes
only—that explain a significant amount of the specific biological processes encoded in the data.
Components that are linear combinations of a small number of variables are, quite naturally, usually
easier to interpret. It is clear, however, that with this additional goal, some of the explained variance
has to be sacrificed. The objective ofsparse principal component analysis(sparse PCA) is to find a
reasonabletrade-off between these conflicting goals. One would like to explainas muchvariability
in the data as possible, using components constructed fromas fewvariables as possible. This is the
classical trade-off betweenstatistical fidelityandinterpretability.

For about a decade, sparse PCA has been a topic of active research. Historically, the first sug-
gested approaches were based on ad-hoc methods involving post-processing of the components
obtained from classical PCA. For example, Jolliffe (1995) consider using various rotation tech-
niques to find sparse loading vectors in the subspace identified by PCA. Cadima and Jolliffe (1995)
proposed to simply set to zero the PCA loadings which are in absolute value smaller than some
threshold constant.

In recent years, more involved approaches have been put forward—approaches that consider
the conflicting goals of explaining variability and achieving representation sparsity simultaneously.
These methods usually cast the sparse PCA problem in the form of an optimization program, aiming
at maximizing explained variance penalized for the number of non-zero loadings. For instance, the
SCoTLASS algorithm proposed by Jolliffe et al. (2003) aims at maximizing the Rayleigh quotient
of the covariance matrix of the data under theℓ1-norm based Lasso penalty (Tibshirani, 1996). Zou
et al. (2006) formulate sparse PCA as a regression-type optimization problem and impose the Lasso
penalty on the regression coefficients. d’Aspremont et al. (2007) in their DSPCA algorithm exploit
convex optimization tools to solve a convex relaxation of the sparse PCA problem. Shen and Huang
(2008) adapt the singular value decomposition (SVD) to compute low-rank matrix approximations
of the data matrix under various sparsity-inducing penalties. Greedy methods, which are typical for
combinatorial problems, have been investigated by Moghaddam et al. (2006). Finally, d’Aspremont
et al. (2008) proposed a greedy heuristic accompanied with a certificate of optimality.

In many applications, several components need to be identified. The traditional approach con-
sists of incorporating an existing single-unit algorithm in a deflation scheme, and computing the
desired number of components sequentially (see, e.g., d’Aspremont et al.2007). In the case of
Rayleigh quotient maximization it is well-known that computing several components at once in-
stead of computing them one-by-one by deflation with the classical power method might present
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better convergence whenever the largest eigenvalues of the underlying matrix are close to each
other (see, e.g., Parlett 1980). Therefore, block approaches for sparse PCA are expected to be more
efficient on ill-posed problems.

In this paper we consider two single-unit (Section 2.1 and 2.2) and two blockformulations (Sec-
tion 2.3 and 2.4) of sparse PCA, aimed at extractingm sparse principal components, withm= 1 in
the former case andp≥m> 1 in the latter. Each of these two groups comes in two variants, de-
pending on the type of penalty we use to enforce sparsity—eitherℓ1 or ℓ0 (cardinality).1 Although
we assume a direct access to the data matrixA, these formulations also hold when only the covari-
ance matrixΣ is available, provided that a factorization of the formΣ = ATA is identified (e.g., by
eigenvalue decomposition or by Cholesky decomposition).

While our basic formulations involve maximization of anonconvexfunction on a space of di-
mension involvingn, we constructreformulationsthat cast the problem into the form of maximiza-
tion of a convexfunction on the unit Euclidean sphere inRp (in the m = 1 case) or theStiefel
manifold2 in Rp×m (in them> 1 case). The advantage of the reformulation becomes apparent when
trying to solve problems with many variables (n≫ p), since we manage to avoid searching a space
of large dimension.3 At the same time, due to the convexity of the new cost function we are able to
propose andanalyzethe iteration-complexity of a simple gradient-type scheme, which appears to
be well suited for problems of this form. In particular, we study (Section 3) afirst-order method for
solving an optimization problem of the form

f ∗ = max
x∈Q

f (x), (P)

whereQ is a compact subset of a finite-dimensional vector space andf is convex. It appears that
our method has best theoretical convergence properties when eitherf or Q are strongly convex,
which is the case in the single unit case (unit ball is strongly convex) and can be enforced in the
block case by adding a strongly convex regularizing term to the objective function, constant on the
feasible set. We do not, however, prove any results concerning the quality of the obtained solution.
Even the goal of obtaining a local maximizer is in general unattainable, and wemust be content
with convergence to a stationary point.

In the particular case whenQ is the unit Euclidean ball inRp and f (x) = xTCx for somep× p
symmetric positive definite matrixC, our gradient scheme specializes to thepower method, which
aims at maximizing theRayleigh quotient

R(x) =
xTCx
xTx

and thus at computing the largest eigenvalue, and the corresponding eigenvector, ofC.
By applying our general gradient scheme to our sparse PCA reformulations of the form (P), we

obtain algorithms (Section 4) with per-iteration computational costO(npm).
We demonstrate on random Gaussian (Section 5.1) and gene expression data related to breast

cancer (Section 5.2) that our methods are very efficient in practice. Whileachieving a balance be-
tween the explained variance and sparsity which is the same as or superior tothe existing methods,

1. Our single-unit cardinality-penalized formulation is identical to that of d’Aspremont et al. (2008).
2. Stiefel manifold is the set of rectangular matrices with orthonormal columns.
3. Note that in the casep > n, it is recommended to factor the covariance matrix asΣ = ATA with A∈ Rn×n, such that

the dimensionp in the reformulations equals at mostn.
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they are faster, often converging before some of the other algorithms manage to initialize. Addition-
ally, in the case of gene expression data our approach seems to extract components with strongest
biological content.

1.1 Notation

For convenience of the reader, and at the expense of redundancy,some of the less standard notation
below is also introduced at the appropriate place in the text where it is used.Parametersm≤ p≤ n
are actual values of dimensions of spaces used in the paper. In the definitions below, we use these
actual values (i.e.,n, p andm) if the corresponding object we define is used in the text exclusively
with them; otherwise we make use of the dummy variablesk (representingp or n in the text) andl
(representingm, p or n in the text).

Given a vectory∈ Rk, its j th coordinate is denoted byy j . With an abuse of notation, we may
use subscripts to indicate a sequence of vectors, such asy1,y2, . . . ,yl . In that case thej th coordinates
of these vectors are denoted byy1 j ,y2 j , . . . ,yl j . By yi we refer to theith column ofY ∈ Rk×l .
Consequently, the element ofY at position(i, j) can be written asyi j .

By E we refer to a finite-dimensional vector space;E∗ is its conjugate space, that is, the space
of all linear functionals onE. By 〈s,x〉 we denote the action ofs∈ E∗ on x∈ E. For a self-adjoint
positive definite linear operatorG : E→ E∗ we define a pair of norms onE andE∗ as follows

‖x‖ def
= 〈Gx,x〉1/2, x∈ E,

‖s‖∗ def
= 〈s,G−1s〉1/2, s∈ E∗.

(2)

Although the theory in Section 3 is developed in this general setting, the sparse PCA applications
considered in this paper require either the choiceE = E∗ = Rp (see Section 3.3 and problems (8)
and (13) in Section 2) orE = E∗ = Rp×m (see Section 3.4 and problems (16) and (20) in Section 2).
In both cases we will letG be the corresponding identity operator for which we obtain

〈x,y〉= ∑
i

xiyi , ‖x‖= 〈x,x〉1/2 =

(

∑
i

x2
i

)1/2

= ‖x‖2, x,y∈ Rp, and

〈X,Y〉= TrXTY, ‖X‖= 〈X,X〉1/2 =

(

∑
i j

x2
i j

)1/2

= ‖X‖F , X,Y ∈ Rp×m.

Thus in the vector setting we work with thestandard Euclidean normand in the matrix setting
with theFrobenius norm. The symbol Tr denotes the trace of its argument.

Furthermore, forz∈ Rn we write ‖z‖1 = ∑i |zi | (ℓ1 norm) and by‖z‖0 (ℓ0 “norm”) we refer
to the number of nonzero coefficients, orcardinality, of z. By Sp we refer to the space of all
p× p symmetric matrices;Sp

+ (resp.Sp
++) refers to the positive semidefinite (resp. definite) cone.

Eigenvalues of matrixY are denoted byλi(Y), largest eigenvalue byλmax(Y). Analogous notation
with the symbolσ refers to singular values.

By Bk = {y∈Rk | yTy≤ 1} (resp.S k = {y∈Rk | yTy = 1}) we refer to the unit Euclidean ball
(resp. sphere) inRk. If we writeB andS , then these are the corresponding objects inE. The space
of n×mmatrices with unit-norm columns will be denoted by

[Sn]m = {Y ∈ Rn×m | Diag(YTY) = Im},
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where Diag(·) represents the diagonal matrix obtained by extracting the diagonal of the argument.
Stiefel manifoldis the set of rectangular matrices of fixed size with orthonormal columns:

S p
m = {Y ∈ Rp×m |YTY = Im}.

For t ∈ R we will further write sign(t) for the sign of the argument andt+ = max{0, t}.

2. Some Formulations of the Sparse PCA Problem

In this section we propose four formulations of the sparse PCA problem, allin the form of the
general optimization framework (P). The first two deal with the single-unit sparse PCA problem
and the remaining two are their generalizations to the block case.

2.1 Single-unit Sparse PCA viaℓ1-Penalty

Let us consider the optimization problem

φℓ1(γ)
def
= max

z∈Bn

√

zTΣz− γ‖z‖1, (3)

with sparsity-controlling parameterγ≥ 0 and sample covariance matrixΣ = ATA.
The solutionz∗(γ) of (3) in the caseγ = 0 is equal to the right singular vector corresponding to

σmax(A), the largest singular value ofA. It is the first principal component of the data matrixA. The
optimal value of the problem is thus equal to

φℓ1(0) = (λmax(A
TA))1/2 = σmax(A).

Note that there is no reason to expect this vector to be sparse. On the otherhand, for large enough
γ, we will necessarily havez∗(γ) = 0, obtaining maximal sparsity. Indeed, since

max
z6=0

‖Az‖2
‖z‖1

= max
z6=0

‖∑i ziai‖2
‖z‖1

≤max
z6=0

∑i |zi |‖ai‖2
∑i |zi |

= max
i
‖ai‖2 = ‖ai∗‖2,

we get‖Az‖2− γ‖z‖1 < 0 for all nonzero vectorsz wheneverγ is chosen to be strictly bigger than
‖ai∗‖2. From now on we will assume that

γ < ‖ai∗‖2. (4)

Note that there is a trade-off between the value‖Az∗(γ)‖2 and the sparsity of the solutionz∗(γ).
The penalty parameterγ is introduced to “continuously” interpolate between the two extreme cases
described above, with values in the interval[0,‖ai∗‖2). It depends on the particular application
whether sparsity is valued more than the explained variance, or vice versa, and to what extent. Due
to these considerations, we will consider the solution of (3) to be a sparse principal component of
A.

