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Kristian Woodsend · Jacek Gondzio
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Abstract Linear support vector machine training can be represented as a
large quadratic program. We present an efficient and numerically stable algo-
rithm for this problem using interior point methods, which requires only O(n)
operations per iteration. Through exploiting the separability of the Hessian,
we provide a unified approach, from an optimization perspective, to 1-norm
classification, 2-norm classification, universum classification, ordinal regres-
sion and ε-insensitive regression. Our approach has the added advantage of
obtaining the hyperplane weights and bias directly from the solver. Numerical
experiments indicate that, in contrast to existing methods, the algorithm is
largely unaffected by noisy data, and they show training times for our imple-
mentation are consistent and highly competitive. We discuss the effect of using
multiple correctors, and monitoring the angle of the normal to the hyperplane
to determine termination.

Keywords Support Vector Machines · Interior Point Method · Separable
Quadratic Program · Large Scale

1 Introduction

With the exponential increases in storage capacity and computing power, and
fields such as text categorisation, image recognition, and bioinformatics gen-
erating huge real-world data sets, scalability and efficiency become important
issues for machine learning approaches. Support Vector Machines (SVMs) are
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a powerful machine learning technique, and they offer state-of-the-art perfor-
mance, but the training of an SVM is computationally expensive and relies
on optimization. The core of the approach is a convex quadratic optimiza-
tion problem (QP) which scales with the number of data points rather than
the feature space dimension. This complexity result makes applying SVMs to
large scale data sets challenging, and in practise the optimization problem is
intractable by general purpose optimization solvers as each iteration scales
cubically with the size of the training set.

The standard approach is to build a solution by solving a sequence of
small scale problems, e.g. Decomposition [26; 23] or Sequential Minimal Op-
timization [27]. State-of-the-art software such as SVMlight [18] and SVMTorch
[4] use these techniques. These are basically active-set techniques, which work
well when the separation into active and non-active variables is clear, in other
words when the data is separable by a hyperplane. With noisy data, the set
of support vectors is not so clear, and the performance of these algorithms
deteriorates. The Incremental Active Set (INCAS) method [9] is an approach
where variables change set one at a time, and is better able to handle noisy
data.

Other optimization techniques have also been tried. In SVMperf [19], an
equivalent reformulation was developed with fewer variables and suited to
cutting-plane algorithms, where time to converge is linear in the size of the
training set. Coordinate descent methods update one variable at a time by
minimizing a single-variable sub-problem, and this approach is implemented
in the LibLinear software package [17].

Approaches have been proposed to adapt the SVM training problem to
one that can be handled more efficiently. Mangasarian and co-workers have
proposed several, and the Reduced SVM can be seen as representative [22].
A random subset of the data is chosen to characterize the space, and this is
used to select a larger subset of the data for training. The approach of [20] is
similar in that a set of feature basis vectors are defined by a relatively small
number of points. To provide a continuously differentiable function suitable
for unconstrained optimization techniques, both approaches rewrite the SVM
training problem to use 2-norms for misclassification errors, and additionally
the Reduced SVM maximises the margin with respect to both orientation and
location relative to the origin. Both modifications were originally described
in [24], and both are used in the LibLinear software package [17]. We make
some comparisons with this software later, but in general we are interested in
developing an efficient method without needing to resort to such modifications.

Another family of approaches are based on Interior Point Method (IPM)
technology (Section 2), which works by delaying the split between active and
inactive variables for as long as possible. IPMs generally work well on large-
scale problems, as the number of outer iterations required grows very slowly
with problem size [see 34]. A straight-forward implementation of the standard
SVM dual formulation using IPM would have complexity O(n3), where n is
the number of data points, and be unusable for anything but the smallest
problems. Within this family, several approaches based on different formula-
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tions have been researched [7; 10; 13]. They are discussed further in Section
2.2. They have in common an aim to exploit the low-rank structure of the
kernel matrix and reduce the problem to one where the algorithm works on
a small dense matrix of size m, the number of features, giving a per-iteration
computational complexity of O(nm2). These approaches, however, inherently
suffer from either numerical instability or memory caching inefficiencies.

In this paper, we present a set of efficient and numerically stable IPM-
based formulations (Section 3), which unify, from an optimization perspective,
linear 1-norm classification, 2-norm classification, universum classification, or-
dinal regression and ε-insensitive regression. We show that all these problems
can be equivalently reformulated as very large, yet structured, separable QPs.
Exploiting separability has been investigated for general sparse convex QPs
[28; 25], but not for the SVM problem. Further, we show how IPM can be
specialized to exploit separability in all these problems efficiently. We investi-
gated performance for 1-norm classification. Our implementation matches the
other IPM-based techniques mentioned above in terms of computational com-
plexity. In practice it gives consistent and highly competitive training times,
and for some problems it outperforms other implementations of the 1-norm
classification problem (including the active-set and cutting plane algorithms
mentioned above) by a large margin. Performance is confirmed through exten-
sive numerical experiments (Section 4).

We now briefly describe the notation used in this paper. xi is the attribute
vector for the ith data point, and are the observation values directly. There are
n observations in the training set, and m attributes in each vector xi. X is the
m×n matrix whose columns are the attribute vectors xi associated with each
point. The classification label for each data point is denoted by yi ∈ {−1, 1}.
The variables w ∈ Rm and z ∈ Rn are used for the primal variables (“weights”)
and dual variables (α in SVM literature) respectively, and w0 ∈ R for the bias
of the hyperplane. Scalars and column vectors are denoted using lower case
letters, while upper case letters denote matrices. D,S,U, V, Y and Z are the
diagonal matrices of the corresponding lower case vectors.

