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DIFFERENTIAL OPERATORS AND CHEREDNIK ALGEBRAS

V. GINZBURG, I. GORDON, AND J. T. STAFFORD

Abstract. We establish a link between two geometric approaches to the representa-

tion theory of rational Cherednik algebras of type A: one based on a noncommutative

Proj construction [GS1]; the other involving quantum hamiltonian reduction of an

algebra of differential operators [GG].

In the present paper, we combine these two points of view by showing that the

process of hamiltonian reduction intertwines a naturally defined geometric twist functor

on D-modules with the shift functor for the Cherednik algebra. That enables us to

give a direct and relatively short proof of the key result [GS1, Theorem 1.4] without

recourse to Haiman’s deep results on the n! theorem [Ha1]. We also show that the

characteristic cycles defined independently in these two approaches are equal, thereby

confirming a conjecture from [GG].
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1. Introduction

1.1. Throughout, W = Sn will denote the nth symmetric group for some n ≥ 2. For

a parameter c ∈ C we write Hc for the Cherednik algebra of type W with spherical

subalgebra Uc = eHce, where e = 1
|W |
∑

w∈W w ∈ Hc is the trivial idempotent. (The

formal definitions of this and related concepts can mostly be found in Section 2.)

Cherednik algebras have been influential in a wide range of subjects, having been

used for instance to answer questions in real algebraic geometry, integrable systems,

combinatorics, and symplectic quotient singularities. They are also closely related to the

Hilbert scheme HilbnC2 of points in the plane, a connection that was formalized in [GS1]

and [KR], where it was shown that one can describe Uc as a kind of noncommutative

deformation of HilbnC2. This was then used in [GS1, GS2] to apply the geometry of

HilbnC2 and Haiman’s work on the n! conjecture [Ha1] to analyse the representation

theory of Hc. In the process one finds that important classes of representations of the

Cherednik algebra correspond to important classes of sheaves on the Hilbert scheme and,

through them, to important combinatorial objects.

1.2. There are two main aims in this paper. First, the proof of the main result from

[GS1], Theorem 1.4, is heavily dependent on [Ha1] and so one would like to obtain a

proof of that result that is independent of Haiman’s work, not least because one may

then be able to apply Cherednik algebra techniques to the study of HilbnC2 and related

combinatorial objects. Second, there are two different ways to relate representations

of the Cherednik algebra Hc to geometric constructions and in particular to the Hilbert

scheme: through the noncommutative geometry approach of [GS1] mentioned above; and

through quantum hamiltonian reduction of the GLn(C)-equivariant space gl(C)×Cn, as

in [GG]. One would like to understand the relationship between the two approaches.

In this paper we solve both these problems by using quantum hamiltonian reduction

to give an alternative and shorter proof of [GS1, Theorem 1.4] without recourse to [Ha1].

This also clarifies the relationship between the two approaches, for example showing

that the characteristic cycles defined independently in[GS2] and [GG] are actually equal,

thereby confirming a conjecture of [GG].

Before we describe these results in detail we need to introduce some notation.

1.3. Let h = Cn denote the permutation representation of W and write hreg = hrδ−1(0)

where δ =
∏
i<j(xi − xj) ∈ C[h] is the discriminant; equivalently hreg is the subset of h

on which W acts freely. The algebra Uc will be identified through the Dunkl embedding

with a subalgebra of D(hreg) ∗W , the skew group ring of W with coefficients in the ring

of differential operators on hreg.

Set

C = {c ∈ C : c =
a

b
where a, b ∈ Z with 2 ≤ b ≤ n}.

2



A scalar c ∈ C is called good provided that c 6∈ C ∩ (−1, 0). The point of the definition

is that the good values of c ∈ C are the ones for which [GS1] and [BE] show that Uc has

pleasant properties (see also Remark 2.4).

1.4. For a ∈ C, set

aPa−1 = eHaδe and a−1Qa = eδ−1Hae.

By induction, for a ∈ b+ Z≥2, define

aPb = (aPa−1) · (a−1Pb) and bQa = (bQb+1) · (b+1Qa). (1.4.1)

In these equations, the multiplication is taken inside D(hreg) ∗W and this makes both

aPb and aQb into (Ua,Ub)-bimodules.

The key to [GS1, GS2] is the construction of a Z-algebra B =
⊕

i≥j≥0

(
c+iPc+j

)
endowed with a natural matrix multiplication. The ring B has a natural filtration

induced from the differential operator filtration Γ on D(hreg) ∗W and the main result

[GS1, Theorem 1.4] showed that if c+ i is good for all i ∈ N, then the associated graded

ring grΓB of B is the Z-algebra associated to HilbnC2. This provides the bridge between

Cherednik algebras and Hilbert schemes.

1.5. There is another way of passing from Hc to a more geometric setting which uses

the hamiltonian reduction from [GG]. This works as follows. Write V = Cn and set

G = GL(V ) with Lie algebra g = gl(V ). If G = g × V with its natural G-action, then

[GG] shows that Uc ∼= (D(G)/D(G) · Ic+1)G for an appropriate ideal Ic+1 of U(g) (see

Section 2.6 for the details). One of the main results of this paper shows that there is

a natural interpretation of the aQb in terms of this hamiltonian reduction. Indeed, set

Dc+1 = D(G)/D(G) · Ic+1 and, for m ∈ Z, consider the space of semi-invariants

Ddet−m

c+1 = {D ∈ Dc+1 : g ·D = det(g)−mD}.

1.6. It is easy to check that Ddet−m
c+1 is a (Uc−m,Uc)-bimodule and our first main result

shows that it is a familiar object:

Theorem. Fix c ∈ C and an integer m ≥ 1 so that each of c − 1, c − 2, . . . , c −m + 1

is good (this is automatic if m = 1). Under the differential operator filtration on the two

sides there is a filtered (Uc−m,Uc)-bimodule isomorphism

Θc,m : Ddet−m

c+1
∼−→ c−mQc. (1.6.1)

This also leads to a description of cPc−m in terms of the Ddet−m

d+1 (see Lemma 5.6).

The idea behind the proof of this theorem is easy to describe. One first shows that,

like c−mQc, the (Uc−m,Uc)-bimodule Ddet−m
c+1 is naturally embedded into Ureg = Uc[δ

−2].

Moreover, both of these bimodules are reflexive on at least one side (see Corollary 3.7

and Lemma 4.4). The theorem is then proved by showing that such a bimodule is unique

(see Theorem 3.5).
3



1.7. Set A1 = C[h × h∗]sign, with powers Am under multiplication in C[h × h∗]. Using

Theorem 1.6 we are also able to to give a direct and relatively short proof of the following

result, which is essentially [GS1, Theorem 1.4] and is one of the central results from that

paper.

Theorem. Keep the hypotheses of Theorem 1.6; thus c− 1, . . . , c−m+ 1, are all good.

(1) Under the differential operator filtration Γ, one has grΓ(c−mQc) = δ−mAme inside

grΓ Ureg = C[hreg × h]e.

(2) Similarly, grΓ(cPc−m) = Amδme.

Crucially, and unlike the original proof of [GS1, Theorem 1.4], the proof of Theorem 1.7

does not depend upon Haiman’s work [Ha1].

1.8. As was remarked earlier, passing from finitely generated filtered Hc-modules to

coherent sheaves on HilbnC2 via the Z-algebra B =
⊕

m≥0 c+mPc provides a powerful

technique for studying the representation theory of Uc and Hc, see [GS1, GS2]. Under

this relation, [GS1, Corollary 1.9] shows that the regular representation Hc corresponds

to the Procesi bundle P: this is a vector bundle of rank n! over HilbnC2 whose fi-

bres carry the regular representation of Sn, see [Ha1]. These fibres describe Macdonald

polynomials and have deep connections with many areas of representation theory and

algebraic combinatorics.

One may hope to use Theorem 1.7 and the representation theory of Hc to provide a

new construction of P which will explain many of its properties. This goal is still out

of reach. Furthermore, the more detailed relationship between the category Hc-mod of

finitely generated left Hc-modules and the category Coh(HilbnC2) of coherent sheaves

on HilbnC2 established in [GS2] is itself dependent upon several important properties of

the construction of P in [Ha1]. So there is much to understand.

1.9. In the second part of the paper we use Theorems 1.6 and 1.7 to relate other struc-

tures appearing in the Z-algebra and quantum hamiltonian reduction constructions.

These are concerned with the functor of hamiltonian reduction

H̃c : (D−c(X), SL(V ))-mod −→ Uc-mod

where X = g×Pn−1 and (D−c(X), SL(V ))-mod denotes the category of finitely generated

SL(V )-equivariant D-modules on X that are nc-twisted on Pn−1. The functor H̃c is

defined formally in (6.6) but, up to a shift, is given by F 7−→ FSL(V ). This functor

has been used for example in [FG] to relate representations of Uc with generalisations of

Lusztig’s character sheaves.

Working with D(X) rather than D(G) is not particularly significant since one can

pass from the latter to the former by taking invariants under the central subgroup

C× ⊂ GL(V ). What is significant is that there is now a natural translation func-

tor Sm : (D−c(X), SL(V ))-mod → (D−c−m(X), SL(V ))-mod given by tensoring with
4



the sheaf OP(V )(nm) on P(V ). On the other hand, one has the translation functor

c+mPc ⊗ (−) : Uc-mod→ Uc+m-mod; when c, c+ 1, · · · , c+m are good this is an equiv-

alence of categories that plays a crucial rôle in [GS1, GS2], analogous to the translation

principle in Lie theory. As we prove, it also has a natural description in terms of H̃c and

its left adjoint >H̃c.

Theorem. Assume that n > 2 and that c ∈ C r Q<0. Then, for all integers m ≥ 0,

there is an isomorphism of functors H̃c+m ◦ Sm ◦ >H̃c(−) ∼= c+mPc ⊗Uc (−) that makes

the following diagram commute

(D−c(X), SL(V ))-mod
Sm // (D−(c+m)(X), SL(V ))-mod

H̃c+m
��

Uc-mod

>H̃c

OO

c+mPc⊗Uc (−)
// Uc+m-mod

1.10. A useful tool in the study of Cherednik algebras, just as for Lie algebras, is the

concept of the characteristic cycle of a Uc-module (this is the same as the characteris-

tic variety, except that it counts multiplicities of the irreducible components). In fact

there are two completely different constructions of characteristic cycles of Uc-modules on

HilbnC2: the first, chGS , uses the Z-algebra approach form [GS1]; the second, chGG, is

defined using the machinery of hamiltonian reduction. In our final result we prove that

these two constructions agree, thereby confirming a conjecture from [GG, (7.17)].

Theorem. Assume that n > 2 and that c ∈ C r Q<0. Then for any finitely generated

Uc-module M one has an equality of algebraic cycles chGS(M) = chGG(M).

1.11. The paper is organised as follows. In Section 2 we introduce the basic notation

and background material. Section 3 is the key to the paper: it gives a uniqueness result

for reflexive (Uc+m, Uc)-bisubmodules of D(hreg) ∗W . We use this in Section 4 to prove

Theorem 1.6 in the special case when m = 1, while in Section 5 we extend this to prove

Theorems 1.6 and 1.7 in general. In Sections 6 and 7 we prove slightly stronger versions

of Theorems 1.9 and 1.10, respectively, which also include the case n = 2. Finally in the

appendix we give a detailed proof of the version of hamiltonian reduction that we need,

since it does not follow directly from that in [GG].

2. Notation and hamiltonian reduction

2.1. Differential operators. Let G be a reductive algebraic group with Lie algebra

g = Lie(G) and write U(g) for the enveloping algebra of g. Let X be a smooth affine

algebraic variety with coordinate ring C[X] and ring of regular algebraic differential

operators D(X). Assume that G acts algebraically on X. This gives rise to a locally-

finite G-action on C[X] and D(X) via the formulæ:

(g · f)(x)
def
= f(g−1 · x) and (g · θ)(f)

def
= g · (θ(g−1 · f)), (2.1.1)

5



for g ∈ G, f ∈ C[X], θ ∈ D(X) and x ∈ X.
We should emphasise that this is not the action used in [GG] and [BFG]; those papers

implicitly use the rule (g · f)(x) = f(g · x) for g ∈ G, f ∈ C[X] and x ∈ X. (See [GG,

Equation A4] and the comments after [BFG, Lemma 5.3.3].)

The action of G on C[X] and D(X) is by given algebra automorphisms, and we let

D(X)G ⊂ D(X) denote the subalgebra of G-invariant differential operators. The action

of G on X gives rise to a g-action on C[X] by derivations and this induces a Lie algebra

map τ : g → Der(C[X]) ⊂ D(X). This extends uniquely to an associative algebra

morphism τ : U(g)→ D(X).

2.2. Given a group character χ : G→ C× and a G-module M , write

Mχ = {m ∈M
∣∣ g ·m = χ(g)m, ∀g ∈ G}

for the corresponding χ-isotypic component. Abusing notation, we also write χ : g→ C
for the differential of the group character χ.