2.1.1 REFORMULATION

The reader will observe that the objective function in (3) is not convex,nor concave, and that the
feasible set is of a high dimension ifp≪ n. It turns out that these shortcomings are overcome by
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considering the following reformulation:

φℓ1(γ) = max
z∈Bn
‖Az‖2− γ‖z‖1

= max
z∈Bn

max
x∈B p

xTAz− γ‖z‖1 (5)

= max
x∈B p

max
z∈Bn

n

∑
i=1

zi(a
T
i x)− γ|zi |

= max
x∈B p

max
z′∈Bn

n

∑
i=1

|z′i |(|aT
i x|− γ), (6)

wherezi = sign(aT
i x)z′i . In view of (4), there is somex ∈ Bn for which aT

i x > γ. Fixing suchx,
solving the inner maximization problem forz′ and then translating back toz, we obtain the closed-
form solution

z∗i = z∗i (γ) =
sign(aT

i x)[|aT
i x|− γ]+

√

∑n
k=1[|aT

k x|− γ]2+
, i = 1, . . . ,n. (7)

Problem (6) can therefore be written in the form

φ2
ℓ1

(γ) = max
x∈S p

n

∑
i=1

[|aT
i x|− γ]2+. (8)

Note that the objective function is differentiable and convex, and hence all local and global maxima
must lie on the boundary, that is, on the unit Euclidean sphereS p. Also, in the case whenp≪ n,
formulation (8) requires to search a space of a much lower dimension than theinitial problem (3).

2.1.2 SPARSITY

In view of (7), an optimal solutionx∗ of (8) defines a sparsity pattern of the vectorz∗. In fact, the
coefficients ofz∗ indexed by

I = {i | |aT
i x∗|> γ}

are active while all others must be zero. Geometrically, active indices correspond to the defining
hyperplanes of the polytope

D = {x∈ Rp | |aT
i x| ≤ 1}

that are (strictly) crossed by the line joining the origin and the pointx∗/γ. Note that it is possible to
say something about the sparsity of the solution even without the knowledge of x∗:

γ≥ ‖ai‖2 ⇒ z∗i (γ) = 0, i = 1, . . . ,n. (9)

2.2 Single-unit Sparse PCA via Cardinality Penalty

Instead of theℓ1-penalization, the authors of d’Aspremont et al. (2008) consider the formulation

φℓ0(γ)
def
= max

z∈Bn
zTΣz− γ ‖z‖0, (10)

which directly penalizes the number of nonzero components (cardinality) ofthe vectorz.
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2.2.1 REFORMULATION

The reasoning of the previous section suggests the reformulation

φℓ0(γ) = max
x∈B p

max
z∈Bn

(xTAz)2− γ‖z‖0, (11)

where the maximization with respect toz∈ Bn for a fixedx∈ B p has the closed form solution

z∗i = z∗i (γ) =
[sign((aT

i x)2− γ)]+aT
i x

√

∑n
k=1[sign((aT

k x)2− γ)]+(aT
k x)2

, i = 1, . . . ,n. (12)

In analogy with theℓ1 case, this derivation assumes that

γ < ‖ai∗‖22,

so that there isx∈ Bn such that(aT
i x)2− γ > 0. Otherwisez∗ = 0 is optimal. Formula (12) is easily

obtained by analyzing (11) separately for fixed cardinality values ofz. Hence, problem (10) can be
cast in the following form

φℓ0(γ) = max
x∈S p

n

∑
i=1

[(aT
i x)2− γ]+. (13)

Again, the objective function is convex, albeit nonsmooth, and the new search space is of particular
interest if p≪ n. A different derivation of (13) for then = p case can be found in d’Aspremont
et al. (2008).

2.2.2 SPARSITY

Given a solutionx∗ of (13), the set of active indices ofz∗ is given by

I = {i | (aT
i x∗)2 > γ}.

Geometrically, active indices correspond to the defining hyperplanes of the polytope

D = {x∈ Rp | |aT
i x| ≤ 1}

that are (strictly) crossed by the line joining the origin and the pointx∗/
√γ. As in theℓ1 case, we

have
γ≥ ‖ai‖22 ⇒ z∗i (γ) = 0, i = 1, . . . ,n. (14)

2.3 Block Sparse PCA viaℓ1-Penalty

Consider the following block generalization of (5),

φℓ1,m(γ) def
= max

X∈S p
m

Z∈[Sn]m

Tr(XTAZN)−
m

∑
j=1

γ j

n

∑
i=1

|zi j |, (15)

where them-dimensional vectorγ = [γ1, . . . ,γm]T is nonnegative andN = Diag(µ1, . . . ,µm), with
positive entries on the diagonal. The dimensionm corresponds to the number of extracted compo-
nents and is assumed to be smaller or equal to the rank of the data matrix, that is,m≤ Rank(A).
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Each parameterγ j controls the sparsity of the corresponding component. It will be shown below that
under some conditions on the parametersµj , the caseγ = 0 recovers PCA. In that particular instance,
any solutionZ∗ of (15) has orthonormal columns, although this is not explicitly enforced. For pos-
itive γ j , the columns ofZ∗ are not expected to be orthogonal anymore. Most existing algorithms
for computing several sparse principal components, for example, Zou et al. (2006), d’Aspremont
et al. (2007) and Shen and Huang (2008), also do not impose orthogonal loading directions. Si-
multaneously enforcing sparsity and orthogonality seems to be a hard (and perhaps questionable)
task.

2.3.1 REFORMULATION

Since problem (15) is completely decoupled in the columns ofZ, that is,

φℓ1,m(γ) = max
X∈S p

m

m

∑
j=1

max
zj∈Sn

µjx
T
j Azj − γ j‖zj‖1,

the closed-form solution (7) of (5) is easily adapted to the block formulation (15):

z∗i j = z∗i j (γ j) =
sign(aT

i x j)[µj |aT
i x j |− γ j ]+

√

∑n
k=1[µj |aT

k x j |− γ j ]2+

.

This leads to the reformulation

φ2
ℓ1,m(γ) = max

X∈S p
m

m

∑
j=1

n

∑
i=1

[µj |aT
i x j |− γ j ]

2
+, (16)

which maximizes a convex functionf : Rp×m→ R on the Stiefel manifoldS p
m.

2.3.2 SPARSITY

A solutionX∗ of (16) again defines the sparsity pattern of the matrixZ∗: the entryz∗i j is active if

µj |aT
i x∗j |> γ j ,

and equal to zero otherwise. For allγ j > µj max
i
‖ai‖2, the trivial solutionZ∗ = 0 is optimal.

2.3.3 BLOCK PCA

For γ = 0, problem (16) can be equivalently written in the form

φ2
ℓ1,m(0) = max

X∈S p
m

Tr(XTAATXN2), (17)

which has been well studied (see, e.g., Brockett 1991 and Absil et al. 2008). The solutions of
(17) span the dominantm-dimensional invariant subspace of the matrixAAT . Furthermore, if the
parametersµj are all distinct, the columns ofX∗ are them dominant eigenvectors ofAAT , that is,
them dominant left-eigenvectors of the data matrixA. The columns of the solutionZ∗ of (15) are
thus them dominant right singular vectors ofA, that is, the PCA loading vectors. Such a matrixN
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with distinct diagonal elements enforces the objective function in (17) to have isolated maximizers.
In fact, if N = Im, any pointX∗U with X∗ a solution of (17) andU ∈ Sm

m is also a solution of (17).
In the case of sparse PCA, that is,γ > 0, the penalty term already ensures isolated maximizers, such
that the diagonal elements ofN do not have to be distinct. However, as it will be briefly illustrated
in the forthcoming numerical experiments (Section 5), having distinct elements on the diagonal of
N pushes towards sparse loading vectors that are more orthogonal.

2.4 Block Sparse PCA via Cardinality Penalty

The single-unit cardinality-penalized case can also be naturally extendedto the block case:

φℓ0,m(γ) def
= max

X∈S p
m

Z∈[Sn]m

Tr(Diag(XTAZN)2)−
m

∑
j=1

γ j‖zj‖0, (18)

where the sparsity inducing vectorγ = [γ1, . . . ,γm]T is nonnegative andN = Diag(µ1, . . . ,µm) with
positive entries on the diagonal. In the caseγ = 0, problem (20) is equivalent to (17), and therefore
corresponds to PCA, provided that allµj are distinct.

2.4.1 REFORMULATION

Again, this block formulation is completely decoupled in the columns ofZ,

φℓ0,m(γ) = max
X∈S p

m

m

∑
j=1

max
zj∈Sn

(µjx
T
j Azj)

2− γ j‖zj‖0,

so that the solution (12) of the single unit case provides the optimal columnszi :

z∗i j = z∗i j (γ j) =
[sign((µjaT

i x j)
2− γ j)]+µjaT

i x j
√

∑n
k=1[sign((µjaT

k x j)2− γ j)]+µ2
j (a

T
k x j)2

. (19)

The reformulation of problem (18) is thus

φℓ0,m(γ) = max
X∈S p

m

m

∑
j=1

n

∑
i=1

[(µja
T
i x j)

2− γ j ]+, (20)

which maximizes a convex functionf : Rp×m→ R on the Stiefel manifoldS p
m.

2.4.2 SPARSITY

For a solutionX∗ of (20), the active entriesz∗i j of Z∗ are given by the condition

(µja
T
i x∗j )

2 > γ j .

Hence for allγ j > µ2
j max

i
‖ai‖22, the optimal solution of (18) isZ∗ = 0.
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3. A Gradient Method for Maximizing Convex Functions

By E we denote an arbitrary finite-dimensional vector space;E∗ is its conjugate, that is, the space
of all linear functionals onE. We equip these spaces with norms given by (2).

In this section we propose and analyze a simple gradient-type method for maximizing a convex
function f : E→ R on a compact setQ :

f ∗ = max
x∈Q

f (x). (21)

Unless explicitly stated otherwise, we willnotassumef to be differentiable. Byf ′(x) we denote
any subgradient of functionf atx. By ∂ f (x) we denote its subdifferential.

At any pointx∈ Q we introduce some measure for the first-order optimality conditions:

∆(x)
def
= max

y∈Q
〈 f ′(x),y−x〉.

It is clear that

∆(x)≥ 0, (22)

with equality only at those pointsx where the gradientf ′(x) belongs to the normal cone to the set
Conv(Q ) atx.4

3.1 Algorithm

Consider the following simple algorithmic scheme.

