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REGULARIZATION AND PRECONDITIONING OF KKT SYSTEMS

ARISING IN NONNEGATIVE LEAST-SQUARES PROBLEMS ∗

STEFANIA BELLAVIA † , JACEK GONDZIO ‡ , AND BENEDETTA MORINI §

Technical Report MS-07-004, August 30th, 2007

Abstract. A regularized Newton-like method for solving nonnegative least-squares problems
is proposed and analysed in this paper. A preconditioner for KKT systems arising in the method
is introduced and spectral properties of the preconditioned matrix are analysed. A bound on the
condition number of the preconditioned matrix is provided. The bound does not depend on the
interior-point scaling matrix. Preliminary computational results confirm the effectiveness of the
preconditioner and fast convergence of the iterative method established by the analysis performed in
this paper.

1. Introduction. Optimization problems having a least-squares objective func-
tion along with simple constraints arise naturally in image processing, data fitting,
control problems and intensity modulated radiotherapy problems. In the case where
only one-sided bounds apply, there is no lack of generality to consider the Nonnegative
Least-Squares (NNLS) problems

min
x≥0

q(x) =
1

2
‖Ax− b‖2

2,(1.1)

where A ∈ IRm×n, b ∈ IRm are given and m ≥ n, [5].
We assume that A has full column rank so that the NNLS problem (1.1) is a

strictly convex optimization problem and there exists a unique solution x∗ for any
vector b, [18]. We allow the solution x∗ to be degenerate, that is strict complemen-
tarity may not hold at x∗. We are concerned with the situation when m and n are
large and we expect matrix A to be sparse. We address the issues of the numerical
solution of (1.1) and apply the Interior-Point Newton-like method given in [3] to it.
¿From numerical linear algebra perspective this method can be reduced to solving
a sequence of (unconstrained) weighted least-squares subproblems. Following [3] the
linear systems involved have the following form:

(
I AS

SAT −WE

)(
q̃
p̃

)

=

(
d
0

)

,(1.2)

where S,W,E are diagonal matrices satisfying S2 + WE = I . Bellavia et al. [3]
solve this system with an iterative method which corresponds to the use of inexact
Newton-like method to solve NNLS. The reader interested in the convergence analysis
of this method should consult [3, 16] and the references therein.

In this paper we go a step further. The system (1.2) arising in interior point me-
thod [3] is potentially very ill-conditioned and therefore difficult for iterative methods.
Although preconditioning can help to accelerate the convergence of the iterative me-
thod, in some situations it is insufficient to ensure fast convergence. We remedy it in
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this paper. We regularize (1.2) to guarantee that the condition number of the matrix
involved is decreased. Next, we design a preconditioner for such regularized system
and analyse the spectral properties of the preconditioned matrix.

The diagonal matrix WE in (1.2) displays an undesirable property: certain el-
ements of it may be null and others may be close to one. Inspired by the work of
Saunders [22] and encouraging numerical experience reported by Altman and Gondzio
[2] we regularize the (2, 2) block in (1.2) and replace element WE with WE + S2∆,
where ∆ is a diagonal matrix. We provide a detailed spectral analysis of the reg-
ularized matrix and prove that the condition number of the regularized system is
significantly smaller than that of the original system. Following [2] we use a dynamic
regularization, namely, we do not alter those elements of WE which are bounded
away from zero; we change only those which are too close to zero.

Having improved the conditioning of (1.2) we make it easier for iterative methods.
In fact, (1.2) is a saddle point problem with a simple structure, [4]. We design an
indefinite preconditioner which exploits the partitioning of indices into “large” and
“small” elements in the diagonal of WE. The particular form of the regularization
yields a relevant advantage: if the partitioning in WE does not change from an iter-
ation to another, then the factorization of the preconditioner is available for the new
iteration at no additional cost. Moreover, as the algorithm approaches the optimal
solution the partitioning settles down following the splitting of indices into those cor-
responding to active and inactive constraints. Then, eventually the factorization of
the preconditioner does not require computational effort.

We provide the spectral analysis of the preconditioned system and show that the
condition number of its matrix is bounded by a number which does not depend on
interior-point scaling. We are not aware of any comparable result in the literature.
Moreover, the proposed preconditioner allows us to use the short recurrence PPCG
method [11] to solve the preconditioned linear system. Thus, we performed also the
spectral analysis of the reduced preconditioned normal equation whose eigenvalues
determine the convergence of the PPCG method. Our preliminary computational
results confirm all theoretical findings. Indeed, we have observed that the augmented
system can be solved very efficiently by PPCG method. For problems of medium
and large scale (reaching a couple of hundred thousand constraints) iterative methods
converge in a low number of iterations.

Regularization does add a perturbation to the Newton system. We prove that it
does not worsen the convergence properties of the Newton-like method of Bellavia et
al. [3], namely, the inexact regularized Newton-like method still enjoys q-quadratic
convergence, even in presence of degenerate solutions.

We remark that our method can be used also to solve regularized least-squares
problems:

min
x≥0

q(x) =
1

2
‖Ax− b‖2

2 + µ‖x‖2,

where µ is a strictly positive scalar. In this case, the arising augmented systems are
regularized “naturally” and we do not need to introduce the regularization of the (2,2)
block. Moreover, A may also be rank deficient. Finally, the method can clearly handle
lower and upper bounds on the variables too. We decided to limit our discussion to
NNLS problems for sake of simplicity.

The paper is organised as follows. In Section 2, we remind key features of the
Newton-like method studied in [3] and justify the need of introducing regularization.
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In Section 3, we introduce the regularization and show that it does not worsen local
convergence properties of the Newton-like method. In Section 4, we analyse numerical
properties of the regularized augmented system, introduce the preconditioner and
perform spectral analysis of the preconditioned matrix. We also analyse the reduced
normal equations formulation of the problem and for completeness perform spectral
analysis of the preconditioned normal equations. In Section 5, we discuss preliminary
computational results.

1.1. Notations. We use the subscript k as index for any sequence and for any
function f we denote f(xk) by fk. The symbol xi or (x)i denotes the i-th component
of a vector x. The 2-norm is indicated by ‖ · ‖.