Let ν : g→ C be a Lie algebra character and write Iν for the two-sided ideal in U(g)

generated by the elements {x−ν(x) : x ∈ g}. It is standard that multiplication in D(X)

induces an algebra structure on the space of G-invariants [D(X)/D(X)τ(Iν)]G, [BFG,

Section 3.4], called the quantum hamiltonian reduction of D(X) at ν. Similarly, for a

character χ of G, the next lemma shows that we obtain a natural bimodule structure

for the isotypic component [D(X)/D(X)τ(Iν)]χ. For notational simplicity we will often

write D(X)Iν in place of D(X)τ(Iν).

Lemma. Let χ : G −→ C× be a group character and ν : g −→ C a Lie algebra character.

Multiplication in the algebra D(X) endows [D(X)/D(X)τ(Iν)]χ with the structure of a

right [D(X)/D(X)τ(Iν)]G-module and a left [D(X)/D(X)τ(Iν+χ)]G-module.

Proof. The right [D(X)/D(X)τ(Iν)]G-module structure is obvious. The differential of

the G-action on D(X) induces an action of τ(g) by commutation: thus if x ∈ g and

D ∈ D(X)χ then [τ(x), D] = χ(x)D. Hence(
τ(x)− (ν + χ)(x)

)
D = D

(
τ(x)− ν(x)

)
∈ D(X)τ(Iν)

and so the left action of D(X)G on [D(X)/D(X)τ(Iν)]χ factors through the factor ring

[D(X)/D(X)τ(Iν+χ)]G. �

2.3. Rational Cherednik algebras. Fix a positive integer n ≥ 2, let W = Sn be the

symmetric group and write e = 1
|W |
∑

w∈W w ∈ CW for the trivial idempotent. Similarly,

let e− = 1
|W |
∑

w∈W sign(w) · w denote the sign idempotent. Recall that h = Cn is the

permutation representation of W and that

hreg = {(z1, . . . , zn) ∈ h : zi 6= zj for all 1 ≤ i < j ≤ n}
6



denotes the subset of h on which W acts freely. Equivalently, if {x1, . . . , xn} is the

basis of h∗ ⊂ C[h] consisting of coordinate functions, then hreg = h r δ−1(0) where

δ =
∏
i<j(xi−xj) ∈ C[h] is the discriminant. There is an induced action of W on D(hreg)

and we write D(hreg) ∗W for the corresponding skew group ring; for D ∈ D(hreg) and

w ∈W multiplication is defined by wD = (w ·D)w.

Fix a scalar c ∈ C and let Hc denote the rational Cherednik algebra corresponding

to GLn(C). As in [EG, Proposition 4.5], we will identify Hc with the subalgebra of

D(hreg) ∗W generated by W , the vector space h∗ =
∑
xiC ⊂ C[h] of linear functions,

and the Dunkl operators

Dc(yi) =
∂

∂xi
− 1

2

∑
j 6=k

c
〈yi, xj − xk〉
xj − xk

(1− sjk) (2.3.1)

where {y1, . . . , yn} ⊂ h is the dual basis to {x1, . . . , xn} and the sjk ∈W are simple trans-

positions. By [EG, Theorem 1.3] there is a PBW isomorphism Hc ∼= C[h]⊗CW ⊗C[h∗]

of C-vector spaces. The spherical subalgebra of Hc is Uc = eHce.

Clearly δ2 ∈ C[h]W . Let Ureg = Uc[δ
−2] and Hreg = Hc[δ

−2] = Hc[δ
−1] be the corre-

sponding localised algebras. By definition, D(hreg) = D(h)[δ−1] and, by [EG, Proposi-

tion 4.5], Ureg = eD(hreg)W e = e
(
D(hreg) ∗W

)
e is independent of the choice of c.

2.4. Remark. (i) If H′c is the corresponding SLn(C) version of the Cherednik algebra

with spherical subalgebra U′c then Hc ∼= H′c⊗CD(A1) and Uc ∼= U′c⊗D(A1). It is therefore

straightforward to apply the results of (for example) [GS1] to Hc and Uc.

(ii) The results in [GS1] also assumed that c /∈ 1
2 + Z, but this condition has since

been removed by [BE]. So all the results in [GS1, GS2] can now be applied without

that hypothesis. Thus, for example, [GS1, Corollary 3.13] and [BE, Theorem 4.1] show

that if c ∈ C is good, then Uc is Morita equivalent to Hc and consequently has finite

homological global dimension.

2.5. The order of differential operators induces a filtration on D(hreg) ∗W by putting

W into degree zero. Essentially every (noncommutative) ring R or module M that

we consider is naturally embedded as a subfactor of either D(hreg) ∗ W or D(X) for

some variety X: we will call the induced filtration on R and M the differential operator

filtration and this will usually be written as M =
⋃
j≥0 ΓiM . The PBW isomorphism can

then be rephrased as saying that there are algebra isomorphisms grΓ Hc ∼= C[h× h∗] ∗W
and grΓ Uc ∼= C[h× h∗]W .

2.6. Quantum hamiltonian reduction. Fix an n-dimensional C-vector space V and

put G = GL(V ) with Lie algebra g = gl(V ) = Lie(G) ⊃ sl(V ). Write G = g × V with

the G-action g · (X, v) = (gXg−1, gv) for g ∈ G and (X, v) ∈ g × V . Let 1 ∈ g denote

the identity. For any c ∈ C, let χc : g→ C be the Lie algebra homomorphism defined by
7



x 7→ c · tr(x). For simplicity we write Ic = Iχc ⊂ U(g): thus Ic = U(g)sln+U(g)(1−nc).
Much of the paper will be concerned with the objects

Dc
def
=

D(G)

D(G)τ(Ic)
and DG

c
def
=

[
D(G)

D(G)τ(Ic)

]G
, (2.6.1)

which, following the earlier convention, are given the differential operator filtration Γ

induced from that on D(G).

2.7. The action of 1 on C[G] will be used a number of times in this paper and so it is

appropriate to be explicit about it. The action of the centre C× of G on G is given by

dilation in the second component: λ·(X, v) = (X,λv) for λ ∈ C× and (X, v) ∈ g×V = G.

By (2.1.1), C× therefore acts on V ∗ ⊂ C[V ] by anti-dilation. Since the action of g is

the differential of the G-action, this implies that the action of τ(1) will be concentrated

purely on C[V ] and that it will then be the negative of the Euler operator. In other

words, if {ei} is a basis of V ∗ ⊂ C[V ] then τ(1) = −
∑n

i=1 ei
∂
∂ei
∈ D(V ) ⊂ D(G).

2.8. One of the main results of [GG] shows that Uc may be obtained from D(G) via

quantum hamiltonian reduction.

Theorem. With the differential operator filtrations described above, there is for every

c ∈ C an isomorphism of filtered algebras DG
c
∼= Uc−1. This induces an isomorphism of

graded algebras grDG
c
∼= grUc−1

∼= C[h× h∗/W ].

Proof. This result is a variant of [GG, Theorem 1.5], but since the result does not follow

directly from the results in that paper, we give a complete proof in the appendix. �

3. Uniqueness of reflexive bimodules

3.1. The way we will prove the isomorphism Ddet−m
c+1

∼−→ c−mQc of Theorem 1.6 is to

note that both sides are isomorphic to (Uc−m, Uc)-bisubmodules of D(hreg) ∗W that are

reflexive Uc−m-modules. The isomorphism will then follow once we know that such a

bimodule is unique. The aim of this section is to prove such a uniqueness result, but

since the idea works for more than just spherical algebras we will prove it under the

following general hypotheses. In what follows we write GKdim(M) for the Gelfand-

Kirillov dimension of a module M .

3.2. Hypotheses. We assume that (S,Γ) is a filtered algebra over a field k such that

grΓ S is a commutative domain. Assume that R1 and R2 are two subalgebras of S such

that:

(1) Each Ri is a Goldie domain with S contained in the common Goldie quotient

ring F of the Ri.

(2) Under the induced filtration Γ, the rings grΓRi are Gorenstein algebras that are

finitely generated modules over a common graded finitely generated k-algebra C.
8



(3) For each nonzero ideal I of Ri we have GKdimRi/I ≤ GKdimRi − 2.

3.3. We first check that Hypotheses 3.2 are satisfied by Uc.

Lemma. For i = 1, 2, let Ri = aiUdia
−1
i ⊆ S = Ureg, for some di ∈ C and non-

zero ai ∈ Ureg. Filter S and its subsets by the differential operator filtration. Then

Hypotheses 3.2 are satisfied by R1 ad R2.

Proof. By [EG, Theorem 1.3] and [GS1, Lemma 6.8(1)],

grΓR1 = grΓR2 = grΓ eHd1e = C[h× h∗]W ,

which is Gorenstein by Watanabe’s Theorem [Wa]. Thus parts (1) and (2) of Hypothe-

ses 3.2 follow, with C = C[h× h∗]W .

In order to show that part (3) holds, it suffices to work with R1 = Uc. Since Ureg ∼=
D(hreg)W , it is a simple ring and so δ2m ∈ I for some m > 0. On the other hand, there

is a “Fourier” automorphism κ of Uc that maps h to h∗, see [EG, p. 283]. Thus, the ideal

κ−1(I) contains δ2n for some n > 0 and so κ(δ)2n ∈ I ∩ C[h∗]. The PBW isomorphism

[EG, Theorem 1.3] implies that grUc ∼= C[h ⊕ h∗]W is finitely generated as a module

over its subring C[h]W ⊗C C[h∗]W . Consequently, gr(Uc/I) is a finitely generated as a

module over the algebra C[h]W /(δ2m)⊗C C[h∗]W /(σ2n), where σ is the principal symbol

of κ(δ). This algebra has Gelfand–Kirillov dimension at most 2 dim h− 2, and hence so

does Uc/I. �

3.4. Keep the assumptions of Hypotheses 3.2 and set R = R1. Given a non-zero

finitely generated left R-module M ⊂ F then [MR, Proposition 3.1.15] shows that

there is a canonical identification HomR(M, R) = {f ∈ F
∣∣ Mf ⊆ R}. The analo-

gous result holds for right modules and the reflexive hull of M is the R-module M∗∗ =

HomR(HomR(M, R), R) ⊂ F . Clearly M ⊆M∗∗ and M is reflexive if M = M∗∗. Note

that when M = c+1Pc or cQc+1 as modules over either R = Uc or R = Uc+1 these

identifications take place inside S = Ureg.

We will need the following application of a theorem of Gabber.

Proposition. Keep the assumptions of Hypotheses 3.2, set R = R1 and let M be a

non-zero finitely generated left R-submodule of F . Then M∗∗ is the unique largest left

R-submodule M ′ ⊂ F containing M and such that GKdimM ′/M ≤ GKdimR− 2.

Proof. Define the grade of a finitely generated R-module N to be

j(N) = min{k : ExtkR(N,R) 6= 0}.

By Hypotheses 3.2(2) we may apply [Bj, Theorems 4.1 and 4.3] to conclude that R is AS-

Gorenstein and that j(N) = GKdimR−GKdimN for all finitely generated R-modules

N . Thus if M ⊆ M ′ are finitely generated R-submodules of F , then GKdimM ′/M ≤
GKdimR − 2 if and only if j(M ′/M) ≥ 2. Such modules M ′ are called tame pure

9



extensions of M . By [BjE, Theorem 3.6], if M ′ is any tame pure extension of M then

there exists an injection α : M ′ ↪→M∗∗ that is the identity on M . But since M ′/M is a

torsion R-module, for any m′ ∈M ′ there exists non-zero r ∈ R such that rm′ ⊆M and

so rα(m′) = α(rm′) = rm′. This proves that α(m′) = m′ for all m′ ∈ M ′ and finishes

the proof of the proposition. �

3.5. We are now ready to prove our uniqueness result for reflexive bimodules.

Theorem. Assume that (R1, R2, S) satisfy Hypotheses 3.2 and let M be a non-zero

(R1, R2)-bisubmodule of S that is finitely generated and reflexive on one side. Then it

is reflexive and finitely generated on the other side and is the unique such object.

Proof. By symmetry, we may assume that M is a finitely generated reflexive left R1-

module; thus M = M∗∗
def
= HomR1(HomR1(M, R1), R1). Part (1) of Hypotheses 3.2

implies that, as a left R1-module, M ⊆ R1f for some f ∈ S from which we conclude that

grΓM ⊆ (grΓR1)σ(f), where σ(f) is the principal symbol of f . By Hypotheses 3.2(2)

grΓM is therefore a finitely generated (left) module over both grR1 and C. But Γ is

also a filtration of M as a right R2-module. Since grΓM is a finitely generated right

C-module it is also finitely generated as a right grΓR2-module. Thus M is a finitely

generated right R2-module, see [KL, Proposition 6.4]. We remark that it now follows

from [KL, Corollary 3.4] that the Gelfand–Kirillov dimension of M as a left R1-module

equals that of M as a right R2-module and we need not distinguish between them.

