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A Family of Linear Programming Algorithms Based onan Algorithm by von NeumannJo~ao P. M. Gon�alvesMathematial Sienes Department, IBM T. J. Watson Researh Center,Yorktown Heights, NY 10598, USA,jpgonal�us.ibm.omRobert H. StorerDepartment of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA,rhs2�lehigh.eduJaek GondzioShool of Mathematis, The University of Edinburgh, Edinburgh, EH9 3JZ, UK,J.Gondzio�ed.a.ukAbstratIn this paper, we present a family of algorithms for linear programming based on analgorithm proposed by von Neumann. The von Neumann algorithm is very attrativedue to its simpliity but is not pratial for solving most linear programs to optimalitydue to its slow onvergene. Our algorithms were developed with the objetive of im-proving the pratial onvergene of the von Neumann algorithm while maintaining itsattrative features. We present results from omputational experiments on a set of lin-ear programming problems that show signi�ant improvements over the von Neumannalgorithm.Keywords: Linear programming; Elementary algorithms; Von Neumann algorithm1 IntrodutionIn 1948, von Neumann proposed to Dantzig, in a private ommuniation, an algorithm forlinear programming. The algorithm was �rst published by Dantzig in the early 1990's [5, 6℄and was later studied by Epelman and Freund [9, 10℄ and Bek and Teboulle [2℄. AlthoughDantzig introdues it in [5, 6℄ as an algorithm for �nding a feasible solution to a linear pro-gram with a onvexity onstraint, the von Neumann algorithm an be more generally viewedas an algorithm for solving systems of linear inequalities. Epelman and Freund [9, 10℄ refer1
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to this algorithm as \elementary", in the sense that it performs only simple omputationsat eah iteration and onsequently it is very unsophistiated, espeially when ompared tomodern interior point algorithms. Attrative properties of the von Neumann algorithm areits low omputational ost per iteration, whih is dominated by a matrix-vetor multiplia-tion, and the possibility of exploiting the sparsity of the original problem data. As pointedout by Epelman and Freund [9, 10℄, these properties are shared by other elementary algo-rithms for �nding a point in a onvex set, suh as the relaxation method for systems of linearinequalities [1, 19, 8, 15℄ and the pereptron algorithm [20, 21℄. A desription and analysisof the von Neumann algorithm an also be found in [3℄.As shown in this paper, the von Neumann algorithm is impratial for solving linearprograms to a high degree of optimality due to its slow overall onvergene. However, itusually has a fast initial onvergene rate that, ombined with the other nie propertiesmentioned above, an make it attrative in some ontexts. For example, it ould possiblybe used to provide a starting solution to another linear programming algorithm suh as aninterior point method. As given by Epelman and Freund [9, 10℄, a generalization of the vonNeumann algorithm ould also, for example, be used for solving oni linear systems. Theirstudy is theoretial and the pratial viability of their algorithm still remains to be seen.In this paper, we propose three new algorithms designed to overome some of the onver-gene diÆulties of the original von Neumann method. Through omputational experimentson a set of linear programming problems, we show that our algorithms provide very signi�-ant improvements.The outline of the paper is as follows. In setion 2, we desribe the von Neumannalgorithm and disuss its omputational omplexity. We also present a review of the literaturefousing on ideas for improving the algorithm. In setion 3, we present our new algorithmsfor linear programming based on the von Neumann algorithm. Setion 4 inludes someimplementation details and in setion 5 we desribe our omputational experiments andpresent the results. Finally, we disuss the main ontributions of this paper in setion 6. Inthe appendix we give more details related to the omputational experiments.
2



2 The von Neumann AlgorithmWe onsider the problem of �nding a feasible solution to the following set of linear onstraints:Px = 0;eTx = 1;x � 0; (1)where P 2 Rm�n , x 2 Rn , e 2 Rn is the vetor of all ones, and the olumns of P havenorm one, i.e., kPjk = 1; j = 1; : : : ; n. Geometrially, the olumns Pj an be viewed aspoints lying on the m-dimensional hypersphere with unit radius and enter at the origin (see�gure 1). The above problem an then be desribed as that of assigning nonnegative weightsxj to the points Pj so that their weighted enter of gravity is the origin 0. Note that anylinear programming problem an be redued to problem (1). For the details of the neessarytransformations, the reader is referred to [16℄.
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Figure 1: Illustration of the von Neumann algorithm.The von Neumann algorithm an be stated as follows:3



1. (Initialization) The algorithm an be initialized with any approximation to the origin,i.e., b0 = Px0; eTx0 = 1;x0 � 0, where x0 is arbitrary (e.g., xj = 1=n; j = 1; : : : ; n).2. (Computation of diretion) At the start of iteration k; k � 1, we have an approximatesolution x = xk�1, suh that x � 0 and eTx = 1. Letbk�1 = Pxk�1; uk�1 = kbk�1k:Among all vetors Pj; j = 1; : : : ; n, �nd a vetor Ps whih makes the largest angle (�in �gure 1) with the vetor bk�1:s = argminj=1;:::;nPTj bk�1:3. (Chek for infeasibility) Let vk�1 = PTs bk�1. If vk�1 > 0, stop; the problem (1) isinfeasible.4. (Computation of new approximation) The next approximation bk is hosen as thelosest point to the origin on the line segment joining bk�1 and Ps (see �gure 1). Thisis done by letting � = 1� vk�1u2k�1 � 2vk�1 + 1 ;bk = �bk�1 + (1� �)Ps;u2k = �vk�1 + (1� �);xk = �xk�1 + (1� �)es:where es is the unit vetor orresponding to index s. Let k := k + 1 and go to Step 2.In step 3 of the algorithm, if vk�1 > 0, then all points Pj lie on one side of the hyperplanethat passes through the origin and is perpendiular to the diretion bk�1. This means thatno onvex ombination of the points Pj an be found having the origin as enter of gravity.Thus, in suh a ase, we an onlude that problem (1) is infeasible.In step 4 of the algorithm, note that, sine vk�1 = PTs bk�1 � 0, we have 0 < 1� vk�1 <u2k�1 � 2vk�1 + 1, and therefore, 0 < � < 1. Also note that the new approximation isguaranteed to be loser to the origin than the previous one, i.e., uk < uk�1. This anbe easily understood from �gure 1, where we see that in the right triangle 0bk�1bk thehypotenuse is uk�1 = 0bk�1 and a leg is uk = 0bk.4