2. The Newton-like method. In this section we briefly review the Newton-like
method proposed in [3]. Then, we study the properties of the linear system arising at
each iteration.

The Newton-like method in [3] is applied to the system of nonlinear equations

D(x)g(x) = 0,(2.1)

where g(x) = ∇q(x) = AT (Ax − b), and D(x) = diag(d1(x), . . . , dn(x)), x ≥ 0, has
entries of the form

di(x) =

{
xi if gi(x) ≥ 0,
1 otherwise

.(2.2)

This system states the Karush-Kuhn-Tucker conditions for problem (1.1), [7].

At kth iteration of the Newton-like method, given xk > 0, one has to solve the
following linear system:

WkDkMkp = −WkDkgk,(2.3)

where, for x > 0, the matrices M(x) and W (x) are given by

M(x) = ATA+D(x)−1E(x),(2.4)

E(x) = diag(e1(x), . . . , en(x)),(2.5)

with

ei(x) =

{
gi(x) if 0 ≤ gi(x) < x2

i or gi(x)
2 > xi

0 otherwise
,(2.6)

and

W (x) = diag(w1(x), . . . , wn(x)), wi(x) =
1

di(x) + ei(x)
.(2.7)

We refer to [3] for the motivation to consider such a Newton equation. Here we
just mention that this choice of E and W allows to develop fast convergent methods
without assuming strict complementarity at x∗.

Clearly, for x > 0, the matricesD(x) andW (x) are invertible and positive definite,
while the matrixE(x) is semidefinite positive. Further, the matrix (W (x)D(x)M(x))−1

exists and is uniformly bounded for all strictly positive x, see [16, Lemma 2].
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For sake of generality, in the sequel we consider the formulation of the method
in the context of inexact Newton methods [9]. Thus, the Newton equation takes the
form

WkDkMkpk = −WkDkgk + rk ,(2.8)

and the residual vector rk is required to satisfy

‖rk‖ ≤ ηk‖WkDkgk‖, ηk ∈ [0, 1).(2.9)

The linear system (2.8) can be advantageously formulated as a linear system with
symmetric positive definite matrix. To this end, for any x > 0, we let

S(x) = W (x)
1

2 D(x)
1

2 ,(2.10)

Z(x) = S(x)M(x)S(x) = S(x)TATAS(x) +W (x)E(x),(2.11)

and reformulate (2.8) as the equivalent system

Zkp̃k = −Skgk + r̃k ,(2.12)

with r̃k = S−1
k rk and p̃k = S−1

k pk. This system has nice features. Since the matrix
S(x) is invertible for any x > 0, then the matrix Z(x) is symmetric positive definite
for x > 0. Moreover it is remarkable that for xk > 0 the matrix Zk has uniformly
bounded inverse and its conditioning is not worse than that of WkDkMk, [3, Lemma
2.1]. Moreover, note that from the definition of S and W it follows

S2
k +WkEk = I.(2.13)

The residual control associated to (2.12) can be performed imposing

‖r̃k‖ ≤ ηk‖WkDkgk‖, ηk ∈ [0, 1).(2.14)

Since ‖Sk‖ ≤ 1, this control implies that rk = Sk r̃k satisfies (2.9).
After computing p̃k satisfying (2.12) and (2.14), the iterate xk+1 can be formed.

Specifically, positive iterates are required so that matrix Sk is invertible. Then, pk =
Skp̃k is set and the following vector p̂k is formed:

p̂k = max{σ, 1 − ‖P (xk + pk) − xk‖ } (P (xk + pk) − xk),(2.15)

where σ ∈ (0, 1) is close to one, and P (x) = max{0, x} is the projection of x onto the
positive orthant. Finally, the new iterate takes the form

xk+1 = xk + p̂k.(2.16)

The purpose of this section is to investigate the solution of the Newton equation
further. Clearly, the system

Zkp̃k = −Skgk,(2.17)

represents the normal equations for the least-squares problem

min
p̃∈IRn

‖Bkp̃+ hk‖,(2.18)
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with

Bk =

(

ASk

W
1

2

k E
1

2

k

)

, hk =

(
Axk − b

0

)

.

The conditioning κ2(Zk) of the matrix Zk in the 2-norm, is the square of κ2(Bk).
Clearly, if WkEk = 0 then Sk = I and κ2(Bk) = κ2(ASk) = κ2(A). Otherwise, letting

0 < σ1 ≤ σ2 . . . ≤ σn,

be the singular values of ASk we note that the minimum and maximum eigenvalues
λmin and λmax of Zk satisfy

λmin(Zk) ≥ σ2
1 + min

i
(wkek)i ≥ σ2

1 ,(2.19)

λmax(Zk) ≤ σ2
n + max

i
(wkek)i ≤ σ2

n + 1.(2.20)

Thus, an upper bound on the conditioning of Bk is given by

κ2(Bk) ≤
√

1 + σ2
n

σ1
≤ 1 + σn

σ1
.(2.21)

To avoid solving the system (2.17), we consider the augmented system approach
for the solution of the least-squares problem (2.18). It consists in solving the linear
system

(
I ASk

SkA
T −WkEk

)(
q̃k
p̃k

)

=

(
−(Axk − b)

0

)

.(2.22)

Next we investigate if this reformulation has better numerical properties than the
normal equations (2.17). To study the spectral properties of the augmented matrix,
note that WkEk is positive semidefinite and

vTWkEkv ≥ δvT v, ∀v ∈ IRn,(2.23)

where 1 > δ = mini (ek)i/((dk)i + (ek)i). Clearly, the scalar δ is null whenever at
least one diagonal element (ek)i is null. The next lemma provides a bound on the
conditioning of the following augmented matrix

Hδ =

(
I ASk

SkA
T −WkEk

)

.(2.24)

Lemma 2.1. Let 0 < σ1 ≤ σ2 . . . ≤ σn be the singular values of ASk, δ ∈ [0, 1) be
the scalar given in (2.23), Hδ be the augmented matrix in (2.24). Then

κ2(Hδ) ≤
1
2 (1 +

√

1 + 4σ2
n)

min
{

1, 1
2

(

δ − 1 +
√

(1 + δ)2 + 4σ2
1

)} .(2.25)

