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MACDONALD POSITIVITY VIA THE HARISH-CHANDRA D-MODULE

I.G. GORDON

Abstract. Using the Harish-Chandra D-module, we give a proof of Haiman’s theorem on the

positivity of Macdonald polynomials. Ginzburg’s work on the connection between this D-module

and the isospectral commuting variety is fundamental to this approach.

1. Introduction

The (transformed) Macdonald polynomials H̃µ(z; q, t) are symmetric functions with coefficients

that are rational functions of two parameters q and t. They have remarkable specialisations to

important families of symmetric functions including Hall-Littlewood polynomials, Jack polynomials

and Schur functions.

Expanding the Macdonald polynomials in terms of Schur functions,

H̃µ(z; q, t) =
∑
λ

K̃λ,µ(q, t)sλ(z),

Macdonald conjectured that the coefficients K̃λ,µ(q, t) belong to N[q, t]. In a wonderful paper, [7],

Haiman confirmed this conjecture by proving the n! theorem. This showed the existence of a vector

bundle P̃ on HilbnC2, the Hilbert scheme of points on the plane, with many remarkable properties.

In particular, the fibres of P̃ at the torus fixed points of HilbnC2 are bigraded representations of

Sn encoding the Macdonald polynomials. Haiman’s proof of the n! theorem is a remarkable blend

of sophisticated algebraic geometry and subtle combinatorics.

In this note we give a different proof of Macdonald positivity using recent work of Ginzburg,

[4]. This proof again displays a vector bundle on HilbnC2 whose fibres at torus fixed points carry

the Macdonald polynomials. The bundle is constructed from a degeneration of the Harish-Chandra

D-module on the Grothendieck-Springer resolution of type An−1; to describe its fibres requires only

standard constructions from D-module theory and the Springer correspondence. It should be noted

that in [4] Ginzburg showed that this bundle is isomorphic to P̃ if one assumes Haiman’s results.

We do not know if it is possible to give a new proof of the n! theorem along similar lines.

Following Haiman’s pioneering work there have been two recent proofs of generalisations of

Macdonald positivity, [1] and [5]. These are of a different flavour to this note.

I thank Gwyn Bellamy and Victor Ginzburg for helpful comments. I am grateful for the full financial support of

EPSRC grant EP/G007632.
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2. Positivity

Let V be an n-dimensional complex vector space, G = GL(V ) with Lie algebra g = gl(V ), and

set t to be the subalgebra of g consisting of diagonal matrices. Let B ≤ G be the Borel subgroup

of upper triangular matrices, with Lie algebra b. The Weyl group, W = Sn, acts on t. We will

identify g and t with g∗ and t∗ via the trace pairing.

Let κ : g× g → g be the commutator. The commuting variety, C, is the scheme-theoretic

fibre κ−1(0). Set T = t× t. Simultaneous conjugation provides an action of G on C such that

the algebraic geometric quotient C /G is isomorphic to T /W , see [2, Theorem 1.3]. Let X =

[C×T /W T]red, the reduced isospectral commuting variety, and let Xnorm be its normalisation with

morphism ψ : Xnorm −→ X. There is a projection morphism pC : X −→ C and an induced morphism

on the normalisations p : Xnorm −→ Cnorm.

There is an action of G on X induced from C, of C∗ × C∗ by dilation in both sets of variables,

and of W from the diagonal action on T. All these lift to Xnorm.

Let g̃ = G ×B b be the Grothendieck-Springer resolution. It admits morphisms µ : g̃ → g and

ν : g̃ → t defined by (g, x) 7→ gxg−1, respectively (g, x) 7→ x mod [b, b]. Let M =
∫
µ×ν Og̃, the

Harish-Chandra Dg× t-module. It is holonomic.

Theorem 1. [4, Theorem 1.3.3, Theorem 1.3.4, Theorem 1.5.2]

(1) There is a filtration on M, the Hodge filtration, such that grM∼= ψ∗OXnorm .

(2) Xnorm is Cohen-Macaulay and Gorenstein.

(3) Set R = p∗OXnorm. Over the smooth locus of C, R is a G×W ×C∗×C∗-equivariant vector

bundle whose fibres carry the regular representation of W .

Let S = {(X,Y, v) ∈ g× g×V : [X,Y ] = 0, C〈X,Y 〉v = V }. The action of G on S is free, and

its quotient is HilbnC2, the Hilbert scheme of n points on the plane. The C∗×C∗-action on HilbnC2

has a finite number of fixed points, Iµ, labelled by partitions of n, see for instance [7, §3.2].

The projection morphism from S to g× g has image C◦, the set of pairs (X,Y ) ∈ C that have a

cyclic vector. This makes S a torsor over C◦.

