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Abstract 

This paper proposes a Stochastic Programming (SP) approach for the calculation of the Liquidity adjusted 
Value at Risk (LVaR). The model presented in this paper offers an alternative to Almgren and Chriss’s 
mean-variance approach (1999 and 2000). In this research, a two-stage stochastic programming model is 
developed with the intention of deriving the optimal trading strategies that respond dynamically to a given 
market situation. The sample paths approach is adopted for scenario generation. The scenarios are thus 
represented by a collection of simulated sample paths rather than the “tree structure” usually employed in 
stochastic programming. Consequently, the SP LVaR presented in this paper can be considered as a 
non-parametric approach, which is in contrast to Almgren and Chriss’s parametric solution. Initially, a set of 
numerical experiments indicates that the LVaR figures are quite similar for both approaches when all the 
underlying financial assumptions are identical. Following this sanity check, a second set of numerical 
experiments shows how the randomness of the different types (e.g., Bid and Ask spread) can be easily 
incorporated into the problem due to the stochastic programming formulation and how optimal and adaptive 
trading strategies can be derived through a two-stage structure (i.e., a “recourse” problem). Hence, the results 
presented in this paper allow the introduction of new dimensionalities into the computation of LVaR by 
incorporating different market conditions. 
 
Key words: Liquidity adjusted Value at Risk (LVaR); Liquidation Cost; Stochastic programming; Optimal 
trading strategy; Non-parametric approach; Sample paths. 
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1. Introduction 

Developed over the last couple of decades, Value at Risk (VaR) models have been widely used as the main 
market risk management tool in the financial world (e.g., Jorion, 2006). VaR estimates the likelihood of a 
portfolio loss caused by normal market movements over a given period of time. However, VaR fails to take 
into consideration the market liquidity impact. Its estimate is quite often based on mid-prices and the 
assumption that transactions do not affect market prices. Nevertheless, large trading blocks might impact 
prices, and trading activity is always costly. To overcome these problems, some researchers have proposed the 
calculation of Liquidity adjusted VaR (LVaR) (e.g., Dowd, 1998). Differing from the conventional VaR, LVaR 
takes both the size of the initial holding position and liquidity impact into account. The liquidity impact is 
commonly subcategorized into exogenous and endogenous illiquidity factors. The former is normally 
measured by the bid-ask spread, and the latter is expressed as the price movement caused by market 
transactions (see Bangia et al., 1999). From this perspective, LVaR can be seen as a complementary tool for 
risk managers who need to estimate market risk exposure and are unwilling to disregard the liquidity impact.  
 
Bangia et al. (1999) proposed a simple but practical solution that is directly derived from the conventional VaR 
model in which an illiquidity factor is expressed as the bid-ask spread. Although this approach avoids many 
complicated calculations, it fails to take into consideration endogenous illiquidity factors. Hence, liquidity risk 
and LVaR are underestimated. A more promising solution for LVaR estimation stems from the derivation of 
optimal trading strategies as suggested by Almgren and Chriss (1999 and 2000). In their model, Almgren and 
Chriss adopted the permanent and temporary market impact mechanisms from Holthausen, Leftwich, and 
Mayers’s work (1987) and assumed linear functions for both of them. By externally setting a sales completion 
period, they derived an optimal trading strategy defined as the strategy with the minimum variance of 
transaction cost, or of shortfall, for a given level of expected transaction cost. Or inversely, a strategy that has 
the lowest level of expected transaction cost for a given level of variance. With the normal distribution and the 
mean and variance of transaction cost, LVaR can also be determined and minimized to derive optimal trading 
strategies. In this setting, LVaR can be understood as the pth percentile possible loss that a trading position can 
encounter when liquidity effects are incorporated into the risk measure computation. Later on, Almgren (2003) 
extended this model by using a continuous-time approximation, and also introduced a non-linear and stochastic 
temporary market impact function. Another alternative is the liquidity discount approach presented by Jarrow 
and Subramanian (1997 and 2001). Similar to Almgren and Chriss’s approach (1999 and 2000), the liquidity 
discount approach requires that the sales completion period be given as an exogenous factor. The optimal 
trading strategy is then derived by maximizing an investor’s expected utility of consumption. Note that both 
approaches require externally setting a fixed horizon for liquidation. Aiming to overcome this problem, Hisata 
and Yamai (2000) extended Almgren and Chriss’s approach by assuming a constant speed of sales and by 
using continuous approximation. They could derive a closed-form analytical solution for the optimal holding 
period. In this setting, the sales completion time thus becomes an endogenous variable. Yet, Hisata and 
Yamai’s model relies on the strong assumption of a constant speed of sales. 
 