2 Interior Point Methods

Interior point methods represent state-of-the-art techniques for solving linear,
quadratic and non-linear optimization programmes. In this section the key
issues of implementation for QPs are discussed very briefly to highlight areas
of computational cost [for more details, see 34].
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2.1 Outline of IPM

We are interested in solving the general convex quadratic problem

min
z

1
2
zTQz + cT z

s.t. Az = b (1)
0 ≤ z ≤ u,

where u is a vector of upper bounds, and the constraint matrix A is assumed
to have full rank. Dual feasibility requires that ATλ+ s− v −Qz = c, where
λ is the dual variable associated with the constraints and s, v > 0 are the
dual variables associated with the lower and upper bounds of z respectively.
An interior point method (outlined in Algorithm 1) moves towards satisfying
the KKT conditions over a series of iterations, by monitoring primal and dual
feasibility and controlling the complementarity products

ZSe = µe

(U − Z)V e = µe,

where µ is a strictly positive parameter. At each iteration (steps 2–7), the
method makes a damped Newton step towards satisfying the primal feasibility,
dual feasibility and complementarity product conditions for a given µ. Then
the algorithm decreases µ before making another iteration. The algorithm
continues until both infeasibilities and the duality gap (which is proportional
to µ) fall below required tolerances. An alternative termination criterion is
discussed in Section 4.3.

Algorithm 1 Outline of interior point method
Require: Initial point (z0, s0, v0, λ0)
1: (z, s, v, λ) := (z0, s0, v0, λ0)
2: while stopping criteria is not fulfilled do
3: Calculate matrix M
4: Factorize matrix M
5: Calculate search direction (∆z,∆s,∆v,∆λ) by solving M∆λ = −r̂b and backsolving

for other variables
6: Determine step size and calculate new iterates (z, s, v, λ)
7: Correct (z, s, v, λ) to obtain a more central point
8: end while
9: return (z, s, v, λ)

The Newton system to be solved at each iteration (steps 3–5) can be trans-
formed into the augmented system equations:[

−(Q+Θ−1) AT

A 0

] [
∆z
∆λ

]
=
[
rc
rb

]
, (2)

where ∆z,∆λ are components of the Newton direction in the primal and dual
spaces respectively,Θ−1 ≡ Z−1S+(U−Z)−1V , and rc and rb are appropriately
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defined residuals. Furthermore, the normal equations are a set of equations
found by eliminating ∆z from the augmented system. Solving them requires
calculating M ≡ A (Q+Θ−1)−1AT (step 3), factorizing M (step 4), and then
solving M∆λ = −r̂b for ∆λ (step 5). Using multiple correctors to gain a more
central iterate (step 7) is discussed in Section 4.4.

Calculating (step 3) and factorizing M (step 4) are the most computation-
ally expensive operations of the algorithm. Interior point methods are efficient
for solving quadratic programmes when the matrix Q is easily invertible; how-
ever, if the matrix is dense the time taken to invert M can become prohibitive.
In such a case, it is advantageous to solve system (2).

2.2 Previous IPM approaches to SVM training

For large-scale data sets, we assume that the number of data points n greatly
exceeds the number of features m, and we assume that the kernel matrix
Q ≡ Y XTXY is dense (see Section 3.1). Inverting this dense n × n matrix
directly requires O(n3) operations, and for large data-sets this approach is
impractical.

By exploiting the low-rank representation of the linear kernel, it is possible
to design IPM algorithms where the only matrix to be inverted has dimension
m ×m, and the overall effort associated with computing its implicit inverse
representation scales linearly with n and quadratically with m. This gives a
significant improvement if n � m. A common approach is to use low-rank
corrections in the representation of the Newton system, and exploit it through
implicit inverse representation by applying the Sherman-Morrison-Woodbury
(SMW) formula. An algorithm based on the dual formulation (4) and SMW
formula has a computational complexity of O(nm2) for the multiplication and
O(m3) for the inversion at each IPM iteration [7]; a similar approach working
in primal space has the same complexity [10].

The SMW formula has been widely used in interior point methods, where it
often runs into numerical difficulties. There are two main causes of the difficul-
ties: if the matrix Θ−1 that is inverted is ill-conditioned; and if there is near-
degeneracy in the data matrix (XY ). Ill-conditioning of the scaling matrix
Θ−1 is a feature of IPMs, especially in the later iterations. Near-degeneracy in
(XY ) will occur if there are multiple data points which lie along or close to the
separating hyperplanes, and this is accentuated if the data is not well scaled.
Neither of these problems can really be avoided by a SMW-based algorithm. In
[13], data sets of this type were constructed where an SMW-based algorithm
required many more iterations to terminate, and in some cases stalled before
achieving an accurate solution. The authors also showed that this situation
arises in real-world data sets.

Goldfarb and Scheinberg [13] proposed an alternative technique based on
Product Form Cholesky Factorization. In this technique, a Cholesky factor-
ization is computed for a very sparse matrix and then updated to take into
account each of the m + 1 dense columns of A. The approach has the same
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complexity O(nm2) as the previous approaches (although a small multiple of
flops are required), but better numerical properties: LDLT Cholesky factor-
ization of the IPM normal equation matrix with variables following the central
path has the property that L remains numerically stable despite D becoming
increasingly ill-conditioned, as happens in the later iterations of IPM algo-
rithms [12]. Although Goldfarb and Scheinberg exploit symmetries in their
technique to reduce the computations required, their approach suffers from
some memory caching inefficiencies because each feature is handled separately
(this is investigated in Section 4.6). It is also intrinsically sequential, and so
does not facilitate a parallel computing implementation.

3 Support Vector Machines

In this section we briefly outline the formulations for Support Vector Machines
used for linear classification and regression problems, and by showing how op-
timality conditions between the primal weight variables w ∈ Rm and the dual
variables z ∈ Rn can be used to derive equivalent formulations, we present
a new, unified approach for SVM training that combines the separability of
the primal formulation with the small number of constraints of the dual for-
mulation. As will be seen, our separable formulations introduce m additional
variables and constraints to the standard dual problems, but such an approach
enables an IPM algorithm with a complexity that is linear in the dataset size.
Although the decision variables w and z̄ in the following discussion are free, we
chose to give them bounds which brings all variables in line with (1). Efficient
setting of these bounds is described in Section 4.2.

