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A GEOMETRIC APPROACH TO BISTABLE FRONT PROPAGATION IN

SCALAR REACTION-DIFFUSION EQUATIONS WITH CUT-OFF

FREDDY DUMORTIER, NIKOLA POPOVIĆ, TASSO J. KAPER

Abstract. ‘Cut-offs’ were introduced to model front propagation in reaction-diffusion sys-
tems in which the reaction is effectively deactivated at points where the concentration lies
below some threshold. In this article, we investigate the effects of a cut-off on fronts propa-
gating into metastable states in a class of bistable scalar equations. We apply the method of
geometric desingularization from dynamical systems theory to calculate explicitly the change
in front propagation speed that is induced by the cut-off. We prove that the asymptotics of
this correction scales with fractional powers of the cut-off parameter, and we identify the source
of these exponents, thus explaining the structure of the resulting expansion. In particular, we
show geometrically that the speed of bistable fronts increases in the presence of a cut-off, in
agreement with results obtained previously via a variational principle. We first discuss the
classical Nagumo equation as a prototypical example of bistable front propagation. Then, we
present corresponding results for the (equivalent) cut-off Schlögl equation. Finally, we extend
our analysis to a general family of reaction-diffusion equations that support bistable fronts, and
we show that knowledge of an explicit front solution to the associated problem without cut-off
is necessary for the correction induced by the cut-off to be computable in closed form.

1. Introduction

Front propagation in reaction-diffusion systems constitutes a fundamental topic in non-equi-
librium physics. Central questions concern the propagation speed that is selected by traveling
fronts, as well as the factors that influence this selection process. The subject is vast and
complex, as one has to distinguish between bistable fronts propagating into metastable states
versus fronts that propagate into unstable states, which may be of either ‘pulled’ or ‘pushed’
type. For a comprehensive review of these and related issues, the reader is referred to [17].

The characteristics of propagating fronts in such systems are altered substantially when ‘cut-
off’ functions are placed on the reaction kinetics. These cut-offs, which decrease the reaction
amplitude at all points in the domain at which the concentration lies below a certain threshold,
were introduced by Brunet and Derrida in the pioneering study [5] to model fluctuations that
arise in the large-scale limit of discrete N -particle systems, among other phenomena: with the
threshold set to ε = N−1, the reaction terms are cut-off (and oftentimes set to zero) at points
where the concentration is below ε, as such concentrations are not attainable when the particles
are assumed to be indivisible.

In particular, in [5], Brunet and Derrida investigated the effects of a cut-off on the dynamics
of pulled fronts in the classical Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation,

φt = φxx + φ(1 − φ2)H(φ− ε),(1.1)

by introducing a Heaviside cut-off, which is defined by

H(φ− ε) ≡ 0 if φ < ε and H(φ− ε) ≡ 1 if φ > ε,(1.2)
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at the zero rest state in (1.1). One of their principal findings was that the selected front speed
in the cut-off Equation (1.1) is given by

cFKPP(ε) ∼ 2 − π2

(ln ε)2
as ε→ 0+,(1.3)

to leading order in ε, which represents a substantial reduction compared to the classical propa-
gation speed cFKPP(0) = 2 in the corresponding equation without cut-off, even when ε is small.
Moreover, it was observed numerically in [5] that the approximation provided by (1.3) is in
good agreement with the front propagation speed found in discrete N -particle systems for N
large, and it was conjectured that (1.3) is valid for a wide variety of cut-offs in (1.1).

In [8], we proved the existence of traveling front solutions that propagate between the rest
states at 1 and 0 in Equation (1.1), and we established the validity of the conjecture of Brunet
and Derrida, including a generalization of it. In particular, we considered the general class of
cut-off functions Θ that satisfy

Θ(φ, ε, φ
ε
) < 1 if φ < ε and Θ(φ, ε, φ

ε
) ≡ 1 if φ > ε,(1.4)

where, moreover, Θ is bounded at φ = ε and 0 < ε ≪ 1 denotes the cut-off parameter, as
before. (Examples include the Heaviside step function H defined in (1.2) as well as the linear

cut-off, with Θ(φ, ε, φ
ε
) = φ

ε
for φ < ε; see [8] for details.) We gave a rigorous derivation of the

leading-order ε-asymptotics of cFKPP in (1.3), and we showed that the coefficient π2 in that
expansion is universal within the class of cut-off functions that satisfy (1.4). The asymptotics
of cFKPP, as given in (1.3), was subsequently also confirmed in [3], via a variational approach.

The present article builds on the results obtained in [8], in that we show how the geometric
approach developed there, in the context of the FKPP equation with cut-off in (1.1), can be
generalized to study front propagation in the broad class of cut-off reaction-diffusion equations
that is given by

φt = φxx + f(φ)Θ(φ, ε, φ
ε
).(1.5)

Here, (t, x) ∈ R
+ × R, φ(t, x) ∈ R, and f : R → R denotes a smooth reaction function which

vanishes at the three rest states at φ+, φ◦, and φ− in (1.5). Moreover, we assume that the
corresponding equation without cut-off supports bistable front solutions that propagate from
the stable rest state at φ− into the metastable rest state at φ+, with propagation speed c0; these
assumptions will be made precise in Section 4. (As shown e.g. in [4, 11], the front speed c0 is
unique in the bistable case, whereas the FKPP equation supports traveling front solutions for a
continuum of speeds c in the absence of a cut-off, with c ≥ cFKPP(0) and cFKPP(0) the ‘critical’
front speed; cf. [8] for a detailed discussion.) Finally, the cut-off Θ is as defined in (1.4); for
clarity of exposition, we will only discuss the case where Θ = H (the Heaviside cut-off) in detail
here. Other choices of Θ can be treated in a similar fashion; see [8] and Remark 12 below.