Krokhmal and Uryasev (2006) argued that the solution offered by Almgren and Chriss and that of Jarrow and 
Subramanian were unable to dynamically respond to changes in market conditions. Therefore, they suggested a 
stochastic dynamic programming method and derived an optimal trading strategy by maximizing the expected 
stream of cash flow. Under their framework, the optimal trading strategy becomes highly dynamic as it can 
respond to market conditions at each time step. Another methodology that incorporates these dynamics into an 
optimal trading strategy is that of Bertsimas and Lo (1998). They applied a dynamic programming approach to 
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the optimal liquidation problems. Analytical expressions of the dynamic optimal execution strategies are 
derived by minimizing the expected trading cost over a fixed time horizon.  
 
In this paper, we present a new framework for the calculation of non-parametric LVaR by using stochastic 
programming (SP) techniques. Over the past few years, stochastic programming has grown into a mature 
methodology used to approach decision making problems in uncertain contexts. The main advantage of SP is 
its ability to better tackle optimization problems under conditions of uncertainty over time. Due to the fast 
development of computing power, it has been used to solve large scale optimization problems1. Therefore, we 
believe it is a promising methodology for LVaR modeling. 
 
The SP approach presented in this paper is extended from Almgren and Chriss’s framework (1999 and 2000). 
The sample path approach is adopted for scenario generation, rather than the scenario tree structure usually 
employed in SP. The scenario set is represented by a collection of simulated sample paths. Differing from 
Almgren and Chriss’s parametric formulation of LVaR, we present a non-parametric formulation for LVaR. 
Both exogenous and endogenous illiquidity factors are taken into account. The former is measured by the 
bid-ask spread, and the latter is expressed by linear market impact functions, which are related to the quantity 
of sales. The model in this paper is built in a discrete-time manner, and the holding period is required to be 
determined externally. The permanent and temporary market impact mechanism proposed by Holthausen, 
Leftwich, and Mayers (1987) is adopted to formulate the market impact, and both permanent and temporary 
market impacts are assumed as linear functions.  
 
The paper is organized in the following manner. The SP LVaR model is presented in section two, which 
explains the transformation from Almgren and Chriss’s model to the SP formulation and presents the 
non-parametric LVaR formulation. The corresponding numerical experiments are detailed in section three. 
Section four presents the generalized SP LVaR model by relaxing the assumption that the bid-ask spread and 
market impact coefficients are constant. The corresponding numerical experiments are detailed in section five. 
Section six concludes the paper. 

2. Stochastic Programming LVaR Model 

This paper proposes a SP approach to estimate the non-parametric LVaR, which is based on Almgren and 
Chriss’s mean-variance approach (1999 and 2000). While their model has shown to be an interesting 
methodology for the calculation of LVaR and has a huge potential in practice, the optimal trading strategies 
derived by their model fail to respond dynamically to the market situation, as they rely on a “closed-form” or 
“static” framework. For instance, if an increasing trend is observed in the market price, investors may decide 
to slow their liquidation process. If, on the other hand, unexpected market shocks occur, investors may decide 
to adjust their trading strategy and to speed the completion of their sale. These market situations can be 
simulated and incorporated into scenarios. Clearly, any “closed form” solution cannot deal with this type of 
uncertainty in such a dynamic manner. The LVaR formulation in Almgren and Chriss’s model is based on the 
mean-variance framework; thus, it can be considered as a parametric approach. In contrast, the LVaR 
formulation presented in this paper is non-parametric and allows the incorporation of various dynamics in the 
liquidation process. Thus, we propose a new framework for LVaR modeling.  