The von Neumann algorithm performs only simple omputations at eah iteration. Themost expensive omputation is the matrix-vetor multipliation required to selet the olumnPs in step 2 of the algorithmwhih isO(mn). Note that the number of omputations requiredto perform this multipliation an be signi�antly redued if P is sparse.The rate of onvergene of the von Neumann algorithm was studied by Dantzig [5, 6℄,by Epelman and Freund [9, 10℄, and by Bek and Teboulle [2℄. Before presenting theironvergene results, we de�ne an �-solution of (1) as an approximate solution xk suh that,xk � 0, eTxk = 1, and uk = kbkk = kPxkk � �. We an now state the onvergene resultby Dantzig.Theorem 2.1 (Dantzig [6℄) For � > 0, if problem (1) is feasible, the von Neumann algo-rithm obtains an �-solution of (1) in at most d1=�2e iterations.Note that the omplexity bound in theorem 2.1 is independent of the number of rows mand olumns n, whih is potentially advantageous. Note also that theorem 2.1 only treatsthe ase when problem (1) is feasible.The analysis by Epelman and Freund [9, 10℄ overs both the feasible and infeasible ases.It is based on the quantity r that, when problem (1) has a feasible solution, is de�ned asthe radius of the largest ball entered at the origin 0 that is entirely ontained in the onvexhull of the olumns of P. If (1) does not have a feasible solution, then r is the distane fromthe origin 0 to the onvex hull of the olumns of P.Theorem 2.2 (Epelman and Freund [9℄) Suppose that r > 0 and let � > 0. If prob-lem (1) is feasible, then the von Neumann algorithm obtains an �-solution of (1) in at mostd 2r2 ln 1� eiterations. If (1) is infeasible, then the von Neumann algorithm proves infeasibility in atmost b1=r2 iterations.The result of Bek and Teboulle [2℄ applies to the ase when problem (1) is feasible. Itdi�ers from the Epelman and Freund result for the feasible ase only in that r is substitutedby another quantity R that depends on the distane between a feasible point and the bound-ary of S = feTx = 1;x � 0g. Aording to the authors, the inequality r � R holds for anyfeasible point. 5



In pratie, the von Neumann algorithm is usually fast during the early iterations butthen its onvergene rate beomes slow. The pratial slow onvergene was observed byDantzig [6℄, who developed a variant of the von Neumann algorithm that yields an exatsolution to (1). Dantzig's algorithm is based on the assumption that the value of r is known.However, in general, we do not know r in advane, whih makes the algorithm impratial.Other algorithms that an be seen as variants of the von Neumann algorithm have beenproposed in the literature. They were developed in the ontext of the Frank-Wolfe al-gorithm [12℄, whih redues to the von Neumann algorithm when applied to a partiularproblem form. We implemented and tested three of those algorithms, namely the away stepintrodued by Wolfe [22℄, the parallel tangents (PARTAN) method [11, 18℄, and the algo-rithm introdued by Fukushima [13℄. We briey desribe the basi idea of eah of thesealgorithms. The reader is referred to [16℄ for a full desription.The basi idea of the modi�ation proposed by Wolfe is to onsider an alternative feasiblediretion from the urrent iterate. This diretion is alled an \away diretion" sine it isdetermined by the vetor Pt that makes the smallest (rather than largest) angle with thevetor bk�1. If jPTt bk�1j > jvk�1j and xk�1t > 0, the algorithm performs the away step, whihonsists of �nding the point bk that is losest to the origin along the line onneting Pt andbk�1. Otherwise, the algorithm performs the normal von Neumann iteration.The PARTAN method aims at orreting the zigzag behavior responsible for the slowonvergene of the von Neumann algorithm. This behavior is haraterized by the zigzagmovement of suessive iterates of the algorithm, making small progress towards the solution.The basi idea of the PARTAN method is to de�ne a feasible diretion (PARTAN diretion)by onneting the urrent iterate bk�1 and the iterate from two iterations ago bk�3. Thealgorithm alternates between the original von Neumann diretion and the PARTAN diretion.The Fukushima algorithm onsiders at eah iteration an alternative feasible diretionformed by the urrent iterate bk�1 and a onvex ombination of vetors Ps that have beenseleted in previous iterations. The number of vetors Ps from previous iterations used inthe onvex ombination is hosen by the user and the weights are the same for all vetors.The diretion atually used in eah iteration is the best of the above diretion and the vonNeumann diretion.
6



3 New AlgorithmsIn this setion, we desribe three new algorithms that are based on the von Neumann algo-rithm and that were developed in an attempt to improve its onvergene. These algorithmshave been named weight-redution, optimal pair adjustment, and projetion. They all applyto problem (1).Our main fous is on the optimal pair adjustment algorithm. This is the algorithm thatperformed better in our omputational experiments. Also, it is a generalization of the vonNeumann and weight-redution algorithms. The other algorithms are given with di�erentlevels of detail. In partiular, the projetion algorithm is desribed very briey and thereader is referred elsewhere for its details.3.1 The Weight-Redution AlgorithmThe weight-redution algorithm is based on the idea that a urrent approximation bk�1 anbe moved loser to the origin 0 by inreasing the weights xj assigned to some of the olumnsPj and dereasing the weights xj assigned to other olumns Pj. In partiular, we expet thenew approximation bk to be loser to the origin 0 than the previous one, if we inrease theweight orresponding to the vetor Ps that has the largest angle with bk�1 and derease theweight assigned to the vetor Pt that has the smallest angle with bk�1. This orresponds tomoving from bk�1 in the diretion Ps�Pt. The new point bk is the one that minimizes thedistane to the origin 0 along that line. Of ourse, the minimization of the distane to theorigin is onstrained on the maximum possible derease of xt. Sine we have xj � 0; 8j, wean only derease xt until it beomes zero.We now state the weight-redution algorithm by speifying the steps that are di�erentfrom the von Neumann algorithm desribed in the previous setion. In step 2, in addition to�nding the vetor Ps whih makes the largest angle with the vetor bk�1, we also �nd thevetor Pt whih makes the smallest angle with the vetor bk�1 and suh that xt > 0:t = argmaxj=1;:::;nxj>0 PTj bk�1:In step 4, we let d = Ps �Pt and� = minf�dTbk�1kdk2 ; xtg7