The propagation of traveling fronts in (1.5) is naturally studied in the framework of the
associated traveling front equation

u′′ + cu′ + f(u)H(u− ε) = 0,(1.6)

where the prime denotes differentiation with respect to the traveling wave variable ξ = x−ct and
u(ξ) = φ(t, x) is the corresponding front solution; moreover, we have now set Θ = H in (1.6).
In addition to proving the existence of traveling front solutions, we will calculate explicitly the
ε-dependent correction ∆c(ε) to the front propagation speed c0 that is induced by the cut-off
in (1.6). In particular, we will prove that this correction is positive, i.e., that the propagation
speed of bistable fronts increases in the presence of a cut-off, which is in agreement with results
reported previously in [4, 13]. Moreover, we will show that ∆c scales with fractional powers of
the cut-off parameter ε, and we will provide explicit expressions for these exponents, as well
as – in certain cases – for the respective leading-order coefficients in the expansion for ∆c(ε).
Finally, we emphasize that the numerical values of these coefficients will, in general, depend
on the choice of cut-off Θ in (1.5), in contrast to the situation encountered in the study of

2



Equation (1.1) in [5, 8]; however, the corresponding powers of ε will be universal within the
family of cut-offs defined in (1.4).

Our analysis of (1.6) relies heavily on the blow-up technique from dynamical systems theory, a
method also known as geometric desingularization. To the best of our knowledge, this technique
was first used in the study of limit cycles near a cuspidal loop in [10]. It has since been
successfully applied, including in [9], as an extension of the more classical geometric singular
perturbation theory to situations in which normal hyperbolicity is lost; a list of additional
references can be found in [8].

Rather than applying geometric desingularization directly to (1.6), we rewrite that equation
as the equivalent first-order system

u′ = v,(1.7a)

v′ = −cv − f(u)H(u− ε),(1.7b)

ε′ = 0,(1.7c)

where we have appended the trivial ε-dynamics. In the context of (1.7), traveling front solutions
of (1.5) that connect the rest states at φ− and φ+ correspond to heteroclinic connections between
the associated equilibrium points of (1.7), which are found at (φ∓, 0, ε). We will denote these
points by Q−

ε and Q+
ε , respectively, where ε ∈ [0, ε0], with ε0 > 0 sufficiently small. (The third

equilibrium point, with u = φ◦, is of no interest to us here.) Without loss of generality, we will
assume φ+ = 0 in the following.

Now, the equilibrium point Q+
ε = (0, 0, ε) corresponding to φ+ = 0 in (1.6) is degenerate

(non-hyperbolic), with a double zero eigenvalue, which is due to the presence of the cut-off H.
This degeneracy can be removed by desingularizing (‘blowing up’) the origin to an invariant
two-dimensional manifold. As will become clear in the following, the blow-up regularizes the
dynamics in a neighborhood of the degenerate equilibrium at Q+

ε , which can then be studied
using standard techniques from dynamical systems theory.

In the context of (1.7), the required blow-up transformation takes the form

u = r̄ū, v = r̄v̄, and ε = r̄ε̄;(1.8)

see also [8]. Here, (ū, v̄, ε̄) ∈ S
2 =

{
(ū, v̄, ε̄)

∣∣ ū2 + v̄2 + ε̄2 = 1
}
, with r̄ ∈ [0, r0] for r0 > 0

sufficiently small; in other words, the transformation in (1.8) maps the origin to the two-sphere
S

2 in R
3. (In fact, it suffices to consider the blown-up dynamics on the quarter-sphere S

2
+ which

is defined by restricting S
2 to ε̄ ≥ 0 and ū ≥ 0.)

To study the dynamics on (and near) S
2
+ in the blown-up phase space that is induced by the

flow of (1.7), we introduce (local) coordinate charts: we will define a phase-directional chart
K1, corresponding to ū = 1 in (1.8), and a rescaling chart K2, with ε̄ = 1. In particular, we
observe that S

2
+ will be invariant under the induced dynamics in each of these charts, which

will result in a regularization of the singular limit as ε→ 0+ in (1.7).

Remark 1. Given any object � in the original (u, v, ε)-variables, we will denote the corre-
sponding blown-up object by �. In charts Ki (i = 1, 2), that object will be denoted by �i, as
required. �

For future reference, we note that the change of coordinates κ21 between charts K2 and K1

on their domain of overlap is given by

r1 = r2u2, v1 = v2u
−1
2 , and ε1 = u−1

2 ;(1.9)

similarly, the inverse change κ12 : K1 → K2 satisfies

u2 = ε−1
1 , v2 = v1ε

−1
1 , and r2 = r1ε1.(1.10)

Remark 2. While the blow-up transformation defined in (1.8) is homogeneous in r̄, we remark
that one may, more generally, make a quasi-homogeneous Ansatz of the form u = r̄αū, v = r̄β v̄,
and ε = r̄γ ε̄, where α, β, and γ are positive integers; see e.g. [7]. These integers are then
determined by the requirement that the leading-order terms in the resulting equations for ū, v̄,
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and ε̄ scale with the same power of r̄. In the context of (1.7), we thus recover (1.8), since α = β

by (1.7a), as well as α = γ, due to the linear dependence in the argument of H on u and ε. �

Finally, we outline our strategy for proving the existence of traveling fronts in (1.6), using
geometric desingularization. Substituting the blow-up transformation in (1.8) into (1.7), one
finds that the phase space of the resulting blown-up equations is naturally decomposed into
three regions: an outer region, where u = O(1), an inner region defined by u < ε, and an
intermediate region, where ε < u < O(1). The corresponding analysis will be carried out in
two steps. First, we will construct a singular heteroclinic connection Γ in the singular limit as
ε→ 0+ in (1.7). Then, we will demonstrate that there exists a unique value c(ε) of c so that Γ
persists, for ε ∈ (0, ε0] sufficiently small. We remark that Γ and the persistent heteroclinic will lie
on and near S

+
2 , respectively, and that they will traverse all three regions (outer, intermediate

and inner) in connecting Q−
ε to Q+

ε . Our persistence proof will be constructive, in that we
will track the unstable manifold Wu(Q−

ε ) and the stable manifold Ws(Q+
ε ) through the outer

and inner regions, respectively. Then, we will show that these two manifolds coincide in the
intermediate region, for c = c(ε), to form the desired persistent heteroclinic connection in (1.7).
The required ‘matching’ procedure will also directly yield the leading-order ε-asymptotics of
c(ε), completing our argument. In particular, it will follow that the fractional powers of ε
arising in that asymptotics are given by the ratio of two of the eigenvalues of the linearized
blown-up dynamics at an equilibrium point on the equator of S

2
+, i.e., in chart K1.

This article is organized as follows. In Section 2, we discuss the propagation of bistable fronts
in the presence of a cut-off in the Nagumo equation, with f(φ) = φ(1− φ)(φ− γ) for γ ∈ (0, 1

2)
in (1.5), which represents a prototypical example of a reaction-diffusion system that supports
bistable front propagation into a metastable state. Then, in Section 3, we apply the results
obtained in the previous section to the Schlögl equation with cut-off, which is equivalent to
the Nagumo equation under a coordinate transformation, to calculate the asymptotics of the
corresponding front speed c(ε) to leading order. Finally, in Section 4, we generalize the results
of Sections 2 and 3: we study bistable fronts propagating into metastable states in the general
family of cut-off reaction-diffusion equations in (1.5). In particular, we show that knowledge of
an exact solution to the corresponding problem without cut-off is necessary for the correction
induced by the cut-off to be computable in closed form.

2. The cut-off Nagumo equation

In this section, we study bistable front propagation into a metastable state in the cut-off
Nagumo equation

φt = φxx + φ(1 − φ)(φ− γ)H(φ− ε).(2.1)

Here, 0 < γ < 1
2 is a fixed parameter and H denotes the Heaviside cut-off, as before.

The following theorem is the main result of this section:

Theorem 2.1. Let ε ∈ (0, ε0], with ε0 > 0 sufficiently small, and let γ ∈ (0, 1
2). Then, there

exists a unique value c(ε) of c (dependent on γ) such that Equation (2.1) possesses a unique
traveling front solution propagating between φ− = 1 and φ+ = 0. Moreover, c(ε) = c(0)+∆c(ε),
where c(0) = 1√

2
−
√

2γ (the propagation speed in the absence of a cut-off) and ∆c is a positive,

C1-smooth function in ε (including at ε = 0) and γ that satisfies

∆c(ε) = Kγε
1+2γ + o(ε1+2γ),(2.2)

with

Kγ =
Γ(4)

Γ(1 + 2γ)Γ(3 − 2γ)

√
2γ

(1 + 2γ)2γ
(2.3)

a positive constant.
4



(Here and in the following, Γ(·) denotes the standard Gamma function [1, Section 6.1];
moreover, the dependence of c(ε) on the parameter γ ∈ (0, 1

2) is suppressed for convenience of
notation.)

Remark 3. In fact, the function ∆c(ε) will be obtained as the solution of a relation of the
form Kγε

1+2γ = ∆c[1+θ(ε,∆c,∆c ln(∆c), γ)]; cf. Equation (2.30) below. Here, θ is C∞-smooth
in ∆c, ∆c ln(∆c), ε, and γ, including at (0, 0, 0, γ), with θ(0, 0, 0, γ) = 0. In particular, the
logarithmic ∆c-dependence translates into C1-smoothness when ∆c is considered as a function
of ε and γ alone; see the proof of Proposition 2.2 below. �

The proof of Theorem 2.1 will follow the general procedure outlined in the previous section.
The traveling front equation corresponding to (2.1) may be expressed as the equivalent first-
order system

u′ = v,(2.4a)

v′ = −cv − u(1 − u)(u− γ)H(u− ε),(2.4b)

ε′ = 0;(2.4c)

cf. (1.7). The points Q−
ε = (1, 0, ε) and Q+

ε = (0, 0, ε) are hyperbolic saddle equilibria, in (u, v),
of the system of equations

u′ = v,(2.5a)

v′ = −cv − u(1 − u)(u− γ)(2.5b)

that is obtained from (2.4) in the absence of a cut-off. (The eigenvalues of the corresponding

linearization are given by λ−± = − c
2 ± 1

2

√
c2 + 4(1 − γ) and λ+

± = − c
2 ± 1

2

√
c2 + 4γ, respectively.)