Algorithm 1 : Gradient scheme
input : x0 ∈ Q
output: xk (approximate solution of (21))
begin

k←− 0
repeat

xk+1 ∈ Argmax{ f (xk)+ 〈 f ′(xk),y−xk〉 | y∈ Q }
k←− k+1

until a stopping criterion is satisfied
end

Note that for example in the special caseQ = rS
def
= {x∈ E | ‖x‖= r} or

Q = rB
def
= {x∈ E | ‖x‖ ≤ r}, the main step of Algorithm 1 can be written in an explicit form:

xk+1 = r
G−1 f ′(xk)

‖ f ′(xk)‖∗
. (23)

4. The normal cone to the set Conv(Q ) atx∈ Q is smallerthan the normal cone to the setQ . Therefore, the optimality
condition∆(x) = 0 isstrongerthan the standard one.

526



GENERALIZED POWER METHOD FORSPARSEPCA

3.2 Analysis

Our first convergence result is straightforward. Denote∆k
def
= min

0≤i≤k
∆(xi).

Theorem 1 Let sequence{xk}∞
k=0 be generated by Algorithm 1 as applied to a convex function f .

Then the sequence{ f (xk)}∞
k=0 is monotonically increasing andlim

k→∞
∆(xk) = 0. Moreover,

∆k ≤
f ∗− f (x0)

k+1
.

Proof From convexity off we immediately get

f (xk+1)≥ f (xk)+ 〈 f ′(xk),xk+1−xk〉= f (xk)+∆(xk),

and therefore,f (xk+1) ≥ f (xk) for all k. By summing up these inequalities fork = 0,1, . . . ,N−1,
we obtain

f ∗− f (x0)≥ f (xk)− f (x0)≥
k

∑
i=0

∆(xi),

and the result follows.

For a sharper analysis, we need some technical assumptions onf andQ .

Assumption 1 The norms of the subgradients of f are bounded from below onQ by a positive
constant, that is,

δ f
def
= min

x∈Q
f ′(x)∈∂ f (x)

‖ f ′(x)‖∗ > 0.

This assumption is not too binding because of the following result.

Proposition 2 Assume that there exists a point x′ 6∈ Q such that f(x′) < f (x) for all x ∈ Q . Then

δ f ≥
[

min
x∈Q

f (x)− f (x′)

]

/

[

max
x∈Q
‖x−x′‖

]

> 0.

Proof Becausef is convex, for anyx∈ Q we have

0 < f (x)− f (x′)≤ 〈 f ′(x),x−x′〉 ≤ ‖ f ′(x)‖∗‖x−x′‖.

For our next convergence result we need to assume either strong convexity of f or strong con-
vexity of the set Conv(Q ).

Assumption 2 Function f isstrongly convex, that is, there exists a constantσ f > 0 such that for
any x,y∈ E

f (y)≥ f (x)+ 〈 f ′(x),y−x〉+ σ f

2
‖y−x‖2. (24)
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Note that convex functions satisfy inequality (24) withconvexity parameterσ f = 0.

Assumption 3 The setConv(Q ) is strongly convex, that is, there is a constantσQ > 0 such that
for any x,y∈ Conv(Q ) andα ∈ [0,1] the following inclusion holds:

αx+(1−α)y+
σQ

2
α(1−α)‖x−y‖2S ⊂ Conv(Q ). (25)

Note that any setQ satisfies inclusion (25) withconvexity parameterσQ = 0.
It can be shown (see Appendix A), that level sets of strongly convex functions with Lips-

chitz continuous gradient are again strongly convex. An example of sucha function is the simple
quadraticx 7→ ‖x‖2. The level sets of this function correspond to Euclidean balls of varying sizes.

As we will see in Theorem 4, a better analysis of Algorithm 1 is possible if Conv(Q ), the
convex hull of the feasible set of problem (21), is strongly convex. Note that in the case of the
two formulations (8) and (13) of the sparse PCA problem, the feasible setQ is the unit Euclidean
sphere. Since the convex hull of the unit sphere is the unit ball, which is a strongly convex set, the
feasible set of our sparse PCA formulations satisfies Assumption 3.

In the special caseQ = rS for somer > 0, there is a simple proof that Assumption 3 holds with
σQ = 1

r . Indeed, for anyx,y∈ E andα ∈ [0,1], we have

‖αx+(1−α)y‖2 = α2‖x‖2 +(1−α)2‖y‖2 +2α(1−α)〈Gx,y〉

= α‖x‖2 +(1−α)‖y‖2−α(1−α)‖x−y‖2.
Thus, forx,y∈ rS we obtain

‖αx+(1−α)y‖=
[

r2−α(1−α)‖x−y‖2
]1/2≤ r− 1

2r
α(1−α)‖x−y‖2.

Hence, we can takeσQ = 1
r .

The relevance of Assumption 3 is justified by the following technical observation.

Proposition 3 If f is convex, then for any two subsequent iterates xk,xk+1 of Algorithm 1

∆(xk)≥
σQ

2
‖ f ′(xk)‖∗‖xk+1−xk‖2.

Proof We have noted in (22) that for convexf we have∆(xk)≥ 0. We can thus concentrate on the
situation whenσQ > 0 and f ′(xk) 6= 0. Note that

〈 f ′(xk),xk+1−y〉 ≥ 0 for all y∈ Conv(Q ).

We will use this inequality with

y = yα
def
= xk +α(xk+1−xk)+

σQ

2
α(1−α)‖xk+1−xk‖2

G−1 f ′(xk)

‖ f ′(xk)‖∗
, α ∈ [0,1].

In view of (25),yα ∈ Conv(Q ), and therefore

0≥ 〈 f ′(xk),yα−xk+1〉= (1−α)〈 f ′(xk),xk−xk+1〉+
σQ

2
α(1−α)‖xk+1−xk‖2‖ f ′(xk)‖∗.

Sinceα is an arbitrary value from[0,1], the result follows.

We are now ready to refine our analysis of Algorithm 1.
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Theorem 4 (Stepsize Convergence)Let f be convex (σ f ≥0), and let either Assumption 2 (σ f > 0)
or Assumptions 1 (δ f > 0) and 3 (δQ > 0) be satisfied. If{xk} is the sequence of points generated
by Algorithm 1, then

∞

∑
k=0

‖xk+1−xk‖2≤
2( f ∗− f (x0))

σQ δ f +σ f
. (26)

Proof Since f is convex, Proposition 3 gives

f (xk+1)− f (xk)≥ ∆(xk)+
σ f

2
‖xk+1−xk‖2≥

1
2
(σQ δ f +σ f )‖xk+1−xk‖2.

The additional assumptions of the theorem ensure thatσQ δ f + δ f > 0. It remains to add the in-
equalities up fork≥ 0.

Theorem 4 gives an upper estimate on the number of iterations it takes for Algorithm 1 to
produce a step of small size. Indeed,

k≥ 2( f ∗− f (x0))

σQ δ f +σ f

1
ε2 −1 ⇒ min

0≤i≤k
‖xi+1−xi‖ ≤ ε.

It can be illustrated on simple examples that it is not in general possible to guarantee that the
algorithm will produce iterates converging to a local maximizer. However, Theorem 4 guarantees
that the set of the limit points is connected, and that all of them satisfy the first-order optimality
condition. Also notice that, started from a local minimizer, the method will not move away.

3.2.1 TERMINATION

A reasonable stopping criterion for Algorithm 1 is the following: terminate oncethe relative change
of the objective function becomes small:

f (xk+1)− f (xk)

f (xk)
≤ ε, or equivalently, f (xk+1)≤ (1+ ε) f (xk).

3.3 Maximization with Spherical Constraints

ConsiderE = E∗ = Rp with G = Ip and〈s,x〉= ∑i sixi , and let

Q = rS p = {x∈ Rp | ‖x‖= r}.

Problem (21) takes on the form
f ∗ = max

x∈rS p
f (x). (27)

SinceQ is strongly convex (σQ = 1
r ), Theorem 4 is meaningful for any convex functionf (σ f ≥ 0).

The main step of Algorithm 1 can be written down explicitly (see (23)):

xk+1 = r
f ′(xk)

‖ f ′(xk)‖2
.

The following examples illustrate the connection of Algorithm 1 to classical methods.
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Example 5 (Power Method) In the special case of a quadratic objective function f(x) = 1
2xTCx

for some C∈ Sp
++ on the unit sphere (r= 1), we have

f ∗ = 1
2λmax(C),

and Algorithm 1 is equivalent to thepower iteration methodfor computing the largest eigenvalue of
C (Golub and Van Loan, 1996). Hence forQ = S p, we can think of our scheme as a generalization
of the power method. Indeed, our algorithm performs the following iteration:

xk+1 =
Cxk

‖Cxk‖
, k≥ 0.

Note that bothδ f andσ f are equal to the smallest eigenvalue of C, and hence the right-hand side
of (26) is equal to

λmax(C)−xT
0Cx0

2λmin(C)
. (28)

Example 6 (Shifted Power Method) If C is not positive semidefinite in the previous example, the
objective function is not convex and our results are not applicable. However, this complication can
be circumvented by instead running the algorithm with the shifted quadratic function

f̂ (x) =
1
2

xT(C+ωIp)x,

whereω > 0 satisfiesĈ = ωIp +C ∈ Sp
++. On the feasible set, this change only adds a constant

term to the objective function. The method, however, produces different sequence of iterates. Note
that the constantsδ f andσ f are also affected and, correspondingly, the estimate (28).

The example above illustrates an easy “trick” to turn a convex convex objective function into a
strongly convex one: one simply adds to the original objective function a strongly convex function
that is constant on the boundary of the feasible set. The two formulations areequivalent since the
objective functions differ only by a constant on the domain of interest. However, there is a clear
trade-off. If the second term dominates the first term (say, by choosingvery largeω), the algorithm
will tend to treat the objective as a quadratic, and will hence tend to terminate in fewer iterations,
nearer to the starting iterate. In the limit case, the method will not move away fromthe initial iterate.

3.4 Maximization with Orthonormality Constraints

ConsiderE = E∗ = Rp×m, the space ofp×m real matrices, withm≤ p. Note that form= 1 we
recover the setting of the previous section. We assume this space is equipped with the trace inner

product: 〈X,Y〉 = Tr(XTY). The induced norm, denoted by‖X‖F def
= 〈X,X〉1/2, is the Frobenius

norm (we letG be the identity operator). We can now consider various feasible sets, the simplest
being a ball or a sphere. Due to nature of applications in this paper, let us concentrate on the situation
whenQ is a special subset of the sphere with radiusr =

√
m, the Stiefel manifold:

Q = S p
m = {X ∈ Rp×m | XTX = Im}.

Problem (21) then takes on the following form:

f ∗ = max
X∈S p

m

f (X).
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Using the duality of the nuclear and spectral matrix norms and Proposition 7 below it can be shown
that Conv(Q ) is equal to the unit spectral ball. It can be then further deduced that this set is not
strongly convex (σQ = 0) and as a consequence, Theorem 4 is meaningful only iff is strongly
convex (σ f > 0). Of course, Theorem 1 applies also in theσ f = 0 case.

At every iteration, Algorithm 1 needs to maximize a linear function over the Stiefel manifold.
In the text that follows, it will be convenient to use the symbol Polar(C) for theU factor of thepolar
decompositionof matrixC∈ Rp×m:

C = UP, U ∈ S p
m, P∈ Sm

+.