3.1 Classification

A Support Vector Machine (SVM) is a classification learning machine that
learns a mapping between the features and the target label of a set of data
points known as the training set, and then uses a hyperplane wTx+w0 = 0 to
separate the data set and predict the class of further data points. The labels
are the binary values “yes” or “no”, which we represent using the values +1
and −1. The objective is based on the Structural Risk Minimization (SRM)
principle, which aims to minimize the risk functional with respect to both
the empirical risk (the quality of the approximation to the given data, by
minimising the misclassification error) and maximize the confidence interval
(the complexity of the approximating function, by maximising the separation
margin) [29; 30]. A fuller description is also given in [5].

For a linear kernel, the attributes in the vector xi for the ith data point are
the observation values directly, while for a non-linear kernel the observation
values are transformed by means of a (possibly infinite dimensional) non-linear
mapping Φ.
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Training an SVM has at its core a convex quadratic optimization problem.
For a linear SVM classifier using a 2-norm for the hyperplane weights w and
a 1-norm for the misclassification errors ξ ∈ Rn, this takes the following form:

min
w,w0,ξ

1
2
wTw + τeT ξ

s.t. Y (XTw + w0e) ≥ e− ξ (3)
ξ ≥ 0

where e is the vector of all ones, and τ is a positive constant that parametrises
the problem.

Due to the convex nature of the problem, a Lagrangian function associated
with (3) can be formulated,

L(w,w0, ξ, z, ν) =
1
2
wTw + τeT ξ −

n∑
i=1

zi[yi(wTxi + w0)− 1 + ξi]− νT ξ

where ν ∈ Rn is the vector of Lagrange multipliers associated with the non-
negativity constraint on ξ. The solution to (3) will be at the saddle point of
the Lagrangian. Partially differentiating the Lagrangian function gives rela-
tionships between the primal variables w, w0 and ξ, and the dual variables z
at optimality:

w = XY z

yT z = 0
0 ≤ z ≤ τe.

Substituting these relationships back into the Lagrangian function gives the
dual problem formulation

min
z

1
2
zTY XTXY z − eT z

s.t. yT z = 0 (4)
0 ≤ z ≤ τe.

Measuring the misclassification error using ‖ξ‖2 rather than ‖ξ‖1 is also
standard practice. The primal formulation is the QP

min
w,ξ

1
2
wTw +

τ

2
ξT ξ

s.t. Y (XTw + w0e) ≥ e− ξ
ξ ≥ 0
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and the dual formulation becomes

min
z

1
2
zT (Y XTXY +

1
τ
I)z − eT z

s.t. yT z = 0 (5)
0 ≤ z ≤ τe.

The relationship w = XY z holds for the 2-norm classification problem. Using
the form Q = (XY )T (XY ) enabled by the linear kernel, we can rewrite the
quadratic objective in terms of w, and ensure the relationship between w and
z to hold at optimality by introducing it into the constraints. Consequently,
we can state the classification problem (4) as the following separable QP:

min
w,z

1
2
wTw − eT z

s.t. w −XY z = 0 (6)

yT z = 0
0 ≤ z ≤ τe.

The quadratic matrix in the objective is no longer dense, but simplified to
the diagonal matrix

Q =
[
Im 0
0 0n

]
∈ R(m+n)×(m+n)

while the constraint matrix is in the form:

A =
[
Im −XY
0 yT

]
∈ R(m+1)×(m+n).

Determining the Newton step requires calculating the matrix product:

M ≡ A(Q+Θ−1)−1AT

=
[

(Im +Θ−1
w )−1 +XY ΘzY X

T −XY Θzy
−yTΘzY XT yTΘzy

]
∈ R(m+1)×(m+1). (7)

We need to solve A(Q+Θ−1)−1AT∆λ = r for ∆λ. Building the matrix (7)
is the most expensive operation, of order O(n(m + 1)2), while inverting the
resulting matrix is of order O((m+ 1)3).

[11] developed a near-equivalent formulation for M , through successive
block eliminations of the general form of the QP, as part of their OOQP
software. Their software appears to have received little attention from the
machine learning community.

To determine the hyperplane, we also require the value of the bias w0, a
variable in the primal problem (3). Note that the element of λ corresponding
to the constraint yT z = 0 is in fact the variable w0. Using our approach and a
primal-dual interior point method, we can obtain w0 directly from the solver.
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This is in contrast to active-set methods, where w0 has to be estimated from
a subset of z values.

We use the same technique to develop a formulation for the 2-norm SVM
(5), leading to a separable QP with the following diagonal Hessian matrix Q:

Q =
[
Im 0
0 1

τ In

]
∈ R(n+m)×(n+m).

3.2 Universum SVM

An approach to binary classification was proposed [32] where the problem is
augmented with an additional data set belonging to the same domain (but
not the same classes) as the classification data, called the Universum [31], as
intuitively it captures a general backdrop. The SVM is trained to label points
from the distributions of the binary classification sets, but make no strong
statement for the Universum distribution.

Let C be the set of classification points, with data XC and labels yC . Simi-
larly, let U be the Universum set with data XU and no labels. As with normal
binary classification, data points are penalized for being on the wrong side of
the hyperplane margin, measured by error ξC ∈ R|C|. Samples in the Univer-
sum set should lie close to the hyperplane; ξ+U ∈ R|U| and ξ−U ∈ R|U| are the
errors if they are more than ε above or below the hyperplane. It is possible to
use different parameters for misclassification errors in the two sets, here shown
as τC and τU . The primal formulation is then:

min
w,w0,ξC,ξ+U ,ξ−U

1
2
wTw + τCe

T ξC + τU
(
eT ξ+U + eT ξ−U

)
s.t. XT

C w + w0e ≥ e− ξC
XT
Uw + w0e ≥ εe− ξ+U

XT
Uw + w0e ≤ −εe+ ξ−U

ξC , ξ+U , ξ−U ≥ 0.