In a first step, we desingularize the origin in (2.4) by applying the blow-up transformation defined
in (1.8). Then, we construct a singular heteroclinic connection Γ between Q−

0 and Q+
0 in (2.4);

the construction is performed in the blown-up vector field that is induced by (2.4) on S
2
+. The

phase space of (2.4) naturally decomposes into three regions, an outer region, an inner region,
and an intermediate region that represents the transition between the former two.

Finally, we prove that the singular heteroclinic orbit Γ will persist as a heteroclinic connection
between Q−

ε and Q+
ε for a unique value c(ε) of c in (2.4) and each ε > 0 sufficiently small. That

connection will correspond precisely to the sought-after front solution of (2.1) propagating with
speed c(ε). The corresponding persistence proof will also yield the leading-order ε-asymptotics
of c(ε), thus showing (2.2), as claimed.

Remark 4. The expansion for ∆c(ε) in (2.2) agrees with results obtained previously, via a
variational principle, in Section V.A of [13] and in [4]. In particular, [4, Equation (9)], which
implies ∆c ∼ −Kf ′(0)ε1+λ, is equivalent to (2.2), with f ′(0) = −γ and λ = 2γ. However,
the numerical value of Kγ , as stated in (2.3), differs from that reported for K in [4] by a
multiplicative factor of (1 + 2γ)−2γ . While the reason for this discrepancy warrants further
investigation, we are confident that (2.3) is correct. Our analysis is also supported by numerical
simulations of the first-order system in (2.4): evaluating (numerically) the distance between
Wu(Q−

ε ) and Ws(Q+
ε ) in the hyperplane {u = ε} for a range of values of K and ε, we found

that the minimum of that distance is attained for K = Kγ , as expected (data not shown). �

2.1. Construction of Γ. In this section, we perform the construction of the singular hetero-
clinic connection Γ between Q−

0 and Q+
0 , as outlined above.

2.1.1. ‘Outer’ region. In the outer region, where u = O(1), the system in (2.4) reduces precisely
to (2.5), as H ≡ 1 there. The corresponding solution of the equivalent traveling front equation
u′′+cu′+u(1−u)(u−γ) = 0 (without cut-off) that connects the rest states at 1 and 0 is known
explicitly in this case:

u(ξ) =
1

1 + e
1√
2
(ξ−ξ−)

,(2.6)
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with arbitrary phase ξ−. (We note that, for ξ ≥ ξ− large, u ∼ u(ξ−)e
− 1√

2
(ξ−ξ−)

, in agreement
with classical ‘mode counting’ arguments which require that (2.6) can have no linearly growing
modes [11].)

The propagation speed of the front solution defined in (2.6) is given by c0 = 1√
2
−

√
2γ [2].

The associated orbit in the context of the first-order system in (2.5) can then be written as

v(u, c0) =
1√
2
u(u− 1),(2.7)

as can be seen directly from (2.6). In the framework of (2.5), that orbit is precisely the unstable
manifold Wu(Q−

ε ) of the pointQ−
ε , for ε = 0, since (2.6) implies that (u, u′) → (1, 0) as ξ → −∞.

We now write c = c0 + (c − c0) = 1√
2
−

√
2γ + ∆c, with ∆c = o(1). Then, noting that the

manifold Wu(Q−
ε ) is analytic in the state variables u and v (at least as long as u ≥ ε), as well

as in the parameter c, we may assume an expansion of the form

v(u, c) =
∞∑

j=0

1

j!

∂jv

∂cj
(u, c0)(∆c)

j(2.8)

for Wu(Q−
ε ).

Remark 5. While the expansion in (2.8) depends explicitly on u and ∆c, it is only implicitly
ε-dependent: the structure of (2.5) implies that any ε-dependence in v can only enter through
c. Correspondingly, the unstable manifold Wu(ℓ−) of the line ℓ− =

{
(1, 0, ε)

∣∣ ε ∈ [0, ε0]
}
, which

is a foliation in ε with fibers Wu(Q−
ε ), only depends on ε in a trivial fashion. �

As will become clear in the following, only the first two terms in (2.8) play a role to the order
considered here: the leading-order term v(u, c0) is again given by (2.7), while the next-order
term in ∆c can be found from the variational equation associated to (2.5), taken along v(u, c0).
That equation is obtained as follows: we first rewrite (2.5) with u as the independent variable;
then, we differentiate the resulting equation with respect to c and substitute in c0 and v(u, c0),
cf. (2.7), which gives

∂

∂u

(∂v
∂c

(u, c0)
)

= −1 + 2
u− γ

u(1 − u)

∂v

∂c
(u, c0).(2.9)

Equation (2.9) can be solved in closed form:

Lemma 2.1. For u ∈ (0, 1], the unique solution ∂v
∂c

(u, c0) to (2.9) that satisfies ∂v
∂c

(1, c0) = 0 is
given by

∂v

∂c
(u, c0) =

1

3 − 2γ
u−2γ(1 − u)F (3 − 2γ,−2γ; 4 − 2γ; 1 − u),(2.10)

where F (·, ·; ·; ·) denotes the hypergeometric function [1, Section 15]. In particular, ∂v
∂c

(u, c0) is
strictly positive for any u ∈ (0, 1).