The complexity of the polar decomposition isO(pm2), with p≥m. In view of the Proposition 7,
the main step of Algorithm 1 can be written in the form

xk+1 = Polar( f ′(xk)).

Proposition 7 Let C∈ Rp×m, with m≤ p, and denote byσi(C), i = 1, . . . ,m, the singular values of
C. Then

max
X∈S p

m

〈C,X〉=
m

∑
i=1

σi(C) (= ‖C‖∗ = Tr[(CTC)1/2]), (29)

with maximizer X∗ = Polar(C). If C is of full rank, thenPolar(C) = C(CTC)−1/2.

Proof Existence of the polar factorization in the nonsquare case is covered by Theorem 7.3.2 in
Horn and Johnson (1985). LetC = VΣWT be the singular value decomposition (SVD) ofA; that is,
V is p× p orthonormal,W is m×m orthonormal, andΣ is p×m diagonal with valuesσi(A) on the
diagonal. Then

max
X∈S p

m

〈C,X〉= max
X∈S p

m

〈VΣWT ,X〉

= max
X∈S p

m

〈Σ,VTXW〉

= max
Z∈S p

m

〈Σ,Z〉= max
Z∈S p

m

m

∑
i=1

σi(C)zii ≤
m

∑
i

σi(C).

The third equality follows since the functionX 7→VTXW mapsS p
m onto itself. Both factors of the

polar decomposition ofC can be easily read-off from the SVD. Indeed, if we letV ′ be the submatrix
of V consisting of its firstm columns andΣ′ be the principalm×m submatrix ofΣ, that is, a
diagonal matrix with valuesσi(C) on its diagonal, thenC = V ′Σ′WT = (V ′WT)(WΣ′WT) and we
can putU = V ′WT andP = WΣ′WT . To establish (29) it remains to note that

〈C,U〉= TrP = ∑
i

λi(P) = ∑
i

σi(P) = Tr(PTP)1/2 = Tr(CTC)1/2 = ∑
i

σi(C).

Finally, sinceCTC = PUTUP = P2, we haveP = (CTC)1/2, and in the full rank case we obtain
X∗ = U = CP−1 = C(CTC)−1/2.

Note that the block sparse PCA formulations (16) and (20) conform to this setting. Here is one
more example:
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Example 8 (Rectangular Procrustes Problem)Let C,X ∈ Rp×m and D∈ Rp×p and consider the
following problem:

min{‖C−DX‖2F | XTX = Im}. (30)

Since‖C−DX‖2F = ‖C‖2F +〈DX,DX〉−2〈CD,X〉, by a similar shifting technique as in the previous
example we can cast problem (30) in the following form

max{ω‖X‖2F −〈DX,DX〉+2〈CD,X〉 | XTX = Im}.

For ω > 0 large enough, the new objective function will be strongly convex. In this case our algo-
rithm becomes similar to the gradient method proposed in Fraikin et al. (2008).

The standard Procrustes problem in the literature is a special case of (30) with p= m.

4. Algorithms for Sparse PCA

The solutions of the sparse PCA formulations of Section 2 provide locally optimal patterns of zeros
and nonzeros for a vectorz∈ Sn (in the single-unit case) or a matrixZ ∈ [Sn]m (in the block case).
The sparsity-inducing penalty term used in these formulations biases however the values assigned
to the nonzero entries, which should be readjusted by considering the soleobjective of maximum
variance. An algorithm for sparse PCA combines thus a method that identifiesa “good” pattern of
sparsity with a method that fills the active entries. In the sequel, we discuss thegeneral block sparse
PCA problem. The single-unit case is recovered in the particular casem= 1.

4.1 Methods for Pattern-finding

The application of our general method (Algorithm 1) to the four sparse PCAformulations of Sec-
tion 2, that is, (8), (13), (16) and (20), leads to Algorithms 2, 3, 4 and 5 below, that provide a
locally optimal pattern of sparsity for a matrixZ ∈ [Sn]m. This pattern is defined as a binary matrix
P∈ {0,1}n×m such thatpi j = 1 if the loadingzi j is active andpi j = 0 otherwise. SoP is an indi-
cator of the coefficients ofZ that are zeroed by our method. The computational complexity of the
single-unit algorithms (Algorithms 2 and 3) isO(np) operations per iteration. The block algorithms
(Algorithms 4 and 5) have complexityO(npm) per iteration.

These algorithms need to be initialized at a point for which the associated sparsity pattern has
at least oneactive element. In case of the single-unit algorithms, such an initial iteratex ∈ S p is
chosen parallel to the column ofA with the largest norm, that is,

x =
ai∗

‖ai∗‖2
, where i∗ = argmax

i
‖ai‖2. (31)

For the block algorithms, a suitable initial iterateX ∈ S p
m is constructed in a block-wise manner as

X = [x|X⊥], wherex is the unit-norm vector (31) andX⊥ ∈ S p
m−1 is orthogonal tox, that is,xTX⊥= 0.

The nonnegative parametersγ have to be chosen below the upper bounds derived in Section 2
and which are summarized in Table 1. Increasing the value of these parameters leads to solutions of
smaller cardinality. There is however not explicit relationship betweenγ and the resulting cardinal-
ity. Since the proposed algorithms are fast, one can afford some trials and errors to reach a targeted
cardinality. We however see it as an advantage not to enforce a fixed cardinality, since this informa-
tion is often unknown a priori. As illustrated in the forthcoming numerical experiments (Section 5),

532



GENERALIZED POWER METHOD FORSPARSEPCA

Algorithm 2 Single-unitℓ1 γ≤maxi ‖ai‖2
Algorithm 3 Single-unitℓ0 γ≤maxi ‖ai‖22
Algorithm 4 Blockℓ1 γ j ≤ µj maxi ‖ai‖2
Algorithm 5 Blockℓ0 γ j ≤ µ2

j maxi ‖ai‖22

Table 1: Theoretical upper-bounds on the sparsity parametersγ.

our algorithms are able to recover cardinalities that are best adapted to the model that underlies the
data.

As previously explained, the parametersµj required by the block algorithms can be either iden-
tical (e.g., equal to one) or distinct (e.g.,µj = 1

j ). Since distinctµj leads to orthogonal loading
vectors in the PCA case (i.e.,γ = 0), they are expected to push towards orthogonality also in the
sparse PCA case. Nevertheless, unless otherwise stated, the technicalparametersµj will be set to
one in what follows.

Let us finally mention that the input matrixA of these algorithms can be the data matrix itself as
well as any matrix such that the factorizationΣ = ATA of the covariance matrix holds. This property
is very valuable when there is no access to the data and only the covariancematrix is available, or
when the number of samples is greater than the number of variables. In this last case, the dimension
p can be reduced to at mostn by computing an eigenvalue decomposition or a Cholesky decompo-
sition of the covariance matrix, for instance.

Algorithm 2 : Single-unit sparse PCA method based on theℓ1-penalty (8)

input : Data matrixA∈ Rp×n

Sparsity-controlling parameterγ≥ 0
Initial iteratex∈ S p

output: A locally optimal sparsity patternP
begin

repeat
x←− ∑n

i=1[|aT
i x|− γ]+ sign(aT

i x)ai

x←− x
‖x‖

until a stopping criterion is satisfied

Construct vectorP∈ {0,1}n such that

{

pi = 1 if |aT
i x|> γ

pi = 0 otherwise.
end

4.2 Post-processing

Once a “good” sparsity patternP has been identified, the active entries ofZ still have to be filled.
To this end, we consider the optimization problem,

(X∗,Z∗)
def
= arg max

X∈S p
m

Z∈[Sn]m

ZP′=0

Tr(XTAZN), (32)
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Algorithm 3 : Single-unit sparse PCA algorithm based on theℓ0-penalty (13)

input : Data matrixA∈ Rp×n

Sparsity-controlling parameterγ≥ 0
Initial iteratex∈ S p

output: A locally optimal sparsity patternP
begin

repeat
x←− ∑n

i=1[sign((aT
i x)2− γ)]+ aT

i x ai

x←− x
‖x‖

until a stopping criterion is satisfied

Construct vectorP∈ {0,1}n such that

{

pi = 1 if (aT
i x)2 > γ

pi = 0 otherwise.
end

Algorithm 4 : Block sparse PCA algorithm based on theℓ1-penalty (16)

input : Data matrixA∈ Rp×n

Sparsity-controlling vector[γ1, . . .γm]T ≥ 0
Parametersµ1, . . . ,µm > 0
Initial iterateX ∈ S p

m

output: A locally optimal sparsity patternP
begin

repeat
for j = 1, . . . ,mdo

x j ←− ∑n
i=1µj [µj |aT

i x j |− γ j ]+ sign(aT
i x)ai

X←− Polar(X)
until a stopping criterion is satisfied

Construct matrixP∈ {0,1}n×m such that

{

pi j = 1 if µj |aT
i x j |> γ j

pi j = 0 otherwise.
end

whereP′ ∈ {0,1}n×m is the complement ofP, ZP′ denotes the entries ofZ that are constrained to
zero andN = Diag(µ1, . . . ,µm) with strictly positiveµi . Problem (32) assigns the active part of the
loading vectorsZ to maximize the variance explained by the resulting components. Without loss of
generality, each column ofP is assumed to contain active elements.

In the single-unit casem= 1, an explicit solution of (32) is available,

X∗ = u,
Z∗P = v and Z∗P′ = 0,

(33)

whereσuvT with σ > 0, u∈B p andv∈B‖P‖0 is a rank one singular value decomposition of the ma-
trix AP, that corresponds to the submatrix ofA containing the columns related to the active entries.
The post-processing (33) is equivalent to thevariational renormalizationproposed by Moghaddam
et al. (2006).
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Algorithm 5 : Block sparse PCA algorithm based on theℓ0-penalty (20)

input : Data matrixA∈ Rp×n

Sparsity-controlling vector[γ1, . . .γm]T ≥ 0
Parametersµ1, . . . ,µm > 0
Initial iterateX ∈ S p

m

output: A locally optimal sparsity patternP
begin

repeat
for j = 1, . . . ,mdo

x j ←− ∑n
i=1µ2

j [sign((µjaT
i x j)

2− γ j)]+ aT
i x j ai

X←− Polar(X)
until a stopping criterion is satisfied

Construct matrixP∈ {0,1}n×m such that

{

pi j = 1 if (µjaT
i x j)

2 > γ j

pi j = 0 otherwise.
end

Although an exact solution of (32) is hard to compute in the block casem > 1, a local max-
imizer can be efficiently computed by optimizing alternatively with respect to one variable while
keeping the other ones fixed. The following lemmas provide an explicit solutionto each of these
subproblems.

Lemma 9 For a fixed Z∈ [Sn]m, a solution X∗ of

max
X∈S p

m

Tr(XTAZN)

is provided by the U factor of the polar decomposition of the product AZN.