Proof. We order the eigenvalues of Hδ as

µ−n ≤ µ−n+1 ≤ . . . ≤ µ−1 ≤ 0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µm.
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Proceeding as in [23, Lemma 2.1, 2.2] we obtain

µ−n ≥ −
√

1 + σ2
n,(2.26)

µ1 ≥ 1,(2.27)

µm ≤ 1

2

(

1 +
√

1 + 4σ2
n

)

.(2.28)

To derive an estimate for µ−1, let (vT
1 , v

T
2 )T ∈ IRm+n be an eigenvector correspond-

ing to µ−1. Hence, from the definition of Hδ we have (1 − µ−1)v1 = −ASkv2 and
vT
2 SkA

T v1 − vT
2 WkEkv2 = µ−1v

T
2 v2. Consequently

(1 − µ−1)
−1vT

2 SkA
TASkv2 + vT

2 WkEkv2 = −µ−1v
T
2 v2.

Since vT
2 SkA

TASkv2 ≥ σ2
1v

T
2 v2 and vT

2 WkEkv2 ≥ δvT
2 v2, we get σ2

1(1− µ−1)
−1 + δ ≤

−µ−1 i.e.

µ−1 ≤ 1

2

(

1 − δ −
√

(1 + δ)2 + 4σ2
1

)

.(2.29)

Noting that κ2(Hδ) = max{|µ−n|, µm}/min{|µ−1|, µ1}, the thesis follows from (2.26),
(2.27), (2.28) and (2.29). �

Taking into account (2.23), the bound (2.29) is sharper than that provided in
[23]. Also, our results are a generalization of those given in [21].

If δ = 0, noting that
√

1 + 4σ2
n < 1 + 2σn, Lemma 2.1 yields

κ2(H0) ≤
1 + σn

min
{

1, 1
2 (−1 +

√

1 + 4σ2
1 )
} .(2.30)

Now, suppose σ1 is significantly smaller than 1. Since 1
2

(

−1 +
√

1 + 4σ2
1

)

' σ2
1 , it

follows that κ2(H0) may be much greater than κ2(Bk) (see (2.21)). On the other
hand, if δ 6= 0, the augmented system can be viewed as a regularized system and
the regularization can improve the conditioning of the system. To show this fact we
proceed as in (2.30) and noting that

√

(1 + δ)2 + 4σ2
1 > 1 + δ we get

κ2(Hδ) ≤
1 + σn

min
{

1, 1
2 (δ − 1 +

√

(1 + δ)2 + 4σ2
1 )
} ≤ 1 + σn

δ
.(2.31)

Therefore, when σ1 is small and δ > σ1, the condition number of κ2(Hδ) may be
considerably smaller than κ2(Bk) and than κ2(H0).

So far we have assumed that σ1 is small. If this is not the case, the regularization
does not deteriorate κ2(Hδ) with respect to κ2(H0); e.g. if σ1 ≥ 1 and δ ≤ 1/2 we
have (1 + δ)2 + 4σ2

1 ≥ (2 + δ)2, and the bound on κ2(Hδ) becomes

κ2(H) ≤ 1 + σn

1
2 + δ

.

This discussion suggests that ensuring δ > 0 is a good strategy in order to over-
come the potential ill-conditioning of the augmented system. In particular, the regu-
larization is useful when σ1 is much smaller than 1 and the scalar δ in (2.23) is such
that δ > σ1.
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3. The regularized Newton-like method. Here we propose a modification
of the Newton-like method given in [3] that gives rise to a regularized augmented
system. This way the potential ill-conditioning of the augmented system is avoided.

Since the scalar δ is null if at least one element of matrix Ek given in (2.6) is null,
to regularize the system (2.22) we need to modify the (2,2) block of the augmented
matrix. To this end, we replace (2.8) with the Newton equation

WkDkNkpk = −WkDkgk + rk ,(3.1)

where

Nk = ATA+D−1
k Ek + ∆k,(3.2)

∆k = diag(δk,1, δk,2, . . . , δk,n), δk,i ∈ [0, 1), i = 1, . . . , n,(3.3)

and rk satisfies (2.9). From Lemma 2 of [16] it can be easily derived that the matrix
WkDkNk is invertible for any xk > 0 and there exists a constant C̄ independent of k
such that

‖(WkDkNk)−1‖ < C̄.(3.4)

Proceeding as to obtain (2.12), (3.1) can be reformulated as the following symmetric
and positive definite system:

SkNkSkp̃k = −Skgk + r̃k,(3.5)

with p̃k = S−1
k pk and r̃k satisfying (2.14).

If δk,i is strictly positive whenever (ek)i = 0, the augmented system is regularized
and takes the form

(
I ASk

SkA
T −Ck

)(
q̃k
p̃k

)

=

(
−(Axk − b)

0

)

,(3.6)

Ck = WkEk + ∆kS
2
k .(3.7)

The Newton-like method proposed can be globalized using a simple strategy anal-
ogous to the one in [3]. Following such strategy, the new iterate xk+1 is required to
satisfy

ψk(xk+1 − xk)

ψk(pC
k )

≥ β, β ∈ (0, 1),(3.8)

where, given p ∈ IRn, ψk(p) is the following quadratic function

ψk(p) =
1

2
pTNkp+ pT gk,

and the step pC
k is a constrained scaled Cauchy step which approximates the solution

to the problem

argmin{ψk(p) : p = −ckDkgk, ck > 0, xk + p > 0}.

In practice, pC
k is given by

pC
k = −ckDkgk,(3.9)
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with

ck =







gT
k Dkgk

gT
k DkNkDkgk

, if xk − gT
k Dkgk

gT
k DkNkDkgk

Dkgk > 0

θ argmin{l > 0, xk − lDkgk ≥ 0}, θ ∈ (0, 1), otherwise

.

(3.10)
In particular, letting pk be a step satisfying (3.1) and p̂k be the step defined in (2.15),
the new iterate has the form

xk+1 = xk + tpC
k + (1 − t)p̂k.

If the point xk+1 = xk + p̂k satisfies (3.8), t is simply taken equal to zero, otherwise a
scalar t ∈ (0, 1] is computed in order to satisfy (3.8). The computation of such t can
be performed inexpensively as shown in [3].