                                                        
1 Gondzio and Grothey (2006) showed in their research that they could solve a quadratic financial planning problem 
exceeding 109 decision variables by applying a structure-exploiting parallel primal-dual interior-point solver. 
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2.1 Almgren and Chriss’s mean-variance model   

According to Almgren and Chriss’s framework, a holding period T is required to be set externally. Then, this 
holding period is divided into N intervals of equal length (τ = T/N). The trading strategy is defined as the 
quantity of shares sold in each time interval, which is denoted by a list of n1,…, nk,…, nN, where nk is the 
number of shares that the trader plans to sell in the kth interval. Accordingly, the quantity of shares that the 
trader plans to hold at time tk = kτ is denoted by xk. Suppose a trader has a position X that needs to be liquidated 
before time T, then we have: 

1k k kn x x−= − , 
1

N

k
k

X n
=

= ∑  and 
1 1

, 0,..., .
k N

k j j
j j k

x X n n k N
= = +

= − = =∑ ∑  

Price dynamics in Almgren and Chriss’s model are formulated as an arithmetic random walk as follows: 

1 [1]k
k k k

nS S gσξ τ μτ τ
τ−

⎛ ⎞= + + − ⎜ ⎟
⎝ ⎠

, 

where Sk is the equilibrium price after a sale, μ and σ are the drift and volatility of the asset price, respectively, 
and ξk is a random number that follows a standard normal distribution N (0, 1). The last term, g(nk/τ), describes 
the permanent market impact from a sale. The actual sale price is calculated by subtracting the temporary 
impact, h(nk/τ), from the equilibrium price:  

[2]k
k k

nS S h
τ

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

% . 

According to Almgren and Chriss’s framework (1999 and 2000), both g(nk/τ) and h(nk/τ) are assumed to be 
linear functions:  

[3]k kn ng γ
τ τ

⎛ ⎞ = ⋅⎜ ⎟
⎝ ⎠

    and    1 [4]
2

k kn nh ε η
τ τ

⎛ ⎞ = + ⋅⎜ ⎟
⎝ ⎠

, 

where γ and η are the permanent and temporary market impact coefficients, respectively, and ε denotes the 
bid-ask spread. They are all assumed to be constant.  
 
Based on the previously presented equations, the formula for the actual sale price is derived as: 

0
1 1

1 [5]
2

k k
k

k j k
j j

nS S k n ησ ξ τ μ τ γ ε
τ= =

= + + − − −∑ ∑% . 

 I II III
As you can see from this formula, the actual sale price can be decomposed into three parts. Part I is the price 
random walk, which describes the price dynamics without any market impacts. Part II and III are the price 
decline caused by the permanent and temporary market impact, respectively.  
 
Then the total proceeds can be calculated by summing the sale values over the entire holding period: 

( ) 2
0 1 1

1 1 1 1

2 2
0 1 1

1 1 1

1
2

1 1 1 [6]
2 2 2

N N N N

k k k k k k k k
k k k k

N N N

k k k k
k k k

total proceed n S XS x x n X x X n

XS x x X X n

ησ ξ τ μ τ γ ε
τ

ησ ξ τ μ τ γ ε γ
τ

− −
= = = =

− −
= = =

= = + + − − − −

⎛ ⎞= + + − − − −⎜ ⎟
⎝ ⎠

1

N

k=
∑ ∑ ∑ ∑

∑ ∑ ∑

% ∑

                                                       

. 

Consequently, “liquidation cost” (LC)2 can be derived by subtracting the total actual sale proceeds from the 

 
2 In Almgren and Chriss’s paper, this “cost” is referred as the transaction cost. However, the transaction cost is commonly 
known as the fees involved for participating in the market, such as the commission to the brokers. Therefore, in order to 
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trader’s initial holding value, that is: 

2 2
0 1 1

1 1 1 1

1 1 1 [7]
2 2 2

N N N N

k k k k k k
k k k k

LC XS n S x x X X nησ ξ τ μ τ γ ε γ
τ− −

= = = =

⎛ ⎞= − = − − + + + −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑% . 

Almgren and Chriss derive the formulae for the mean and variance of the liquidation cost as:  

[ ] 2 2
1

1 1

1 1 1 [8]
2 2 2

N N

k k
k k

E LC X x X nηγ μ τ ε γ
τ−

= =

⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠

∑ ∑  

[ ] 2 2
1

1
and [9].

N

k
k

V LC xσ τ −
=

= ∑  

Finally, they formulate the LVaR by using the parametric approach with the mean and variance of the LC as:  

[ ] [ ] [10]clLVaR E LC V LCα= + , 

where cl denotes the confidence level for the LVaR estimation, and αcl is the corresponding percentile of the 
standard normal distribution. As expressed, LVaR measures a possible loss with a given position while taking 
into consideration both market risk conditions and liquidity effects.  
 
The optimal trading strategy could be derived by minimizing the LVaR. The mathematical programming 
formulation of this optimization problem is thus written as: 

[ ] [ ]

1

1

1

min

. 0,..., 1

,..., 0.

k
cln

N

k j
j k

N

k
k

N

E LC V LC

s t x n k N

X n

n n

α

= +

=

+

= ∀ = −

=

≥

∑

∑

 

Based on this brief introduction to Almgren and Chriss’s mean-variance approach, we can thereon proceed to 
present the SP approach to LVaR modeling.  

2.2 Stochastic programming transformation 

In stochastic programming, uncertainty is modeled with scenarios that are generated by using available 
information to approximate future conditions. Before conducting the SP transformation, we need to briefly 
introduce the scenario generation technique used in this paper. 
 
The liquidation process of investors’ positions is a multi-period problem. The most commonly used technique 
is to model the evolution of stochastic parameters with multinomial scenario trees as shown in Figure 1(a). 

                                                                                                                                                                          
avoid any confusion, it is named “liquidation cost” in this paper. 
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Figure 1: Scenario Generation 

(b) Sample Paths

Time period

(a) Scenario Tree

Time period
 

 
However, the use of scenario tree structures often leads to considerable computational difficulty, especially 
when dealing with large scale practical problems. In the scenario tree structure, the uncertainties are 
represented by the branches that are generated from each node. Increasing the number of branches per node 
can improve the quality of the approximation of the uncertainty. However, it causes an exponential growth in 
the number of nodes. Indeed, in order to approximate the future value of the uncertain parameters with a 
sufficient degree of accuracy, the resulting scenario tree could be a huge size. It is commonly known as the 
“curse of dimensionality” (Bellman, 1957). It is a significant obstacle for dynamic or stochastic optimization 
problems. An alternative method to overcome this problem is to simulate a collection of sample paths to reveal 
the future uncertainty as shown in Figure 1(b). Each simulated path represents a scenario. These sample paths 
can be generated by using Monte Carlo simulation, historical simulation or bootstrapping. There have been 
several interesting papers regarding the application of the sample paths method in stochastic programming 
(e.g., Hibiki, 2000 and Krokhmal and Uryasev, 2006). Using sample paths is advantageous because increasing 
the number of paths to achieve a better approximation causes the number of nodes to increase linearly rather 
than exponentially. This advantage is also present when the time period is increased. The number of nodes 
increases linearly with the sample paths method and exponentially with scenario tree structure.  
 
Let ℑ  be a collection of sample paths 

( ){ }0 1, 2, , ,, , , , , , | 1, ,s s k s N sC C C C C s Scℑ = =K K K , 

where Ck,s represents the information about relevant parameters. In Almgren and Chriss’s model (1999 and 
2000), we should recall that the only randomness considered is market price. Hence, to set a point of 
comparison between their results and the results from the SP approach, we first assume the only randomness 
that is considered in the sample paths will come from the market price component, Ŝk. Yet, this restrictive 
assumption can clearly be easily relaxed, and randomness can be added to other parameters, e.g., the bid-ask 
spread or the temporary and permanent market impact coefficients.3. 
 