Proof See Proposition 7.

Lemma 10 The solution

Z∗
def
= arg max

Z∈[Sn]m

ZP′=0

Tr(XTAZN), (34)

is at any point X∈ S p
m defined by the two conditions Z∗P = (ATXND)P and Z∗P′ = 0, where D is a

positive diagonal matrix that normalizes each column of Z∗ to unit norm, that is,

D = Diag(NXTAATXN)−
1
2 .

Proof The Lagrangian of the optimization problem (34) is

L(Z,Λ1,Λ2) = Tr(XTAZN)−Tr(Λ1(Z
TZ− Im))−Tr(ΛT

2 Z),
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where the Lagrangian multipliersΛ1 ∈ Rm×m andΛ2 ∈ Rn×m have the following properties:Λ1 is
an invertible diagonal matrix and(Λ2)P = 0. The first order optimality conditions of (34) are thus

ATXN−2ZΛ1−Λ2 = 0

Diag(ZTZ) = Im
ZP = 0.

Hence, any stationary pointZ∗ of (34) satisfiesZ∗P = (ATXND)P andZ∗P′ = 0, whereD is a diag-
onal matrix that normalizes the columns ofZ∗ to unit norm. The second order optimality con-
dition imposes the diagonal matrixD to be positive. Such aD is unique and given byD =
Diag(NXTAATXN)−

1
2 .

The alternating optimization scheme is summarized in Algorithm 6, which computes a local
solution of (32). A judicious initialization is provided by an accumulation point ofthe algorithm for
pattern-finding, that is, Algorithms 4 and 5.

Algorithm 6 : Alternating optimization scheme for solving (32)

input : Data matrixA∈ Rp×n

Sparsity patternP∈ {0,1}n×m

Matrix N = Diag(µ1, . . . ,µm)
Initial iterateX ∈ S p

m

output: A local minimizer(X,Z) of (32)
begin

repeat
Z←− ATXN
Z←− Z Diag(ZTZ)−

1
2

ZP̄←− 0
X←− Polar(AZN)

until a stopping criterion is satisfied
end

It should be noted that Algorithm 6 is a postprocessing heuristic that, strictly speaking, is re-
quired only for theℓ1 block formulation (Algorithm 4). In fact, since the cardinality penalty only
depends on the sparsity patternP and not on the actual values assigned toZP, a solution(X∗,Z∗) of
Algorithms 3 or 5 is also a local maximizer of (32) for the resulting patternP. This explicit solution
provides a good alternative to Algorithm 6. In the single unit case withℓ1 penalty (Algorithm 2),
the solution (33) is available.

4.3 Sparse PCA Algorithms

To sum up, in this paper we propose four sparse PCA algorithms, each combining a method to
identify a “good” sparsity pattern with a method to fill the active entries of them loading vectors.
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They are summarized in Table 2. TheMATLAB code of theseGPower5 algorithms is available on
the authors’ websites.6

Computation ofP Computation ofZP

GPowerℓ1 Algorithm 2 Equation (33)
GPowerℓ0 Algorithm 3 Equation (12)
GPowerℓ1,m Algorithm 4 Algorithm 6
GPowerℓ0,m Algorithm 5 Equation (19)

Table 2: New algorithms for sparse PCA.

4.4 Deflation Scheme

For the sake of completeness, we recall a classical deflation process for computingmsparse princi-
pal components with a single-unit algorithm (d’Aspremont et al., 2007). Let z∈ Rn be a unit-norm
sparse loading vector of the dataA. Subsequent directions can be sequentially obtained by comput-
ing a dominant sparse component of the residual matrixA− xzT , wherex = Az is the vector that
solves

min
x∈Rp
‖A−xzT‖F .

Further deflation techniques for sparse PCA have been proposed by Mackey (2008).

4.5 Connection with Existing Sparse PCA Methods

As previously mentioned, ourℓ0-based single-unit algorithmGPowerℓ0 rests on the same reformu-
lation (13) as the greedy algorithm proposed by d’Aspremont et al. (2008).

There is also a clear connection between both single-unit algorithmsGPowerℓ1 andGPowerℓ0

and therSVD algorithms of Shen and Huang (2008), which solve the optimization problems

min
z∈Rn

x∈S p

‖A−xzT‖2F +2γ‖z‖1 and min
z∈Rn

x∈S p

‖A−xzT‖2F + γ‖z‖0

by alternating optimization over one variable (eitherx or z) while fixing the other one. It can
be shown that an update onx amounts to the iterations of Algorithms 2 and 3, depending on the
penalty type. AlthoughrSVD andGPower were derived differently, it turns out that, except for the
initialization and post-processing phases, the algorithmsare identical. There are, however, several
benefits to our approach: 1) we are able to analyze convergence properties of the method, 2) we
show that the core algorithm can be derived as a special case of a generalization of the power
method (and hence more applications are possible), 3) we give generalizations from single unit case
to block case, 4) our approach uncovers the possibility of a very useful initialization technique, 5) we
equip the method with a practical postprocessing phase, 6) we provide a linkwith the formulation
of d’Aspremont et al. (2008).

5. Our algorithms are namedGPower where the “G” stands forgeneralizedor gradient.
6. Websites arehttp://www.inma.ucl.ac.be/ ˜ richtarik andhttp://www.montefiore.ulg.ac.be/ ˜ journee .
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5. Numerical Experiments

In this section, we evaluate the proposed power algorithms against existing sparse PCA methods.
Three competing methods are considered in this study: a greedy scheme aimedat computing a
local maximizer of (10) (Approximate Greedy Search Algorithm, d’Aspremont et al. (2008)), the
SPCA algorithm (Zou et al., 2006) and the sPCA-rSVD algorithm (Shen and Huang, 2008). We do
not include theDSPCA algorithm (d’Aspremont et al., 2007) in our numerical study. This method
solves a convex relaxation of the sparse PCA problem and has a large per-iteration computational
complexity ofO(n3) compared to the other methods. Table 3 lists the considered algorithms.

GPowerℓ1 Single-unit sparse PCA viaℓ1-penalty
GPowerℓ0 Single-unit sparse PCA viaℓ0-penalty
GPowerℓ1,m Block sparse PCA viaℓ1-penalty
GPowerℓ0,m Block sparse PCA viaℓ0-penalty
Greedy Greedy method
SPCA SPCA algorithm
rSVDℓ1 sPCA-rSVD algorithm with anℓ1-penalty (“soft thresholding”)
rSVDℓ0 sPCA-rSVD algorithm with anℓ0-penalty (“hard thresholding”)

Table 3: Sparse PCA algorithms we compare in this section.

These algorithms are compared on random data (Sections 5.1 and 5.2) as well as on real data
(Sections 5.3 and 5.4). All numerical experiments are performed inMATLAB. The parameterε in
the stopping criterion of theGPower algorithms has been fixed to 10−4. MATLAB implementations
of theSPCA algorithm and the greedy algorithm have been rendered available by Zou et al. (2006)
and d’Aspremont et al. (2008). We have, however, implemented the sPCA-rSVD algorithm on our
own (Algorithm 1 in Shen and Huang 2008), and use it with the same stopping criterion as for the
GPower algorithms. This algorithm initializes with the best rank-one approximation of the data
matrix. This is done by a first run of the algorithm with the sparsity-inducing parameterγ that is set
to zero.

Given a data matrixA ∈ Rp×n, the considered sparse PCA algorithms providem unit-norm
sparse loading vectors stored in the matrixZ ∈ [Sn]m. The samples of the associated components
are provided by them columns of the productAZ. The variance explained by thesem components
is an important comparison criterion of the algorithms. In the simple casem = 1, the variance
explained by the componentAz is

Var(z) = zTATAz.

Whenz corresponds to the first principal loading vector, the variance is Var(z) = σmax(A)2. In the
casem> 1, the derived components are likely to be correlated. Hence, summing up thevariance
explained individually by each of the components overestimates the varianceexplained simultane-
ously by all the components. This motivates the notion ofadjusted varianceproposed by Zou et al.
(2006). The adjusted variance of themcomponentsY = AZ is defined as

AdjVar Z = TrR2,

whereY = QR is the QR decomposition of the components sample matrixY (Q∈ S p
m andR is an

m×mupper triangular matrix).
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5.1 Random Data Drawn from a Sparse PCA Model

In this section, we follow the procedure proposed by Shen and Huang (2008) to generate random
data with a covariance matrix having sparse eigenvectors. To this end, a covariance matrix is first
synthesized through the eigenvalue decompositionΣ = VDVT , where the firstm columns ofV ∈
Rn×n are pre-specified sparse orthonormal vectors. A data matrixA ∈ Rp×n is then generated by
drawing p samples from a zero-mean normal distribution with covariance matrixΣ, that is,A∼
N(0,Σ).

Consider a setup withn = 500,m= 2 andp = 50, where the two orthonormal eigenvectors are
specified as follows

{

v1i = 1√
10

for i = 1, . . . ,10,

v1i = 0 otherwise,

{

v2i = 1√
10

for i = 11, . . . ,20,

v2i = 0 otherwise,

The remaining eigenvectorsv j , j > 2, are chosen arbitrarily, and the eigenvalues are fixed at the
following values







d11 = 400
d22 = 300
d j j = 1, for j = 3, . . . ,500.

We generate 500 data matricesA ∈ Rp×n and employ the fourGPower algorithms as well as
Greedy to compute two unit-norm sparse loading vectorsz1,z2 ∈ R500, which are hoped to be close
to v1 andv2. We consider the model underlying the data to besuccessfully identified(or recovered)
when both quantities|vT

1 z1| and|vT
2 z2| are greater than 0.99.

Two simple alternative strategies are compared for choosing the sparsity-inducing parametersγ1

andγ2 required by theGPower algorithms. First, we choose them uniformly at random, between the
theoretical bounds. Second, we fix them to reasonable a priori values;in particular, the midpoints
of the corresponding admissible interval. For the block algorithmGPowerℓ1,m, the parameterγ2

is fixed at 10 percent of the corresponding upper bound. This value was chosen by limited trial
and error to give good results for the particular data analyzed. We do not intend to suggest that
this is a recommended choice in general. The values of the sparsity-inducingparameters for the
ℓ0-basedGPower algorithms are systematically chosen as the squares of the values chosen for their
ℓ1 counterparts. More details on the selection ofγ1 andγ2 are provided in Table 4. Concerning the
parametersµ1 andµ2 used by the block algorithms, both situationsµ1 = µ2 andµ1 > µ2 have been
considered. Note thatGreedy requires to specify the targeted cardinalities as an input, that is, ten
nonzeros entries for both loading vectors.