Next, suppose that M is not unique and that N is a second such bimodule. Let

M = (M + N)/N ; by symmetry we may assume that M 6= 0. Then M is a finitely

generated left R1-module, say M =
∑r

j1R1mi. Since R2 is an Ore domain, M is a

torsion right R2-module and so

I = r-annR2M =
r⋂
j=1

r-annR2mj 6= 0.

By Hypotheses 3.2(3) this implies that GKdimM ≤ GKdimR2/I ≤ GKdimR2−2. Thus

we also have GKdim(M +N)/M ≤ GKdimR1 − 2 as left R1-modules. Our hypotheses

mean that Proposition 3.4 can be applied, from which it follows that N ⊆ (M + N) ⊆
M∗∗ = M . By symmetry, M = N and so M is indeed unique.

It remains to prove that M is reflexive as a right R2-module, so suppose to the contrary

that N = HomR2(HomR2(M, R2), R2) ) M . By Proposition 3.4, again, it follows that

GKdimN/M ≤ GKdimR2−2. But as M is a left R1-module, so is N and so by applying

Proposition 3.4 to the left R1-modules M ⊆ N we conclude that N ⊆M∗∗ = M . �

3.6. In applications of Theorem 3.5 it is important to be careful to ensure that the

bimodule structure of M is induced from that of S; after all, for any nonzero s ∈ S

the vector space R1s is an (R1, s
−1R1s)-bimodule and hence, up to isomorphism, an

(R1, R1)-bimodule.
10



We are going to apply Theorem 3.5 to the modules c+1Pc and cQc+1 from Section 1.4

and so it is worth emphasizing that no such problems occur here. Indeed, from [BEG2,

Proposition 4.1], Uc = eδ−1Hc+1δe as subrings of Ureg. Therefore, the (Uc+1, Uc)-

bimodule structure of c+1Pc = eHc+1δe is indeed induced from multiplication in S = Ureg.

Similar comments apply to cQc+1.

3.7. We are now ready apply Theorem 3.5 to c+1Pc and cQc+1.

Corollary. (1) As a right Uc-module, c+1Pc is projective whenever c is good. As a

left Uc+1-module, c+1Pc is projective whenever c+ 1 is good. For all values of c,

the module c+1Pc is reflexive on both sides.

(2) As a left Uc-module, cQc+1 is projective whenever c is good. As a right Uc+1-

module, cQc+1 is projective whenever c + 1 is good. For all values of c, the

module cQc+1 is reflexive on both sides.

(3) For all values of c, and under their natural embedding into Ureg, we have

c+1Pc = HomUc(cQc+1, Uc) = HomUc+1(cQc+1, Uc+1)

and

cQc+1 = HomUc(c+1Pc, Uc) = HomUc+1(c+1Pc, Uc+1).

Proof. (1,2) A slightly weaker version of this result is given in [GS1], but we give a

different proof since we will need the argument later. We will just prove the result for

Q = cQc+1; the same argument works for part (1).

Under the differential operator filtration Γ, the proof of [GS1, Lemma 6.9(2)] shows

that grΓQ
∼= A1 = C[h × h∗]sign as modules over A0 = C[h × h∗]W . By the Hochster–

Eagon Theorem, C[h × h∗] is a Cohen–Macaulay C[h × h∗]W -module and hence so is

its summand C[h × h∗]sign. By [Bj, Corollary 3.12] we deduce that Q is a torsion-free,

Cohen–Macaulay Uc+1-module in the sense that ExtjUc+1
(Q, Uc+1) = 0 for j > 0. But,

if c+ 1 is good, then Uc+1 has finite global dimension by [GS1, Corollary 3.15] and [BE,

Corollary 4.3] and so this implies that Q is a projective right Uc+1-module.

The analogous argument shows that Q is a projective left Uc-module whenever c is

good and so for any value of c this implies that on at least one side Q = cQc+1 is

projective and hence reflexive. By Theorem 3.5 and Lemma 3.3, Q is then reflexive on

the other side.

(3) Since cQc+1 is a finitely generated (Uc, Uc+1)-bisubmodule of Ureg that is reflexive

on both sides, the dual module cQ
∗
c+1 = HomUc(cQc+1, Uc) is a nonzero (Uc+1, Uc)-

bisubmodule of Ureg which is reflexive and finitely generated as a right Uc-module. But,

by part (1), the same is true of c+1Pc. Hence cQ
∗
c+1 = c+1Pc by Theorem 3.5 and

Lemma 3.3. The same argument can be used to prove the rest of part (3). �
11



3.8. The following easy and well known result will be used frequently.

Lemma. Let R,S be rings with a projective right R-module M and an (R,S)-bimodule N

that is projective as a right S-module. Then M ⊗RN is a projective right S-module. �

3.9. It is now easy to generalise Corollary 3.7 to the modules c+mPc and cQc+m of (1.4.1).

Theorem. Fix c ∈ C and an integer m ≥ 1 such that c+ 1, c+ 2, . . . , c+m− 1 are all

good.

(1) c+mPc is the unique non-zero (Uc+m, Uc)-bisubmodule of Ureg that is reflexive as

either a right Uc-module or a left Uc+m-module. Multiplication in Ureg induces

an isomorphism of (Uc+m, Uc)-bimodules,

(c+mPc+m−1)⊗Uc+m−1 · · · ⊗Uc+1 (c+1Pc)
∼−→ c+mPc. (3.9.1)

(2) cQc+m is the unique nonzero (Uc, Uc+m)-bisubmodule of Ureg that is reflexive as

either a right Uc+m-module or a left Uc-module. Multiplication gives an isomor-

phism of (Uc, Uc+m)-bimodules,

(cQc+1)⊗Uc+1 · · · ⊗Uc+m−1 (c+m−1Qc+m)
∼−→ cQc+m. (3.9.2)

(3) Either c or c + m is good. In the former case c+mPc and cQc+m are projective

Uc-modules, while in the latter case they are projective Uc+m-modules.

Proof. We only prove assertions for cQc+m; the proofs for c+mPc are essentially the same.

We will also assume that c+m is good; the proof when c is good is again very similar.

The hypotheses on c now ensure that, by Corollary 3.7, c+iQc+i+1 is projective as a

right Uc+i+1-module for all 0 ≤ i ≤ m − 1. It follows from Lemma 3.8 and a routine

induction that (3.9.2) holds and hence that cQc+m is both projective and finitely gen-

erated as a right Uc+m-module. The remaining assertions follow from Theorem 3.5 and

Lemma 3.3. �

3.10. Example. We end the section by noting that Theorem 3.9 does not extend to all

values of c. To see this consider the special case when n = 2 and set U = U 1
2
. Further, let

U = U(sl2)/(Ω), where Ω is the quadratic Casimir element. Using [GS2, Example 6.12]

and Remark 2.4, one finds that U ∼= U ⊗C D(A1). In this case, U− 1
2

is a simple ring,

necessarily equal to EndU(Q) for Q = − 1
2
Q 1

2
. Write

Tr(Q) = {θ(q) : θ ∈ HomU(Q,U) and q ∈ Q} ⊆ U

for the trace ideal of Q. Since U− 1
2

is simple but U is not, the projective U-module

Q cannot be a progenerator. Equivalently, Q is not projective as a left U− 1
2
-module,

thereby showing that the final sentence of Theorem 3.9(3) does not hold for arbitrary c.

Write F for the field of fractions of U and for a U-submodule M ⊂ F , identify M∗ =

HomU(M, U) with {θ ∈ F : θM ⊆ U}. We claim that V = − 3
2
Q 1

2
= (− 3

2
Q− 1

2
)Q is not

12



reflexive on either side. Indeed, suppose that it is reflexive on one side (and hence on

both sides by Theorem 3.5). By [St, Theorem B], U ∼= U−3/2 has global dimension 2 and

so V is also projective on both sides. As U is a maximal order, see [St, Lemma 3.1],

U−3/2 = EndU(V ) and hence V ∗ = HomU(V,U) is also equal to HomU−3/2
(V, U−3/2).

Thus the Dual Basis Lemma applied to V as a U−3/2-module implies that V ∗V = U.

But now W = V ∗(− 3
2
Q 1

2
) satisfies WQ = U, contradicting the fact that Q is not a

progenerator. This proves the claim.

4. Relating hamiltonian reduction and shift functors

4.1. Recall from (2.6) that G = g× V with the natural action of G = GL(V ) and that,

as in (2.6.1), we write

Dc+1 =
D(G)

D(G)τ(Ic+1)
;

thus DG
c+1
∼= Uc by Theorem 2.8. The aim of this section will be to construct a morphism

Ψc : Ddet−1

c+1 → c−1Qc and use it to prove Theorem 1.6 in the case m = 1. The complete

proofs of Theorems 1.6 and 1.7, which are given in Section 5, will then follow by applying

results from [GG]. We begin with the construction of Ψc, for which we need to expand

upon the isomorphism in Theorem 2.8.

4.2. Let vol ∈ ∧nV ∗ be a non-zero volume element on V and, following [BFG, Equa-

tion 5.3.2], define a map s : G→ C by

s(X, v)
def
= 〈vol, v ∧Xv ∧X2v ∧ · · · ∧Xn−1v〉. (4.2.1)

Clearly s 6= 0 and, as (g · s)(X, v) = s(g−1 · (X, v)) = s(g−1Xg, g−1v), it is a det−1

semi-invariant under the GL(V )-action.1 Note also that s∣∣hreg = δ.

We now want to use the radial component map, described as follows. Take the Zariski

open dense subset

Gcyc def
=
{

(X, v) : v is a cyclic vector for the operator X : V → V
}
⊂ G

and, for c ∈ C, let

O(Gcyc, c )
def
= {f ∈ C[Gcyc] : x · f = cTr(x)f for all x ∈ g}.

By [BFG, Corollary 5.3.4] restriction of functions induces an isomorphism O(Gcyc, c) ∼=
s−cC[h/W ]. Moreover, if D ∈ D(Gcyc)G then, by restriction, D induces a differential

operator from O(Gcyc, c) to itself. This defines the twisted radial components map

Rc : D(Gcyc)G −→ D(h/W ), D 7−→ Rc(D) = sc ◦
(
D|O(Gcyc,c)

)
◦ s−c. (4.2.2)

1As we mentioned in Section 2.1, [BFG] and [GG] use the opposite convention for group actions and

so in those papers s transforms by the determinant; see, for example, the sentence after [GG, (6.18)].
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As in [GG, Section 6.5] and in the notation of (2.6.1), this map is an algebra homomor-

phism that induces the isomorphism

Rc : DG
c = (D(G)/D(G)τ(Ic))

G ∼−→ Uc−1 (4.2.3)

from Theorem 2.8. The details are given in the appendix to this paper. In particular,

Rc restricts to give a surjection D(G)G � Uc−1.

As is observed after [GG, (6.18)], Gcyc = G r s−1(0) and so, if D ∈ D(G)det−1
, then

Ds−1 is a well-defined G-invariant differential operator on C[Gcyc]. Hence we obtain a

map

Ψ̂c : D(G)det−1

−→ eD(h/W )e ⊂ Ureg = eD(hreg)W e, D 7−→ eR(Ds−1)e.

As in the proof of Lemma 2.2, we have [τ(x), s−1] = tr(x)s−1 for any x ∈ g and so(
τ(x)− (c+ 1)tr(x)

)
s−1 = s−1

(
τ(x)− c · tr(x)

)
∈ D(G

cyc
)τ(Ic).

Therefore the map Ψ̂c factors through Ddet−1

c+1 to give the desired map

Ψc : Ddet−1

c+1 → Ureg. (4.2.4)

Lemma. Under multiplication in Ureg, the image Im(Ψc) is a non-zero (Uc−1, Uc)-

bimodule. Moreover, Ψc is a (Uc−1, Uc)-bimodule homomorphism in the sense that

Ψc(αcβαc+1) = Rc(αc)Ψc(β)Rc+1(αc+1) (4.2.5)

for αc ∈ DG
c , αc+1 ∈ DG

c+1 and β ∈ Ddet−1

c+1 .

Proof. Note that s ∈ D(G)det−1
and that Ψc([s]) = eR(s−1s)e = e. Hence Ψc 6= 0.

Combined with (4.2.3), it now suffices to prove (4.2.5).

By Lemma 2.2, αcβαc+1 ∈ Ddet−1

c+1 and so the left hand side of (4.2.5) is well defined.