Under the SP framework, the trading strategy is no longer a vector but a two dimensional matrix 
 

                                                        
3 An extension is presented in section 4. 
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First stage Second stage  
 
 
where nk,s is the quantity of shares sold in kth interval on path s, s is the index of scenarios, and Sc is the 
number of scenarios. This is a two stage SP problem. n1,s (s = 1,...,Sc) are the first stage variables, and nk,s (k = 
2,…,N and s = 1,...,Sc) are the second stage variables. Due to the nonanticipativity in the first stage, the first 
stage variables must be locked: 

1, 1, 1 2,...s sn n s S−= ∀ = . 

For the actual sale price formulation, recall Equation [5]. Taking into account the scenarios and replacing part I 
with Ŝk,s (i.e., the asset price without market impacts in kth interval for each scenario), the actual sale price is 
reformulated as: 

,
, , ,

1

1ˆ [11]
2

k
k s

k s k s j s
j

n
S S n

η
γ ε

τ=

= − − −∑% . 

As we now have the sale price formulation, the total sale proceeds corresponding to each scenario is naturally 
obtained by summing up the sale proceeds over the entire set of N intervals: 

2
,

, , , , , , ,
1 1 1

2 2
, , ,

1 1

1ˆ
2

1 1 1ˆ [12]
2 2 2

N N k
k s

s k s k s k s k s k s k s j s
k k j

N N

k s k s k s
k k

n
total proceed n S S n n n n

S n X X n

η
ε γ

τ

ηε γ γ
τ

= = =

= =

⎛ ⎞
= = − − −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑

%
. 

Consequently, the liquidation cost under scenario s is derived by subtracting the corresponding total sale 
proceeds from the trader’s initial holding value, that is: 

2 2
0 , , 0 , , ,

1 1

1 1 1ˆ [13]
2 2 2

N N

s k s k s k s k s k s
k k

LC XS n S XS X X S n nηε γ γ
τ= =

⎛ ⎞= − = + + − + −⎜ ⎟
⎝ ⎠

∑ ∑%
1

N

k =
∑ . 

The deterministic equivalent formulation of this SP problem with nonanticipativity constraints is: 

, 1

,
1

1, ,

1, 1, 1

min

. 1,...,

,..., 0 1,...,
2,...

k s

Sc

s sn s

N

k s
k

s N s

s s

p LC

s t X n s Sc

n n s S
n n s Sc

=

=

−

⋅

= ∀ =

≥ ∀ =

= ∀ =

∑

∑
c

, 

where ps is the probability of scenario s. Since the scenarios are obtained by the Monte Carlo simulation, they 
are thus equally probable with ps = 1 / Sc.  
 
The resulting problem is a quadratic optimization problem. The objective, the expected value of the liquidation 
cost, is a quadratic function, and all constraints are linear.  
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2.3 Non-parametric LVaR formulation 

Depending on the set of assumptions, the calculation methodology, and their uses, two different types of VaRs 
usually exist, i.e., the parametric VaR and the non-parametric VaR. The same categorization obviously applies 
to LVaR. The LVaR estimated by Almgren and Chriss (1999 and 2000) is parametric as shown in Equation [10]. 
In this paper, we have to rely on a non-parametric formulation because it stems from the SP solution that we 
have adopted. More precisely, the calculation procedure is as follows: 

1. Solve the stochastic optimization problem stated in section 2.2 and obtain the optimal trading strategy 
matrix. 

2. Apply the optimal trading strategies to the corresponding scenario and calculate the liquidation cost 
for that specific scenario. That is to say, we substitute the optimal trading strategy matrix into the 
liquidation cost formula (Equation [13]), and calculate LC, which is a vector indexed by s. 

3. Sort the vector LC, and find the value of the αth percentile LC, i.e., the α%-LVaR. The most 
commonly used α value is 95 and 99. 