The proof of Lemma 2.1 can be found in Appendix A.

Remark 6. The hypergeometric function F also occurs in the bounds for the front propagation
speed in the cut-off Nagumo equation that were obtained by Méndez, et al., via a ‘generalized
variational approach;’ see [13, Section V]. However, the precise relationship between their anal-
ysis and ours remains to be clarified. �

Remark 7. The result of Lemma 2.1 implies that the solution ∂v
∂c

(u, c0) of the variational
equation in (2.9) has a branch point at u = 0 and, hence, that it becomes unbounded at that
point, for any γ ∈ (0, 1

2). In the limit as γ → 0+ in (2.9), the singularity disappears, i.e., it
follows from (2.10) that the solution of the corresponding equation remains bounded at 0. �
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Figure 1. The geometry in chart K2.

Finally, we introduce the following notation: for ρ positive and small, with ρ ≥ ε0, we denote
the hyperplane {u = ρ} in (u, v, ε)-space by Σ−, and we write P−

0 for the point of intersection
of Wu(Q−

0 ) with Σ−. (Here and in the following, we will suppress the ρ-dependence of Σ− and
P−

0 , for the sake of brevity.) We remark that Σ− defines a section for the flow of (2.4), and that
the segment of Wu(Q−

0 ) located between Q−
0 and P−

0 , which we label Γ−, gives precisely the
portion of the singular heteroclinic connection Γ that lies in this outer region, i.e., in {u ≥ ρ}.

2.1.2. ‘Inner’ region. In the inner region, the dynamics of (2.4) is governed by the corresponding
cut-off equations, since H ≡ 0 for u < ε. We study these equations in the rescaling chart K2,
where the blow-up transformation in (1.8) is given by

u = r2u2, v = r2v2, and ε = r2.(2.11)

Substituting (2.11) into (2.4), we find the equivalent system

u′2 = v2,(2.12a)

v′2 = −cv2,(2.12b)

r′2 = 0(2.12c)

in (u2, v2, r2)-space. We note that, for r2(= ε) fixed, all points on the u2-axis are equilibria of
(2.12). However, since only points on the line ℓ+2 =

{
(0, 0, r2)

∣∣ r2 ∈ [0, r0]
}

can correspond to
Q+

ε , for ε > 0, after blow-down (i.e., after transformation to the original (u, v, ε)-variables), we
will only consider those points here, and we will collectively denote them by Q+

2 .

In the singular limit as r2 → 0, the front propagation speed c0 = 1√
2
−
√

2γ in (2.12) is known

explicitly; see Section 2.1. The unique solution of the resulting singular equation

dv2

du2
= −c0, with v2(0) = 0,(2.13)

is given by v2(u2) = −c0u2; the orbit Γ+
2 corresponding to that solution yields precisely the

stable manifold Ws
2(Q+

02
) of Q+

02
= (0, 0, 0).

7



Finally, we define the section Σ+
2 for the flow of (2.12) by

Σ+
2 =

{
(1, v2, r2)

∣∣ (v2, r2) ∈ [−v0, 0] × [0, ρ]
}
,(2.14)

for v0 > c0 > 0 fixed, and we note that Σ+
2 represents a natural boundary for the inner region:

since u = ε is equivalent to u2 = 1, after blow-up and transformation to chart K2, Σ+
2 marks the

transition between the regime where the dynamics of the first-order system in (2.4) is unaffected
by the cut-off and the cut-off regime. The orbit Γ+

2 intersects Σ+
2 in the point P+

02
= (1,−c0, 0),

as v2(1) = −c0; therefore, Γ+
2 gives the portion of the singular orbit Γ that lies in this inner

region. The geometry in chart K2 is illustrated in Figure 1.

2.1.3. ‘Intermediate’ region. The intermediate region, where ε < u < O(1), provides the con-
nection between the outer and inner regions discussed in the previous two sections and is most
conveniently studied in chart K1. Here, the blow-up transformation in (1.8) is given by

u = r1, v = r1v1, and ε = r1ε1.(2.15)

Correspondingly, in the new (r1, v1, ε1)-coordinates, (2.4) becomes

r′1 = r1v1,(2.16a)

v′1 = −cv1 − v2
1 + γ − (1 + γ)r1 + r21,(2.16b)

ε′1 = −ε1v1.(2.16c)

Since c reduces to c0 = 1√
2
−
√

2γ for ε(= r1ε1) = 0, it follows that the two equilibria of (2.16)

are located at P s
1 =

(
0,− 1√

2
, 0
)

and P u
1 = (0,

√
2γ, 0). These equilibria correspond to the stable

eigendirection and the unstable eigendirection, respectively, of the linearization at Q+
0 of the

first-order system without cut-off in (2.5). (In other words, the blow-up transformation in (1.8)
teases apart the asymptotics of solutions in a neighborhood of Q+

ε and, hence, desingularizes
the cut-off dynamics of (2.4) down to ε = 0.) Both P s

1 and P u
1 are hyperbolic saddle equilibria

for (2.16), with eigenvalues − 1√
2
, 1√

2
(1 + 2γ), and 1√

2
, respectively,

√
2γ, − 1√

2
(1 + 2γ), and

−
√

2γ. The relevant equilibrium for us is P s
1 , since v1 = v

u
→ − 1√

2
as u→ 0+; recall (2.6).