So (4.2.5) therefore follows from the computation

Rc(αc)Ψc(β)Rc+1(αc+1) = scαcs
−c · sc(βs−1)s−c · sc+1αc+1s

−(c+1)

= sc(αcβαc+1s
−1)s−c = Ψc(αcβαc+1). �

4.3. Let µG : T ∗G → g∗ ∼= g be the moment map as defined in [GG, (2.4)] and, as in

[GG, (1.1)], set

M def
= µ−1

G (0) =
{

(X,Y, v, w) ∈ g× g× V × V ∗
∣∣ [X,Y ] + vw = 0

}
. (4.3.1)

Recall that A1 = C[h × h∗]sign. The powers Ar are obtained by multiplication inside

C[h × h∗]: they will be regarded as modules over A0 = C[h × h∗]W under the natural

induced structure. Then, once one recalls our conventions about group actions from 2.1,

it follows from [GG, Proposition A2] that

Ar ∼= C[M]det−r , r = 0, 1, 2, . . . . (4.3.2)

This result is stated in [GG] as an isomorphism of vector spaces, but the proof shows

that it is in fact an isomorphism of graded A0-modules.
14



4.4. As before, for any subfactor T of D(G) with the induced differential operator

filtration, we write grT = grΓ T for the associated graded object. We will consider

C[h×h∗] and its submodules as graded in the second term; equivalently they are given the

gradation induced from the identity C[h×h∗] = gr D(h). Recall that, by Theorem 2.8 and

(4.2.3), the map Rc induces a graded isomorphism grR : grDG
c

∼−→ A0 = C[h× h∗]W .

Lemma. (1) For all c ∈ C, and r ∈ N, we have grDdet−r
c+1

∼= Ar as graded A0-modules,

where the A0-module structure of grDdet−r
c+1 is defined via grR.

(2) For all c ∈ C, Ddet−1

c+1 is reflexive as both a right Uc-module and a left Uc−1-module.

Proof. (1) We note for future reference that the action of G preserves the differential

operator filtration and so, for any r ∈ Z, we have gr(D(G)detr) = (gr D(G))detr . In

particular we can identify

(
grDc+1

)det−r
=

gr(D(G)det−r)

gr([D(G)τ(Ic+1)]det−r)

without causing ambiguity.

We return to the proof and write µ = µG. By construction there is a sequence of

graded C[h× h∗]W -module maps:

χ : Ar ∼= C[M]det−r =

[
C[T ∗G]

C[T ∗G]·µ∗(g)

]det−r

=

[
grD(G)

grD(G) · gr τ(Ic+1)

]det−r

α
−�

[
grD(G)

gr
(
D(G)τ(Ic+1)

)]det−r

(4.4.1)

By [GG, Corollary 2.6] µ is flat and so, by [Ho, Proposition 2.4], the final surjection α

in (4.4.1) is an isomorphism. Hence χ is an isomorphism.

(2) The fact that Ddet−1

c+1 is a (Uc−1, Uc)-bimodule is part of Lemma 4.2. By part (1),

grDdet−1

c+1
∼= A1 as both a right module over grUc ∼= C[h×h∗]W and as a left module over

grUc−1
∼= C[h× h∗]W . The proof of Corollary 3.7(2) can now be used unchanged to give

the desired result. �

4.5. We are now able to prove Theorem 1.6 in the case m = 1 and we are able to do so

without restriction on c. Thus we prove:

Proposition. For any c ∈ C the homomorphism Ψc from (4.2.4) induces an isomor-

phism Ddet−1

c+1
∼= c−1Qc of (Uc−1, Uc)-bimodules.

Proof. A key observation here is that Uc is a noetherian domain with quotient division

ring F containing Ureg. Hence any non-zero finitely generated Uc-submodule M of F

must be a torsion-free module of Goldie rank one; equivalently, every proper factor of

M is a torsion module.
15



We first claim that Ψc is injective. To see this note that, by Lemma 4.4(1), grDdet−1

c+1

is a torsion-free, rank one module over the domain gr(Uc) ∼= C[h× h∗]W . Consequently,

Ddet−1

c+1 is a torsion-free right Uc-module of Goldie rank one and so any proper factor of

this module would be torsion (or zero). But, by Lemma 4.2, Im(Ψc) ⊂ Ureg is a non-zero

torsion-free Uc-module. Hence Ψc is indeed injective.

Therefore, by Lemma 4.4(2), respectively Corollary 3.7(2), both Im(Ψc) and c−1Qc are

reflexive (Uc−1, Uc)-bimodules of Ureg, and we emphasise that in both cases the bimodule

structure is that induced from the bimodule structure of Ureg. By Theorem 3.5 and

Lemma 3.3 they are therefore equal. �

4.6. We end the section by strengthening the isomorphism from Proposition 4.5 to an

isomorphism of filtered spaces. The difficulty here is that, although Ddet−1

c+1 and c−1Qc

are given the differential operator filtrations Γ, these are induced from two different

rings of differential operators D(G), respectively D(hreg). In the abstract it is not clear

that the two resulting filtrations on c−1Qc are closely related (see [Le, Problème 3.5], for

example). Fortunately, this problem is easily resolved in the present setting.

Corollary. Keep the notation of Proposition 4.5. Then the isomorphism Ψc is a filtered

isomorphism in the sense that Ψc(ΓrD
det−1

c+1 ) = Γr(c−1Qc) for all r.

Proof. Set D = Ddet−1

c+1 and Q = c−1Qc. The analogous isomorphism of filtered algebras

DG
c+1
∼= Uc is given by Theorem 2.8. Since the radial component map R at worst

decreases the degree of an operator, the map Ψc is at least a map of filtered modules in

the sense that Ψc(ΓmD) ⊆ ΓmQ for all m ≥ 0. Suppose that Ψc is not an isomorphism

of filtered objects. Since Ψc is an isomorphism of unfiltered modules, there must then

exist some d ∈ D for which the order of Ψc(d) is less than the order of d. Hence gr(Ψc) :

grΓD → grΓQ will have a nonzero kernel. But we know from Lemma 4.4(1) that grΓD is

a rank one torsion-free C[h × h∗]W -module, and so its image must therefore be torsion.

Since grΓQ is a submodule of the domain grΓU
reg = C[hreg × h∗]W this forces gr(Ψ) = 0.

This contradicts the fact that, for example, 0 6= e = Ψc(s) ∈ Ψ(Λ0D) ⊆ Γ0Q. �

5. Proof of Theorems 1.6 and 1.7

5.1. We continue to write Dc = D(G)/D(G)τ(Ic) in the notation of (2.6.1), and recall

from Theorem 2.8 that DG
c
∼= Uc−1. For any p, q ∈ Z≥0, multiplication on D(G) induces

a map

D(G)det−p ⊗D(G)G D(G)det−q → D(G)det−(p+q)

.

It follows from Lemma 2.2 that, for any a ∈ C, this factors to give a multiplication map

of (DG
a−q−p, D

G
a )-bimodules:

µp,q : (Da−q)
det−p ⊗DGa−q

(Da)
det−q −→ (Da)

det−(p+q)

. (5.1.1)
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The aim of this section is to thoroughly understand this: for the appropriate values of

c, we will show that Ddet−p
c−q

∼= c−p−q−1Qc−q−1 as a (Uc−p−q, Uc−q−1)-bimodule and that

µp,q is a filtered isomorphism, thereby proving Theorem 1.6. Since grDdet−p
c−q

∼= Ap, this

will also prove Theorem 1.7(1), from which the rest of that theorem follows easily. As

might be expected, the proof is by induction on p, q with the results of the last section

providing the starting point.

5.2. Most modules considered in this paper are subfactors of rings of differential op-

erators and, unless we say otherwise, they will then be given the differential operator

filtration induced from that ambient space. One exception is with tensor products. We

recall that if R =
⋃
Ri and S =

⋃
Sj are filtered modules over some ring U then the

tensor product filtration Λ on R⊗U S is given by Λn(R⊗U S) =
∑

i+j=nRi ⊗ Sj .

Lemma. Let p, q ∈ N, set r = p+ q, and pick a ∈ C such that a− 2, a− 3, . . . , a− r are

all good (this is automatic if r = 0 or 1).

(1) If r > 0 then either a − 1 or a − r − 1 is good. In the former case Ddet−r
a is a

projective right DG
a -module while in the latter it is a projective left DG

a−r-module.

(2) With the tensor product filtration on the left hand side of (5.1.1), the map µp,q

is a filtered (DG
a−p−q,D

G
a )-bimodule isomorphism.

Proof. We prove the two parts of the lemma by simultaneous induction on r. Note that

(1) is vacuous if r = 0 and that (2) is automatic if either p = 0 or q = 0. Suppose

that r = p+ q = 1. Then Proposition 4.5 implies that Ddet−1

a
∼= a−2Qa−1 as (Ua−2, Ua)-

bimodules and so (1) is given by Theorem 3.9(3).

We may now assume that 0 < p, q < r. This ensures that a − q − 1 is good and so

the induction hypothesis implies that both Ddet−p
a−q and Ddet−q

a are projective modules

over DG
a−q. Moreover, as one of a − r − 1 and a − 1 is good, one of these modules is

also a projective module on the other side. Thus, once the proof of part (2) is complete,

part (1) will follow from Lemma 3.8.

It remains to prove part (2). We first claim that Ddet−p
a−q ⊗DGa−q

Ddet−q
a is a rank one,

torsion-free right DG
a -module. To see this, first take the differential operator filtration

on some Ddet−s

b . By Lemma 4.4(1), grDdet−s

b
∼= As, which is torsion-free of rank one

as a module over A0 = C[h × h∗]W = grDG
b . It follows that Ddet−s

b is a rank one

torsion-free right DG
b -module; in particular Ddet−p

a−q and Ddet−q
a are rank one torsion-

free modules on the right. By the previous paragraph they are also both projective

modules over DG
a−q. Hence, as a right DG

a -module, Ddet−p
a−q ⊗DGa−q

Ddet−q
a embeds into

DG
a−q ⊗DGa−q

Ddet−q
a = Ddet−q

a , which is a rank one torsion-free right DG
a -module. This

proves the claim.

We return to the proof of part (2). It is clear from Lemma 2.2 and Theorem 2.8 that

µp,q is a (DG
a−p−q,D

G
a )-bimodule homomorphism and so we just need to prove that it

is a filtered vector space isomorphism. We first show that µp,q injective. To see this
17



note that, as above, Ddet−r
a is a torsion-free right DG

a -module. Also, Im(µp,q) 6= 0 since

µp,q(s
p ⊗ sq) = sp+q 6= 0. Hence Im(µp,q) is a non-zero torsion-free right DG

a -module.

Since Ddet−p
a−q ⊗DGa−q

Ddet−q
a is a rank one torsion-free right DG

a -module, this forces µp,q to

be injective.

We next prove that µp,q is surjective. We can now identify Ddet−p
a−q ⊗DGa−q

Ddet−q
a with

its image Ddet−p
a−q ·Ddet−q

a under µp,q. This is filtered by the image of the tensor product

filtration and so [GS1, Lemma 6.7(1)] implies that

gr
(
Ddet−p

a−q
)
· gr

(
Ddet−q

a

)
⊆ gr

(
Ddet−r

a

)
.

By Lemma 4.4(1) we can regard this multiplication as taking place inside C[h × h∗] in

which case two further applications of that lemma give(
grDdet−p

a−q
)
·
(
grDdet−q

a

)
= Ap ·Aq = Ap+q = grDdet−r

a . (5.2.1)

Thus µp,q is graded surjective and hence surjective. Since it is immediate that µp,q is a

filtered homomorphism, this also proves that it is a filtered isomorphism. This completes

the proof of part (2) and hence of the lemma. �

5.3. We can now transfer results from the grDdet−p
c to the c−p−1Qc−1 and complete the

proofs of Theorems 1.6 and 1.7 for the modules aQb.

Theorem. Fix an integer m ≥ 0 and c ∈ C such that the numbers c−1, c−2, . . . , c−m+1

are good (this is automatic if m = 0, 1).

(1) Under the differential operator filtration on both sides there is a filtered isomor-

phism Θc,m : Ddet−m
c+1

∼−→ c−mQc of (Uc−m, Uc)-bimodules.

(2) Under the differential operator filtration Γ we have grΓ c−mQc = δ−mAme.

Proof. When m = 0, 1, the result follows from Theorem 2.8, respectively Corollary 4.6

and Lemma 4.4. So we can assume that m ≥ 2.

Consider the following chain of maps:

Θ : Ddet−m

c+1
α−→ Ddet−1

c−m+2 ⊗DGc−m+2
· · · ⊗DGc

Ddet−1

c+1 (5.3.1)

β−→ (c−mQc−m+1)⊗Uc−m+1 · · · ⊗Uc−1 (c−1Qc)
γ−→ c−mQc.

Here α is the isomorphism given by iterating the µ−1
pq for appropriate p, q and applying

Lemma 5.2(2). Similarly, β is the map Ψc−m+1 ⊗ · · · ⊗ Ψc, which is an isomorphism

by Proposition 4.5 and induction. Finally, by (3.9.2) γ is an isomorphism induced by

multiplication in Ureg. By those same references, each of these maps is a (Uc−m, Uc)-

bimodule map and hence Θ is a (Uc−m, Uc)-bimodule isomorphism.