3. Numerical Experiments I 

As previously mentioned, we first conducted a sanity check. This section details the numerical experiments for 
both the SP model and the Almgren and Chriss’s mean-variance model with the restriction of randomness on 
one component only, i.e., the “pure market price”. 
 
JP Morgan’s stock data was collected for the numerical experiments. The holding period, T, was set to be 5 
days, and we selected the time interval to be 0.5 day. Thus, the total number of sales, N, was 10. The selection 
of the holding period and time interval was arbitrary.  
 
For the price sample paths generation, the Monte Carlo simulation was applied. The stochastic evolution of the 
price was assumed to follow a geometric Brownian motion:  

2
1

1ˆ ˆ exp [14]
2k k kS S μ σ τ ξ σ τ−

⎛ ⎞⎛ ⎞= ⋅ − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

Under Almgren and Chriss’s mean-variance framework, market price was assumed to follow an arithmetic 
random walk because it is ultimately rather difficult to derive a closed-form solution based on an assumption 
of geometric Brownian motion. Yet, with Monte Carlo simulations, formulating the price evolution under 
different assumptions creates no issues related to the underlying distributions that could generate prices and 
returns. Since the geometric random walk is the most commonly used assumption for price stochastic 
processes, it is used in this paper even though differences between these two random walks are almost 
negligible over a short period of time. 
 
10000 sample paths were generated by using the Monte Carlo simulation. The simulated prices form a 
10-by-10000 matrix. The initial price is 37.72. These simulated sample paths are displayed in Figure 2. 
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Figure 2: Simulated price scenarios 

 

Five different initial holdings were chosen for the numerical experiments with the aim of observing how the 
initial position affected the LVaR estimation. The LVaRs were calculated with the most commonly seen 
confidence levels of 95% and 99%. The results are summarized in Table 1. 

Table 1: Numerical results summary 

Initial holding (shares) 1000000 500000 100000 50000 10000 

Almgren and Chriss’s Mean-Variance Model 

Parametric LVaR 95% 1.425E+06 6.186E+05 1.010E+05 4.845E+04 9.311E+03 

Parametric LVaR per share 1.425  1.237  1.010  0.969  0.931  

Parametric LVaR ratio 3.78% 3.28% 2.68% 2.57% 2.47% 

Parametric LVaR 99% 1.863E+06 8.216E+05 1.388E+05 6.718E+04 1.304E+04 

Parametric LVaR per share 1.863  1.643  1.388  1.344  1.304  

Parametric LVaR ratio 4.94% 4.36% 3.68% 3.56% 3.46% 

Stochastic Programming Model 

Non-parametric LVaR 95% 1.290E+06 5.399E+05 8.144E+04 3.832E+04 7.218E+03 

Non-parametric LVaR per share 1.290  1.080  0.814  0.766  0.722  

Non-parametric LVaR ratio 3.42% 2.86% 2.16% 2.03% 1.91% 

Non-parametric LVaR 99% 1.811E+06 7.944E+05 1.342E+05 6.442E+04 1.249E+04 

Non-parametric LVaR per share 1.811  1.589  1.342  1.288  1.249  

Non-parametric LVaR ratio 4.80% 4.21% 3.56% 3.42% 3.31% 

*LVaR per share = LVaR/Initial holding;   LVaR Ratio = LVaR per share/Initial price 

The numerical results show that the LVaR ratios computed by the SP model are slightly lower than those 
computed by Almgren and Chriss’s model at both the 95% and 99% confidence levels. Also, as expected, the 
numerical results show that the LVaR estimates increase when the initial holdings increase. This is true for 
both Almgren and Chriss’s model and the SP model. As previously stated, as the initial holding becomes larger, 
the market impact becomes stronger when a trader liquidates his position. Consequently, the LVaR will 
increase as well. This is clearly a characteristic that distinguishes the LVaR from the traditional VaR. 
 