Remark 8. We remark that the exponent of ε in the leading-order ε-asymptotics of ∆c in
(2.2) is given by the ratio of the second and third eigenvalues of the linearization of (2.16) at
P s

1 . Moreover, we note the presence of a potential (1,−1)-resonance in (2.16) which involves the
factor 1+2γ. This resonance manifests itself e.g. for γ → 0+, in which case the Nagumo equation
in (2.1) reduces to the so-called Zeldovich equation. The effects of a cut-off in that case were
analyzed in detail in [16, Section 4], where it was also shown that the resulting asymptotics
of ∆c contains logarithmic ‘switchback’ terms in ε; see [14] for a more general discussion of
logarithmic switchback and resonance, from a geometric point of view. �

Next, we observe that the hyperplanes {r1 = 0} and {ε1 = 0} are invariant for (2.16),
as well as that both hyperplanes correspond to the singular limit as ε → 0+ in (2.4). The
resulting, reduced dynamics determines the location of the singular heteroclinic orbit Γ in this
intermediate region. Specifically, in {ε1 = 0}, the orbit passing through P−

01
(which is the image

of the point P−
0 under the blow-up transformation in (1.8)) is asymptotic to P s

1 as ξ → ∞. We
denote this orbit by Γ−

1 , and we note that Γ−
1 corresponds to the unstable manifold Wu(Q−

0 ) of
the point Q−

0 , after blow-up and transformation to K1. (Alternatively, Γ−
1 can be interpreted

as the equivalent, in K1, of the ‘tail’ of the traveling front solution in (2.6), in the absence of a
cut-off.)

Similarly, in the invariant hyperplane {r1 = 0}, the orbit through P+
01

(which is the image

of the point P+
02

in Σ+
2 under the coordinate transformation κ21 between charts K2 and K1)

asymptotes to P s
1 in backward ‘time,’ i.e., as ξ → −∞. We denote that orbit by Γ+

1 , and we
8



Σ−
1

Σ+
1

Γ−
1

Wu
1 (ℓ−1 )

P−
01

Wu
1 (Q−

01
)

P−
1

P+
1

P+
01

Γ+
1

P s
1

r1

ε1

v1

Figure 2. The geometry in chart K1.

remark that it can be determined explicitly as follows: dividing (2.16b) (formally) by (2.16c)
and setting r1 = 0 in the resulting equation, we obtain

dv1

dε1
=
c0v1 + v2

1 − γ

ε1v1
.

The solution (in implicit form) can be found by separation of variables:

ln ε1 −
1

2
ln
∣∣c0v1 + v2

1 − γ| − c0√
4γ + c20

arctanh

(
2v1 + c0√

4γ + c20

)
≡ constant,(2.17)

which can in principle be solved for v1(ε1), taking into account that v1(1) must equal v+
01

= −c0
(the v1-coordinate of P+

01
). Thus, we conclude that the union of Γ−

1 and Γ+
1 constitutes the

portion of Γ that is found in the intermediate region; see Figure 2 for an illustration.

2.1.4. Summary. In sum, the singular heteroclinic connection Γ (or, rather, the corresponding

orbit Γ in blown-up phase space) is therefore defined as the union of the orbits Γ
−

and Γ
+

and

of the singularities at Q
−
0 , P

s
, and Q

+
0 , which completes our discussion of the singular dynamics

of (2.4). The resulting global geometry (in blown-up coordinates) is summarized in Figure 3.

2.2. Existence and asymptotics of c(ε). In this section, we establish the persistence of the
singular heteroclinic orbit Γ constructed in the previous section for ε positive and sufficiently
small. To that end, we combine the dynamics obtained separately in the three regions (inner,
outer, and intermediate) in Section 2.1 above.

In the outer region, the unstable manifold Wu(Q−
0 ) of Q−

0 will persist, in an analytic fashion,
as the unstable manifold Wu(Q−

ε ) of Q−
ε (at least as long as u ≥ ε, for ε > 0 sufficiently

small); cf. Section 2.1.1. Given ε fixed, Wu(Q−
ε ) corresponds precisely to the sought-after

persistent heteroclinic in that region. The unstable manifold Wu(ℓ−) of ℓ− is then obtained as⋃
ε∈[0,ε0] Wu(Q−

ε ). (In other words, that manifold is defined as a foliation in ε ∈ [0, ε0], with

fibers Wu(Q−
ε ).)

9



r2

v2

r1

ε1

v1

ℓ̄+

ℓ̄−

u2

Γ
−

Q
+

ε

Q
−

ε

Q
−

0

Γ
+

P
s

Q
+

0

P
+

0

S
2
+

ε̄

v̄

ū

P
+

Figure 3. The global geometry of the blown-up vector field.

Similarly, in the inner region, the stable manifold Ws
2(Q+

02
) of Q+

02
, which is given explicitly

by v2(u2) = −c0u2, cf. (2.13), will perturb analytically, for r2(= ε) > 0 small and u2 ≤ 1, to the
manifold Ws

2(Q+
2 ) of Q+

2 , as defined in Section 2.1.2. (In fact, the persistent manifold is also
known explicitly in this chart, and is given by the graph of v2 = −cu2, for c = c0[1 + o(1)].)
For ε fixed, Ws(Q+

ε ) corresponds to the segment of the persistent heteroclinic that is located
in the inner region (after blow-down). As before, the corresponding stable manifold Ws

2(ℓ+2 ) of
the line of equilibria ℓ+2 is retrieved as the union of these manifolds over ε ∈ [0, ε0].