The global and local convergence properties of the regularized Newton-like me-
thod are proved in the next theorem. To maintain fast convergence, eventually it is
necessary to control the forcing term ηk in (2.14) and the entries of ∆k.

Theorem 3.1. Let x0 be an arbitrary strictly positive initial point.
i) The sequence xk generated by the regularized Newton-like method converges to x∗.
ii) If ‖∆k‖ ≤ Λ1‖WkDkgk‖ and ηk ≤ Λ2‖WkDkgk‖, for some positive Λ1, Λ2, and

k sufficiently large, then the sequence {xk} converges q-quadratically toward
x∗.

Proof.

i) Note that,

q(xk) − q(xk + p) = −ψk(p) +
1

2
pT (∆k +D−1

k Ek)p > −ψk(p)

for any p ∈ IRn. Then, proceeding as in Theorem 2.2 in [3] we easily get the thesis.
ii) In order to prove quadratic rate of convergence, we estimate the norm of the

vector (xk + pk − x∗) where pk solves (3.1) and rk satisfies (2.9). Subtracting the
trivial equality WkDkNk(x∗ − x∗) = −WkD(x∗)g(x∗) from (3.1) with a little algebra
we get

WkDkNk(xk + pk − x∗) = Wkρk,(3.11)

where

ρk = Dk∆k(xk − x∗) +W−1
k rk − (Dk −D(x∗))g(x∗) +Ek(xk − x∗).

Letting ρ̃k be the vector such that

(ρ̃k)i =
e(xk)i(xk − x∗)i − (d(xk)i − d(x∗)i)g(x

∗)i

(dk)i + (ek)i
,

and using (2.9) we get

‖Wkρk‖ ≤ ‖WkDk‖‖∆k‖‖xk − x∗‖ + ‖rk‖ + ‖ρ̃k‖
≤ ‖∆k‖‖xk − x∗‖+ ηk‖WkDkgk‖ + ‖ρ̃k‖.(3.12)

Then, from (3.4), (3.11) and (3.12) it follows

‖xk + pk − x∗‖ ≤ C̄(‖∆k‖ ‖xk − x∗‖ + ηk‖WkDkgk‖ + ‖ρ̃k‖).(3.13)

8



Moreover, from the proof of Theorem 4 in [16] it can be derived that there exist
constants C1 > 0 and r1 > 0 such that

‖ρ̃k‖ ≤ C1 ‖xk − x∗‖2,(3.14)

whenever ‖xk − x∗‖ ≤ r1. Finally, from the proof of Lemma 3.2 of [3] it follows that
there are C2 > 0 and r2 > 0 such that

‖WkDkgk‖ ≤ C2‖xk − x∗‖,(3.15)

whenever ‖xk − x∗‖ ≤ r2. Then, (3.14) and (3.15) along with (3.13) yield

‖xk + pk − x∗‖ ≤ C̄ (‖∆k‖ + C2ηk + C1‖x∗ − xk‖) ‖x∗ − xk‖,(3.16)

whenever ‖xk−x∗‖ ≤ min(r1, r2). Therefore, under the assumptions ‖∆k‖ ≤ Λ1‖WkDkgk‖
and ηk ≤ Λ2‖WkDkgk‖ for sufficiently large k, there exist C > 0 and r > 0 such that

‖xk + pk − x∗‖ ≤ C‖x∗ − xk‖2,(3.17)

whenever ‖xk − x∗‖ ≤ r. With this result at hand, slight modifications in the proofs
of Lemma 3.2, Lemma 3.3 and Theorem 3.1 of [3] yield the thesis. �

We underline that Theorem 3.1 holds even if x∗ is degenerate and the convergence
properties of the method in [3] are not degraded.

4. Iterative linear algebra. In this section we focus on the solution of the
Newton equation (3.1) via the augmented system (3.6) employing an iterative method.

It is interesting to characterize the entries of the matrix S(x) given in (2.10).
When the sequence {xk} generated by our method converges to the solution x∗,
the entries of Sk corresponding to the active nondegenerate and possibly degenerate
components of x∗ tend to zero. Therefore there is a splitting of the matrix Sk in two
diagonal blocks (Sk)1 and (Sk)2 such that limk→∞(Sk)1 = I , limk→∞(Sk)2 = 0.

More generally, given a small positive threshold τ ∈ (0, 1), at each iteration we
let

Lk = {i ∈ {1, 2, . . . , n}, s.t. (s2k)i ≥ 1 − τ}, n1 = card(Lk),(4.1)

where card(Lk) is the cardinality of the set Lk. Then, for simplicity we omit permu-
tations and assume that

Sk =

(
(Sk)1 0

0 (Sk)2

)

,(4.2)

(Sk)1 = diagi∈Lk
((sk)i) ∈ IRn1×n1 ,

(Sk)2 = diagi/∈Lk
((sk)i) ∈ IR(n−n1)×(n−n1).(4.3)

Analogously for any diagonal matrix G ∈ IRn×n we let (G)1 ∈ IRn1×n1 be the sub-

matrix formed by the first n1 rows and n1 columns and (G)2 ∈ IR(n−n1)×(n−n1) be
the submatrix formed by the remaining rows and columns. Finally, we consider the
partitioning A = (A1, A2), A1 ∈ IRm×n1 , A2 ∈ IRm×(n−n1).

Assume the set Lk is nonempty. Consequently, the augmented system (3.6) takes
the form





I A1(Sk)1 A2(Sk)2
(Sk)1A

T
1 −(Ck)1 0

(Sk)2A
T
2 0 −(Ck)2









q̃k
(p̃k)1
(p̃k)2



 =





−(Axk − b)
0
0



 ,(4.4)
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and eliminating (p̃k)2 from the first equation we get

(
I +Qk A1(Sk)1

(Sk)1A
T
1 −(Ck)1

)

︸ ︷︷ ︸

Ak

(
q̃k

(p̃k)1

)

=

(
−(Axk − b)

0

)

,(4.5)

where Qk = A2(SkC
−1
k Sk)2A

T
2 . We note that

Ak =

(
I A1(Sk)1

(Sk)1A
T
1 −(∆kS

2
k)1

)

+

(
Qk 0
0 −(WkEk)1

)

,(4.6)

and precondition (4.5) with the matrix

Pk =

(
I A1(Sk)1

(Sk)1A
T
1 −(∆kS

2
k)1

)

.(4.7)

The preconditioner Pk has the following features. As (wk)i(ek)i + (sk)2i = 1 for
i = 1, . . . , n, by the definition (4.1) we have ‖(WkEk)1‖ ≤ τ , ‖(Ck)−1

2 ‖ ≤ 1/τ , ‖Qk‖ ≤
(1− τ)‖A2‖2/τ ; further, when {xk} approaches the solution x∗ (hence (Sk)1 → I and
(Sk)2 → 0) eventually both Qk and (WkEk)1 tend to zero, i.e. ‖Pk − Ak‖ tends to
zero.