The next approximation is omputed asbk = bk�1 + �d;uk = kbkk;xk = xk�1 + �(es � et);where es and et are unit vetors with one in position j = s and j = t, respetively.Finally, we let k := k + 1 and go to Step 2.An iteration of the weight-redution algorithm is not guaranteed to improve as muhas an iteration of the von Neumann algorithm. However, the weight-redution algorithman easily be modi�ed suh that a weight-redution iteration is replaed by a von Neumanniteration when the latter provides a larger improvement.The work per iteration of the weight-redution algorithm is dominated by the matrix-vetor multipliation required for the seletion of the olumns Ps and Pt whih is O(mn).This is the same bound as in the von Neumann algorithm.3.2 The Optimal Pair Adjustment AlgorithmThe optimal pair adjustment algorithm is a generalization of the weight-redution algorithmdesigned to give the maximum possible freedom to two of the weights xj. Similar to theweight-redution algorithm, we start by identifying the vetors Ps and Pt that have thelargest and the smallest angle with bk�1, respetively. We then �nd the values of xks ; xkt , and�, where xkj = �xk�1j for all j 6= s and j 6= t, that minimize the distane from bk to the origin0 while satisfying the onvexity and nonnegativity onstraints. This optimization problemhas an easily omputable solution found by examination of the Karush-Kuhn-Tuker (KKT)onditions. The main di�erene between the weight-redution algorithm and the optimalpair adjustment algorithm is that in the former only the weights of Ps and Pt are hangedwhile in the latter all other weights are also hanged.The optimal pair adjustment algorithm di�ers from the von Neumann algorithm in steps2 and 4. Step 2 is the same as for the weight-redution algorithm.In step 4, whih is the omputation of the new approximation, we solve the problemminimize kbkk2 = k�1(bk�1 � xk�1s Ps � xk�1t Pt) + �2Ps + �3Ptk2subjet to �1(1� xk�1s � xk�1t ) + �2 + �3 = 1;�1 � 0; �2 � 0; �3 � 0: (2)8



The next approximation is now omputed asbk = �1(bk�1 � xk�1s Ps � xk�1t Pt) + �2Ps + �3Pt;uk = kbkk;xkj = 8><>:�1xk�1j ; j 6= s and j 6= t;�2; j = s;�3; j = t:We �nally let k := k + 1 and go to Step 2.In order to solve problem (2), we �rst simplify it by eliminating the variable �1. We dothis by rewriting the equality onstraint as�1 = 1� �2 � �31� xk�1s � xk�1tand substituting this expression where appropriate. The problem redues tominimize kbkk2 = k 1� �2 � �31� xk�1s � xk�1t (bk�1 � xk�1s Ps � xk�1t Pt) + �2Ps + �3Ptk2subjet to 1� �2 � �3 � 0;�2 � 0; �3 � 0: (3)This problem an be easily solved by writing the Karush-Kuhn-Tuker (KKT) neessaryand suÆient onditions and �nding a feasible solution that satis�es those onditions. Thedetails of this proess are given in [16℄.The work per iteration of the optimal pair adjustment algorithm is of the same order asthe work per iteration of the von Neumann algorithm. Moreover, the improvement in theformer is at least as good as the improvement in the latter as it is shown in the next theorem.Theorem 3.1 Suppose that bk�1 is the residual at the beginning of iteration k; k � 1. Also,suppose that bkOPA is the residual after an iteration of the optimal pair adjustment algorithmand bkVN is the residual after an iteration of the von Neumann algorithm. Then,kbkOPAk � kbkVNk:Proof. Let k; k � 1 be given and let bk�1 be the residual at the beginning of iteration k. LetPs and Pt be the vetors that make the largest and smallest angle with bk�1, respetively.After iteration k of the optimal pair adjustment algorithm we will havebkOPA = ��1(bk�1 � xk�1s Ps � xk�1t Pt) + ��2Ps + ��3Pt;9



where (��1; ��2; ��3) is the optimal solution to problem (2). Let (�VN; �VNxk�1s +1��VN; �VNxk�1t ),where �VN is the � of a von Neumann iteration, be a feasible solution to (2). Then, we anwrite k�VNbk�1 + (1� �VN)Psk = kbkVNk � kbkOPAk: �The above theorem allows us to show that the onvergene results for the von Neumannalgorithm presented in setion 2 also apply to the optimal pair adjustment algorithm. As anexample, we show next that the onvergene result by Epelman and Freund (see theorem 2.2)when problem (1) is feasible is valid for the optimal pair adjustment algorithm.We start by stating the following proposition derived by Epelman and Freund for thevon Neumann algorithm.Proposition 3.1 (Epelman and Freund [9℄) Suppose that problem (1) has a feasible so-lution, and that r > 0. At every iteration k; k � 1, of the von Neumann algorithmkbkk2 � kbk�1k2e�r2:Given theorem 3.1, proposition 3.1 is also valid if k is an iteration of the optimal pairadjustment algorithm. Applying this inequality indutively, we an bound the size of theresidual kbkk by kbkk � kb0ke�kr2=2 � e�kr2=2:Reall that for an �-solution, kbkk � �. Given the above bound for the size of the residualkbkk, we are guaranteed to have an �-solution fore�kr2=2 � �:Rearranging the above expression, we obtaink � 2r2 ln 1� :Thus, if (1) is feasible, the optimal pair adjustment algorithm needs onlyd 2r2 ln 1� eiterations to �nd an �-solution. 10



3.3 The Projetion AlgorithmThe struture of the projetion algorithm is similar to the von Neumann algorithm. Themain di�erene is that, at eah iteration of the projetion algorithm, the new approximationbk is omputed as a onvex ombination of the previous approximation bk�1 and of a point�b that is itself a onvex ombination of some of the olumns of the matrix P. Reall thatin the von Neumann algorithm, the new approximation bk is a onvex ombination of theprevious approximation bk�1 and of the vetor Ps. The motivation for using a vetor �binstead of Ps is to try to make more progress at eah iteration. The vetor �b is onstrutedby solving an auxiliary problem using the von Neumann algorithm. The auxiliary problemis reated as follows:1. We de�ne a hyperplane through the origin and orthogonal to the vetor bk�1.2. We take the vetors Pj that lie on the opposite side of the above hyperplane (in relationto bk�1) and projet them onto the same hyperplane.3. We reate a linear programming feasibility problem using the projeted vetors andthe origin.Any approximate solution to the auxiliary problem an be mapped bak to the originalproblem, i.e., the weights that de�ne the onvex ombination of the projeted points anbe used to de�ne a onvex ombination of the points in the original problem (i.e., beforeprojeting). The point resulting from that onvex ombination is designated by �b and is usedto ompute the new approximate solution to the original problem. When the approximatesolution in the auxiliary problem is lose enough to the origin 0, we expet the orrespondingpoint in the original problem �b to be better thanPs, in the sense that it will produe a smallerkbkk.The details of the algorithm are given in [16℄. The work per iteration depends on thework done solving the auxiliary problem. In pratie, it is of the same order as the vonNeumann algorithm. The onvergene bounds of the von Neumann algorithm presented insetion 2 are also valid for the projetion algorithm.
11