It remains to show that the two manifolds Wu(ℓ−) and Ws(ℓ+) connect in the intermediate
region for a unique value of c in (2.4) and each ε sufficiently small; the existence of that
connection is equivalent to the persistence of the singular heteroclinic orbit Γ. We will henceforth
denote the corresponding c-value by c(ε); in particular, since we will show that c(ε) reduces to
c0 in the singular limit as ε→ 0+, we will identify c(0) and c0 once the existence of c(ε) has been
proven in Proposition 2.2 below. That proof will be carried out entirely in the intermediate
region, i.e., in chart K1. In a first step, we introduce two sections Σ−

1 and Σ+
1 for the flow of

(2.16), as follows:

Σ−
1 =

{
(ρ, v1, ε1)

∣∣ (v1, ε1) ∈ [−v0, 0] × [0, 1]
}
,(2.18a)

Σ+
1 =

{
(r1, v1, 1)

∣∣ (r1, v1) ∈ [0, ρ] × [−v0, 0]
}
,(2.18b)

where v0 > 0 is defined as before. (The restriction to the negative v1-axis is possible due to
the fact that we are only interested in the dynamics of (2.16) in a neighborhood of P s

1 ; recall
the discussion in Section 2.1.3.) We note that Σ−

1 corresponds to the section Σ− introduced
in Section 2.1.1, after blow-up and transformation to chart K1; moreover, we again suppress
the ρ-dependence of that section, for convenience of notation. Similarly, Σ+

1 is equivalent to
Σ+

2 under the change of coordinates κ12; see (1.10) and (2.14). Clearly, Σ−
1 separates the outer

region from the intermediate region, while Σ+
1 defines the boundary between the intermediate

and inner regions.
Now, the crucial step in showing the existence and uniqueness of c(ε) consists in describing

the transition map Π1 : Σ−
1 7→ Σ+

1 sufficiently accurately to the order considered here. In other
words, we will require that, for ε > 0 small enough, the point of intersection of Wu(Q−

ε ) with the
10



section Σ−, which we denote by P−, is mapped to the point of intersection P+
2 of Ws

2(Q+
2 ) with

Σ+
2 in the transition through the intermediate region. (Here, we note that the corresponding

orbit constitutes the portion of the persistent heteroclinic that lies in this region; moreover, we
omit the parameter dependence of the points P− and P+

2 , for brevity.) The required persistence
proof will also reveal that ∆c(ε) = c(ε) − c0 must be positive. Finally, it will provide us with
the leading-order ε-asymptotics of c(ε), as stated in Theorem 2.1.

2.2.1. Preparatory analysis. We now set out to describe the asymptotics of Π1, as indicated
above. To that end, we first recast (2.16) in a form that is more convenient, via a sequence of
coordinate transformations: we write c = c0 + (c − c0) = 1√

2
−

√
2γ + ∆c; then, we introduce

the new variable z = v1 + 1
2c0 = v1 + 1

2
√

2
(1 − 2γ). With these transformations, the equations

in (2.16) become

r′1 = −
[

1
2
√

2
(1 − 2γ) − z

]
r1,(2.19a)

z′ =
[

1
2
√

2
(1 − 2γ) − z

]
∆c− z2 + 1

8(1 + 2γ)2 − (1 + γ)r1 + r21,(2.19b)

ε′1 =
[

1
2
√

2
(1 − 2γ) − z

]
ε1.(2.19c)

(Here, we observe that the linear v1-terms in (2.16b) cancel due to our choice of constant in
the definition of z.) Next, we divide out the factor of 1

2
√

2
(1 − 2γ) − z, which is positive in

the z-regime considered here, cf. Section 2.1.3, from the right-hand sides of the vector field in
(2.19):

r′1 = −r1,(2.20a)

z′ = ∆c− z2 − 1
8(1 + 2γ)2

1
2
√

2
(1 − 2γ) − z

+
−(1 + γ)r1 + r21

1
2
√

2
(1 − 2γ) − z

,(2.20b)

ε′1 = ε1.(2.20c)

This transformation corresponds to a rescaling of ξ that leaves the phase portrait of (2.19)
unchanged; correspondingly, the prime now denotes differentiation with respect to a new inde-
pendent variable ζ. Moreover, since the equations in (2.20) are autonomous, we may assume
without loss of generality that ζ− = 0 in Σ−

1 , independent of the choice of ξ− in (2.6).
Now, the desired expression for the transition map Π1 may be obtained by simplifying the

equations in (2.20) appropriately. To that end, we derive a normal form system for (2.20), as
follows:

Proposition 2.1. Let V :=
{
(r1, z, ε1)

∣∣ (r1, z, ε1) ∈ [0, ρ] × [−z0, 0] × [0, 1]
}
, where z0 = v0 +

1√
2
(1 − 2γ), with v0 as in (2.18). Then, there exists a C∞-smooth coordinate transformation

ψ :

{
V → ψ(V),

(r1, z, ε1) 7→ (r1, ẑ, ε1),

with ẑ(z, r1) = z +O(r1), such that (2.20) can be written as

r′1 = −r1,(2.21a)

ẑ′ = ∆c− ẑ2 − 1
8(1 + 2γ)2

1
2
√

2
(1 − 2γ) − ẑ

,(2.21b)