Let us observe that the factorization of Pk can be accomplished based on the
identity

Pk =

(
I 0
0 (Sk)1

)(
I A1

AT
1 −(∆k)1

)

︸ ︷︷ ︸

Πk

(
I 0
0 (Sk)1

)

,(4.8)

and factorizing Πk. If the set Lk and the matrix ∆k remain unchanged for a few
iterations, the factorization of the matrix Πk does not have to be updated. In fact,
eventually Lk is expected to settle down as it contains the indices of all the inactive
components of x∗ and the indices of the degenerate components i such that (sk)i

tends to one.

The augmented system (4.5) can be solved by iterative methods for indefinite
systems, e.g. BiCGSTAB [24], GMRES [20], QMR [15]. The speed of convergence
of these methods depends on the spectral properties of the preconditioned matrix
P−1

k Ak which are provided in the following theorem.
Theorem 4.1. Let Ak and Pk be the matrices given in (4.5) and (4.7). Then at

least m−n+n1 eigenvalues of P−1
k Ak are unit and the other eigenvalues are positive

and of the form

λ = 1 + µ, µ =
uTQku+ vT (WkEk)1 v

uTu+ vT (∆kS2
k)1 v

,(4.9)

where (uT , vT )T is an eigenvector associated to λ.

Proof. The eigenvalues and eigenvectors of matrix P−1
k Ak satisfy

(
I +Qk A1(Sk)1

(Sk)1A
T
1 −(Ck)1

)(
u
v

)

= λ

(
I A1(Sk)1

(Sk)1A
T
1 −(∆kS

2
k)1

)(
u
v

)

.(4.10)
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If λ = 1 we get

(I +Qk)u = u

(Ck)1v = (∆kS
2
k)1v

i.e. u belongs to the null space of Qk and v belongs to the null space of (WkEk)1. As
rank(Qk) = n − n1, it follows that there are at least m − (n − n1) unit eigenvalues.
If λ 6= 1, denoting λ = 1 + µ we have

uTQku = µuTu+ µuTA1(Sk)1v

vT (WkEk)1 v = −µvT (Sk)1A
T
1 u+ µvT (∆kS

2
k)1v

Then, adding these two equations we obtain (4.9). Since Qk, (WkEk)1 and ∆kS
2
k are

positive semidefinite we conclude that µ is positive. �

Clearly, if µ is small it means that the eigenvalues of P−1
k Ak are clustered around

one and fast convergence of Krylov methods can be expected. This is the case when
xk is close to the solution. On the other hand, when xk is still far away from x∗, the
following bounds for µ can be derived.

Corollary 4.1. Let Ak and Pk be the matrices given in (4.6) and (4.7), τ be
the scalar in (4.1).

If the elements δk,i in (3.3) are such that δk,i = δ > 0 for i ∈ Lk, then the
eigenvalues of P−1

k Ak have the form λ = 1 + µ and

µ ≤ ‖A2(Sk)2‖2

τ
+

τ

δ(1 − τ)
.(4.11)

If the elements δk,i in (3.3) are such that δk,i = (wk)i(ek)i for i ∈ Lk, then the
eigenvalues of P−1

k Ak have the form λ = 1 + µ and

µ ≤ ‖A2(Sk)2‖2

τ
+

1

1 − τ
.(4.12)

Proof. Consider (4.9) and suppose u and v are not null. Then we have

µ ≤ uTQku

uTu
+
vT (WkEk)1 v

vT (∆kS2
k)1 v

.

Also observe that (4.1) implies

min
i∈Lk

(s2k)i ≥ 1 − τ, ‖(WkEk)1‖ ≤ τ, ‖(Ck)−1
2 ‖ ≤ 1

τ
.

Then, when δk,i = δ > 0 for i ∈ Lk, we obtain

µ ≤ ‖(Ck)−1
2 ‖ ‖A2(Sk)2‖2 +

τ

δ(1 − τ)
,

which yields (4.11).

11



Letting δk,i = (wk)i(ek)i for i ∈ Lk , we get

µ ≤ ‖(Ck)−1
2 ‖ ‖A2(Sk)2‖2 +

∑

i∈Lk
(wk)i(ek)iv

2
i

∑

i∈Lk
δk,i(s2k)iv2

i

≤ ‖A2(Sk)2‖2

τ
+

∑

i∈Lk
δk,iv

2
i

∑

i∈Lk
(s2k)iδk,iv2

i

≤ ‖A2(Sk)2‖2

τ
+

1

mini∈Lk
(s2k)i

.(4.13)

Then (4.12) trivially follows from (4.1).
Finally, if either u or v is null the bound (4.9) consists in one of the two terms

and the thesis still holds. �

The previous result shows that the choice of the regularization parameters δk,i =
δ > 0 for i ∈ Lk does not provide good properties of the spectrum of P−1

k Ak whenever
xk is far from x∗. In fact, to minimize the second term in (4.11), we should fix
τ = O(δ) but the scalar ‖A2(Sk)2‖2/τ may be large as δ is supposed to be small. On
the contrary, letting δk,i = (wk)i(ek)i for i ∈ Lk we have a better distribution of the
eigenvalues of P−1

k Ak. Note that for any regularization used it is essential to keep
the term ‖A2(Sk)2‖2/τ as small as possible. Hence we advise scaling matrix A at the
beginning of the solution process to guarantee that the norm ‖A‖ is small.