In Table 5, we provide the average of the scalar products|zT
1 z2|, |vT

1 z1| and|vT
2 z2| for 500 data

matrices with the covariance matrixΣ. The proportion of successful identification of the vectors
v1 andv2 is also given. The table shows that theGPower algorithms are robust with respect to the
choice of the sparsity inducing parametersγ. Good values ofγ1 andγ2 are easily found by trial
and error. The chances of recovery of the sparse model underlyingthe data are rather good, and
some versions of the algorithms successfully recover the sparse model even when the parametersγ
are chosen at random. TheGPower algorithms do not appear to be as successful asGreedy, which
managed to correctly identify vectorsv1 andv2 in all tests. Note that while the latter method requires
the exact knowledge of the cardinality of each component, theGPower algorithms find the sparse
model that fits the data best without this information. This property of theGPower algorithms is

539
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Algorithm Random Fixed

GPowerℓ1 γ1 uniform distrib. on[0,maxi ‖ai‖2]
γ2 uniform distrib. on[0,maxi ‖a′i‖2]

γ1 = 1
2 maxi ‖ai‖2

γ2 = 1
2 maxi ‖a′i‖2

GPowerℓ0

√γ1 uniform distrib. on[0,maxi ‖ai‖2]√γ2 uniform distrib. on[0,maxi ‖a′i‖2]
γ1 = 1

4 maxi ‖ai‖22
γ2 = 1

4 maxi ‖a′i‖22
GPowerℓ1,m

with µ1 = µ2 = 1
γ1 uniform distrib. on[0,maxi ‖ai‖2]
γ2 uniform distrib. on[0,maxi ‖ai‖2]

γ1 = 1
2 maxi ‖ai‖2

γ2 = 1
10 maxi ‖ai‖2

GPowerℓ0,m

with µ1 = µ2 = 1

√γ1 uniform distrib. on[0,maxi ‖ai‖2]√γ2 uniform distrib. on[0,maxi ‖ai‖2]
γ1 = 1

4 maxi ‖ai‖22
γ2 = 1

100maxi ‖ai‖22
GPowerℓ1,m

with µ1 = 1 andµ2 = 0.5
γ1 uniform distrib. on[0,maxi ‖ai‖2]
γ2 uniform distrib. on[0, 1

2 maxi ‖ai‖2]
γ1 = 1

2 maxi ‖ai‖2
γ2 = 1

20 maxi ‖ai‖2
GPowerℓ0,m

with µ1 = 1 andµ2 = 0.5

√γ1 uniform distrib. on[0,maxi ‖ai‖2]√γ2 uniform distrib. on[0, 1
2 maxi ‖ai‖2]

γ1 = 1
4 maxi ‖ai‖22

γ2 = 1
400maxi ‖ai‖22

Table 4: Details on the random and fixed choices of the sparsity-inducing parametersγ1 and γ2

leading to the results displayed in Table 5. MatrixA′ used in the case of the single-unit
algorithms denotes the residual matrix after one deflation step.

valuable in real-data settings, where little or nothing is known a priori about the cardinality of the
components.

Looking at the values reported in Table 5, we observe that the blockGPower algorithms are
more likely to obtain loading vectors that are “more orthogonal” when using parametersµj which
are distinct.

Algorithm γ |zT
1 z2| |vT

1 z1| |vT
2 z2| Chance of success

GPowerℓ1 random 15.8 10−3 0.9693 0.9042 0.71
GPowerℓ0 random 15.7 10−3 0.9612 0.8990 0.69
GPowerℓ1,m with µ1 = µ2 = 1 random 10.1 10−3 0.8370 0.2855 0.06
GPowerℓ0,m with µ1 = µ2 = 1 random 9.2 10−3 0.8345 0.3109 0.07
GPowerℓ1,m with µ1 = 1 andµ2 = 0.5 random 1.8 10−4 0.8300 0.3191 0.09
GPowerℓ0,m with µ1 = 1 andµ2 = 0.5 random 1.5 10−4 0.8501 0.3001 0.09
GPowerℓ1 fixed 0 0.9998 0.9997 1
GPowerℓ0 fixed 0 0.9998 0.9997 1
GPowerℓ1,m with µ1 = µ2 = 1 fixed 4.25 10−2 0.9636 0.8114 0.63
GPowerℓ0,m with µ1 = µ2 = 1 fixed 3.77 10−2 0.9663 0.7990 0.67
GPowerℓ1,m with µ1 = 1 andµ2 = 0.5 fixed 1.8 10−3 0.9875 0.9548 0.89
GPowerℓ0,m with µ1 = 1 andµ2 = 0.5 fixed 6.7 10−5 0.9937 0.9654 0.96
PCA – 0 0.9110 0.9063 0
Greedy – 0 0.9998 0.9997 1

Table 5: Average of the quantities|zT
1 z2|, |vT

1 z1|, |vT
2 z2| and proportion of successful identifications

of the two dominant sparse eigenvectors ofΣ by extracting two sparse principal com-
ponents from 500 data matrices. TheGreedy algorithm requires prior knowledge of the
cardinalities of each component, while theGPower algorithms are very likely to identify
the underlying sparse model without this information.
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Table 5 does not include results for theSPCA algorithm because of our limited experience
with it and the absence of such experiments in the literature. However, in viewof the connections
developed in Section 4.5, we do expect that therSVD methods will exhibit similar flexibility to
sparsity parameter tuning.

5.2 Random Data without Underlying Sparse PCA Model

All random data matricesA∈Rp×n considered in this section are generated according to a Gaussian
distribution, with zero mean and unit variance.

5.2.1 TRADE-OFF CURVES

Let us first compare the single-unit algorithms, which provide a unit-norm sparse loading vector
z∈ Rn. We first plot the variance explained by the extracted component againstthe cardinality of
the resulting loading vectorz. For each algorithm, the sparsity-inducing parameter is incrementally
increased to obtain loading vectorsz with a cardinality that decreases fromn to 1. The results dis-
played in Figure 1 are averages of computations on 100 random matrices withdimensionsp = 100
andn = 300. The considered sparse PCA methods aggregate in two groups:GPowerℓ1, GPowerℓ0,
Greedy andrSVDℓ0 outperform theSPCA andrSVDℓ1. It seems that these latter methods perform
worse because of theℓ1 penalty term used in them. If one, however, post-processes the active part
of zaccording to (33), as we do inGPowerℓ1, all sparse PCA methods reach the same performance.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cardinality

P
ro

po
rt

io
n 

of
 e

xp
la

in
ed

 v
ar

ia
nc

e

 

 

Group 1: GPowerℓ1 , GPowerℓ0 , Greedy, rSVDℓ0

Group 2: SPCA, rSVDℓ0

Figure 1: Trade-off curves between explained variance and cardinality. The vertical axis is the
ratio Var(zsPCA)/Var(zPCA), where the loading vectorzsPCA is computed by sparse PCA
andzPCA is the first principal loading vector. The considered algorithms aggregatein two
groups: GPowerℓ1, GPowerℓ0, Greedy and rSVDℓ0 (top curve), andSPCA and rSVDℓ1

(bottom curve). For a fixed cardinality value, the methods of the first group explain more
variance.
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5.2.2 CONTROLLING SPARSITY WITH γ

Among the considered methods, the greedy approach is the only one to directly control the cardi-
nality of the solution, that is, the desired cardinality is an input of the algorithm. The other methods
require a parameter controlling the trade-off between variance and cardinality. Increasing this pa-
rameter leads to solutions with smaller cardinality, but the resulting number of nonzero elements can
not be precisely predicted. In Figure 2, we plot the average relationshipbetween the parameterγ
and the resulting cardinality of the loading vectorz for the two algorithmsGPowerℓ1 andGPowerℓ0.
In view of (9) (resp. (14)), the entriesi of the loading vectorz obtained by theGPowerℓ1 (resp.
GPowerℓ0) algorithm satisfying

‖ai‖2≤ γ (resp.‖ai‖22≤ γ) (35)

have to be zero. Taking into account the distribution of the norms of the columns ofA, this provides
for everyγ a theoretical upper bound on the expected cardinality of the resulting vector z.
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Figure 2: Dependence of cardinality on the value of the sparsity-inducingparameterγ. In case of
the GPowerℓ1 algorithm, the horizontal axis showsγ/‖ai∗‖2, whereas for theGPowerℓ0

algorithm, we use
√γ/‖ai∗‖2. The theoretical upper bound is therefore identical for both

methods. The plots are averages based on 100 test problems of sizep= 100 andn= 300.

5.2.3 GREEDY VERSUS THEREST

From the experiments reported above,Greedy and theGPower methods appear to have similar
performance in terms of quality of the obtained solution. Moreover,Greedy computes a full path of
solutions up to a chosen cardinality, and does not have to deal with the issueof tuning the sparsity
parameterγ. The price of this significant advantage ofGreedy is its heavy computational load.
In order to compare the empirical computational complexities of different algorithms, we display
in Figure 3 the average time required to extract one sparse component from Gaussian matrices of
dimensionsp = 100 andn = 300. One immediately notices that the greedy method slows down
significantly as cardinality increases, whereas the speed of the other considered algorithms does not
depend on cardinality. Since on averageGreedy is much slower than the other methods, even for
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low cardinalities, and because we aim at large-scale applications where thecomputational load of
Greedy would be prohibitive, we discard it from the following numerical experiments.
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Figure 3: The computational complexity ofGreedy grows significantly with cardinality of the
resulting loading vector. The speed of the other methods is unaffected by the car-
dinality target. The single dashed line is representative of the speed of the methods
GPowerℓ1,GPowerℓ0,SPCA, rSVDℓ0, rSVDℓ0 in this test.

5.2.4 SPEED AND SCALING TEST

In Tables 6 and 7 we compare the speed of the remaining algorithms. Table 6 deals with problems
with a fixed aspect ration/p= 10, whereas in Table 7,p is fixed at 500, and exponentially increasing
values ofn are considered. For theGPowerℓ1 method, the sparsity inducing parameterγ was set to
10% of the upper boundγmax = ‖ai∗‖2. For theGPowerℓ0 method,γ was set to 1% ofγmax = ‖ai∗‖22
in order to aim for solutions of comparable cardinalities (see (35)). Thesetwo parameters have also
been used for therSVDℓ1 and therSVDℓ0 methods, respectively. ConcerningSPCA, the sparsity
parameter has been chosen by trial and error to get, on average, solutions with similar cardinalities
as obtained by the other methods. The values displayed in Tables 6 and 7 correspond to the average
running times of the algorithms on 100 test instances for each problem size. In both tables, the new
methodsGPowerℓ1 andGPowerℓ0 are the fastest. The difference in speed betweenGPowerℓ1 and
GPowerℓ0 results from different approaches to fill the active part ofz: GPowerℓ1 requires to compute
a rank-one approximation of a submatrix ofA (see Equation (33)), whereas the explicit solution (12)
is available toGPowerℓ0. The linear complexity of the algorithms in the problem sizen is clearly
visible in Table 7.