We claim that Θ is a filtered isomorphism, where the domain and codomain are given

the filtrations Γ induced by the differential operator filtration in D(G) and D(hreg) ∗W
respectively. On the two middle terms we will take the tensor product filtration induced

from the differential operator filtration on the individual tensor-summands.
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In order to prove this claim, we study the individual maps. By Lemma 5.2(2) each

map µp,q is a filtered isomorphism and hence so is µ−1
p,q . By induction this implies that

α is also a filtered isomorphism. If we take the tensor product filtration on both

Ddet−1

c−m+2 ⊗ · · · ⊗Ddet−1

c+1 and c−mQc−m+1 ⊗ · · · ⊗ c−1Qc,

then Corollary 4.6 implies that β is then a filtered isomorphism. Next, it is clear that γ

is a map of filtered modules since

γ
(
Γr1(c−mQc−m+1)⊗ · · · ⊗ Γrm(c−1Qc)

)
= Γr1(c−mQc−m+1) · · ·Γrm(c−1Qc) ⊆ Γr1+···+rm(c−mQc),

for all ri ≥ 0. However, we do not yet know that γ is a filtered isomorphism.

Putting these facts together implies that Θ is a filtered homomorphism. We now follow

the argument of Corollary 4.6 to deduce that Θ is a filtered isomorphism. Suppose this

is not true. Then, as Θ is an isomorphism of unfiltered objects, there must then exist

some d ∈ D = Ddet−m
c for which the order of Θ(d) is strictly less than the order of

d. Hence gr(Θ) : grΓD → grΓ(c−mQc) will have a nonzero kernel. But we know from

Lemma 4.4(1) that grΓD is a rank one torsion-free C[h× h∗]W -module, and so its image

must therefore be torsion. Since grΓ(c−mQc) is a submodule of the torsion-free A0-

module grΓU
reg = C[hreg × h∗]W e this forces gr(Θ) = 0. This contradicts the fact that,

for example, 0 6= e = Θ(sm) ∈ Θ(Γ0D) ⊆ Γ0(c−mQc), where s is the function defined in

(4.2.1). This proves part (1) of the theorem.

It now follows from Lemma 4.4 that grΓ(c−mQc) ∼= grΓ Ddet−m
c+1

∼= Am ∼= δ−mAme as

graded A0-modules, thereby proving that part (2) holds up to isomorphism. However,

the theorem asserts that there is an equality of graded modules grΓ(c−mQc) = eδ−mAm

as subspaces of grΓ Ureg = eC[hreg × h∗]W . This requires a little more work.

We prove this equality by induction. As in the proof of [GS1, Lemma 6.9(2)], and for

any a ∈ C,

grΓ(a−1Qa) = grΓ(eδ−1Hae) = eδ−1C[h× h∗] ∗We = eδ−1C[h× h∗]signe = eδ−1A1,

and so the result holds for m = 1. Since we have proved that both α and β are filtered

isomorphisms, the fact that Θ is a filtered isomorphism also implies that γ is a filtered

isomorphism. This can be tautologically reformulated as the statement:

the differential operator and tensor product filtrations are equal on

c−mQc = (c−mQc−m+1) · (c−m+1Qc−m+2) · · · (c−1Qc).
(5.3.2)

By [GS1, Lemma 6.7(2)] and induction, the multiplication map therefore induces a sur-

jection

χ : eδ−mAm = grΓ(c−mQc−m+1) · · · grΓ(c−1Qc) −� grΓ(c−mQc).

As both sides of this equation are non-zero rank one torsion-free A0-modules, χ must be

an equality. �
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5.4. We can use the theorem to improve the results from Lemma 5.2.

Corollary. Fix an integer m > 0 and c ∈ C such that c− 1, c− 2, . . . , c−m+ 1 are all

good. Then, Ddet−m
c+1 is reflexive as both a left DG

c−m+1-module and a right DG
c+1-module

and is the unique such reflexive bisubmodule of Ureg.

Proof. Combine Theorems 5.3 and 3.9(2). �

5.5. Remark. Theorem 5.3 completes the proof of Theorem 1.6 and Theorem 1.7(1).

In order to complete the proof of Theorem 1.7 we need to understand the associated

graded modules of the c+mPc. We expect, but have not pursued, an isomorphism anal-

ogous to Theorem 5.3(1) between c+mPc and [D(G)/Ic+m+1D(G)]detm . The proof will

need to be a little more involved since the radial component map R from (4.2.2) actually

induces the zero map on D(G)det. This can presumably be circumvented by using a

“Fourier transform” of R. We will, however, take an alternative approach by showing in

the next lemma that there is an easy direct way to move between the Q’s and P ’s that

makes such a result unnecessary.

5.6. By [De, Remark 2.2] there is an isomorphism φc : Hc → H−c defined by φc(x) = x,

φc(Dc(y)) = D−c(y) and φc(w) = sign(w)w, for x ∈ C[h], y ∈ C[h∗] and w ∈ W . Note

that φc(e) = e− in the notation from (2.3). Since φc(δ) = δ the map φc extends to an

automorphism of Hreg = Hc[δ
−1] which will still be written φc. The reader should be

warned that the action of φc on Hreg does depend upon c.

Lemma. Fix c ∈ C. Then:

(1) φc+1(z) = δ−2φc(z)δ
2 for all z ∈ Ureg.

(2) φc+1(Uc) = δ−1U−c−1δ.

(3) φc+1(c+jPc) = δ2j−1(−c−j−1Q−c−1)δ for all j > 0.

Proof. (1) By [EG, Proposition 4.9 and (11.33)], Uc is generated as an algebra by C[h]W

and ∇2
c =

∑n
i=1Dc(yi)

2; thus D(hreg)W is generated by C[hreg]W and ∇2
c . Thus we only

need to confirm (1) for elements pe ∈ C[hreg]W e and for ∇2
ce. The former is obvious since

δ−2φc(pe)δ
2 = δ−2pe−δ

2 = pe− = φc+1(pe) for p ∈ C[hreg]W .

By [He, Theorem 3.1] we have δ−1∇2
c+1e−δ = ∇2

ce for all c ∈ C (note that our scalar c

is the scalar −k in [He]). Thus

δ−2φc(∇2
ce)δ

2 = δ−2∇2
−ce−δ

2 = δ−1∇2
−c−1eδ

= φc+1(δ−1∇2
c+1e−δ) = φc+1(∇2

ce).

This confirms (1).

(2) This is equivalent to the assertion that φ−c−1(U−c−1) = δUcδ
−1. By [EG, Proposi-

tion 4.9 and (11.33)], again, it is enough to confirm this for C[h]W e and ∇2
−c−1e. This is
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trivial for C[h]W e while [He, Theorem 3.1] gives φ−c−1(∇2
−c−1e) = ∇2

c+1e− = δ∇2
ceδ
−1,

as required.

(3) For j = 1 we have

φc+1(c+1Pc) = φc+1(eHc+1δe) = e−H−c−1δe− = δeδ−1H−c−1eδ = δ(−c−2Q−c−1)δ,

as desired. Now assume that the result holds for some j ≥ 1. By part (1), φc+j+1(z) =

δ−2jφc+1(z)δ2j for z ∈ Ureg. Applying the case j = 1 gives

δ(−c−j−2Q−c−j−1)δ = φc+j+1(c+j+1Pc+j) = δ−2j(φc+1(c+j+1Pc+j))δ
2j .

Equivalently

φc+1(c+j+1Pc+j) = δ2j+1(−c−j−2Q−c−j−1)δ1−2j .

Thus, by induction, we obtain

φc+1(c+j+1Pc) = φc+1(c+j+1Pc+j)φc+1(c+jPc)

= δ2j+1(−c−j−2Q−c−j−1)δ1−2j · δ2j−1(−c−j−1Q−c−1)δ

= δ2j+1(−c−j−2Q−c−1)δ.

The lemma follows. �

5.7. Completion of the proof of Theorem 1.7. By Remark 5.5 it only remains to

prove Theorem 1.7(2). Changing notation slightly, we consider d+mPd where d ∈ C is

chosen so that the numbers d + 1, d + 2, . . . , d + m − 1 are all good. Thus we need to

prove that gr d+mPd = Amδme.

Consider φd+1. By construction, this morphism preserves the differential operator

filtration on Hreg and grφd+1 is then the automorphism that is the identity on C[h× h∗]

and sends w ∈ W to sign(w)w. Moreover, if c = −d− 1 then c− 1, c− 2, . . . , c−m+ 1

are also good. Thus Lemma 5.6 and Theorem 5.3 can be applied to show that

(grφd+1)(gr d+mPd) = gr
(
φd+1(d+mPd)

)
= gr

(
δ2m−1(−d−m−1Q−d−1)δ

)
= gr

(
δ2m−1(c−mQc)δ

)
= δ2m−1(δ−mAme)δ = δm−1Amδe−

and hence gr(d+mPd) = grφ−1
d+1

(
δm−1Amδe−

)
= δmAme, as required. �

5.8. We finish this section by making explicit the connection between shifting by Q’s,

by P’s and applying the various morphisms φc’s of Section 5.6. The equality φc+1(Uc) =

δ−1U−c−1δ from Lemma 5.6(2) induces an equivalence of categories

Ωc : Uc-mod
∼−→ U−c−1-mod, V 7→ V,

where V ∈ Uc-mod becomes a U−c−1-module via z ∗ v = φ−c−1(δ−1zδ)v for z ∈ U−c−1

and v ∈ V .
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Proposition. Let c ∈ C and set d = −c − 1. For any integer m ≥ 0 there is an

isomorphism of functors d+mPd ⊗Ud Ωc(−) ∼= Ωc−m ◦ (c−mQc ⊗Uc (−)) that makes the

following diagram commute

Uc-mod
c−mQc⊗Uc (−)

−−−−−−−−−−−→ Uc−m-mod

Ωc

y yΩc−m

Ud-mod
d+mPd⊗Ud

(−)
−−−−−−−−−−−−→ Ud+m-mod

Proof. Let V be a Uc-module. By Lemma 5.6(3) c−mQc = δ1−2mφ−c(d+mPd)δ
−1, so we

are asserting the existence a natural isomorphism between d+mPd⊗Ud V (with Ud-action

on V induced from Ωc) and δ1−2mφ−c(d+mPd)δ
−1⊗Uc V (with Ud+m-action induced from

Ωc−m). The only choice is the mapping p ⊗ v 7→ δ1−2mφ−c(p)δ
−1 ⊗Uc v for p ∈ d+mPd

and v ∈ V . We need to check that this is well-defined and that it is a Ud+m-module

homomorphism.

Pick z ∈ Ud, p ∈ d+mPd and v ∈ V . For well-definedness we have

pz ⊗ v − p⊗ z ∗ v 7−→ δ1−2m(φ−c(pz)δ
−1 ⊗Uc v − φ−c(p)δ−1 ⊗Uc z ∗ v)

= δ1−2mφ−c(p)
(
φ−c(z)δ

−1 ⊗Uc v − δ−1 ⊗Uc φ−c−1(δ−1zδ)v
)

= δ1−2mφ−c(p)
(
δ−2φ−c−1(z)δ ⊗Uc v − δ−1 ⊗Uc φ−c−1(δ−1zδ)v

)
= 0,

where in the second to last line we used Lemma 5.6(1).

Now let z ∈ Ud+m. Using Lemma 5.6(1) and induction we have

zp⊗ v 7−→ δ1−2mφ−c(zp)δ
−1 ⊗Uc v

= δ−2(m−1)φ−c(δ
−1zδ)δ2(m−1)δ1−2mφ−c(p)δ

−1 ⊗Uc v

= φ−c+m−1(δ−1zδ)δ1−2mφ−c(p)δ
−1 ⊗Uc v

= z ∗
(
δ1−2mφ−c(p)δ

−1 ⊗Uc v
)
.

This confirms Ud+m-equivariance. �

6. Shift functors for D-modules and Cherednik algebras

6.1. The morphism c+mPc ⊗− : Uc -mod→ Uc+m -mod is fundamental to the represen-

tation theory of Uc, as is illustrated by much of [GS2]. There is a similar translation

functor for twisted D-modules on projective space given by tensoring with O(mn) (see

Section 6.5 for the precise definition). In this section we show that these functors are

naturally intertwined by hamiltonian reduction, thereby proving Theorem 1.9 from the

introduction. Before stating the result we will need some definitions.
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6.2. Projectivisation. The quantum hamiltonian reduction of Theorem 2.8 can be

performed in two steps: first with respect to the subgroup of scalar matrices C× ⊂
G = GL(V ); and then with respect to the subgroup SL(V ) ⊂ G. Recall that G acts

diagonally on G = g × V and so C× acts trivially on g and by dilations λ ◦ v = λv on

V = Cn. As in (2.6), the identity matrix in gl(V ) is written 1. Put

V ◦ = V r {0}; P = P(V ) = V ◦/C×; G◦ = g× V ◦; and X = g× P.

Lemma. Let c ∈ C and assume that if n = 2 then 2c /∈ Z≤0. Then restriction provides

a natural isomorphism

χ : D(G)/D(G)τ(1− nc) ∼−→ Γ
(
G◦, DG◦/DG◦τ(1− nc)

)
. (6.2.1)

Proof. Without loss of generality we need only consider V instead of G.

Set v = τ(1 − nc). Multiplication by v on the right yields a short exact sequence of

sheaves on V :

0→ DV → DV → DV /DV v → 0.