A dual formulation can be developed by following the procedure described
in Section 3.1 of forming the Lagrangian and partially differentiating with
respect to the primal variables. Let us define the block matrices and vectors

X =
[
XCXUXU

]
, y =

 yC
eU
−eU

, Y = diag(y), and dual variables for the

hyperplane constraints z =

 zC
z+U
z−U

. Using this notation, the dual formulation
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becomes:

min
z

1
2
zTY XTXY z +

 −eCεe+U
εe−U

T z
s.t. yT z = 0

0 ≤ zC ≤ τCeC
0 ≤ z+U , z−U ≤ τUeU .

Using the relationship between w and z at optimality

w = XCYCzC +XUz+U −XUz−U

the Universum classification problem can be transformed into an equivalent
separable formulation

min
w,z

1
2
wTw +

 −eCεe+U
εe−U

T z
s.t. w = XY z

yT z = 0
0 ≤ zC ≤ τCeC
0 ≤ z+U , z−U ≤ τUeU .

3.3 Ordinal regression

Ordinal regression refers to a learning technique that bridges classification and
metric regression. Training samples are labelled with an ordinal number; in
other words the classification categories are ranked. The task of the supervised
learning problem is to predict the position on the ordinal scale of new samples.
Unlike metric regression problems, the label numbers are discrete and the
metric distances between labels do not have any real significance, while unlike
multiple classification problems, ordering information is present.

Several approaches have been proposed to move beyond using multiple clas-
sification techniques or naively transforming the ordinal scales into numerical
values and solving as a standard regression problem. In the formulation of [16],
the goal is to learn a function f(x) = wTx + w0 which correctly orders the
samples, so that f(xi) > f(xj)⇔ yi > yj for any pair of examples (xi, yi) and
(xj , yj). Using the set of pairings P = {(i, j) : yi > yj}, the authors formulate
the following ordinal regression SVM:

min
w,ξ

1
2
wTw + τ

∑
(i,j)∈P

ξij

s.t. wT (xi − xj) ≥ 1− ξij ∀(i, j) ∈ P
ξij ≥ 0 ∀(i, j) ∈ P.
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The objective promotes a large-margin linear function f(x) that also minimizes
the number of pairs of training examples that are incorrectly ordered. The
formulation has the same structure as the classification SVM, and so it is
open to the reformulation in Section 3.1.

There are two main disadvantages with the above formulation. The first is
that the hyperplane bias w0 does not play a role in the optimization problem,
and has to be estimated afterwards. The second disadvantage is the number of
constraints and the number of variables ξ grow quadratically with the training
data set size. Partly to address that, two new approaches were proposed [3]
for support vector ordinal regression where the size of the training problem is
linear in the number of samples. The first formulation (“explicit thresholds”)
takes only the ranks immediately adjacent to each separating hyperplane to
determine each threshold wj0. They introduce the constraints w(j−1)

0 ≥ wj0 ∀j
explicitly on the thresholds to enforce the correct ordering. The reverse order-
ing of wj0 is due to us using wTx + wj0 = 0 to define the hyperplane. Assume
that there are r classes, indexed with j ∈ J = {1, 2, . . . , r}, each with nj data
samples. r − 1 parallel hyperplanes separate the classes; the hyperplane with
bias wj0 separates class j from class j + 1. Xj ∈ Rm×nj

is the data matrix
for class j. We define the misclassification error vector ξj+ ∈ Rnj

and dual
variables zj+ ∈ Rnj

for points in class j which should lie above the hyperplane
j − 1, and similarly errors ξj− ∈ Rnj

and dual variables zj− ∈ Rnj

for points
in class j below hyperplane j. Variables ξj+ and zj+ are defined for all classes
j = 1, . . . , r−1, while ξj+ and zj+ are defined for all classes j = 2, . . . , r, but we
can write a simplified but equivalent formulation if we add auxiliary variables
ξ1
+, z

1
+, ξ

r
−, z

r
− = 0. We also introduce dual variables βj ∈ R for each of the

ordering constraints. Again it simplifies the formulation if we set w0
0 = +∞

and wr0 = −∞. Then, with j = 1, . . . , r, the primal formulation is:

min
w,wj

0,ξ
j
−,ξ

j
+

1
2
wTw + τ

r∑
j=1

(
eT ξj− + eT ξj+

)
s.t. (Xj)Tw + wj0e ≤ −e+ ξj− ∀j

(Xj)Tw + w
(j−1)
0 e ≥ e− ξj+ ∀j

wj−1
0 ≥ wj0 ∀j

ξj−, ξ
j
+ ≥ 0 ∀j.

By following the same Lagrange duality technique as Section 3.1, and using
the relationship between w and (zj+−z

j
−) at optimality, an equivalent separable
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formulation is:

min
w,z−,z+,β

1
2
wTw −

∑
j

eT (zj+ + zj−)

s.t. w =
∑
j

Xj(zj+ − z
j
−)

eT zj− + βj = eT zj+1
+ + βj+1 ∀j

0 ≤ zj−, z
j
+ ≤ τe ∀j

βj ≥ 0 ∀j.

In the second formulation (“implicit thresholds”) of [3], there are no con-
straints to correctly order the hyperplane biases. Instead, samples from all of
the classes are used to define each threshold, and this approach ensures the
correct ordering. Xj is defined as before. ξjk+ ∈ Rnk

is the misclassification
error vector for class k that should lie above the hyperplane j, and similarly
ξjk− ∈ Rnk

for classes lying below hyperplane j. zjk+ ∈ Rnk

and zjk− ∈ Rnk

are
the dual variables for the hyperplane constraints. With j = 1, . . . , r − 1, the
primal formulation is then:

min
w,w0,ξ−,ξ+

1
2
wTw + τ

r−1∑
j=1

(
j∑

k=1

eT ξjk− +
r∑

k=j+1

eT ξjk+


s.t. (Xk)Tw + wj0e ≤ −e+ ξjk− ∀j and k = 1, . . . , j

(Xk)Tw + wj0e ≥ e− ξ
jk
+ ∀j and k = j + 1, . . . , r

ξjk− ≥ 0 ∀j and k = 1, . . . , j

ξjk+ ≥ 0 ∀j and k = j + 1, . . . , r.