Our regularized augmented system equation (4.5) can be solved by the Projected
Preconditioned Conjugate-Gradient (PPCG) method developed in [10, 11]. PPCG
provides the vector q̃k, while the vector p̃k is computed by p̃k = (Ck)−1(Sk)AT q̃k.
Solving (4.5) with preconditioner Pk by PPCG is equivalent to applying Precondi-
tioned Conjugate-Gradient (PCG) to the system

(I +Qk +A1(SkC
−1
k Sk)1A

T
1 )

︸ ︷︷ ︸

Fk

q̃k = −(Axk − b),(4.14)

using a preconditioner of the form

Gk = I +A1(∆k)−1
1 AT

1 ,(4.15)

see [12]. Thus we are interested in the distribution of the eigenvalues for matrix
G−1

k Fk.
Theorem 4.2. Let Fk and Gk be the matrices given in (4.14) and (4.15), Lk be

the set given in (4.1). If δk,i = (wk)i(ek)i, i ∈ Lk, then the eigenvalues of G−1
k Fk

satisfy

1 − 1

2 − τ
≤ λ ≤ 1 +

‖A2(Sk)2‖2

τ
.(4.16)

Proof. Let λ and u ∈ IRm be the eigenvalues and eigenvectors of G−1
k Fk. Then λ

and u satisfy

λ =
uT (I +Qk +A1(SkC

−1
k Sk)1A

T
1 )u

uT (I +A1(∆k)−1
1 AT

1 )u
.
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Then, noting that for any z > 0 and positive a and b such that b > a we have
(z + a)/(z + b) > a/b, it follows:

λ >
uTA1(SkC

−1
k Sk)1A

T
1 u

uTA1(∆k)−1
1 AT

1 u

=
((∆k)

− 1

2

1 AT
1 u)

T (Sk)1
(
(WkEk)1(∆k)−1 + (S2

k)1
)−1

(Sk)1((∆k)
− 1

2

1 AT
1 u)

‖(∆k)
− 1

2

1 AT
1 u‖2

.

Letting z = (∆k)−
1

2AT
1 u we obtain:

λ ≥

∑

i∈Lk

δk,i(s
2
k)iz

2
i

(wk)i(ek)i + δk,i(s2k)i
∑

i∈Lk
z2

i

≥ min
i∈Lk

δk,i(s
2
k)i

(wk)i(ek)i + δk,i(s2k)i
,

and for i ∈ Lk

δk,i(s
2
k)i

(wk)i(ek)i + δk,i(s2k)i
= 1 − (wk)i(ek)i

(wk)i(ek)i + δk,i(s2k)i

= 1 − 1

1 + (s2k)i

≥ 1 − 1

2 − τ
.

This yields the lower bound in (4.16).
Concerning the upper bound on λ, first observe that for any vector v ∈ IRn1 , we

have vT (SkC
−1
k Sk)1v ≤ vT (∆k)−1

1 v. Hence

λ =
uT (I +Qk + A1(SkC

−1
k Sk)1A

T
1 )u

uT (I +A1(∆k)−1
1 AT

1 )u

≤ uT (I +Qk + A1(∆k)−1
1 AT

1 )u

uT (I +A1(∆k)−1
1 AT

1 )u

≤ 1 +
uTQku

uTu

≤ 1 + ‖(Ck)−1
2 ‖ ‖A2(Sk)2‖2

≤ 1 +
‖A2(Sk)2‖2

τ
.

�

Let us observe that since the eigenvectors associated with unit eigenvalues satisfy

(Qk +A1(SkC
−1
k Sk)1A

T
1 −A1(∆k)−1

1 AT
1 )u = 0,

the multiplicity of unit eigenvalues is equal to the dimension of the null space of
the matrix Qk + A1(SkC

−1
k Sk)1A

T
1 − A1(∆k)−1

1 AT
1 . Therefore, the existence of unit

eigenvalues is not guaranteed.
It is worth comparing two possible systems solved by iterative methods: aug-

mented system (4.5) which involves matrix Ak preconditioned with Pk given by
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(4.7) and normal equations (4.14) which involve matrix Fk preconditioned with Gk

given by (4.15). The bounds on the spectra of the preconditioned matrices are given
by Corollary 4.1 and Theorem 4.2, respectively. For P−1

k Ak (with regularization
δk,i = (wk)i(ek)i for i ∈ Lk) from (4.9) and (4.12) we have

1 ≤ λ ≤ 1 +
‖A2(Sk)2‖2

τ
+

1

1 − τ
,(4.17)

and for G−1
k Fk we have (4.16). We observe that for a practical choice of τ close to zero

the bounds are comparable. However, preconditioning of augmented system offers a
slight advantage: first the matrix P−1

k Ak is ensured to have a cluster of m− n + n1

eigenvalues at one, second for τ very close to zero the bound of the ratio of the largest
to the smallest eigenvalue of the preconditioned matrix is about two times smaller
than that for preconditioned normal equations.

We conclude this section considering the limit case where the set Lk is empty.
In this case, the linear system has the form (3.6) where ‖Sk‖ ≤ 1 − τ . To use a
short-recurrence method, we can apply PCG to the normal system

(ST
k A

TASk + Ck)p̃k = −SkA
T (Axk − b),

with preconditioner SkA
TASk. The application of the preconditioner can be per-

formed solving a linear system with matrix

(
I ASk

SkA
T 0

)

.(4.18)

5. Preliminary numerical results. The numerical results were obtained in
double precision using MATLAB 7.0 on a Intel Xeon (TM) 3.4 Ghz, 1GB RAM. The
threshold parameters were the same as in [3]: β in (3.8) was set to 0.3, θ in (3.10)
and σ in (2.15) were set to 0.9995. A successful termination is declared when







qk−1 − qk < τ(1 + qk−1),
‖xk − xk−1‖ ≤ √

τ (1 + ‖xk‖)
‖P (xk + gk) − xk‖ < τ

1

3 (1 + ‖gk‖)
or ‖Dk gk‖ ≤ τ,

with τ = 10−9. A failure is declared when the above tests are not satisfied within 100
iterations. All tests were performed letting the initial guess x0 be the vector of all
ones.