4 ImplementationThe von Neumann algorithm, the three algorithms presented in setion 2 (away step, PAR-TAN, and Fukushima) resulting from the modi�ations proposed in the literature to theFrank-Wolfe algorithm, and all the new algorithms desribed in the previous setion havebeen implemented in ANSI-standard Fortran 77. The odes use routines from the linearprogramming solver HOPDM developed by Gondzio [17℄. In partiular, they use the rou-tines to read the problem data in MPS format, to perform presolve analysis, and to salethe problem. For eÆieny, the upper bound onstraints in the primal problem are treatedseparately from the other onstraints.4.1 Aeleration StrategiesFor all but one of the algorithms implemented, the seletion of the olumn(s) Pj to usein eah iteration is the most time-onsuming omputation. An obvious way to redue theomputation assoiated with the seletion of the olumn(s) is to onsider only a subset ofthe olumns at eah iteration. We have implemented two strategies based on ideas usedin pratial implementations of the simplex method known as partial and multiple priing.Sine the number of olumns that we need to selet at eah iteration is not the same forall algorithms, the atual implementation of these strategies depends on the algorithm.However, the main onept of these strategies is the same throughout and therefore we fousonly on the implementation of these strategies for the von Neumann algorithm.4.1.1 Partial PriingThe idea of partial priing is to divide the matrix P into bloks of olumns and onsider onlythe olumns from one of those bloks at eah iteration. More spei�ally, in step 2 of thealgorithm (see setion 2), the olumn Ps is hosen from among a subset of the olumns ofP, rather than among all its olumns. In our implementation, we divide the matrix P in tenbloks. Eah blok ontains a subset of the olumns assoiated with eah set of variables.For example, the set of variables xj is divided into ten subsets and the olumns assoiatedwith eah subset are assigned to a di�erent blok.At eah iteration, if there is not a olumn from the urrent blok for whih PTj bk�1 � 0,then we move on to onsider the olumns of the following blok. At every new iteration westart by onsidering the blok following the last blok used in the previous iteration. In the12



�rst iteration, we onsider all olumns from matrix P. We do that beause we have observedthat the improvement of kbkk in the �rst iteration of the von Neumann algorithm whenonsidering all olumns is often very good.Note that we divide the matrix P into a �xed number of bloks for all problems. Thisis a simple way of dividing the matrix but it goes without saying that one ould use otherways whih would possibly lead to better results.4.1.2 Multiple PriingThe multiple priing strategy uses the same division of the matrix P in bloks of olumns aspartial priing. In addition, a list of andidate olumns is kept from one iteration to another.At eah iteration, we onsider �rst the olumns in the andidate list. If for all the olumnsin the list we have PTj bk�1 > 0, then we swith to the partial priing strategy and look fora suitable olumn in one of the bloks of olumns. The strategy for hoosing the bloks isexatly as desribed in the previous setion. After we �nd a suitable olumn, we replae theolumns in the andidate list by olumns j from the last blok examined for whih PTj bk�1is smallest. In our implementation, the andidate list ontains ten olumns.For the algorithms that, at eah iteration, require the olumns that make the largest andsmallest angles with bk�1, we �ll the andidate list with the �ve olumns for whih PTj bk�1is smallest and the �ve olumns for whih PTj bk�1 is largest.5 Computational ExperimentsIn our omputational experiments, we used a olletion of 145 linear programming instanes.The set is divided into 91 Netlib instanes [14℄, 15 Kennington instanes [4℄, and 39 otherinstanes whih are not available publily but an be made available upon request. Note thatfour Netlib instanes (ssd1, ssd6, wood1p, woodw) and one Kennington instane (pds-20)were removed from this study beause at least one of the algorithms stopped prematurelyon those problems. That happened beause some of our odes do not avoid all possiblesolutions where the variable orresponding to the last olumn of matrix P beomes zero. Ifthat happens, we have a solution for problem (1) but not for the original primal and dualproblems (see the problem transformations in [16℄). Sine we only observed these diÆultiesfor a few instanes, we did not orret our odes in order to avoid them. However, the hangesneeded are fairly straightforward and should not a�et the performane of the algorithms.13



The names of the instanes in the three subsets are given in a table in the appendixwhere the subsets appear ordered as above. In that same table, we also give the sizes of allthe problems after presolve, as well as kb0k, i.e., the norm of the vetor of residuals for thestarting solution. The starting solution is the same for all algorithms and orresponds tosetting all variables equal to 1=N , where N is the total number of variables in the problem.The main objetive of our omputational experiments was to ompare the performane ofthe new algorithms proposed in this paper with the performane of the von Neumann algo-rithm and of those resulting from the modi�ations to the Frank-Wolfe algorithm proposedin the literature. We reall that the three modi�ations to the Frank-Wolfe algorithm thatwe have applied to the von Neumann algorithm are the away step introdued by Wolfe [22℄,the parallel tangents (PARTAN) method [11, 18℄, and the idea introdued by Fukushima [13℄.In terms of the algorithms that we propose in this paper, we tested the weight-redutionalgorithm as desribed in setion 3.1 and also a version where at eah iteration we seletthe best step between the weight-redution step and the von Neumann step. We tested theother algorithms (optimal pair adjustment algorithm and projetion algorithm) as desribedin setions 3.2 and 3.3. In the ase of the projetion algorithm, we stop the auxiliary problemwhen the relative improvement in two onseutive iterations is less than a ertain perentage(rd) spei�ed by the user. We hose to use rd = 50%; 5%, and 0:5%. In addition to testingthe original algorithms, we also tested the versions that use partial priing and multiplepriing.In our experiments, we �rst ran the von Neumann algorithm on all test problems and, foreah problem, reorded the time t1 (CPU seonds) and the norm of the vetor of residualskbkk when the relative di�erene between kbk�1k and kbkk was less than 0:5%. We alsoreorded kbkk at four other times t2; t3; t4 and t5 (CPU seonds). Times t2; t3; t4 and t5orrespond to 3, 5, 10 and 20 times the number of iterations at t1. We then ran all otheralgorithms and, for eah problem, reorded kbkk at times ti; i = 1; : : : ; 5. In table 1, wegive the perentage of problems that were winning, i.e., that had smaller kbkk, at timest1 through t5. For eah algorithm, we give the results for the original version, as well asfor the versions with partial and multiple priing. Note that the measure of time used isCPU seonds. The algorithm that wins for a larger perentage of the problems at times t1through t5 is the optimal pair adjustment algorithm with multiple priing. It is followed bythe optimal pair adjustment with partial priing. In third plae is the original optimal pairadjustment algorithm exept for time t5 where the weight-redution algorithm with multiple14