Since C◦ is smooth we may define an open set X◦ = p−1(C◦) in Xnorm and then set W =

(X◦×C◦S)/G. We have the following diagram, see [4, (8.2.1)]

X◦

p %%JJJJJJJJJJ X◦×C◦S
δ̃oooo

p̃

$$ $$JJJJJJJJJJ

h

∼=
// W×HilbnC2S

η̃

xxqqqqqqqqqqq

ρ̃
// // W

ηxxxxqqqqqqqqqqq

C◦ S
δ

oooo
ρ

// // HilbnC2

Set P = (ρ∗δ∗(R|C◦))G. By [4, Corollary 8.1.3] this is a W × C∗ × C∗-equivariant vector bundle

on HilbnC2 whose fibres carry the regular representation of W . It is shown in [4, §8.2] that W is

isomorphic to the relative spectrum of P, so P ∼= η∗OW.
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The transformed Macdonald polynomials H̃µ(z; q, t) are two parameter symmetric functions at-

tached to partitions µ. They may be characterised by the following conditions in the ring of

symmetric functions over the base field Q(q, t), [8, Definition 3.5.2].

(Mi) H̃µ[(1− q)Z; q, t] ∈ Q(q, t){sλ(z) : λ ≥ µ}
(Mii) H̃µ[(1− t)Z; q, t] ∈ Q(q, t){sλ(z) : λ ≥ µt}

(Miii) H̃µ[1; q, t] = 1.

Here sλ(z) is the Schur function attached to the partition λ, ≥ is the dominance ordering on

partiations, and the [··] denotes plethystic substitution, see [8, §3.3].

The following theorem gives another proof of Macdonald positivity. This was proved first by

Haiman in [7], and subsequently in [1] and [5]. We do not assert here that P is the Procesi bundle,

although that does follow from the work of Haiman and Ginzburg, see [4, Corollary 8.2.5]. Recall the

Frobenius characteristic is the unique linear map from the representation ring of Sn to symmetric

functions, sending the irreducible representation λ to the Schur function sλ(z), see [8, §3.2].

Theorem 2. Let P(Iµ) be the fibre of P above Iµ ∈ HilbnC2, which by the above carries a W ×
C∗ × C∗-action. The Frobenius characteristic FP(Iµ)(z; q, t) equals H̃µ(z; q, t).

The proof of this will occupy the rest of this note. It proceeds in a similar way to the tactic of

Haiman’s own proof, using however basic facts about D-modules.

Any function in O(T) pulls back to a regular function on Xnorm, and by construction these

functions are invariant under the action of G. Thus the functions in O(T) give rise to functions on

W and hence an action on P. Let y1, . . . , yn be a basis of linear functionals on t×{0} ⊂ T.

Claim 1. The elements y1, . . . , yn are a regular sequence at any point in W at which they vanish.

Proof. Let I = (y1, . . . , yn) be the ideal of OW generated by the yi’s. Thanks to [4, Proposition

3.2.4] W is Cohen-Macaulay. Hence it is enough to show that codim I = n. This follows just as in

[7, Proposition 3.3.3], for instance. �

In [4, Proposition 3.2.4] it is shown that W ∼= [HilbnC2 ×T /W T]red, norm. Since the support of

Iµ ∈ HilbnC2 is concentrated at the origin of T /W , there is a unique point (Iµ, 0) ∈ [HilbnC2×T /W

T]red lying above Iµ ∈ HilbnC2 and we let Jµ be the corresponding maximal ideal sheaf. Let

A = O[HilbnC2×T /WT]red and B = OW. We now know that (y1, . . . , yn) is a regular sequence in

(AB)Jµ . It follows that (AB)Jµ/(y1, . . . , yn)(AB)Jµ admits a Koszul resolution, and hence by [8,

Proposition 3.3.1] that we have an equality of Frobenius characteristics

F(AB)Jµ
([1− q]Z; q, t) = F(AB)Jµ/(y1,...,yn)(AB)Jµ

(z; q, t).

Since η : W −→ HilbnC2 factors through [HilbnC2 ×T /W T]red, the stalk Pµ of P at Iµ equals

(AB)Jµ . By freeness FPµ(z; q, t) = FP(Iµ)(z; q, t)pµ(q, t) where pµ(q, t) ∈ Q(q, t) is the bigraded

Poincaré series for the local ring of HilbnC2 at the point Iµ. It follows that

FP(Iµ)([1− q]Z; q, t) = FPµ([1− q]Z; q, t)pµ(q, t) = F(AB)Jµ/(y1,...,yn)(AB)Jµ
(z; q, t)pµ(q, t).
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Therefore to check (Mi), we need only show that

F(AB)Jµ/(y1,...,yn)(AB)Jµ
(z; q, t) ∈ Q(q, t){sλ(z) : λ ≥ µ}.

By [6, Proposition 5.3] this is implied by the following.

Claim 2. The λ isotypic component of (AB)Jµ/(y1, . . . , yn)(AB)Jµ is zero unless λ ≥ µ.

Proof. Since C◦ belongs to smooth locus of C, the restriction of p : Xnorm −→ Cnorm to X◦ factors

through X, that is p|X◦ = (pC ◦ ψ)|X◦ . It follows that

R|C◦ = p∗ (OXnorm |X◦) = (pC)∗
(

(grM)|p−1
C (C◦)

)
.