First, we intend to investigate the effect of the regularization strategy on the
conditioning of the augmented systems (3.6) and on the behaviour of the interior
point method. To this end, we monitor the 1-norm condition number of the arising
augmented systems via the estimation provided by the MATLAB function condest

and compare the following two choices of the regularization parameters (3.3)

δk,i = 0, i = 1, . . . , n,(5.1)

δk,i =

{
0, if i 6∈ Lk,
min{max{10−3, (wk)i(ek)i}, 10−2}, otherwise.

(5.2)

We remark that with the choice (5.1) the augmented system is not regularized and
the method reduces to the interior point method given in [3]. On the other hand,
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Test name m n nnz Set1 Set2

σ1 σn σ1 σn

illc1033 1033 320 4732 1.135 10−4 2.144 6.801 10−10 2.093
illc1850 1850 712 8758 1.511 10−3 2.123 1.475 10−9 1.845
well1033 1033 320 4732 1.087 10−2 1.807 1.682 10−8 1.785
well1850 1850 712 8758 1.612 10−2 1.794 8.438 10−8 1.683

Table 5.1

Names, dimensions, nonzero entries, minimum and maximum singular value of the matrices
in Set1 and Set2

choice (5.2) is in accordance with the results of Corollary 4.1. The safeguards used in
the definition of δk,i avoid too small and too large regularization parameters.

The experiments are carried out on two sets of problems. The first set (Set1)
is made up of illc1033, illc1850, well1033, well1850 problems from the Har-
well Boeing collection [13]. These problems are well-conditioned or moderately ill-
conditioned and may be degenerate. In the second set (Set2), matrices and right
hand sides of the tests in Set1 are scaled by multiplying rows from index n − 1 to
index m by a factor 16−5. This scaling was used in [1] and it gives rise to very
ill-conditioned matrices with σ1 close to zero. In Table 5.1, for each test we report
the size of A, the number nnz of nonzero entries of A, the minimum and maximum
singular value σ1 and σn of A. Due to the medium scale of these tests we solve the
linear systems (3.6) via the MATLAB backslash operator.

Figures 5.1 and 5.2 show the condition number of the augmented system at each
iteration of the interior point method applied to tests in Set1 and Set2, with and
without regularization. Regarding tests in Set1, it is evident that if the problem
is moderately ill-conditioned, the regularization produces a reduction, as expected,
of the condition number of the augmented system; in fact, in the regularized case
the condition numbers of the matrices A and Hδ are comparable. On the other hand,
when the problem is not ill conditioned the regularization does not affect the condition
number of the augmented system, see e.g. well1033 and well1850 problems. Finally,
the convergence history of the interior point method seems not to be affected by the
introduction of the regularization strategy.

Analyzing the results of runs for test problems in Set2, we observe that these
problems exhibit very ill-conditioned linear systems and the regularization strategy
reduces their condition number by several orders of magnitude. The use of regular-
ization in the interior point method has improved significantly the performance of
the solution of illc1033 and illc1850. On the other hand a failure occurred in the
solution of well1033 with and without regularization. Such failures are due to the
selection of the scaled Cauchy step for a large number of iterations that makes the
method extremely slow.

Now, we intend to investigate the effectiveness of our preconditioning technique.
We considered problems where the matrix A is the transpose of the matrices in the
LPnetlib subset of The University of Florida Sparse Matrix Collection [8]. The
vector b is set equal to b = −Ae, where e is the vector of all ones. From LPnetlib

collection we discarded the matrices with m < 1000 and the matrices that are not full
rank, getting a total of 56 matrices. When the 1-norm of A exceeded 103, we scaled
the matrix using a simple row and column scaling scheme.
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Fig. 5.1. Condition number of the augmented systems arising in Set 1 with regularization
(dashed line) and without regularization (solid line)

We use the iterative solver PPCG [11] and we set to 100 the maximal number of
PPCG iterations. If PPCG was not able to satisfy the stopping criterion within 100
iterations, the algorithm employed the last computed iterate. Regarding the choice
of the stopping tolerance for PPCG, a comment is needed. PPCG is an iterative
procedure that yields the solution of the indefinite system (4.5) via a CG procedure
for the symmetric and positive system (4.14) preconditioned by Gk given in (4.15).
Then, it provides a step p̃k such that

I +Qk +A1(SkC
−1
k Sk)1A

T
1 q̃k = −(Axk − b) + r̄k ,(5.3)

and monitors the norm of preconditioned residual G−1/2
k r̄k. Letting

ηk = max(500εm,min(10−1, 10−2‖WkDkgk‖),

we stop PPCG when ‖G−1
k r̄k‖ drops below tol given by:

tol = max(10−7,
ηk‖WkDkgk‖
‖ATSk‖1

).

With this adaptive choice of tol, the linear systems are solved with a low accuracy
when the current iterate is far from the solution, while the accuracy increases as the
solution is approached. This choice allows to solve with a sufficient accuracy also the

16



0 50 100 150
10

0

10
10

10
20

10
30

ILLC1033

0 20 40 60 80
10

0

10
5

10
10

10
15

10
20

ILLC1850

0 50 100 150
10

0

10
5

10
10

10
15

WELL1033

0 5 10 15 20 25
10

0

10
5

10
10

10
15

10
20

WELL1850

Fig. 5.2. Condition number of the augmented systems arising in Set 2 with regularization
(dashed line) and without regularization (solid line)

linear system (3.5). Indeed, the unpreconditioned residual r̃k in (3.5) is related to the
unpreconditioned residual r̄k in (5.3) as follows:

r̄k = ST
k A

T r̃k;

Then, with this choice of tol we enforce condition (2.14) with an ηk sufficiently small
to ensure quadratic convergence (see Theorem 3.1). Simpler choices of tol were not
satisfying; for example: tol = 10−3 for all k, yields a very inaccurate solution of (3.5)
that precludes the convergence of the method. On the other hand, tol = 10−7 for
all k, yields an exceedingly accurate solution in the first iterations, and this requires
many PPCG iterations as typically the preconditioner is not very efficient at the first
iterations of the method.

When the set Lk is empty we use the CG method applied to the normal equations
system without any preconditioner.