priing has a larger number of winnings.Table 1: Perentage of winning problems for eah algorithm at �ve di�erent times.Algorithm t1 t2 t3 t4 t5Von Neumann (VN) 0.7% 0.0% 0.0% 0.0% 0.0%w/ pp 0.0% 0.0% 0.0% 0.0% 0.0%w/ mp 0.0% 0.0% 0.0% 0.0% 0.0%VN w/ away step 0.0% 0.0% 0.0% 0.0% 0.0%w/ pp 0.0% 0.0% 0.0% 0.0% 0.7%w/ mp 0.0% 0.0% 0.0% 0.0% 0.0%PARTAN 0.0% 0.0% 0.0% 0.7% 0.7%w/ pp 0.0% 0.7% 0.7% 0.0% 0.0%w/ mp 0.0% 1.4% 2.1% 2.1% 2.8%Fukushima 0.0% 0.0% 0.0% 0.0% 0.0%w/ pp 0.0% 0.0% 0.0% 0.0% 0.0%w/ mp 1.4% 0.0% 0.0% 0.0% 0.0%Weight-redution 0.0% 0.0% 0.0% 0.0% 0.7%w/ pp 0.0% 0.7% 0.0% 1.4% 2.8%w/ mp 2.8% 9.7% 11.0% 14.5% 18.6%Weight-redution w/ VN 0.0% 0.7% 0.7% 0.7% 0.7%w/ pp 0.7% 2.1% 2.1% 1.4% 2.1%w/ mp 2.1% 1.4% 2.1% 3.4% 2.8%Projetion (rd = 50%) 4.1% 3.4% 4.1% 4.1% 4.8%w/ pp 2.8% 1.4% 2.8% 0.7% 0.0%w/ mp 0.0% 0.7% 0.0% 0.0% 0.0%Projetion (rd = 5%) 2.8% 2.8% 3.4% 2.1% 0.7%w/ pp 1.4% 0.7% 0.0% 0.0% 0.7%w/ mp 0.0% 0.0% 0.0% 0.0% 0.0%Projetion (rd = 0:5%) 0.0% 1.4% 0.0% 0.7% 0.7%w/ pp 0.0% 1.4% 0.0% 0.0% 0.0%w/ mp 0.0% 0.0% 0.0% 0.0% 0.0%Optimal pair adjustment 14.5% 11.7% 13.1% 15.2% 13.1%w/ pp 22.8% 21.4% 20.0% 18.6% 20.7%w/ mp 44.1% 38.6% 37.9% 34.5% 27.6%We also analyze the performane of the algorithms using performane pro�les, whih wereintrodued by Dolan and Mor�e [7℄ as a tool for omparing optimization software. Dolan andMor�e all the performane pro�le for a solver \the distribution funtion of a performanemetri". It basially provides a measure of the performane of a solver s as ompared to agroup of solvers S on a set of problems P . In order to onstrut a performane pro�le, we�rst selet p;s, whih is a performane measure of solver s on problem p. The performane on15



problem p by solver s is ompared with the best performane by any solver on this problemusing the performane ratio rp;s = p;smins2S p;s :The performane pro�le for solver s is given by�s(�) = jfp 2 P jrp;s � �gjjP j ;i.e., it is the fration of instanes for whih the performane ratio rp;s is within a fator of �of the best ratio. The omparison of the plots of �s(�) for the di�erent solvers gives a way ofomparing the relative performane between solvers. The performane pro�le plots that wepresent in this paper have � as the x-axis and �s(�) as the y-axis. The solvers that performbetter are those for whih the plots are \higher".In our ase, we onstrut performane pro�les for the di�erent algorithms at eah timeti; i = 1; : : : ; 5. Our performane measure of algorithm s on problem p (p;s) is the distane tothe origin kbkk at time ti. In �gure 2, we give the performane pro�les for the von Neumannalgorithm and our algorithms at time t1. For the optimal pair adjustment algorithm, weplot the performane pro�les for the three versions tested, i.e., the original version and theversions with partial and multiple priing. For the other algorithms, we just plot one of theversions that is representative of their performane. The versions hosen are: the originalvon Neumann algorithm, the weight-redution algorithm with multiple priing, the multiplepriing version of the algorithm where at eah iteration we selet the best of the weight-redution and the von Neumann steps, and the projetion algorithm with rd = 50% andmultiple priing. In this graph, �s(1) is the perentage of problems that were winning attime t1. It is lear from the graph that the three versions of the optimal pair adjustmentalgorithm perform muh better than any of the other algorithms. It an also be seen thatthe von Neumann algorithm performs at least as well as any of the other algorithms that wehave developed.When we ompare eah of our algorithms with the von Neumann algorithm, we onludethat the three versions of the optimal pair adjustment algorithm perform better than anyof the other algorithms. For example, at time t1, there are 91.7%, 97.2%, and 95.2% ofwinnings for the original version of the optimal pair adjustment, the version with partialpriing, and the version with multiple priing, respetively. At the same time, the weight-redution algorithm with multiple priing and the projetion algorithm (rd = 50%) win16