Now let (Xµ, Yµ) be an element in the principal nilpotent pair orbit corresponding to µ, see [3,

(0.1)]. We deduce that the stalk of R above (Xµ, Yµ) equals (grM)Kµ where Kµ is the maximal

ideal of (Xµ, Yµ, 0, 0), the unique point in X lying over (Xµ, Yµ).

Let π : g −→ g× t be the inclusion that sends X to (X, 0). Define

T ∗(g) = g× g∗
ρπ←− g×g× tT

∗(g× t) = g× g∗× t∗
$π−→ T ∗(g× t) = g× g∗× t× t∗

by ρπ(X,Y,w) = (X,Y ) and $π(X,Y,w) = (X,Y, 0, w). We set T ∗g (g× t) = ρ−1
π (T ∗g (g)) = g×{0}×

t∗ . The characteristic variety of M is Ch(M) = [X], [4, Corollary 2.4.1]. Now

$−1
π (X) ∩ T ∗g (g× t) = {(X,Y,w) : [X,Y ] = 0, X nilpotent, e-vals(Y ) = w} ∩ {(X, 0, w)}

= {(X, 0, 0) : X nilpotent} ⊂ g×{0} × {0} = g×g× tT
∗
g× t(g× t).

Thus π is non-characteristic with respect to M. In particular we deduce from [10, Theorem

4.7] that Ch(π∗M) = ρπω
−1
π (Ch(M)) = {(X,Y ) : [X,Y ] = 0, X nilpotent} ⊂ C . In fact, the

y1, . . . , yn form a regular sequence for grM by [4, Proposition 9.1.3], so multiplication by each yi

on grM/(y1, . . . yi−1) grM is injective, and iterating the proof of Step 1 of [10, Theorem 4.7] shows

that (ρπ)∗$∗π(grM) is isomorphic to grπ∗M.

The support of (ρπ)∗$∗π(grM) is {(X,Y ) : [X,Y ] = 0, X nilpotent}. Since M is holonomic

this space is lagrangian in T ∗(g), a union of conormal bundles
⋃
λ T
∗
Oλ(g), where Oλ denotes the

nilpotent orbit in g of type λ. The D-module M carries a W -action, [9, §5] and this induces the

W -action that is inherited by R in the statement of Theorem 1(3). The λ-isotypic component of

the stalk of R|C◦/(y1, . . . , yn)R|C◦ at (Xµ, Yµ) is non-zero if and only if (Xµ, Yµ) is in the support

of the λ-isotypic component of (ρπ)∗$∗π(grM).

We have a decomposition π∗M =
⊕

λ(π∗M)λ. We’ve seen above that the support of gr(π∗M)λ
equals the support of the λ-isotypic component of (ρπ)∗$∗π(grM). By [9, Proposition 4.8.1

and Theorem 5.3(3)], (π∗M)λ is supported on the closure of the nilpotent orbit Oλ, and so

Ch((π∗M)λ) ⊆
⋃
ν≤λ T

∗
Oν g. Thus the λ-isotypic component of the stalk of R|C◦/(y1, . . . , yn)R|C◦

at (Xµ, Yµ) is non-zero only if (Xµ, Yµ) ∈ T ∗Oν (g) for some ν ≤ λ. But since Xµ ∈ Oµ, this in

turn requires that µ ≤ ν. So we deduce that the stalk at (Xµ, Yµ) of the λ-isotypic component of

R|C◦/(y1, . . . , yn)R|C◦ is non-zero only if µ ≤ λ.
4



Given any s ∈ S we have by definition

(P/(y1, . . . , yn)P)ρ(s) ⊗OHilbnC2,ρ(s)
OS,s ∼= (R|C◦/(y1, . . . , yn)R|C◦)δ(s) ⊗OC◦,δ(s) OS,s.

If s ∈ δ−1(Xµ, Yµ) then ρ(s) = Iµ and it follows that the λ-isotypic component of Pµ/(y1, . . . , yn)Pµ
is non-zero only if µ ≤ λ. Since (AB)Jµ/(y1, . . . , yn)(AB)Jµ = Pµ/(y1, . . . , yn)Pµ, this proves our

claim. �

To deal with (Mii) we argue similarly, reducing the calculations about P to ones on X. We need to

factor out a basis z1, . . . , zn of t∗. To see this is a regular sequence observe first that there is an au-

tomorphism of X induced by interchanging g× t with g∗× t∗. This induces an automorphism of the

normalisation Xnorm and we see that z1, . . . , zn is a regular sequence since y1, . . . , yn is. Now recall

that (Yµ, Xµ) = (Xµt , Yµt). Thus we deduce that the λ-isotypic component of Pµ/(z1, . . . , zn)Pµ is

non-zero only if µt ≤ λ. This implies (Mii).

Condition (Miii) states that the trivial representation appears in C∗ × C∗-bidegree (0, 0) and

nowhere else. But since Pµ carries the regular representation of W and the trivial isotypic compo-

nent is spanned by the constant functions, this is immediate.
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