Using the relationship w = −
∑r−1
j=1

(∑j
k=1X

kzjk− −
∑r
k=j+1X

kzjk+

)
, our

equivalent separable formulation is:

min
z−,z+

wTw −
∑
k

eT

k−1∑
j=1

zjk+ +
r−1∑
j=k

zjk−


s.t. w +

r−1∑
j=1

 j∑
k=1

Xkzjk− −
r∑

k=j+1

Xkzjk+

 = 0

j∑
k=1

eT zjk− =
r∑

k=j+1

eT zjk+ ∀j

0 ≤ zjk− ≤ τe ∀j and k = 1, . . . , j

0 ≤ zjk+ ≤ τe ∀j and k = j + 1, . . . , r.
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3.4 Regression

Support Vector Regression (SVR) uses similar techniques to learn a mapping
between the input vector x and a real-valued target value y. In ε-insensitive
SVR, the loss function is defined as Lε ≡ max(0, |y − f(x)| − ε). This loss is
represented by the errors ξi and ξ̂i, which are the losses if the predicted value
f(xi) of the point xi is above or below the band around y of half-width ε.
Fuller descriptions are again given in [5, 29, 30].

The dual variables z, ẑ are the Lagrange multipliers relating to the two sets
of constraints. The objective function minimizes risk using the SRM princi-
ple (balancing the complexity of the function against misclassifications in the
training data), resulting in the primal optimization problem

min
w,ξ,ξ̂

1
2
wTw + τeT (ξ + ξ̂)

s.t. y − (wTX + w0e) ≤ εe+ ξ

(wTX + w0e)− y ≤ εe+ ξ̂

ξ, ξ̂ ≥ 0

and its dual

min
z,ẑ

1
2

(z − ẑ)TXTX(z − ẑ)− yT (z − ẑ) + εeT (z + ẑ)

s.t. eT (z − ẑ) = 0 (8)
0 ≤ z, ẑ ≤ τe.

The relationship between w and (z, ẑ) is now w = X(z − ẑ).
We exploit separability in a similar way for Support Vector Regression,

by introducing into the standard dual formulation (8) the auxiliary variable
z̄ ≡ z − ẑ and the relationship w = X(z − ẑ):

min
w,z,ẑ,z̄

1
2
wTw + εeT (z + ẑ)− yT z̄

s.t. − z + ẑ + z̄ = 0
w −Xz̄ = 0

eT z̄ = 0
0 ≤ z, ẑ ≤ τe.

We define decision variables (w, z, ẑ, z̄) and the corresponding constraint
matrix

A =

 0 −I I I
I −X

eT

 ,
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while both Q and Θ are diagonal matrices. We need to set bounds on z̄ (i.e.,
−τe ≤ z̄ ≤ τe) so that Θz̄ is defined. The matrix M ≡ A(Q + Θ−1)−1AT

requiring factorization is therefore

M =

Θz +Θẑ +Θz̄ −Θz̄XT Θz̄e
−XΘz̄ (Im +Θ−1

w )−1 +XΘz̄X
T −XΘz̄e

eTΘz̄ −eTΘz̄X eTΘz̄e

 .
The Cholesky factorization LDLT of matrix K can be computed efficiently

using the Schur complement method.

LDLT = M =
[
In
F Lm

] [
Dn

Dm

] [
In F

T

LTm

]
where

Dn = Θz +Θẑ +Θz̄

F =
[
−X
eT

]
Θz̄D

−1
n ,

while Lm and Dm are found from the Cholesky factorization

LmDmL
T
m =

[
(Im +Θ−1

w )−1

0

]
+
[
−X
eT

]
(Θz̄ −Θz̄D−1

n Θz̄)
[
−XT e

]
.

The formation of this smaller matrix is an O(n(m+ 1)2) operation, while
the factorization is of order O((m + 1)3). Calculation of the other variables
require O(n) operations.

4 Numerical experiments and results

We implemented the 1-norm formulation (6) in HOPDM [14; 1] which was mod-
ified to perform matrix multiplications in dense mode using the BLAS library
[21]. The experiments were performed using an Intel Pentium 4 PC running
at 3GHz, with 1GB RAM and 1024KB cache. BLAS functions were provided
by Intel’s Maths Kernel Library 1.

A comparison of several techniques for calculating A(Q+Θ−1)AT is shown
in Table 1. Any technique that takes advantage of the structure of the problem
gave better performance than multiplying the elements individually. Comput-
ing A(Q+Θ−1)AT by outer products most directly exploits the structure (as
(Q+Θ−1) is diagonal), but the computation using DGEMM on blocks of 32 data
points at a time gave the best performance, probably due to better use of the
CPU’s cache.

The numerical results in this section were based on artificial data sets.
The training data sets used were created by uniformly sampling points in the
space [−1,+1]m. A separating hyperplane was defined by choosing random
integer values for w in the range [-1000,1000]. Points were labelled based on the

1 http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/index.htm
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Technique Non-optimized Intel optimized
BLAS library BLAS library

Multiplication of individual elements 296.36 296.36
Outer products (DSYRK) 25.45 20.50
Matrix-vector multiplication (DGEMV) 27.18 22.00
Block-based matrix multiplication (DGEMM) 15.27 8.58

Table 1 Time taken (in seconds) to train an SVM, comparing different techniques to cal-
culate A(Q + Θ−1)−1AT . The data set given contained 5000 points of 320 attributes. 14
IPM iterations were required.

hyperplane. For the non-separable data sets, the required proportion of data
points were randomly selected and misclassified. In contrast to the training
data, the test data sets contain no misclassified points.

4.1 Confirmation of scalability

The complexity analysis above gave the computations required for each itera-
tion as O(nm2) if n � m. To verify this, the software was trained first using
data sets with 255 features. Figure 1(a) shows that the length of time taken
by an iteration varies linearly with the number of samples n. However, the
total time taken by the algorithm increases super-linearly with the number of
samples, as the number of iterations required also increases slowly.