only for 31% and 40.7% of the problems, respetively. Furthermore, in the ases where thevon Neumann algorithm performs better than some version of the optimal pair adjustmentalgorithm, the value of kbkk obtained with the latter is at most 2.4 times larger than thevalue of kbkk obtained with the former (i.e., kbkkOPA � 2:4kbkVN). In ontrast, when theweight-redution algorithm with multiple priing and the projetion (rd = 50%) lose againstthe von Neumann algorithm, the values of kbkk an be within a fator of up to 156 and 124,respetively, of the value of kbkk obtained with the von Neumann algorithm.At time t5, the three versions of the optimal pair adjustment algorithm win for 97.2%of the problems when omparing with the von Neumann algorithm. When the optimalpair adjustment loses, the norm of the residuals vetor is at most twie as large as thatorresponding to the solution obtained with the von Neumann algorithm.The perentage of winnings of the weight-redution algorithm with multiple priingagainst the von Neumann algorithm inreases with time. At time t5, it wins for 78.6%of the problems. However, when it looses, the ratio of the norms of the vetors of residualsan still be very large (up to 162).The performane of the projetion algorithm (rd = 50%) also improves with time whenompared to the von Neumann algorithm. In this ase, not only the number of winnings
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inreases (up to 95.9% at time t5) but also the ratio of the norms of the vetors of residuals(kbkkProjetion=kbkVN) dereases (at time t5, the maximum ratio is smaller than 1.1).For detailed results, inluding the values of kbkk at di�erent points in time for severalalgorithms, the reader is referred to the appendix and to [16℄.In �gure 3, we give the onvergene for some of the algorithms tested when applied tothe Netlib problem 80bau3b whih was seleted as representative of performane as a whole.Similar to the behavior of the von Neumann algorithm, our algorithms start with a fast initialonvergene (some faster than others) but later the onvergene beomes slow. However, thesigni�ant improvement of the optimal pair adjustment algorithm when ompared to thevon Neumann algorithm an learly be seen in the �gure.
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Figure 3: Comparison between the von Neumann algorithm and some of the other algorithmstested when applied to problem 80bau3b.In �gure 4, we present performane pro�les for the von Neumann algorithm, the threealgorithms desribed in the literature that were developed in the ontext of the Frank-Wolfealgorithm, and the optimal pair adjustment algorithm at time t1. This �gure illustrates theonsistent improvement of the optimal pair adjustment algorithm over those presented inthe literature.We end this setion with an illustration of the typial residuals obtained after transform-18
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OPAFigure 4: Performane pro�les of the von Neumann algorithm, the three algorithms devel-oped to improve the Frank-Wolfe algorithm, and the optimal pair adjustment algorithm,tested at time t1 (x-axis: � ; y-axis: �s(�)).ing the approximate solutions for problem (1) to the original form of the linear programs.In table 2 we show the norms of the residuals of the primal onstraints, upper bounds, dualonstraints, and duality gap for a sample of problem instanes seleted to illustrate the rangeof behavior observed. In the �rst four lines we show the norms of the residuals for the initialsolution. In the following four lines we show the norms of the residuals after running thevon Neumann algorithm, and in the last four lines we show the norms of the residuals afterrunning the optimal pair adjustment algorithm with multiple priing. The results presentedin the table give a good idea of the range of auraies that an be ahieved with the algo-rithms studied. As it an be seen, the auraies an vary onsiderably. For example, for thesolutions obtained by the optimal pair adjustment, the norm of the primal residual rangesfrom 10�1 in problem kb2 to 106 in problem CO5. Nevertheless, the �nal auraies obtainedby the optimal pair adjustment algorithm represent, in most ases, an improvement over theauraies of the initial solutions of at least two orders of magnitude.
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Table 2: Norms of residuals in the original problem form at time t5 for several instanestested.Algorithm Norm of residual 25fv47 kb2 ship12l tu� CO5Initial Primal 5.56E+05 4.03E+03 2.69E+05 1.65E+05 2.16E+08Upper bound 2.28E+05 2.41E+03 1.61E+05 3.64E+04 3.11E+07Dual 3.65E+05 5.64E+03 1.09E+05 3.03E+04 8.52E+07Duality gap 8.91E+06 7.14E+03 1.33E+07 5.21E+05 3.62E+09VN Primal 5.44E+03 3.57E+01 2.45E+03 8.79E+02 1.79E+07Upper bound 3.30E+03 8.85E+00 1.23E+03 4.72E+02 1.70E+07Dual 5.24E+03 1.18E+02 7.24E+02 6.95E+02 2.04E+07Duality gap 8.53E+01 1.19E-02 5.72E+01 3.70E+01 2.38E+05OPA Primal 5.07E+03 7.90E-01 3.84E+02 2.00E+01 5.18E+06w/ mp Upper bound 9.01E+02 2.43E-01 2.64E+02 3.43E+00 4.33E+06Dual 3.56E+03 3.80E+00 8.47E+02 3.84E+01 5.93E+06Duality gap 2.76E+01 7.09E-04 2.66E+00 7.48E-01 5.28E+036 ConlusionsIn this paper, we presented three new algorithms for linear programming based on the vonNeumann algorithm. These algorithms an be onsidered elementary sine they performonly simple omputations.We presented omputational results that showed that our algorithms an provide sig-ni�ant improvements when ompared to the von Neumann algorithm. In partiular, theoptimal pair adjustment algorithm onsistently provides solutions signi�antly loser to op-timal than the von Neumann algorithm in the same amount of time.In spite of the improvements over the von Neumann algorithm, our algorithms are stillimpratial for solving linear programs to optimality. However, they ould be useful insome situations and future researh is needed to understand the pratial impat that thesealgorithms an have. Although we have presented results on some quite large and verysparse linear programming instane (e.g., ken-18 and osa-60), more researh should be doneon even larger instanes where the simpliity of these methods may give them an advantageover interior point methods and the simplex method. Also, the fast initial onvergene rate ofthese methods ould be used to help enhane the performane of interior point methods. Thisidea is espeially attrative when onsidering the use of our algorithms in onjuntion withan infeasible primal-dual path following algorithm, whih is the type of interior point method20



most ommonly implemented in software. Sine our algorithms provide an infeasible solutionand sine those interior point methods start with an infeasible solution and, in general, reduethe infeasibility at eah iteration, we ould easily swith between our algorithms and theinterior point method. Finally, generalizations of these algorithms, suh as the one studiedby Epelman and Freund [9, 10℄ for solving oni linear systems, ould be studied.AknowledgementsThe authors thank the anonymous referees for their suggestions for improving this paper.A AppendixIn table 3, we give the names of the 145 linear programming instanes in our omputationalexperiments. We also give the sizes of all the problems after presolve, as well as kb0k, i.e.,the norm of the vetor of residuals for the starting solution.In the last two olumns of table 3, we provide the values of the norms of the vetors ofresiduals (kbkk) at time t1 obtained with the von Neumann algorithm and with the optimalpair adjustment algorithm. For more detailed results, inluding the values of kbkk at otherpoints in time and for other algorithms, the reader is referred to [16℄.Table 3: Sizes of problems after presolve, norm of initial resid-ual vetors, and norm of residual vetors at time t1 for vonNeumann and Optimal Pair Adjustment algorithms.Problem m n nub nnz kb0k kbkkVN at t1 kb0kOPA at t125fv47 769 1821 513 10245 1.64E-1 9.40E-3 4.28E-380bau3b 1965 10701 5141 21013 2.70E-1 3.49E-3 6.28E-4adlittle 53 134 60 404 1.86E-1 2.46E-2 4.90E-3a�ro 25 48 6 97 7.69E-2 3.14E-2 2.08E-2agg 319 404 21 1838 2.19E-2 1.81E-2 1.79E-2agg2 455 689 16 4351 4.26E-2 1.57E-2 1.33E-2agg3 455 689 16 4367 4.27E-2 1.57E-2 1.33E-2bandm 211 366 271 1654 1.31E-1 1.68E-2 6.10E-3beaonfd 73 148 27 561 2.69E-1 2.15E-2 5.56E-3blend 66 101 57 416 1.05E-1 2.76E-2 1.20E-2bnl1 558 1439 1002 4949 2.56E-1 6.97E-3 3.50E-3bnl2 1848 3800 2303 13251 1.95E-1 4.50E-3 1.16E-3boeing1 294 660 333 3020 1.37E-1 1.16E-2 1.48E-321