Hence on V ◦ we obtain the long exact sequence

0 −→ Γ(V ◦,DV )
×v−→ Γ(V ◦,DV ) −→ Γ(V ◦,DV /DV v) −→

−→ H1(V ◦,DV )
×v−→ H1(V ◦,DV ) −→ . . .

Assume first that n ≥ 3. Then H1(V ◦,OV ) ∼= H2
{0}(V,OV ) = 0 since H i

{0}(V,OV ) = 0

for all i < n = dimV . Since DV is free as a sheaf of OV -modules, it follows that

H1(V ◦,DV ) = 0. Since C[V ] is just a polynomial ring and dimV r V ◦ ≤ dimV − 2, we

have C[V ◦] = Γ(V ◦,OV ◦) = C[V ] by Hartog’s theorem. By freeness, Γ(V ◦,DV ◦) = D(V )

and so we are done if n ≥ 3.

Now assume that n = 2 and write C[V ] = C[x, y]. A simple calculation in Čech

cohomology using the open sets D(x) = V \ {x = 0} and D(y) = V \ {y = 0} shows that

H1(V ◦,OV ) ∼=
C[x±1, y±1]

(C[x±1, y] + C[x, y±1])
.

Denote this space by S, so that H1(V ◦,DV ) =
⊕

i,j≥0 S∂
i
x∂

j
y, where ∂x = ∂/∂x, etc.

We claim that the mapping H1(V ◦,DV )
×v→ H1(V ◦,DV ) is injective if 2c /∈ Z≥0. To

see this let

0 6= z =
∑
i,j≥0

si,j∂
i
x∂

j
y ∈ H1(V ◦,DV ),

for some si,j ∈ S. By (2.7) we have τ(1) = −x∂x − y∂y and so

zv = zτ(1− 2c) =
∑
i,j≥0

(si,jτ(1)− (i+ j + 2c)si,j) ∂
i
x∂

j
y

=
∑
i,j≥0

(si−1,jx+ si,j−1y − (i+ j + 2c)si,j) ∂
i
x∂

j
y.
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Thus if zv = 0 then si−1,jx+si,j−1y−(i+j+2c)si,j = 0 for all i, j ≥ 0. But consideration

of the lowest degree (i0, j0) of nonzero monomials in z then shows that i0 + j0 + 2c = 0,

contradicting the hypothesis that 2c /∈ Z≤0. It follows that the morphism

Γ(V,DV ) ∼= Γ(V ◦,DV )→ Γ(V ◦,DV /DV v)

is surjective, as required. �

Remark. The lemma fails when n = 2 and 2c ∈ Z≤0. In the notation of the above

proof we have the following equality in DV (D(xy)):

x−1y−1∂−2c
x v = −x−1∂−2c

x ∂y − y−1∂−2c+1
x .

Thus x−1∂−2c
x ∂y = −y−1∂−2c+1

x in (DV /DV v)(D(xy)). It follows that the sections

x−1∂−2c
x ∂y ∈ (DV /DV v)(D(x)) and −y−1∂−2c+1

x ∈ (DV /DV v)(D(y)) extend to a sec-

tion of (DV /DV v)(V ◦) which is not in the image of χ.

6.3. Following [GG, Section 5.1], for each c ∈ C we introduce an algebra

Dc(X)
def
=

(
D(G)

D(G)τ(1− nc)

)C×

. (6.3.1)

The algebra on the right hand side of (6.3.1) is a quantum hamiltonian reduction with

respect to the group C× at the point c.

Using Theorem 2.8, we can apply the formalism of hamiltonian reduction, as outlined

in [GG, Section 7], to Dc+1(X) and Uc. Let
(
Dc+1(X), SL(V )

)
-mod denote the cate-

gory whose objects are the finitely generated SL(V )-equivariant Dc+1(X)-modules on

which the action of sl(V ) induced from the SL(V )-equivariance agrees with the action

of sl(V ) induced from the homomorphism sl(V )
τ−→ D(G)C

× −→ Dc+1(X). We have the

following functor of hamiltonian reduction:

Hc : (Dc+1(X), SL(V ))-mod −→ Uc-mod; F 7→ Hc(F) = FSL(V ). (6.3.2)

Since SL(V ) is reductive, the functor Hc is exact and, by [GG, Proposition 7.1], it has

a left adjoint

>Hc : Uc-mod −→ (Dc+1(X), SL(V ))-mod;

M 7−→ (Dc+1(X)/Dc+1(X)τ(Ic+1))⊗Uc M.

6.4. Next, let DX,c denote the sheaf of (−nc)-twisted differential operators on X. It

follows from [GG, Equation 5.1] that DX,c has global sections Γ(X,DX,c) = Dc(X). For

any m ∈ Z, let O(m) be the pull-back of the standard line bundle OP(m) via the

projection X = g× P→ P. Tensoring with O(nm) yields a functor

DX,c-mod −→ DX,c−m-mod, F 7→ O(nm)⊗OX
F . (6.4.1)
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6.5. Assume now that n(c + 1) ∈ C r Z>0. As in [GG, Proposition 5.4], we can apply

the Beilinson-Bernstein theorem to give an equivalence of categories

Γ(X,−) : DX,c+1-mod ∼−→ Dc+1(X)-mod, F 7→ Γ(X,F). (6.5.1)

We write

Sm : Dc+1(X)-mod −→ Dc−m+1(X)-mod, F 7→ F (nm)

for the functor that corresponds to the functor (6.4.1) via the Beilinson-Bernstein equiv-

alence.

Theorem. Fix c ∈ C and a positive integer m such that each of the numbers c−1, c−2,

. . . , c −m + 1 is good and n(c + 1) /∈ Z>0 (respectively, n(c + 1) /∈ Z if n = 2). Then

there is an isomorphism of functors Hc−m ◦ Sm ◦ >Hc(−) ∼= c−mQc ⊗Uc (−) that makes

the following diagram commute

(Dc+1(X), SL(V ))-mod
Sm // (Dc−m+1(X), SL(V ))-mod

Hc−m
��

Uc-mod

>Hc

OO

c−mQc⊗Uc (−)
// Uc−m-mod.

6.6. Before proving the theorem we note that, by Proposition 5.8, it has the following

equivalent formulation in terms of the P’s. For d ∈ C we set

H̃d
def
= Ω−d−1 ◦H−d−1 : (D−d(X), SL(V ))-mod −→ Ud-mod,

where Ωd is defined in (5.8). This has left adjoint

>H̃d = >H−d−1 ◦ Ω−1
−d−1 = >H−d−1 ◦ Ωd.

Then, using the fact that d is good if and only if −d− 1 is good, we obtain:

Corollary. Fix c ∈ C and a positive integer m such that c+ 1, . . . , c+m−1 are all good

and that nc /∈ Z<0 (respectively nc /∈ Z if n = 2). Then there is a commutative diagram:

(D−c(X), SL(V ))-mod
Sm // (D−(c+m)(X), SL(V ))-mod

H̃c+m
��

Uc-mod

>H̃c

OO

c+mPc⊗Uc (−)
// Uc+m-mod �

Remark. Theorem 1.9 is a special case of this corollary.

6.7. Recall that C× ⊂ GL(V ) is the central subgroup consisting of multiples of the

identity matrix Id. Given a GL(V )-representation E we will denote by E(m) the set of

semi-invariants {e ∈ E : (z Id) · e = zmne for all z ∈ C×}. For d ∈ C, we define

d−mDd
def
=

[
D(G)

D(G)τ(1− nd)

](−m)

for m ∈ Z.
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Note that Ndet−m =
(
NSL

)(−m)
for any GL(V )-module N . By Lemma 2.2, d−mDd

has a natural (Dd−m(X),Dd(X))-bimodule structure and it also has the following useful

properties.

Lemma. (1) Fix c ∈ C and a positive integer m such that n(c + 1) 6∈ Z>0 (respectively

n(c+ 1) /∈ Z if n = 2). Then, for any F ∈ (Dc+1(X), SL(V ))-mod,

Sm(F ) = Γ
(
X,O(nm)⊗OX

DX,c+1

)
⊗Dc+1(X) F ∼= c−m+1Dc+1 ⊗Dc+1(X) F (6.7.1)

(2) Assume that c− j is good for 1 ≤ j ≤ m−1. There are isomorphisms of (Uc−m, Uc)-

bimodules (
c−m+1Dc+1

c−m+1Dc+1τ(Ic+1)

)SL
∼=

(
D(G)

D(G)τ(Ic+1)

)det−m

∼= c−mQc.

Proof. (1) The first equality in (6.7.1) follows from the Beilinson-Bernstein equivalence

(6.5.1) and the definition of Sm. For the displayed isomorphism, we consider the prin-

cipal C×-bundle p : V ◦ −→ P. Then by equivariant descent (see [SGA1, Chapter VII,

Section 1]) we have

OP(mn)⊗OP DP,c+1
∼= p∗

(
(OV ◦ ⊗C detm)⊗OV ◦

DV ◦

DV ◦τ(1− n(c+ 1))

)C×

∼= p∗

(
DV ◦

DV ◦τ(1− n(c+ 1))

)(−m)

.

It follows that

Γ(P,OP(nm)⊗P DP,c+1) ∼= Γ

(
P, p∗

( DV ◦

DV ◦τ(1− n(c+ 1))

))(−m)

(6.7.2)

∼= Γ

(
V ◦,

DV ◦

DV ◦τ(1− n(c+ 1))

)(−m)

Now DG◦ = Dg⊗DV ◦ , with C× acting trivially on Dg. Therefore, combining (6.2.1) with

(6.7.2) gives the following isomorphism of
(
Dc−m+1(X), Dc+1(X)

)
-bimodules:

c−m+1Dc+1
∼=

(
D(G)

D(G)τ(1− n(c+ 1))

)(−m)
∼= Γ

(
G◦,

DG◦

DG◦τ(1− n(c+ 1))

)(−m)

∼= Γ(P,OP(nm)⊗P DP,c+1)⊗D(g) ∼= Γ
(
X,O(nm)⊗OX

DX,c+1

)
,

as required.

(2) As a morphism of D(G)SL-modules, the first isomorphism follows from the ob-

servation that Ndet−m =
(
NSL

)(−m)
for any GL(V )-module N . By Lemma 2.2 this

restricts to give an isomorphism of (Dc−m+1(X),Dc+1(X))-bimodules; equivalently of

(Uc−m, Uc)-bimodules. The second isomorphism is just Theorem 1.6. �
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6.8. Proof of Theorem 6.5. Let M ∈ Uc-mod. By Lemma 6.7(1)

Sm ◦ >Hc(M) = c−m+1Dc+1 ⊗Dc+1(X)

(
Dc+1(X)

Dc+1(X)τ(Ic+1)
⊗Uc M

)

∼=

(
c−m+1Dc+1

c+m−1Dc+1τ(Ic+1)

)
⊗Uc M.

Thus Lemma 6.7(2) implies that

Hc−m ◦ Sm ◦ >Hc(M) ∼=

((
c−m+1Dc+1

c+m−1Dc+1τ(Ic+1)

)
⊗Uc M

)SL

=

(
c−m+1Dc+1

c+m−1Dc+1τ(Ic+1)

)SL
⊗Uc M

∼= c−mQc ⊗M. �

7. Characteristic cycles

7.1. Let M be a filtered, finitely generated Uc-module. In [GS2] the authors used the

Z-algebra associated to the modules {c+aPc} to construct a characteristic cycle ch(M)

inside the Hilbert scheme HilbnC2 that then proved useful in studying the representation

theory of Uc. Using quantum hamiltonian reduction, the authors of [GG] define a second

such characteristic cycle. This leads to the natural question of whether these varieties

are equal; see [GG, (7.17)]. In this section we show that this is indeed the case.

7.2. Hilbert schemes. We write Coh(X) for the category of coherent sheaves on a

scheme X. If B =
⊕

m≥0Bm is a finitely generated graded commutative algebra let

B-grmod denote the category finitely generated graded left B-modules and write F(M)

for the coherent sheaf on the scheme ProjB corresponding to the module M ∈ B-grmod.

Set A =
⊕

m≥0 Am, where the Am are defined as in (4.3); thus [Ha2, Proposition 2.6]

implies that Proj(A) ∼= HilbnC2, the Hilbert scheme of n points in C2. Following [Ha2]

and [Na], there is the following diagram of schemes over (h× h∗)/W :

M Mcyc? _
j

oo
p
// // HilbnC2 ∼= ProjA ∼= Proj

(⊕
m≥0 C[M]det−m

)
(7.2.1)

where M = µ−1
G (0) is defined as in (4.3.1) with open subvariety

Mcyc =
{

(X,Y, v, w) ∈M : C[X,Y ]v = V
}
.