The experiment was repeated for the number of features, using a data set
of 20,000 samples, and the number of features varied. Figure 1(b) shows that,
once there is a reasonably large number of features, approximately m > 250,
the algorithm scales quadratically with m, while the number of iterations
required remains roughly the same.
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Fig. 1 The computational scalability of iteration time is predictable, and results confirm
O(nm2). The number of iterations required is less predictable, but grows slowly with n.
(a) Computational complexity and iteration count with respect to the number of samples
n, using fully separable data sets with 255 features. (b) Computational complexity and
iteration count with respect to the number of features m. Data sets were fully separable
with 20,000 samples.



16

4.2 Bounds on w

In the formulation (6) w is free, while the standard IPM formulation (1) re-
quires all variables to be in the positive quadrant. While free variables can
be implemented as w ≡ w+ − w−, where w+, w− ≥ 0, this approach suffers
from numerical difficulties: logically one of each pair (w+, w−) would be zero,
but this is prevented by the logarithmic barrier used in IPM. The approach
we adopted is to define bounds lw ≤ w ≤ uw, and the problem can then
be adjusted appropriately to shift the bounds to 0 ≤ w′ ≤ uw − lw. From
(6), w = XY z, so bounds can be safely set as τ

∑
i min(yixij , 0) ≤ wj ≤

τ
∑
i max(yixij , 0). For problems where the solution set of support vectors is

sparse, the optimal values for w differ substantially from either bound. Since
large bounds affect the numerical accuracy of the algorithm, it is useful to
tighten the bounds to within say a couple of orders of magnitude of the true
values of w once these are known (e.g. when searching for the best parameters
through repeated training).

4.3 Accuracy due to termination criteria

Several termination criteria are possible. Normally the measure of most in-
terest for an optimization problem is the value of the objective function, and
the algorithm stops when this value is reached to within a set relative error,
e.g. 10−8, but for SVMs the objective value is not of interest so may not be
a good basis for termination. Similarly, the errors associated with primal and
dual feasibility can be monitored, and the algorithm terminated when these
are within a small tolerance.

The approach normally used for SVM is to monitor the set of support
vectors, and terminate the algorithm when this is stable. The KKT comple-
mentarity conditions are used to determine the support vectors.

With the formulation presented in this paper, we have access to the weights
variables w directly. It is therefore possible to monitor these values, and mea-
sure the change in the angle φ of the normal to the hyperplane between iter-
ation i− 1 and i:

cosφ =
(w(i−1))Tw(i)

‖w(i−1)‖‖w(i)‖

We conducted experiments to see how these measures relate to classification
accuracy, using a training set of 20,000 samples and 255 features, with 5%
misclassifications, and a separable test set of the same size.

Figure 2 shows how the duality gap and sinφ decrease as the IPM algorithm
progresses. Primal feasibility was reached quickly, while it took the algorithm
longer to attain dual feasibility. All measures were sensitive to the scale of
the bounds on w, which made it hard to define a set tolerance for any of the
measures. In particular, the values of w decrease with each iteration, so it is
not useful to monitor these to see if they are converging to their final values.
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A noticeable feature of the figures is that a high classification accuracy is
achieved at an early stage in the algorithm, long before the number of sup-
port vectors has stabilized, indicating that the hyperplane has been accurately
identified at this point. Although at this stage the values of the weights change
in scale, proportionally they are stable, as can be seen by measuring sinφ (Fig-
ure 2). Once suitable bounds on w have been established, a tolerance of 10−4

on sinφ could be used to give earlier termination.
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Fig. 2 Performance of the algorithm relative to the number of IPM iterations, using a
training data set with 5% of points mis-classified, 20,000 samples and 255 attributes. (a)
Classification error using an unseen test set. (b) Error in the value of the objective. (c)
Change in angle of the normal to the separating hyperplane. (d) The number of support
vectors.

4.4 Multiple correctors

The use of multiple correctors [15] can reduce the number of IPM iterations
required, by improving the centrality of the current iterate. Several correc-
tors can be calculated by repeatedly solving M∆λ = −r̂b for ∆λ. The same
factorization of M is used for all the correctors in an iteration, so it is ad-
vantageous to perform multiple corrections when the effort involved the back-
solves (here O(nm+m2)) is significantly less than that of factorizing M (here
O(nm2 +m3)).
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We conducted experiments to show the comparative performance of the al-
gorithm using multiple correctors, against the algorithm using a single Mehro-
tra’s corrector. Both the number of iterations and the overall time were im-
proved by using multiple correctors. For example, using a data set of 20,000
samples and 255 features, an average of 2.8 correctors were used in each iter-
ation, and the optimization required 2 fewer iterations.

4.5 Stability in case of near-linear dependency in X

We used the data set of [13] that caused an algorithm using the Sherman-
Morrison-Woodbury update to fail. This data set (shown in Figure 3) causes
degeneracy in the matrix (XY ), as there are multiple data points which lie
along the separating hyperplanes. Scaling one of the dimensions accentuates
the numerical instability. With our algorithm, there was no penalty in per-
formance, with the number of IPM iterations required always around 20 no
matter the scaling imposed on the data set (this is similar performance to
that reported by Goldfarb and Scheinberg for their Product Form Cholesky
Factorization algorithm). Stability of our approach is a consequence of the use
of primal-dual regularization [1]. Regularization improves any ill-conditioning
related to the original data, and allows Cholesky factorization to be computed
without severe loss of accuracy.

-4

-2

 0

 2

 4

-4 -2  0  2  4

Fig. 3 The data set of [13] causing de-
generacy in the constraint matrix.