Table 3: ontinuedProblem m n nub nnz kb0k kbkkVN at t1 kb0kOPA at t1boeing2 125 264 108 922 6.63E-2 2.08E-2 1.23E-2bore3d 64 90 60 405 2.11E-1 2.30E-2 2.02E-2brandy 116 216 154 1557 1.69E-1 2.03E-2 1.06E-2apri 235 421 239 1448 1.69E-1 1.58E-2 2.24E-3yle 1400 2749 1301 14462 6.54E-2 8.59E-3 8.12E-3zprob 661 2705 2141 5393 1.90E-1 6.63E-3 6.39E-3d2q06 2012 5561 1515 30860 1.89E-1 5.77E-3 5.60E-4d6ube 403 5443 8 32523 4.59E-1 9.32E-3 9.33E-3degen2 444 757 0 4199 1.56E-1 1.42E-2 1.32E-2degen3 1503 2604 0 25149 1.11E-1 1.08E-2 1.07E-2d001 5907 12065 5126 35021 1.51E-1 5.66E-3 6.42E-4e226 161 392 243 2301 1.26E-1 1.70E-2 1.47E-2etamaro 331 666 411 1972 1.30E-1 1.76E-2 1.65E-3��f800 313 817 101 4542 1.08E-1 1.75E-2 1.93E-2�nnis 359 775 174 1809 1.52E-1 1.23E-2 4.11E-3�t1d 24 1047 1024 13381 2.90E-1 1.32E-2 1.34E-2�t1p 678 1706 399 9948 2.51E-1 8.11E-3 8.60E-3�t2d 25 10387 10363 127784 2.80E-1 3.06E-3 3.00E-3�t2p 3170 13695 7500 50624 3.62E-1 2.36E-3 1.19E-3forplan 104 411 7 4066 2.66E-1 1.82E-2 1.61E-2ganges 840 1197 428 5512 7.04E-2 1.46E-2 1.81E-4gfrd-pn 590 1134 258 2393 2.76E-1 7.63E-3 2.64E-4greenbea 1872 4081 581 23334 4.73E-2 1.04E-2 3.56E-3greenbeb 1865 4065 754 23225 5.77E-2 1.02E-2 3.37E-3grow15 300 645 600 5620 1.80E-1 1.14E-2 8.35E-3grow22 440 946 880 8252 1.80E-1 9.54E-3 7.89E-3grow7 140 301 280 2612 1.81E-1 1.63E-2 8.94E-3israel 166 307 4 2425 3.81E-2 2.30E-2 2.13E-2kb2 43 68 9 292 6.21E-2 2.59E-2 3.86E-3lot� 117 329 16 643 1.63E-1 2.16E-2 3.05E-3maros 626 1365 93 6156 6.38E-2 1.30E-2 8.14E-3maros-r7 2152 6578 0 80167 3.41E-1 3.88E-3 2.76E-4modszk1 658 1405 0 2863 1.90E-1 9.22E-3 1.18E-3nesm 646 2850 1560 13100 1.90E-1 1.34E-2 1.72E-3perold 580 1412 490 6298 9.43E-2 1.27E-2 2.53E-3pilot 1350 4506 1292 41683 5.95E-2 1.26E-2 1.19E-3pilot4 389 1069 349 6606 9.39E-2 1.59E-2 1.46E-3pilot87 1968 6367 1908 72133 6.57E-2 1.06E-2 2.14E-3pilot ja 795 1834 713 12032 9.57E-2 1.62E-2 4.37E-4pilot we 691 2621 560 8553 5.53E-2 1.84E-2 6.21E-3pilotnov 830 2089 895 11694 9.62E-2 1.57E-2 2.97E-4reipe 61 120 56 392 8.48E-2 2.58E-2 1.78E-2s105 104 162 0 339 3.23E-2 2.79E-2 2.79E-2s205 203 315 13 663 2.56E-2 1.94E-2 7.28E-3s50a 49 77 0 159 4.68E-2 3.31E-2 3.23E-222