In more detail, Mcyc is a smooth GL(V )-variety and the map j : Mcyc ↪→M is a

GL(V )-equivariant Zariski open imbedding. The map p in (7.2.1) is a universal geometric

quotient morphism that makes Mcyc a principal GL(V )-bundle over HilbnC2 (see [Na,

Proof of Theorem 1.9]). Finally, the penultimate isomorphism in (7.2.1) was proved in

[Ha2, Proposition 2.6] while the last isomorphism follows from (4.3.2).
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7.3. We can also construct HilbnC2 via

T ∗X = {(X,Y, v, w) ∈ g× g× V ◦ × V ∗ : w(v) = 0}/C×,

where the action of C× arises from the scalar matrices in GL(V ); thus it acts only on

V ◦ × V ∗. In more detail, since Tr([X,Y ] + vw) = w(v), then, as in (4.3),

µ−1
X (0)

def
= {(X,Y, v, w) ∈ g× g× V ◦ × V ∗ : [X,Y ] + vw = 0}/C×

is a closed subvariety of T ∗X. Inside µ−1
X (0) we have the the Zariski open subset

µ−1
X (0)cyc def

=
{

(X,Y, v, w) ∈ µ−1
X (0) : v ∈ V ◦ andC[X,Y ]v = V

}
⊂ µ−1

X (0).

As before, we have a diagram schemes

µ−1
X (0) µ−1

X (0)cyc? _
jXoo

pX // // HilbnC2

where pX is a universal geometric quotient making a principal PGL(V )-bundle. There

is, moreover, a commutative diagram

M M◦? _
j1oo

ι ����

Mcyc? _
j0oo

p

'' ''
ιcyc ����

j

ww

µ−1
X (0) µ−1

X (0)cyc? _
jXoo

pX // // HilbnC2

(7.3.1)

where M◦ = {(X,Y, v, w) ∈ M : v 6= 0} and the vertical maps ι, ιcyc are principal

C×-bundles.

7.4. We will require a special case of the following well-known proposition, although

since we could not find a proof in the literature we include one here.

Let X be an affine variety with a rational action of a reductive group G. Fix a

character χ : G −→ C× and define the Zariski open set of semistable points to be

Xss = {x ∈ X : there exists m > 0 and f ∈ C[X]χ
m

such that f(x) 6= 0},

and let j : Xss ↪→ X be the inclusion. By definition the G.I.T. quotient X//χG is ProjB

where B is the graded algebra B =
⊕

m≥0 C[X]χ
m

. Write CohG(Y ) for the abelian

category of G-equivariant coherent sheaves on a G-variety Y .

Proposition. (1) For any S ∈ CohG(X), there exists an integer m(S ) such that the

restriction map induces an isomorphism

j∗ : Γ(X,S )χ
m ∼−→ Γ(Xss, j∗S )χ

m
for all m ≥ m(S ). (7.4.1)

(2) If the orbit map p : Xss −→ X//χG is a principal G-bundle then there is a natural

isomorphism

j∗S ∼= p∗ ◦ F
(
⊕m≥0 Γ(X,S )χ

m)
(7.4.2)

of functors from CohG(X) to CohG(Xss).
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Proof. (1) Let Z = X \Xss, a closed subvariety of X. There is an exact sequence

ΓZ(X,S ) −→ Γ(X,S ) −→ Γ(Xss, j∗S ) −→ H1
Z(X,S ). (7.4.3)

All modules in this sequence are rational G-modules, so taking χm semi-invariants pro-

duces another exact sequence. We claim that both ΓZ(X,S )χ
m

and H1
Z(X,S )χ

m
are

zero for m � 0. Once we have shown this, then it follows that the map Γ(X,S )χ
m →

Γ(Xss, j∗S )χ
m

is an isomorphism for large enough m, thus confirming (1).

To prove the claim, we define S = C[X × C]G where G acts on X × C by g · (x, λ) =

(g ·x, χ−1(g)λ). It follows that S is a finitely generated and so we can find a finite set of

homogeneous elements f1, . . . , fn in S+ that generate the algebra S over S0 = C[X]G. Let

I be the ideal of C[X] generated by f1, . . . , fn and observe that S has been constructed

so that

Z = {x ∈ X : f(x) = 0 for all f ∈ S+} = {x ∈ X : fi(x) = 0 for 1 ≤ i ≤ n}.

So to calculate the local cohomology groups H i
Z it is enough to calculate the H i

I .

Let R = C[X], B =
⊕

m≥0 C[X]χ
m

and M = Γ(M,S ). We need to calculate the

homology of the complex

0 −→M −→ (
⊕

iRfi)⊗RM −→ (
⊕

i<jRfifj )⊗RM −→ · · ·

· · · −→ Rf1···fr ⊗RM −→ 0.

As each fi ∈ B, we can replace R by B in the above sequence. Since we are going

to take χ semi-invariants it is enough for us to study the complex with M replaced by

N =
⊕

m∈ZM
χm . Set N+ =

⊕
m≥0M

χm . Since N/N+ is fi1 . . . fir -torsion for r ≥ 1,

tensoring the short exact sequence 0 −→ N+ −→ N −→ N/N+ −→ 0 by Sfi1 ...fir shows

that Sfi1 ...fir ⊗S N+
∼= Sfi1 ...fir ⊗S N . Thus for our calculation we can even replace N

by N+ and we need only calculate the local cohomology groups H i
S+

(N+)χ
m

. Now N+ is

a finitely generated graded S-module so thanks to [BS, 15.1.5], these groups vanish for

m� 0.

(2) This follows from (1) and the projection formula. In more detail, by part (1) we

have

F
(⊕
m≥0

Γ(X,S )χ
m)

= F
(⊕
m≥0

Γ(Xss, j∗S )χ
m)
.

Since p defines a principal G-bundle we deduce that p∗[(p∗j
∗S )G] ∼= j∗S (see [SGA1,

Chapter VII, Section 1], again). Thus it is sufficient to check that

(p∗F)G ∼= F
(⊕
m≥0

Γ(Xss,F)χ
m)

for any F ∈ CohG(Xss).

But by definition (p∗F)G ∼= F(
⊕

m≥0 Γ(X//χG, (p∗F)G(m)). Now

(p∗F)G(m) ∼= (p∗F(m))G ∼= p∗(F ⊗OXss p
∗OX//χG(m))G

∼= p∗(F ⊗ Cχ−m)G ∼= (p∗F)χ
m
.
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Thus

Γ(X//χG, (p∗F)G(m)) ∼= Γ(X//χG, (p∗F)χ
m

)

∼= Γ(X//χG, p∗F)χ
m ∼= Γ(Xss,F)χ

m
,

as required. �

7.5. Characteristic cycles. We assume that c+m is good for all m ∈ Z≥0. Given a

finitely generated left Uc-module M , there are two ways to associate to M an algebraic

cycle in HilbnC2.

GS construction (see [GS2, Section 2.7] for more details). Take a good filtration on

M and let Λ be the induced tensor product filtration on each Mm = (c+mPc)⊗UcM and

hence on M =
⊕

m≥0 Mm. By Theorem 1.7, gr(c+`+mPc+m) = A` for all `,m ≥ 0 and it

follows easily that grΛ M =
⊕

grΛ Mm is a graded module over A =
⊕
A`. Let F(grM)

denote the corresponding coherent sheaf on ProjA = HilbnC2. We define chGS(M) to

be the characteristic cycle of F(grM). In other words chGS(M) is the characteristic

variety of F(grM), counting multiplicities, see [GS2, (2.7.1)].

GG construction (see [GG, Section 7.5] for the details). Recall the definition of >H̃c

from (6.6) and consider the left D(G)-module

>H̃c(M) = (D−c(X)/D−c(X)τ(I−c))⊗U−c−1 Ωc(M).

Let CC(>H̃c(M)) ⊂ T ∗X be the characteristic cycle of that D−c(X)-module, a closed

PGL(V )-invariant algebraic cycle set-theoretically contained in µ−1
X (0). Following [GG,

Section 7.5]2 and in the notation of (7.2), define chGG(M) to be the unique algebraic

cycle in HilbnC2 such that one has j∗XCC(>H̃c(M)) = p∗Xch
GG(M) inside Mcyc.

7.6. We are now ready to prove the following slight strengthening of Theorem 1.10 from

the introduction.

Theorem. Assume that c ∈ C r Z<0 is chosen such that c + m is good for all integers

m ≥ 0. If n = 2 assume that nc 6∈ Z. Then, for any finitely generated Uc-module M ,

one has an equality of algebraic cycles chGS(M) = chGG(M).

Proof. Our hypotheses ensure that nc 6∈ Z<0, so Corollary 6.6 is available to us.

Put F = D−c ⊗U−c−1 Ωc(M) and note that F is GL(V )-equivariant since the same is

true of D−c. For any integer m ≥ 0 the D(G)-module structure on F induces a natural

D−c−m(X)-module structure on F (−m). We compute

F (−m) = [D−c ⊗U−c−1 Ωc(M)](−m) = −c−mD−c ⊗U−c−1 Ωc(M)

= −c−mD−c ⊗D−c(X)

(
D−c(X)

D−c(X)τ(I−c)

)
⊗U−c−1 Ωc(M) = Sm ◦>H̃c(M),

2Actually, we have twisted by Ωc
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where in the last equality we have used the analogue of Lemma 6.7(1) for the D−c(X)-

module >H̃c(M). Hence, taking SL-invariants and using Corollary 6.6, we deduce that

Ω−c−m−1([F (−m)]SL) = Ω−c−m−1([Sm ◦>H̃c(M)]SL)

= H̃c−m ◦Sm ◦>H̃c(M) = c+mPc ⊗Uc M. (7.6.1)

Pick a good filtration on M and let Λ denote the induced tensor product filtration on

c+mPc ⊗Uc M . Writing ‘Supp(−)’ for the support-cycle, we have

chGS(M) = SuppF(grΛ M) where M =
⊕
m≥0

(c+mPc ⊗Uc M). (7.6.2)

Since φc preserves the differential operator filtration, the filtration on M also gives

a filtration on Ωc(M), and hence a tensor product filtration ν on F . Observe that,

viewed as a D(G)-module, this is a good filtration on F since, by [GS1, Lemma 6.7(2)],

grν F is a homomorphic image of grΓ D−c ⊗grUc−1 gr(Ωc(M)). The filtration on F is

GL(V )-stable and, for any m ≥ 0, it restricts to a filtration on each of the subspaces

[F (−m)]SL ⊂ F (−m) ⊂ F . Now, after applying Ω−c−m−1, the composite isomorphism

in (7.6.1) transports this filtration on Ω−c−m−1([F (−m)]SL) to a certain ν-filtration on

c+mPc ⊗Uc M . However, this need not equal to the Λ-filtration introduced earlier.

Since the action of GL(V ) on F is locally finite, taking the associated graded grν(−)

commutes with taking GL(V )-semi-invariants. Hence we have

grν M =
⊕
m≥0

grν (c+mPc ⊗Uc M) =
⊕
m≥0

grν

(
Ω−c−m−1([F (−m)]SL)

)
=

⊕
m≥0

gr Ω−c−m−1

(
grν([F (−m)]SL)

)
=
⊕
m≥0

[( grν F )(−m)]SL,

where for the last equality we used that gr Ω−c−m−1 is the identity map since the associ-

ated graded of the mapping z 7→ φ−c−m−1(δ−1zδ) is the identity on C[h× h∗]W e. Since

grν F is a finitely generated grΓ D(G) = C[T ∗G]-module the final object of (7.6.3) is a

finitely generated graded A-module. It follows that the ν-filtration on M is good and

so the associated graded modules grΛ M and grν M give rise to the same class in the

Grothendieck semigroup of the category A-grmod. We conclude that

SuppF(grΛ M) = SuppF(grν M) = SuppF
(⊕
m≥0

[
grν F

(−m)
]SL )

. (7.6.3)

Since T ∗G is affine, we can write grν F = Γ(T ∗G,F) for a unique coherent sheaf F
supported on the subvarietyM⊂ T ∗G. The sheaf F is automatically GL(V )-equivariant

since F is. Taking SL-invariants and applying (7.4.1), we deduce that, for large enough

m, [
grν F

(−m)
]SL

=
[
Γ(T ∗G,F)(−m)

]SL
= Γ(M,F)det−m = Γ(Mcyc,F)det−m .
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Thus, in the category Coh(HilbnC2), we have the isomorphisms

F(grν M) ∼= F
(⊕
m≥0

[
grν F

(−m)
]SL ) ∼= F

(⊕
m≥0

Γ(Mcyc,F)det−m
)
.

Applying the isomorphism of functors in (7.4.2), we obtain

p∗ F(grν M) ∼= p∗ F
(⊕
m≥0

Γ(Mcyc,F)det−m
)

= j∗F .

Using this and (7.6.2) and (7.6.3), we finally obtain a chain of equalities of algebraic

cycles

p∗(chGS(M)) = Supp(p∗ F(grν M)) = Supp(j∗F)

and so it remains to prove that Supp(j∗F) = p∗(chGG(M)). This is now completely

formal. By the commutative diagram (7.3.1) and the definition of chGG(M) we have

p∗(chGG(M)) = (ιcyc)∗p∗X(chGG(M)) = (ιcyc)∗j∗XCC(>H̃c(M)) = j∗0ι
∗CC(>H̃c(M)).