5.2.5 DIFFERENTCONVERGENCEMECHANISMS

Figure 4 illustrates how the trade-off between explained variance and sparsity evolves in the time
of computation for the two methodsGPowerℓ1 andrSVDℓ1. In case of theGPowerℓ1 algorithm, the
initialization point (31) provides a good approximation of the final cardinality.This method then
works on maximizing the variance while keeping the sparsity at a low level throughout. TherSVDℓ1
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p×n 100×1000 250×2500 500×5000 750×7500 1000×10000
GPowerℓ1 0.10 0.86 2.45 4.28 5.86
GPowerℓ0 0.03 0.42 1.21 2.07 2.85
SPCA 0.24 2.92 14.5 40.7 82.2
rSVDℓ1 0.19 2.42 3.97 7.51 9.59
rSVDℓ0 0.18 2.14 3.85 6.94 8.34

Table 6: Average computational time for the extraction of one component (in seconds).

p×n 500×1000 500×2000 500×4000 500×8000 500×16000
GPowerℓ1 0.42 0.92 2.00 4.00 8.54
GPowerℓ0 0.18 0.42 0.96 2.14 4.55
SPCA 5.20 7.20 12.0 22.6 44.7
rSVDℓ1 1.05 2.12 3.63 7.43 14.4
rSVDℓ0 1.02 1.97 3.45 6.58 13.2

Table 7: Average computational time for the extraction of one component (in seconds).

algorithm, in contrast, works in two steps. First, it maximizes the variance, without enforcing
sparsity. This corresponds to computing the first principal component and requires thus a first run of
the algorithm with random initialization and a sparsity inducing parameter set at zero. In the second
run, this parameter is set to a positive value and the method works to rapidly decrease cardinality
at the expense of only a modest decrease in explained variance. So, thenew algorithmGPowerℓ1

performs faster primarily because it combines the two phases into one, simultaneously optimizing
the trade-off between variance and sparsity.
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Figure 4: Evolution of explained variance (left) and cardinality (right) in time for the methods
GPowerℓ1 andrSVDℓ1 run on a test problem of sizep = 250 andn = 2500. TherSVDℓ1

algorithm first solves unconstrained PCA, whereasGPowerℓ1 immediately optimizes the
trade-off between variance and sparsity.
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5.2.6 EXTRACTING MORE COMPONENTS

Similar numerical experiments, which include the methodsGPowerℓ1,m andGPowerℓ0,m, have been
conducted for the extraction of more than one component. A deflation schemeis used by the non-
block methods to sequentially computem components. These experiments lead to similar conclu-
sions as in the single-unit case, that is, the methodsGPowerℓ1, GPowerℓ0, GPowerℓ1,m, GPowerℓ0,m

andrSVDℓ0 outperform theSPCA andrSVDℓ1 approaches in terms of variance explained at a fixed
cardinality. Again, these last two methods can be improved by postprocessing the resulting loading
vectors with Algorithm 6, as it is done forGPowerℓ1,m. The average running times for problems
of various sizes are listed in Table 8. The new power-like methods are significantly faster on all
instances.

p×n 50×500 100×1000 250×2500 500×5000 750×7500
GPowerℓ1 0.22 0.56 4.62 12.6 20.4
GPowerℓ0 0.06 0.17 2.15 6.16 10.3
GPowerℓ1,m 0.09 0.28 3.50 12.4 23.0
GPowerℓ0,m 0.05 0.14 2.39 7.7 12.4
SPCA 0.61 1.47 13.4 48.3 113.3
rSVDℓ1 0.29 1.12 7.72 22.6 46.1
rSVDℓ0 0.28 1.03 7.21 20.7 41.2

Table 8: Average computational time for the extraction ofm= 5 components (in seconds).

5.2.7 COST AND BENEFITS OF THEPOST-PROCESSINGPHASE

Figure 5 illustrates the evolution of the relative increase of computational time aswell as the relative
improvement in terms of explained variance due to the post-processing phase for increasing values
of γ. Only methods with iterative post-processing algorithms are considered, that is,GPowerℓ1 (left-
hand plot) andGPowerℓ1,m (right-hand plot). In the single unit case, the post-processing phase,
which amounts to a rank-one SVD of the truncated data matrixAP, becomes less costly as the level
of sparsity increases. As expected, the improvement of variance increases whenγ gets larger, that is,
when theℓ1-penalty biases more and more the values assigned to the non-zero entries of the vector
z. A similar observation holds in the block case, excepted that the relative excess of computational
time took by the post-processing increases withγ. This difference with the single-unit case results
from the fact that the post-processing in the block case deals with sparsematrices of possibly large
dimension, whereas in the single-unit case the problem is easily rewritten in terms of a full vector
with a dimension that equals the number of nonzero elements. Overall, the postprocessing uses less
that 10% of the time needed by the main routine, to improve the explained varianceby up to 30%.

5.3 Pitprops Data

The “pitprops” data, which stores 180 observations of 13 variables, has been a standard benchmark
to evaluate algorithms for sparse PCA (see, e.g., Jolliffe et al. 2003; Zou et al. 2006; Moghaddam
et al. 2006; Shen and Huang 2008). Following these previous studies, we use theGPower algorithms
to computesix sparse principal components of the data. For such more-samples-than-variables
settings, it is customary to first factor the covariance matrix asΣ = ATA with A ∈ R13×13, such
that the dimensionp is virtually reduced to 13. This operation can be readily done through the
eigenvalue decomposition ofΣ.
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Figure 5: Effects of post-processing in the case of the algorithmsGPowerℓ1 (left-hand plot) and
GPowerℓ1,m (right-hand plot) for increasing values ofγ. In both plots, the horizontal axis
is the percent increase of variance achieved by the postprocessing phase and the vertical
axis is the percent increase in computational time due to post-processing. For GPowerℓ1,
several problem sizes are considered, whereas the curves forGPowerℓ1,m relate to matrices
of dimension 500-by-5000 for several numbersm of extracted components. Each curve
is an average on 25 random Gaussian data matrices.

In Table 9, we provide the total cardinality and the proportion of adjusted variance explained by
six components computed withSPCA, rSVDℓ1, Greedy as well as ourGPower algorithms. The re-
sults concerningSPCA, rSVDℓ1, Greedy correspond to the patterns of zeros and nonzeros proposed
by Zou et al. (2006), Shen and Huang (2008) and Moghaddam et al. (2006), respectively. For fair
comparison, the pattern related to SPCA andrSVDℓ1 have been post-processed with the approach
proposed in Section 4.2. Concerning theGpower algorithms, we fix the six parametersγ j at the
same ratio of their respective upper-bounds. For the block algorithmGPowerℓ1,m, experiments have
been conducted in both cases “identicalµj ” and “distinctµj ”.

Table 9 illustrates that better patterns can be identified with the GPower algorithms, that is,
patterns that explain more variance with the same cardinality (and sometimes evenwith a smaller
one). These results are furthermore likely to be improved by a fine tuning ofthe six parametersγ j

(i.e., by choosing them independently from each others).

5.4 Analysis of Gene Expression Data

Gene expression data results from DNA microarrays and provide the expression level of thousands
of genes across several hundreds of experiments. The interpretationof these huge databases remains
a challenge. Of particular interest is the identification of genes that are systematically coexpressed
under similar experimental conditions. We refer to Riva et al. (2005) and references therein for more
details on microarrays and gene expression data. PCA has been intensively applied in this context
(e.g., Alter et al. 2003). Further methods for dimension reduction, such asindependent component
analysis (Liebermeister, 2002) or nonnegative matrix factorization (Brunet et al., 2004), have also
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Method Parameters Total cardinality Prop. of explained variance

rSVDℓ1 see Shen and Huang (2008) 25 0.7924
SPCA see Zou et al. (2006) 18 0.7680
Greedy cardinalities: 6-2-3-1-1-1 14 0.7150

cardinalities: 5-2-2-1-1-1 12 0.5406
GPowerℓ1 γ j/γ̄ j = 0.22, for j = 1, . . . ,6 25 0.8083

γ j/γ̄ j = 0.28 18 0.7674
γ j/γ̄ j = 0.30 15 0.7542
γ j/γ̄ j = 0.40 13 0.7172
γ j/γ̄ j = 0.50 11 0.6042

GPowerℓ1,m γ j/γ̄ j = 0.17, for j = 1, . . . ,6 25 0.7733
with µj = 1 γ j/γ̄ j = 0.25 17 0.7708

γ j/γ̄ j = 0.3 14 0.7508
γ j/γ̄ j = 0.4 13 0.7076
γ j/γ̄ j = 0.45 11 0.6603

GPowerℓ1,m γ j/γ̄ j = 0.18, for j = 1, . . . ,6 25 0.8111
γ j/γ̄ j = 0.25 18 0.7849

with µj = 1
j γ j/γ̄ j = 0.30 15 0.7610

γ j/γ̄ j = 0.35 13 0.7323
γ j/γ̄ j = 0.40 12 0.6656

Table 9: Extraction of 6 components from the pitprops data. ForGPowerℓ1, one defines the upper-

bounds̄γ j = maxi ‖a( j)
i ‖2, whereA( j) is the residual data matrix afterj−1 deflation steps.

ForGPowerℓ1,m, the upper-bounds arēγ j = µj maxi ‖ai‖2.

been used on gene expression data. Sparse PCA, which extracts components involving a few genes
only, is expected to enhance interpretation.

5.4.1 DATA SETS

The results below focus on four major data sets related to breast cancer.They are briefly detailed
in Table 10.7 Each sparse PCA algorithm computes ten components from these data sets, that is,
m= 10.

Study Samples (p) Genes (n) Reference
Vijver 295 13319 van de Vijver et al. (2002)
Wang 285 14913 Wang et al. (2005)
Naderi 135 8278 Naderi et al. (2007)
JRH-2 101 14223 Sotiriou et al. (2006)

Table 10: Breast cancer cohorts.

7. The normalized data sets have been kindly provided by Andrew Teschendorff.
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5.4.2 SPEED

The average computational time required by the sparse PCA algorithms on each data set is displayed
in Table 11. The indicated times are averages on all the computations performedto obtain cardinality
ranging fromn down to 1.

Vijver Wang Naderi JRH-2
GPowerℓ1 5.92 5.33 2.15 2.69
GPowerℓ0 4.86 4.93 1.33 1.73
GPowerℓ1,m 5.40 4.37 1.77 1.14
GPowerℓ0,m 5.61 7.21 2.25 1.47
SPCA 77.7 82.1 26.7 11.2
rSVDℓ1 10.19 9.97 3.96 4.43
rSVDℓ0 9.51 9.23 3.46 3.61

Table 11: Average computational times (in seconds) for the extraction ofm= 10 components.

5.4.3 TRADE-OFF CURVES

Figure 6 plots the proportion of adjusted variance versus the cardinality for the “Vijver” data set. The
other data sets have similar plots. As for the random test problems, this performance criterion does
not discriminate among the different algorithms. All methods have in fact the same performance,
provided that theSPCA andrSVDℓ1 approaches are used with postprocessing by Algorithm 6.
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Figure 6: Trade-off curves between explained variance and cardinality for the “Vijver” data set.
The vertical axis is the ratio AdjVar(ZsPCA)/AdjVar(ZPCA), where the loading vectors
ZsPCA are computed by sparse PCA andZPCA are themfirst principal loading vectors.