The regularization parameters δk have been chosen according to the rule (5.2).
Moreover, to avoid preconditioner updates and factorizations, at iteration k + 1 we
freeze the set Lk and the vector δk if at kth iteration PPCG has succeeded within 30
iterations and the following condition holds:

|card(Lk+1) − card(Lk)| ≤ 10.

Table 5.2 collects the results of the interior point method on the performed runs.
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We report the problem name, the size of A, the number nnz of nonzero elements of A,
the number Nit of nonlinear iterations, the overall number Lit of PPCG iterations,
the overall number Pf of preconditioner factorizations, the average number ALit of
PPCG iterations and the average cardinality Avc of the set Lk. On a total of 56 tests
we have 5 failures in solving the problem within 100 nonlinear iterations; these runs
are denoted by the symbol ∗∗.

More insight into these failures, first we note that the linear algebra phase is
effectively solved for all problems. Failures in problems lp scsd8 and lp stocfor3

are recovered allowing up to 300 nonlinear iterations. Specifically, lp scsd8 is solved
with Nit = 201, Lit = 1704, Pf = 8, ALit = 8, Avc = 366; lp stocfor3 is solved
with Nit = 212, Lit = 1956, Pf = 67, ALit = 9 and Avc = 7260. In the solution
of problems lp d2q06c and lpi klein3 the progress of the method is very slow as
the scaled Cauchy step is taken to update the iterates. On the contrary, in problem
lp ganges the projected Newton step is taken at each iterate but the procedure fails
to converge in a reasonable number of iteration; we ascribe this failure to the use
of the inexact approach as the Newton-like method with direct solver converges in 8
iterations.

We conclude with some comments on these results.

• The interior point method is robust and typically requires a low number of
nonlinear iterations. On a total of 56 test problems we have 5 failures.

• The 8 problems where Avr(n1) is null are such that the solution is the null
vector. In practice, for these problems we noted that Sk is very small for all
k ≥ 0. Therefore, as ∆k = 0, we have ST

k A
TASk+Ck ' I and the convergence

of the linear solver is very fast. So we did not employ the preconditioner
(4.18).

• There are noticeable savings in the number of preconditioner factorizations
needed. Focusing on the 43 successfully solved test examples where the pre-
conditioner was used, for 29 of them we avoided to update and factorize the
preconditioner in at least 30% of the nonlinear iterations performed.

• For 32 out of 43 problems, n1 is smaller than n/2; that is we have to solve
augmented systems of considerably smaller dimension.

• The average number ALit of PPCG iterations is quite low. In case of 40 out
of 51 problems ALit does not exceed 40.
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Test name m n nnz Nit Lit Pf ALit Avc

lp 80bau3b 12061 2262 23264 12 459 8 38 546

lp bnl2 4486 2324 14996 10 566 8 57 747

lp czprob 3562 929 10708 6 7 0 1 0

lp d2q06c 5831 2171 33081 ** ** ** ** **

lp degen3 2604 1503 25432 21 1033 16 49 586

lp dfl001 12230 6071 35632 10 417 7 42 829

lp fffff800 1028 524 6401 100 2384 94 24 69

lp finnis 1064 497 2760 15 588 10 39 149

lp fit2d 10524 25 129042 6 6 0 1 0

lp fit2p 13525 3000 50284 6 6 0 1 0

lp ganges 1309 1706 6937 ** ** ** ** **

lp gfrd pnc 1160 616 2445 7 106 5 15 317

lp ken 07 3602 2426 8404 12 122 6 10 2273

lp ken 11 21349 14694 49058 14 255 6 18 14185

lp ken 13 42659 28632 97246 12 172 8 14 27662

lp ken 18 154699 105127 358171 11 156 7 14 101180

lp maros 1966 846 10137 13 500 7 38 323

lp maros r7 9408 3136 144848 6 6 0 1 0

lp osa 07 25067 1118 144812 6 6 0 1 0

lp osa 14 54797 2337 317097 6 6 0 1 0

lp osa 30 104374 4350 604488 6 6 0 1 0

lp osa 60 243246 10280 1408073 6 6 0 1 0

lp pds 02 7716 2953 16571 10 121 4 12 2709

lp pds 06 29351 9881 63220 10 192 6 19 9037

lp pds 10 49932 16558 107605 10 215 9 22 15118

lp perold 1506 625 6148 34 1732 21 51 247

lp pilot 4860 1441 44375 13 760 10 58 501

lp pilot4 1123 410 5264 15 597 8 40 98

lp pilot87 6680 2030 74949 42 3839 40 91 914

lp pilot ja 2267 940 14977 62 4154 50 67 461

lp pilot we 2928 722 9265 12 662 9 55 359

lp pilotnov 2446 975 13331 44 2483 38 56 452

lp qap8 1632 912 7296 7 11 3 2 11

lp qap12 8856 3192 38304 7 11 3 2 17

lp qap15 22275 6330 94950 7 11 3 2 21

lp scfxm2 1200 660 5469 76 2769 59 36 158

lp scfxm3 1800 990 8206 84 3048 68 36 237

lp scrs8 1275 490 3288 10 329 6 33 215

lp scsd6 1350 147 4316 9 151 5 17 117

lp scsd8 2750 397 8584 ** ** ** ** **

lp sctap2 2500 1090 7334 8 68 4 9 10

lp sctap3 3340 1480 9734 11 439 7 40 46

lp shell 1777 536 3558 7 68 1 10 528

lp sierra 2735 1227 8001 12 240 4 20 457

lp standata 1274 359 3230 7 107 5 15 67

lp standmps 1274 467 3878 10 216 4 22 94

lp stocfor2 3045 2157 9357 18 319 8 18 874

lp stocfor3 23541 16675 72721 ** ** ** ** **

lp truss 8806 1000 27836 21 395 6 19 942

lp wood1p 2595 244 70216 22 656 14 30 204

lp woodw 8418 1098 37487 11 486 6 44 234

lpi bgindy 10880 2671 66266 7 19 3 3 23

lpi ceria3d 4400 3576 21178 9 94 2 10 287

lpi klein3 1082 994 13101 ** ** ** ** **

lpi cplex1 5224 3005 10947 12 266 9 22 1660

lpi pilot4i 1123 410 5264 14 638 8 46 95
Table 5.2

Summary of the results for matrices from LPnetib
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