Since Supp(j∗F) = j∗ Supp(F) = j∗0 Supp(j∗1F) it is thus sufficient to show that

Supp(j∗1F) = ι∗CC(>H̃c(M)). But

ι∗CC(>H̃c(M)) = ι∗ Supp((grν F )C
×

) = Supp(ι∗(grν F )C
×

)

= Supp(j∗1 grν F ) = Supp(j∗1F),

as required. �

8. Appendix: The radial parts map

8.1. As was mentioned earlier, in this appendix we will give the details behind Theo-

rem 2.8, since it does not exactly follow from the results in [GG]. Thus, in the notation

of Section 4.2 our aim is to prove:

Theorem. The radial components map R = Rc : D(Gcyc)G → D(h/W ) given by

R(D) = sc ◦
(
D|O(Gcyc,c)

)
◦ s−c for D ∈ D(G)G

induces a filtered isomorphism R : DG
c = (D(G)/D(G) · Ic)G ∼−→ Uc−1.

Consequently, the associated graded map grR : grDG
c → grUc−1 = C[h× h∗]W is also

an isomorphism.

The proof of this result closely follows the proof of the analogous results in [EG] and

[BFG] (see, in particular [BFG, Proposition 5.4.1]), so the important point here is to

determine which spherical algebra Ud contains Im(R).

To begin, let ∆g be the second order Laplacian on g associated to non-degenerate

invariant bilinear form (−,−) and identify ∆g with ∆g⊗1 ∈ D(G) acting trivially in the

V -direction. Write ∆h for the analogous Laplacian on h. As usual, we let {eα : α ∈ R}
denote the root vectors for g, normalised so that (eα, e−α) = 1 and set hα = [eα, e−α] for

such α. Now ∆g ∈ D(g)G and, as in the analogous computations in [EG, Proposition 6.2],

the key to proving the theorem is to compute R(∆g).
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To do this we slightly change our perspective on R. Fix a scalar w ∈ C (which will

eventually become w = −c) and let Greg = {(X, v) ∈ G
cyc

: X ∈ grs}, where grs ⊃ hreg

denotes the regular semisimple elements. As in Section 4.2 or [BFG, Section 5.4] the

projection G→ g induces an isomorphism ρ∗ : C[hreg/W ]→ C[Greg]G. For D ∈ D(G)G

we define Rad(D) ∈ D(hreg)W = D(hreg/W ) to be R−w(D); equivalently,

Rad(D)(f) = s−w(D(sw(ρ∗f)))
∣∣
hreg

for f ∈ C[hreg/W ].

8.2. The radial part of the Laplacian. We wish to compute Rad(∆g) and we begin

by following the proof of [EG, Proposition 6.2]. As observed there, we have the expansion

∆g = ∆h +
∑
α∈R

∂2

∂eα∂e−α
(8.2.1)

and we begin by understanding the final term of this equation.

The differential of the G-action on Greg gives an action of g and U(g) on C[Greg] which

we will write as x · f for x ∈ U(g) and f ∈ C[Greg]. By definition, ρ∗f ∈ C[Greg]G for

f ∈ C[hreg/W ] and so g
def
= swρ∗(f) is a (det−w)-semi-invariant function, since the same

is true of sw. Therefore, for X ∈ hreg, ueα ∈ Ceα and v ∈ V we have

(eteα · g)(X + ue−α, v) =
(
det(eteα)

)−w
g(X + ue−α, v)

=
(
1− wtTr(eα) +O(t2)

)
g(X + ue−α, v)..

On the other hand,

(eteα · g)(X + ue−α, v) = g
(
(Ad e−teα)(X + ue−α

)
, e−teα · v

)
= g
(
X + ue−α + t[eα, X]− tu[eα, e−α] +O(t2), v − teα · v +O(t2)

)
= g
(
X + ue−α − tα(X)eα − tuhα +O(t2), v − teα · v +O(t2)

)
.

Now clearly 0 = Tr(eα) and so after equating the last two equations, applying d/dt,

and then setting t = 0, we obtain

0 = α(X)
∂

∂eα
g(X + ue−α, v)− u ∂

∂hα
g(X + ue−α, v)− eα · g(X + ue−α, v).

Rewriting this gives

∂

∂eα
g(X + ue−α, v) =

1

α(X)

(
u
∂

∂hα
g(X + ue−α, v) + eα · g(X + ue−α, v)

)
. (8.2.2)

Now apply d/du to this equation and then set u = 0 to give

∂2

∂e−α∂eα
g(X, v) =

1

α(X)

[
∂

∂hα
g(X, v) +

∂

∂e−α
(eα · g(X, v))

]
. (8.2.3)

Applying (8.2.2) with eα replaced by e−α gives

∂

∂e−α
g(X, v + teα · v) = − 1

α(X)
e−α · g(X, v + teα · v).
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Therefore
∂

∂e−α
(eα · g(X, v)) = − 1

α(X)
e−αeα · g(X, v) and so (8.2.3) becomes

∂2

∂e−α∂eα
g(X, v) =

1

α(X)

∂

∂hα
g(X, v)− 1

α(X)2
e−αeα · g(X, v) (8.2.4)

for X ∈ hreg and v ∈ V .

Next we calculate e−αeα · g(X, v) for X ∈ hreg. Recall that g = swρ∗(f) with

ρ∗f ∈ C[Greg]G. As noted in [BFG, Section 5.4], projection onto the first term gives

an isomorphism C[G]G
∼−→ C[g]G and so e−α · ρ∗(f)

∣∣
hreg

= eα · ρ∗(f)
∣∣
hreg

= 0. Thus

e−αeα · swρ∗(f)
∣∣
hreg

= (e−αeα · sw
∣∣
hreg

)f.

Now for X = (x1, . . . , xn) ∈ hreg and v = (v1, . . . , vn) ∈ V we have

sw(X, v) =
∏
i<j

(xi − xj)w(v1 · · · vn)w. (8.2.5)

If α is the elementary matrix α = Eij then

eα · (va11 · · · v
an
n ) = aiv

a1
1 · · · v

ai−1
i · · · vaj+1

j · · · vann for any a` ∈ C.

Thus e−αeα · sw
∣∣
hreg

= w(w + 1)sw
∣∣
hreg

and so

e−αeα · g(X, v)
∣∣
hreg

= w(w + 1)g(X, v)
∣∣
hreg

. (8.2.6)

Finally, observe that sw
∣∣
hreg

= δw. Thus combining (8.2.1), (8.2.4) and (8.2.6) produces

the desired equation

Rad(∆g) = δ−w∆hδ
w +

∑
α∈R

δ−w

α

∂

∂hα
δw −

∑
α∈R

w(w + 1)

α2
. (8.2.7)

8.3. Recall from (2.3) that we have identified Hw with its image in D(hreg) ∗W under

the Dunkl embedding. As in [EG, p. 281], we define a twisted Dunkl homomorphism

Θspher
w : Hw → D(hreg) ∗W by Θspher

w (h) = δ−whδw for h ∈ Hw. In [EG, pp. 281-2] it is

mentioned that the Calogero-Moser operator

Lw
def
= ∆h −

1

2

∑
α∈R

w(w + 1)
(α, α)

α2

lies in Θspher
w (Hw). We take this opportunity to give a complete proof of this assertion.

In this computation we write ∂t = ∂/∂xt for t ≥ 1 and xij = xi − xj for i 6= j. Then

(2.3.1) gives

n∑
t=1

Dw(yt)
2e =

n∑
t=1

(
(∂t)

2 −
∑
j<i

w
〈yt, xij〉
xij

(∂t − sij(∂t))
)

=

n∑
t=1

(
(∂t)

2 − 2
∑
j<i

w
〈yt, xij〉
xij

∂t

)
.
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Now δ−w
∑n

t=1 ∂t =
∑n

t=1

(
∂tδ
−w +

∑
j<iw

〈yt, xij〉
xij δ−w

)
and so

δ−w
n∑
t=1

(
(∂t)

2 − 2
∑
j<i

w
〈yt, xij〉
xij

∂t

)

=
n∑
t=1

(
∂tδ
−w∂t +

∑
j<i

w
〈yt, xij〉
xij

δ−w∂t − δ−w2
∑
j<i

w
〈yt, xij〉
xij

∂t

)

=
n∑
t=1

(
∂tδ
−w∂t −

∑
j<i

w
〈yt, xij〉
xij

δ−w∂t

)

=
n∑
t=1

(
∂2
t δ
−w +

∑
j<i

w∂t
〈yt, xij〉
xij

δ−w −
∑
j<i

w
〈yt, xij〉
xij

δ−w∂t

)

=
n∑
t=1

(
∂2
t δ
−w +

∑
j<i

w
〈yt, xij〉
xij

∂tδ
−w −

∑
j<i

w
〈yt, xij〉2

x2
ij

δ−w −
∑
j<i

w
〈yt, xij〉
xij

δ−w∂t

)

=

n∑
t=1

(
∂2
t δ
−w +

∑
j<i

w
〈yt, xij〉
xij

[∂t, δ
−w]−

∑
j<i

w
〈yt, xij〉2

x2
ij

δ−w
)

=
n∑
t=1

(
∂2
t δ
−w −

(∑
j<i

w
〈yt, xij〉
xij

)2

δ−w −
∑
j<i

w
〈yt, xij〉2

x2
ij

δ−w
)

=
n∑
t=1

(
∂2
t δ
−w −

∑
i<j,k<`

(i,j)6=(k,`)

w2 〈yt, xij〉〈yt, xk`〉
xijxk`

δ−w −
∑
j<i

(w2 + w)
〈yt, xij〉2

x2
ij

δ−w
)

=

( n∑
t=1

δ2
t −

∑
i<j,k<`

(i,j) 6=(k,`)

w2 (xij , xk`)

xijxk`
−
∑
j<i

(w2 + w)
(xij , xij)

x2
ij

)
δ−w

=

(
∆h −

1

2
(w2 + w)

∑
α∈R

(α, α)

α2

)
δ−w.

Here the middle term of the second-to-last line disappears since if we write the sum over

the common denominator δ then the numerator becomes a sign semi-invariant element in

C[h] of degree deg(δ)− 2, and so is zero. We deduce that Lw = Θspher
w (

∑n
t=1Dw(yt)

2e),

as claimed.

For Cherednik algebras of type A one has (α, α) = 2 and an easy computation shows

that δ∆hδ
−1 = ∆h −

∑
α∈R

δ
α

∂
∂hα

δ−1. Combined with (8.2.7) this shows that

δw+1 Rad(∆g)δ
−(w+1) = Lw = L−(w+1) ∈ Θspher

−(w+1)(H−(w+1)).
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Since Rad(∆g) is clearly W -invariant we have therefore proved that

Rad(∆g) ∈ HW−(w+1) = U−(w+1). (8.3.1)

8.4. To calculate (part of) the kernel of Rad we just have to see what happens to the

element τ(1) ∈ D(G). As was observed in Section 2.7, τ(1) = −
∑n

i=1 ei
∂
∂ei
, where {ei}

is a basis of V ∗ ⊂ C[V ]. It therefore follows from (8.2.5) that τ(1) · sw = −nwsw. As

before, τ(1)ρ∗(f) = 0 for f ∈ C[hreg/W ] and so τ(1) · (swρ∗(f)) = −nw(swρ∗(f). Thus

Ker(Rad) ⊇
(
D(G) · τ(sln)

)G
+ D(G)G(τ(1) + wtr(1)). (8.4.1)

The right hand side of (8.4.1) is the ideal
(
D(G)I−w

)G
in the notation of Section 2.2

and so R does at least induce a homomorphism R : DG
−w → Ureg.

8.5. Proof of Theorem 8.1. The proof now follows a well-worn path similar to that of

[EG, Theorem 4.8 and Proposition 4.9] or [BFG, Proposition 5.4.4]. Set c = −w and R =

Rc. Then (8.3.1) shows that R(∆g) ∈ Uc−1. By the proof of [BFG, Proposition 5.4.4]

this is enough to ensure that ImR = Uc−1. In fact that proof shows rather more: as R

is defined by restriction of differential operators it is certainly a filtered morphism and

the proof of surjectivity in [BFG] is obtained by proving that the associated graded map

grR is surjective. Therefore, R is filtered surjective and hence, by (8.4.1), so is R.

It remains to prove that R and grR are injective. However, just as in the proof of

Lemma 4.4, grDG
c
∼=
(
gr(D(G)/D(G)Ic)

)G
is a homomorphic image of[

grD(G)

grD(G) · gr τ(Ic)

]G
=

[
C[T ∗G]

C[T ∗G]·µ∗G(g)

]G
= C[M]G = C[h× h∗]W ,

whereM is defined in (4.3.1) and the final equality is [GG, Lemma 2.11]. In other words,

grR is a surjective morphism from a factor of C[h×h∗]W to grUc−1 = C[h×h∗]W . Thus

it must be an isomorphism. This also forces R to be an isomorphism. �
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