SP LVaRs are lower than Almgren and Chriss’s LVaRs because the SP model’s optimal trading strategies can 
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dynamically adapt to the market situation. This fits investors’ actual trading behaviors in the market, as they 
will adjust their trading plans according to the market environment. Therefore, the SP model can provide more 
precise LVaR estimates due to the characteristic of the SP model’s adaptive trading strategies.  

4. Generalization of the Stochastic Programming LVaR Model 

In section 2, a simple stochastic programming LVaR model that was transformed from Almgren and Chriss’s 
mean-variance model is presented in order to compare in Section 3 (i.e., both two LVaR approaches were used 
under the same setting). Let now extend the analysis and show some of the advantages provided by the SP 
approach. Contrary to Almgren and Chriss’s model that assumes that both the bid-ask spread and market 
impact coefficients are constants, we generalize the SP LVaR model by relaxing this assumption and treating 
these two components as random variables. 
 
By incorporating randomness in the bid-ask spread and both the permanent and temporary market impact 
coefficients, the formula of the actual sale price needs to be rewritten as: 

, ,
, , , , ,

1

1ˆ [15]
2

k
k s k s

k s k s j s j s k s
j

n
S S n

η
γ ε

τ=

= − − −∑% . 

For the formulation of εk,s, we employ a standardization process. Since bid-ask spreads tend to be proportional 
to asset prices, past observations may not accurately reflect the current variations. Bangia et al. (1999) 
suggested calculating a relative bid-ask spread that equals to the bid-ask spread divided by the mid-price. By 
employing this calculation, the bid-ask spread is expressed as a proportion of the asset price; thus, the current 
bid-ask spread variation is sensitive to the current asset price rather than past observations. The relative bid-ask 
spread, as a normalizing device, can improve the accuracy of the bid-ask spread variation estimation. The 
bid-ask spread is thus formulated as: 

, , ,
ˆ [16]k s k s k sSε ε=  

where ,k sε  is the relative bid-ask spread at time tk on path s. Recall the sample path set  

( ){ }0 1, 2, , ,, , , , , , | 1, ,s s k s N sC C C C C s Scℑ = =K K K . 

By incorporating the randomness into the relative bid-ask spread and market impact coefficients, Ck,s is 
extended to 

( ), , , ,
ˆ , , ,k s k s k s k s k sC S ε γ η= , . 

In other words, in the generalized SP model, each node on the simulated sample paths contains information for 
the asset price, the relative bid-ask spread, and the permanent and temporary market impact coefficients. 
 
As we now have the new sale price formulation, the formula for liquidation cost under scenario s (as shown in 
Equation [13]) is rewritten as: 

2
, ,

0 , , 0 , , , , , , , ,
1 1 1

1ˆ ˆ [17]
2

N N k
k s k s

s k s k s k s k s k s k s k s k s k s j s
k k j

n
LC XS n S XS S n S n n n

η
ε γ

τ= = =

⎛ ⎞
= − = − − − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑% . 

The deterministic equivalent formulation and the LVaR calculation procedure are the same as shown in section 
2. By generalizing the SP model, more parameters are incorporated in the sample path set, which leads to a 
more accurate approximation of future uncertainties.  
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5. Numerical Experiments II 

This section reports the numerical experiments for the generalized SP LVaR model presented in Section 4. We 
use the same dataset that was used for the numerical experiments in section 3. The holding period and time 
interval remain identical, i.e., 5 days and half a day, respectively. 
 
For the sample paths generation of the relative bid-ask spread, and the permanent and temporary market 
impacts, we assumed that they followed independent lognormal distributions and simulated each of them 
simply as a white noise: 

2
, ,

1exp [18]
2k s k sε ε εε μ σ ξ σ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 

2
, ,

1exp [19]
2k s k sγ γ γγ μ σ ξ σ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 

2
, ,

1exp [20]
2k s k sη η ηη μ σ ξ σ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 

where μ and σ are the means and standard deviations, respectively, of the three random variables (i.e., 
ε, γ and η). 
 