4.6 Comparison against standard tools

To assess the performance of our algorithm SVM-HOPDM, we tested it against a
range of state-of-the-art SVM tools: SVMlight [18], SVMperf [19], LibLinear [17],
LibSVM [2] and SVMTorch [4]. We also included the SVM-QP active set algorithm
[9] and the IPM-based algorithm (SVM-QP Presolve) of Scheinberg that uses
the Product Form Cholesky Factorization described earlier [13]. They were all
used with their software performance options (such as cache size) set to their
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Fig. 4 Comparison of efficiency of SVM-HOPDM against other algorithms, with respect to data
set size, as noise is increased. Artificial data sets used of 255 attributes. τ = 1. (a) Fully
separable. (b) 1% misclassified. (c) 5% misclassified. (d) 10% misclassified.

default values. We conducted SVM training experiments using synthetically-
constructed data sets as described earlier, with 255 features. SVMTorch has
been used as the comparison tool for other IPM-based techniques, e.g. [7, 10,
13].

Figure 4 shows the comparative efficiency of the algorithms as the size of
the data set is increased, with a relatively low penalty for misclassifications
(τ = 1). For separable data sets (a) all the algorithms show linear or sublinear
scaling. But the relative performance changes dramatically when the data set
contains noise, as is typically the case with real-world data sets. We used
synthetic data sets again, but this time introduced noise by choosing (b) 1%,
(c) 5% and (d) 10% of the points randomly and swapping their target label.
The computation time required by the active set methods is greatly increased
by introducing noise, while other algorithms are less affected.

The experiments were repeated for a higher misclassification penalty of
τ = 100 (Figure 5). It can be clearly seen that all except the IPM algorithms
are greatly affected by the level of noise, with training times increased by
several orders of magnitude, or the algorithms fail to converge.

The training times of SVM-HOPDM and SVM-QP Presolver, both based on
interior point methods, are similar in all eight cases, yet there was almost
an order of magnitude difference between the two algorithms. This difference
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Fig. 5 Comparison of algorithm efficiency, similar to Figure 4 but with higher penalty for
misclassifications (τ = 100). (a) Fully separable. (b) 1% misclassified. (c) 5% misclassified.
(d) 10% misclassified.

cannot be accounted for by a complexity analysis. We investigated this further
using Valgrind’s Cachegrind cache simulator2 set as a Pentium 4 processor
cache, and the results for four data sets are shown in Table 2. The algorithms
required different numbers of iterations which complicated the comparison, so
we considered only the functions associated with forming and solving the nor-
mal system matrix, and this accounted for some 70% to 80% of the instructions
executed (the “coverage” in Table 2). The final two columns of the table show
instruction count and runtime ratios for the two programs. It is clear that
the number of executed instructions does not explain the whole increase in
runtime. The number of data read cache misses (which is determined by how
the algorithm accesses the data structure) is also an important factor in run-
time performance, yet it is rarely discussed in comparisons of computational
complexity of algorithms.

4.7 Real-world data sets

To investigate what performance results can be expected in real-world appli-
cations, we used the standard data sets Adult, Covtype, MNIST, SensIT and

2 http://valgrind.org/
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Data set SVM-HOPDM SVM-QP presolver SVM-QP/ SVM-HOPDM

n m Time Cov. D2mr Time Cov. D2mr Instructions Time
10000 63 3.69 70% 2.68% 16.44 72% 6.99% 2.36 4.46
10000 127 10.66 83% 1.73% 55.46 80% 7.56% 1.94 5.21
10000 255 15.67 79% 1.34% 127.53 79% 7.72% 2.73 8.14
20000 63 9.13 76% 2.97% 40.74 76% 6.95% 2.15 4.46

Table 2 Comparison of SVM-HOPDM and SVM-QP Presolver in terms of instructions and
cache misses. Synthetic data sets of dimension n samples and m features were used. Time is
the total runtime of the program, running with hardware cache, in seconds. Coverage is the
proportion of the program included in the instruction and cache miss count. D2mr is the
proportion of Level 2 data read misses to total Level 2 data reads. The final two columns
show the ratio between the two programs, for instructions and runtime. The increase in
runtime of SVM-QP Presolver cannot be accounted for by instructions alone, and cache
performance has a significant effect.

USPS.3 Each problem was solved using a linear kernel with τ = 1, 10 and 100.
Table 3 shows the wall-clock times to perform the training (including time
taken to read the data).

Dataset τ HOPDM SVMlight SVMperf Lib- LibSVM SVMTorch SVM-QP SVM-QP
(n×m) Linear presolve

Adult 1 16.5 87.7 280.7 1.6 192.4 621.8 164.5 188.8
32561× 123 10 26.5 1043.3 3628.0 9.3 857.7 5046.0 284.1 206.8

100 27.9 10447.4 29147.2 64.2 5572.1 44962.5 544.8 216.9

Covtype 1 47.7 992.4 795.6 8.5 2085.8 2187.9 731.8 405.6
150000× 54 10 52.7 6021.2 12274.5 34.3 2516.7 10880.6 971.6 441.3

100 55.4 66263.8 58699.8 235.2 6588.0 74418.1 1581.8 457.4

MNIST 1 79.6 262.9 754.1 9.3 197.1 660.1 233.0 1019.1
10000× 780 10 83.4 3425.5 8286.8 65.4 1275.2 5748.1 349.4 1104.4

100 86.2 NC 196789.0 NC 11456.4 54360.6 602.5 1267.1

SensIT 1 55.2 913.5 8418.3 53.6 2542.0 2814.4 535.2 456.7
78823× 100 10 60.1 7797.4 > 125000 369.1 7867.8 21127.8 875.4 470.7

100 63.6 NC > 125000 NC 49293.7 204642.6 1650.1 489.3

USPS 1 13.2 15.0 40.9 4.4 10.4 7.7 51.2 117.4
7291× 256 10 14.2 147.4 346.6 27.7 20.9 23.9 64.7 127.4

100 14.3 1345.2 2079.5 NC 93.8 142.4 86.9 143.8

Table 3 Comparison of training times using real-world data sets. Each data set was trained
using τ = 1, 10 and 100. NC indicates that the method did not converge to a solution.