Table 3: ontinuedProblem m n nub nnz kb0k kbkkVN at t1 kb0kOPA at t1s50b 48 76 0 146 4.72E-2 3.10E-2 2.94E-2sagr25 344 543 127 1364 1.45E-1 1.16E-2 9.81E-4sagr7 92 147 37 356 1.53E-1 2.21E-2 3.14E-3sfxm1 268 526 201 2263 1.41E-1 1.60E-2 2.16E-3sfxm2 536 1052 402 4531 1.40E-1 1.17E-2 2.32E-3sfxm3 804 1578 603 6799 1.40E-1 9.60E-3 2.27E-3sorpion 180 239 28 608 1.53E-1 2.12E-2 1.81E-2srs8 418 1183 622 2819 1.87E-1 9.84E-3 3.27E-3ssd8 397 2750 0 8584 4.25E-1 2.14E-2 1.71E-2stap1 269 608 339 1713 2.66E-1 1.70E-2 1.64E-2stap2 977 2303 1326 6694 2.75E-1 1.61E-2 1.61E-2stap3 1346 3113 1767 8986 2.70E-1 1.65E-2 1.64E-2seba 2 9 8 12 4.20E-1 4.16E-2 1.64E-2share1b 107 243 31 1016 7.59E-2 3.01E-2 2.16E-2share2b 92 158 76 711 1.16E-1 2.75E-2 1.01E-2shell 487 1450 188 2904 3.33E-1 7.30E-3 7.41E-5ship04l 292 1905 1672 4290 4.24E-1 8.63E-3 1.75E-3ship04s 216 1281 1052 2875 4.21E-1 9.77E-3 1.69E-3ship08l 470 3121 2664 7122 4.28E-1 6.53E-3 1.66E-3ship08s 276 1604 1155 3644 4.22E-1 7.94E-3 1.67E-3ship12l 610 4171 3510 9254 3.95E-1 6.75E-3 2.89E-3ship12s 340 1943 1282 4297 3.89E-1 8.15E-3 2.99E-3sierra 1129 2618 2008 7566 3.43E-1 4.28E-3 1.64E-4stair 356 531 42 3811 3.18E-2 1.72E-2 1.34E-2standata 292 582 358 1167 2.39E-1 1.08E-2 6.19E-3standgub 292 582 358 1167 2.39E-1 1.08E-2 6.01E-3standmps 388 1146 984 2491 3.22E-1 7.50E-3 5.52E-3stofor1 94 142 80 405 7.77E-2 2.39E-2 1.01E-2stofor2 1968 2856 1286 8066 5.58E-2 5.61E-3 2.56E-3stofor3 15336 22202 9667 62908 4.62E-2 2.07E-3 4.78E-4truss 1000 8806 0 27836 4.42E-1 9.42E-3 9.36E-3tu� 246 553 380 3737 1.60E-1 3.38E-2 3.55E-2vtp base 46 82 43 205 1.33E-1 2.79E-2 1.00E-2re-a 2994 6692 302 16552 1.89E-1 5.24E-3 3.43E-4re-b 5336 36382 506 111637 2.32E-1 8.09E-3 2.55E-4re- 2375 5412 132 13346 1.87E-1 6.23E-3 1.20E-4re-d 4102 28601 203 86353 2.57E-1 8.99E-3 2.60E-4ken-07 1427 2603 2603 5494 5.84E-3 5.51E-3 5.04E-3ken-11 10061 16709 16709 35578 2.22E-3 2.12E-3 1.94E-3ken-13 22519 36546 36546 80148 1.58E-3 1.39E-3 1.30E-3ken-18 78823 128395 128395 286183 9.63E-4 7.51E-4 6.69E-4osa-07 1047 24911 23864 65138 4.76E-1 8.24E-3 9.89E-3osa-14 2266 54535 52269 143777 4.76E-1 5.87E-3 8.20E-3osa-30 4279 103978 99699 276565 4.77E-1 4.37E-3 6.90E-3osa-60 10209 242411 232202 614537 4.76E-1 3.05E-3 7.00E-323



Table 3: ontinuedProblem m n nub nnz kb0k kbkkVN at t1 kb0kOPA at t1pds-02 2603 7333 4440 15682 2.50E-1 7.42E-3 1.32E-3pds-06 9119 28435 18835 60676 2.77E-1 3.19E-3 1.02E-3pds-10 15587 48719 33076 104038 2.81E-1 2.26E-3 8.70E-4BL 5468 12038 2253 32699 1.73E-1 3.42E-3 9.66E-4BL2 5480 12063 2263 32837 1.73E-1 3.46E-3 1.07E-3CO5 4471 10318 1029 49028 1.34E-1 5.42E-3 3.90E-3CO9 8510 19276 1844 92450 1.31E-1 4.22E-3 2.36E-3CQ9 7073 17806 1893 82802 1.08E-1 5.26E-3 3.30E-3GE 8361 14096 1359 39167 9.58E-2 3.64E-3 9.02E-4NL 6478 14393 3213 44437 2.03E-1 2.95E-3 1.18E-3a1 42 73 72 284 1.16E-1 2.21E-2 1.81E-2fort45 1037 1467 1402 6077 1.26E-1 6.33E-3 4.86E-4fort46 1037 1467 1402 6077 1.25E-1 6.31E-3 6.16E-4fort47 1037 1467 1402 6077 1.37E-1 6.52E-3 4.08E-4fort48 1037 1467 1402 6077 1.29E-1 6.58E-3 2.31E-4fort49 1037 1467 1402 6077 1.27E-1 6.43E-3 4.01E-4fort51 1042 1473 1402 8359 1.77E-1 5.84E-3 1.10E-3fort52 1041 1471 1402 7957 1.57E-1 6.10E-3 2.04E-4fort53 1041 1471 1402 7957 1.57E-1 5.94E-3 2.02E-4fort54 1041 1471 1402 7730 1.34E-1 5.74E-3 2.70E-4fort55 1041 1471 1402 7730 1.34E-1 5.71E-3 2.77E-4fort56 1041 1471 1402 8027 1.60E-1 6.09E-3 2.04E-4fort57 1041 1471 1402 8027 1.60E-1 5.88E-3 2.02E-4fort58 1041 1471 1402 7957 1.25E-1 6.41E-3 2.13E-4fort59 1041 1471 1402 7957 1.25E-1 6.36E-3 2.17E-4fort60 1041 1471 1402 7958 1.34E-1 6.31E-3 2.12E-4fort61 1041 1471 1402 7958 1.34E-1 6.24E-3 2.13E-4x1 983 1413 1412 5873 1.40E-1 6.42E-3 4.36E-4x2 983 1413 1412 5873 1.08E-1 6.50E-3 9.03E-4pata01 122 1241 0 2443 7.19E-2 2.80E-2 2.46E-2pata02 122 1241 0 2443 7.19E-2 2.80E-2 3.74E-2patb01 57 143 0 277 7.00E-2 3.02E-2 1.49E-2patb02 57 143 0 277 7.00E-2 3.02E-2 1.48E-2vshna02 122 1363 0 2565 6.73E-2 2.96E-2 2.90E-2vshnb01 57 144 0 278 7.10E-2 2.97E-2 2.36E-3vshnb02 58 202 0 338 5.93E-2 3.49E-2 2.13E-2willett 184 588 0 2403 5.02E-2 4.10E-2 1.69E-2ex01 234 1555 1325 9091 1.95E-1 1.01E-2 1.44E-4ex02 226 1547 1324 8899 2.13E-1 1.31E-2 1.76E-2ex05 831 7747 6923 46038 1.93E-1 1.79E-2 3.42E-3ex06 824 7778 6961 44370 3.36E-1 8.71E-3 5.29E-4ex09 1818 18120 16309 104559 2.04E-1 2.22E-2 1.20E-3
24
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