Once again 10,000 sample paths were generated by using the Monte Carlo simulation for each parameter. The 
LVaRs at the 95% and 99% confidence levels were computed for the same five initial holding scenarios 
employed in Section 3. The results are summarized in Table 2. 

Table 2: Numerical results 
Initial holding (shares) 1000000 500000 100000 50000 10000 

Non-parametric LVaR 95% 1.084E+06 4.740E+05 7.800E+04 3.739E+04 7.119E+03 

Non-parametric LVaR per share 1.084 0.948 0.780 0.748 0.712 

Non-parametric LVaR ratio 2.87% 2.51% 2.07% 1.98% 1.89% 

Non-parametric LVaR 99% 1.621E+06 7.389E+05 1.312E+05 6.403E+04 1.243E+04 

Non-parametric LVaR per share 1.621 1.478 1.312 1.281 1.243 

Non-parametric LVaR ratio 4.30% 3.92% 3.48% 3.40% 3.30% 

 
In Figure 3, we can see that the LVaR ratios computed by the SP model with the incorporation of randomness 
into the bid-ask spread and the market impact coefficients are slightly lower than those computed by the SP 
model with the constant bid-ask spread and market impact coefficients. When the initial holding is small, 
incorporating these new random variables does not cause a significant change to the LVaR estimate. However, 
when the initial holding is large, the differences are substantial. For instance, when the initial holding is 
1,000,000, incorporating randomness reduces the 95% LVaR ratio from 3.42% to 2.87% and the 99% LVaR 
ratio from 4.80% to 4.30%.  
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Figure 3: LVaR ratio comparison 
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The main reason for these differences must lie in the way the optimal trading strategies that are derived by the 
SP model respond to the variation of the bid-ask spread and market impact coefficients. For example, if we 
assume that the bid-ask spread is constant (as the model in section 2), the loss caused by the spread in the 
whole liquidation process is ε X /2 for each scenario as shown in Equation [13] (ε is the mean value of the 
bid-ask spread). With the incorporation of randomness into the bid-ask spread, the optimal trading strategies 
are adjusted in accordance with its variation. When the spread is high, the optimal trading strategy may suggest 
selling less. On the contrary, when it is low, the optimal trading strategy may suggest selling more. Therefore, 
the average loss caused by the spread can be expected to be lower than ε X /2. Stated otherwise, the SP model’s 
optimal trading strategies can take advantage of changes by acting in a flexible and timely manner. Also note 
that introducing the calculation of the relative bid-ask spread and the Monte Carlo simulation itself can cause 
certain differences. However, the effects are presumably small.  
 
Finally, it is worthwhile to mention that incorporating randomness into the bid-ask spread and market impact 
coefficients within the Almgren and Chriss’s model will definitely enlarge the resulting LVaR estimates. 
Indeed, it would add new variance terms to the variance of the liquidation cost, since the variations of 
parameters are represented by their variances. This would lead to the increase of the LVaR estimates. The SP 
solution and its numerical experiments indicate that if uncertainty is handled well, it does not necessarily cause 
an increase in the LVaR estimates. It highlights the strength of the SP approach, which provides adaptive 
strategies (or “recourse strategies”). Moreover, adding new random variables in the model does not increase 
the difficulty of the problem due to the non parametric nature of the SP LVaR.   

6. Conclusion 

This paper presents a stochastic programming approach for LVaR modeling, which is extended from Almgren 
and Chriss’s mean-variance approach. In contrast to their approach, the optimal trading strategies are derived 
by minimizing the expected liquidation cost. Thus, the SP strategies dynamically adapt to new market 
situations. This is the strength of SP in the context of decision making under uncertainty. Another contribution 
from this paper is the non-parametric formulation of the SP LVaR. It contrasts with the LVaR modeling 
methodologies that quite often rely on parametric approaches. Overall, the numerical results indicate that the 
two approaches are not identical. Indeed, the LVaRs computed using the SP model in this paper are lower than 
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those computed by Almgren and Chriss’s model. Yet, LVaR modeling still remains in its infancy, especially 
when using SP in this context.  
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