5.4.4 INTERPRETABILITY

A more interesting performance criterion is to estimate the biological interpretabilityof the ex-
tracted components. Thepathway enrichment index(PEI) proposed by Teschendorff et al. (2007)
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measures the statistical significance of the overlap between two kinds of gene sets. The first sets
are inferred from the computed components by retaining the most expressed genes, whereas the
second sets result from biological knowledge. For instance, metabolic pathways provide sets of
genes known to participate together when a certain biological function is required. An alternative
is given by the regulatory motifs: genes tagged with an identical motif are likely tobe coexpressed.
One expects sparse PCA methods to recover some of these biologically significant sets. Table 12
displays the PEI based on 536 metabolic pathways related to cancer. The PEI is the fraction of these
536 sets presenting a statistically significant overlap with the genes inferredfrom the sparse princi-
pal components. The values in Table 12 correspond to the largest PEI obtained among all possible
cardinalities. Similarly, Table 13 is based on 173 motifs. More details on the selected pathways and
motifs can be found in Teschendorff et al. (2007). This analysis clearlyindicates that the sparse PCA
methods perform much better than PCA in this context. Furthermore, the newGPower algorithms,
and especially the block formulations, provide largest PEI values for bothtypes of biological infor-
mation. In terms of biological interpretability, they systematically outperform previously published
algorithms.

Vijver Wang Naderi JRH-2
PCA 0.0728 0.0466 0.0149 0.0690
GPowerℓ1 0.1493 0.1026 0.0728 0.1250
GPowerℓ1 0.1250 0.1250 0.0672 0.1026
GPowerℓ1,m 0.1418 0.1250 0.1026 0.1381
GPowerℓ0,m 0.1362 0.1287 0.1007 0.1250
SPCA 0.1362 0.1007 0.0840 0.1007
rSVDℓ1 0.1213 0.1175 0.0914 0.0914
rSVDℓ0 0.1175 0.0970 0.0634 0.1063

Table 12: PEI-values based on a set of 536 cancer-related pathways.

Vijver Wang Naderi JRH-2
PCA 0.0347 0 0.0289 0.0405
GPowerℓ1 0.1850 0.0867 0.0983 0.1792
GPowerℓ0 0.1676 0.0809 0.0925 0.1908
GPowerℓ1,m 0.1908 0.1156 0.1329 0.1850
GPowerℓ0,m 0.1850 0.1098 0.1329 0.1734
SPCA 0.1734 0.0925 0.0809 0.1214
rSVDℓ1 0.1387 0.0809 0.1214 0.1503
rSVDℓ0 0.1445 0.0867 0.0867 0.1850

Table 13: PEI-values based on a set of 173 motif-regulatory gene sets.

6. Conclusion

We have proposed two single-unit and two block formulations of the sparsePCA problem and
constructed reformulations with several favorable properties. First, thereformulated problems are
of the form of maximization of a convex function on a compact set, with the feasible set being either
a unit Euclidean sphere or the Stiefel manifold. This structure allows for thedesign and iteration
complexity analysis of a simple gradient scheme which applied to our sparse PCA setting results in
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four new algorithms for computing sparse principal components of a matrixA∈Rp×n. Second, our
algorithms appear to be faster if either the objective function or the feasible set are strongly convex,
which holds in the single-unit case and can be enforced in the block case.Third, the dimension of
the feasible sets does not depend onn but onp and on the numbermof components to be extracted.
This is a highly desirable property ifp≪ n. Last but not least, on random and real-life biological
data, our methods systematically outperform the existing algorithms both in speedand trade-off
performance. Finally, in the case of the biological data, the components obtained by our block
algorithms deliver the richest biological interpretation as compared to the components extracted by
the other methods.
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Appendix A.

In this appendix we characterize a class of functions with strongly convexlevel sets. First we need
to collect some basic preliminary facts. All the inequalities of Proposition 11 arewell-known in the
literature.

Proposition 11 (i) If f is a strongly convex function with convexity parameterσ f , then for all
x,y and0≤ α≤ 1,

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)− σ f

2
α(1−α)‖x−y‖2. (36)

(ii) If f is a convex differentiable function and its gradient is Lipschitz continuous with constant
L f , then for all x and h,

f (x+h)≤ f (x)+ 〈 f ′(x),h〉+ L f

2
‖h‖2, (37)

and

‖ f ′(x)‖∗ ≤
√

2L f ( f (x)− f∗), (38)

where f∗
def
= minx∈E f (x).

We are now ready for the main result of this section.
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Theorem 12 (Strongly Convex Level Sets)Let f : E→ R be a nonnegative strongly convex func-
tion with convexity parameterσ f > 0. Also assume f has a Lipschitz continuous gradient with
Lipschitz constant Lf > 0. Then for anyω > 0, the set

Qω
def
= {x | f (x)≤ ω}

is strongly convex with convexity parameter

σQω =
σ f

√

2ωL f
.

Proof Consider anyx,y∈Qω, scalar 0≤α≤ 1 and letzα = αx+(1−α)y. Notice that by convexity,
f (zα)≤ ω. For anyu∈ E,

f (zα +u)(37)
≤ f (zα)+ 〈 f ′(zα),u〉+ L f

2
‖u‖2

≤ f (zα)+‖ f ′(zα)‖‖u‖+ L f

2
‖u‖2

(38)
≤ f (zα)+

√

2L f f (zα)‖u‖+ L f

2
‖u‖2

=

(

√

f (zα)+

√

L f

2 ‖u‖
)2

(36)
≤

(

√

ω−β+

√

L f

2 ‖u‖
)2

,

where
β =

σ f

2
α(1−α)‖x−y‖2. (39)

In view of (25), it remains to show that the last displayed expression is bounded above byω when-
everu is of the form

u =
σQω

2
α(1−α)‖x−y‖2s=

σ f

2
√

2ωL f
α(1−α)‖x−y‖2s, (40)

for somes∈ S . However, this follows directly from concavity of the scalar functiong(t) =
√

t:

√

ω−β = g(ω−β)≤ g(ω)−〈g′(ω),β〉

=
√

ω− β
2
√

ω
(39)
≤
√

ω− σ f

4
√

ω
α(1−α)‖x−y‖2

(40)
≤
√

ω−
√

L f

2
‖u‖.
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Example 13 Let f(x) = ‖x‖2. Note thatσ f = L f = 2. If we letω = r2, then

Qω = {x | f (x)≤ ω}= {x | ‖x‖ ≤ r}= r ·B.

We have shown before (see the discussion immediately following Assumption 3), that the strong
convexity parameter of this set isσQω = 1

r . Note that we recover this as a special case of Theorem 12:

σQω =
σ f

√

2ωL f
=

1
r
.

References

P.-A. Absil, R. Mahony, and R. Sepulchre.Optimization Algorithms on Matrix Manifolds. Princeton
University Press, Princeton, January 2008.

O. Alter, P. O. Brown, and D. Botstein. Generalized singular value decomposition for comparative
analysis of genome-scale expression data sets of two different organisms. Proc Natl Acad Sci
USA, 100(6):3351–3356, 2003.

R. W. Brockett. Dynamical systems that sort lists, diagonalize matrices and solve linear program-
ming problems.Linear Algebra Appl., 146:79–91, 1991.

J. P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov. Metagenes and molecular pattern discovery
using matrix factorization.Proc Natl Acad Sci USA, 101(12):4164–4169, 2004.

J. Cadima and I. T. Jolliffe. Loadings and correlations in the interpretation of principal components.
Journal of Applied Statistics, 22:203–214, 1995.

A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. Adirect formulation for sparse
PCA using semidefinite programming.Siam Review, 49:434–448, 2007.

A. d’Aspremont, F. R. Bach, and L. El Ghaoui. Optimal solutions for sparse principal component
analysis.Journal of Machine Learning Research, 9:1269–1294, 2008.

C. Fraikin, Yu. Nesterov, and P. Van Dooren. A gradient-type algorithmoptimizing the coupling
between matrices.Linear Algebra and its Applications, 429(5-6):1229–1242, 2008.

G. H. Golub and C. F. Van Loan.Matrix Computations. The Johns Hopkins University Press, 1996.

R. A. Horn and C. A. Johnson.Matrix Analysis. Cambridge University Press, Cambridge, UK,
1985.

I. T. Jolliffe. Rotation of principal components: choice of normalization constraints. Journal of
Applied Statistics, 22:29–35, 1995.

I. T. Jolliffe, N. T. Trendafilov, and M. Uddin. A modified principal component technique based on
the LASSO.Journal of Computational and Graphical Statistics, 12(3):531–547, 2003.

W. Liebermeister. Linear modes of gene expression determined by independent component analysis.
Bioinformatics, 18(1):51–60, 2002.

552



GENERALIZED POWER METHOD FORSPARSEPCA

L. Mackey. Deflation methods for sparse PCA. InAdvances in Neural Information Processing
Systems (NIPS), pages 1017–1024, 2008.

B. Moghaddam, Y. Weiss, and S. Avidan. Spectral bounds for sparsePCA: Exact and greedy
algorithms. In Y. Weiss, B. Schölkopf, and J. Platt, editors,Advances in Neural Information
Processing Systems 18, pages 915–922. MIT Press, Cambridge, MA, 2006.

A. Naderi, A. E. Teschendorff, N. L. Barbosa-Morais, S. E. Pinder, A. R. Green, D. G. Powe, J. F. R.
Robertson, S. Aparicio, I. O. Ellis, J. D. Brenton, and C. Caldas. A gene expression signature to
predict survival in breast cancer across independent data sets.Oncogene, 26:1507–1516, 2007.

B. N. Parlett.The Symmetric Eigenvalue Problem. Prentice-Hall Inc., Englewood Cliffs, N.J., 1980.
ISBN 0-13-880047-2. Prentice-Hall Series in Computational Mathematics.

A. Riva, A.-S. Carpentier, B. Torrésani, and A. H́enaut. Comments on selected fundamental aspects
of microarray analysis.Computational Biology and Chemistry, 29(5):319–336, 2005.

H. Shen and J. Z. Huang. Sparse principal component analysis via regularized low rank matrix
approximation.Journal of Multivariate Analysis, 99(6):1015–1034, 2008.

C. Sotiriou, P. Wirapati, S. Loi, A. Harris, S. Fox, J. Smeds, H. Nordgren, P. Farmer, V. Praz,
B. Haibe-Kains, C. Desmedt, D. Larsimont, F. Cardoso, H. Peterse, D. Nuyten, M. Buyse, M. J.
Van de Vijver, J. Bergh, M. Piccart, and M. Delorenzi. Gene expression profiling in breast cancer:
understanding the molecular basis of histologic grade to improve prognosis.J Natl Cancer Inst,
98(4):262–272, 2006.
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