The same results are shown as a performance profile [6] in Figure 6. Here,
the runtime ts,p for each solver s ∈ S on problem p ∈ P is transformed into a
ratio to the fastest solver for problem p:

rs,p =
ts,p

mins∈S ts,p
.

3 All datasets are available from the LibSVM collection at
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/. Due to memory restrictions,
some data sets were reduced to the sizes given in Table 3. SVM-QP had tighter memory
restrictions, so the datasets were further reduced and the times linearly scaled up; this is
probably fair for the SVM-QP presolver but is rather favourable for the active set solver.
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Fig. 6 Performance profile of the SVM tools on the problems in Table 3.

Dataset τ HOPDM LibLinear SVMTorch

Adult 1 85.01% 84.98% 84.95%
32561× 123 10 84.98% 84.96% 85.01%

100 84.95% 84.95% 84.97%

Covtype 1 61.59% 61.59% 60.85%
150000× 54 10 61.92% 61.92% 59.84%

100 61.92% 61.92% 61.46%

MNIST 1 86.31% 86.31% 86.40%
10000× 780 10 86.43% 86.40% 86.41%

100 86.27% — ???

SensIT 1 85.78% 85.42% 85.78%
78823× 100 10 85.80% 85.43% 85.82%

100 85.79% 85.45% 85.85%

USPS 1 96.41% 97.11% 97.11%
7291× 256 10 97.21% 97.11% 97.21%

100 97.01% 96.61% 96.66%

Table 4 Comparison of prediction accuracy on unseen test sets. For all except Covtype,
we used the standard test sets. Covtype does not have a standard test set, so we used the
first 150000 samples of the data set for training and the final 100000 samples as the test
set (there was no overlap). The results show in terms of accuracy, our method is broadly
equivalent to other methods.

The performance profile is the cumulative distribution function of these ratios
for each solver

ρs(T ) =
size{p ∈ P : |rs,p ≤ T}

size{P}
,

that is the proportion of problems which can be solved with a runtime ratio
rs,p less than T . The value of ρs(1) is the proportion of problems that solver
s wins over other solvers. The value of limT→∞ ρs(T ) is the proportion of
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problems solved at all. A high proportion of problems solved with small ratios
rs,p is shown by the profile being close to the upper left axes.

The results confirm that real-world data sets do tend to be noisy, as most
methods take considerably longer with high τ misclassification penalty values.
The performance profile highlights that LibLinear is the fastest for many
of the problems, generally involving low values of τ . For higher values of τ ,
however, HOPDM is faster than the other solvers. This is due to the training
time of our algorithm being roughly constant, relative to the value of τ . It was
at most one order of magnitude slower than the fastest solver for any problem,
which was the best performance of any of the solvers in this regard: other
solvers were two or three orders of magnitude slower, or failed to converge at
all. We consider this dependability, in terms of both predictable training times
and ability to train with a wide range of τ values, to be a valuable property
of our algorithm.

Table 4 confirms that there is no penalty to be paid in terms of prediction
accuracy. Experiments using unseen test samples show that the prediction
accuracy of our formulation is comparable with other methods.

5 Conclusions

Support Vector Machines are a powerful machine learning technique. However,
it is not a trivial exercise to extend it to very large scale problems. Due to the
Hessian in the standard dual formulation being completely dense, interior point
methods have not traditionally been used. Instead, standard SVM tools have
mainly been based around active-set methods. These work well for small and
separable problems, but when the split between basic and non-basic variables
becomes less clear (as is the case with noisy data sets), the performance of these
algorithms starts to scale exponentially with the number of samples. Previous
IPM-based approaches have exploited the structure of the linear kernel, to give
algorithms with an overall complexity of O(nm2). However, these algorithms
have suffered from either numerical instability through use of the Sherman-
Morrison-Woodbury formula, or memory caching inefficiencies.

In this paper we have presented a new, unified set of formulations for
linear 1-norm and 2-norm classification, universum and ordinal classification,
and ε-insensitive regression, which all exploit the separability of the Hessian in
the objective of the standard SVM primal formulation, while keeping a small
number of constraints as in the dual. Like the other IPM-based approaches,
it has a per-iteration complexity of O(nm2 + m3). It relies upon Cholesky
decomposition for its numerical stability, but the factorization is applied to all
m features at once, allowing for a more efficient implementation in terms of
memory caching.

Numerical experiments showed that the performance of the algorithm for
large dense or noisy data sets is consistent and highly competitive, and in
some cases can surpass all other approaches by a large margin. Unlike active
set methods, performance is largely unaffected by noisy data. Using multiple
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correctors, tightening the bounds on w, and monitoring the angle of the normal
to the hyperplane all positively contributed to efficiency.

It is possible to extend these formulations to non-linear kernels, by ap-
proximating the positive semidefinite kernel matrix K with a low-rank outer
product representation such as partial Cholesky factorization LLT ≈ K [8].
This approach produces the first r columns of the matrix L (corresponding to
the r largest pivots) and leaves the other columns as zero, giving an approx-
imation of the matrix K of rank r. It is an attractive algorithm for partial
decomposition, since its complexity is linear with the number of samples, it is
faster than eigenvalue decomposition, and it exploits the symmetry of K. A
separable formulation suitable for non-linear kernels is therefore:

min
w,z

1
2
wTw − eT z

s.t. w − LTY z = 0

yT z = 0
0 ≤ z ≤ τe.

(9)

Computational complexity is O(nr2 +nmr) for the initial Cholesky factoriza-
tion, and O(nr2 + r3) for each IPM iteration.

It is also possible to develop this algorithm to handle very large scale prob-
lems in parallel. The key computation part is the calculation of the matrix M ;
as described earlier, this was handled on a block basis using the BLAS library.
By dividing the sample points equally amongst the processors, the block-based
matrix multiplications can be performed in parallel with no communication
required between the processors. Then at the end of the multiplication, a single
gather operation is required on the (m+ 1)× (m+ 1) matrix at each proces-
sor to form the matrix M and then factorize it. Implementation details are
addressed in [33]. This could point the way forward for tackling large and
complex data sets.
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