ε′1 = ε1.(2.21c)

Proof. The result follows from standard normal form theory; see for example [6] and the refer-
ences therein. In particular, we note that the r1-dependent terms in (2.20b) are non-resonant
and that they can hence be removed completely via a near-identity coordinate change ψ. More-
over, ψ can only depend on the variables r1 and z, as (2.20b) is independent of ε1. Therefore,
ẑ = z +O(r1), as claimed. �
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2.2.2. Uniqueness of ∆c. Let P−
1 and P+

1 denote the points that correspond to P− and P+
2 , re-

spectively, after transformation to chart K1, and let P̂−
1 and P̂+

1 be the respective corresponding
points after application of the normal form transformation ψ defined in Proposition 2.1. Finally,
let ẑ− and ẑ+ denote the associated ẑ-values that are obtained from z− and z+, respectively.
We find

Lemma 2.2. For any ρ ∈ (ε, 1), with ε ∈ (0, ε0] and ∆c sufficiently small, the points P̂−
1 =

(ρ, ẑ−, ερ−1) and P̂+
1 = (ε, ẑ+, 1) satisfy

ẑ− = ẑ−(ρ,∆c) = − 1

2
√

2
(1 + 2γ) + ν(ρ,∆c)∆c, with ν(ρ, 0) =

1

ρ

∂v

∂c
(ρ, c0)[1 + ν1(ρ)] > 0,

(2.22)

and

ẑ+ = ẑ+(∆c, ε) = −
[ 1

2
√

2
(1 − 2γ) + ∆c

]
+ ω(∆c, ε)ε.(2.23)

Here, ν(ρ,∆c) is a C∞-smooth function in ρ and ∆c, while ν1 is C∞-smooth down to ρ = 0,
with ν1(0) = 0. Finally, ω(∆c, ε) is C∞-smooth in ∆c and ε, including in a neighborhood of
(0, 0).

Proof. Given that u(= r1) = ρ in Σ−
1 , cf. (2.18a), we evaluate the expansion in (2.8) to find

v− := v(ρ, c) = v(ρ, c0) +
∂v

∂c
(ρ, c0)∆c+O[(∆c)2](2.24)

for the v-coordinate of P−, where the O[(∆c)2]-terms are C∞-smooth as long as ρ is positive.
Substituting in v(ρ, c0) = 1√

2
ρ(ρ− 1), see (2.7), and noting that v− = ρv−1 , we have

z− = v−1 +
1

2
√

2
(1 − 2γ) = − 1

2
√

2
(1 + 2γ) +

ρ√
2

+
1

ρ

∂v

∂c
(ρ, c0)∆c+O[(∆c)2].

It remains to transform that expression into (r1, ẑ, ε1)-coordinates: applying the normal form
transformation ψ from the proof of Proposition 2.1 and taking into account that ψ is near-
identity and C∞-smooth, we obtain a transformed value ẑ− = ẑ−(ρ,∆c) from z−, where

ẑ− = − 1

2
√

2
(1 + 2γ) + ν0(ρ) +

1

ρ

∂v

∂c
(ρ, c0)[1 + ν1(ρ)]∆c+ ν2(ρ,∆c)(∆c)

2,

for ∆c sufficiently small. Here, νj , j = 0, 1, 2, are C∞-smooth functions in their respective
arguments; in particular, ν0 and ν1 are smooth down to ρ = 0, with ν0(0) = 0 = ν1(0).
Next, we note that ν0(ρ) ≡ 0 must hold, since ẑ = ± 1

2
√

2
(1 + 2γ) is invariant for ∆c = 0

in (2.21b). (Here, we remark that these ẑ-values correspond precisely to the (rectified) stable

and unstable manifolds Ws
1(P̂ s

1 ) and Wu
1 (P̂ u

1 ) of P̂ s
1 and P̂ u

1 , respectively, after transformation
to (r1, ẑ, ε1)-coordinates.) Hence, we may express ẑ− as stated in (2.22), with ν(ρ,∆c) =
1
ρ

∂v
∂c

(ρ, c0)[1 + ν1(ρ)] + ν2(ρ,∆c)∆c; in particular, the smoothness of ν1 implies that ν(ρ, 0) is

a C∞-smooth function in ρ. Finally, ν(ρ, 0) is positive for ρ ∈ (0, 1) small enough, as claimed,
since ∂v

∂c
is positive for any u ∈ (0, 1), by Lemma 2.1, which establishes (2.22).

To show (2.23), we first note that P+
1 = κ21(P

+
2 ) must hold for the singular heteroclinic orbit

Γ to persist for some c-value c(ε), with ε sufficiently small. (Here, the change of coordinates
κ21 : K2 → K1 is as defined in (1.9).) Therefore, we may obtain the desired estimate for z+

by estimating P+
2 first. To that end, we recall that v+

2 = −( 1√
2
−

√
2γ) − ∆c, as well as that

v+
2 = v+

1 , since u2 = 1 in Σ+
2 , by (2.14). Hence,

z+ = − 1

2
√

2
(1 − 2γ) − ∆c,

and application of the near-identity transformation ψ defined in the proof of Proposition 2.1 to
z+ yields a corresponding value ẑ+ that satisfies ẑ+(∆c, ε) = − 1

2
√

2
(1 − 2γ) − ∆c+ ω01(∆c, ε),

where ω01 is C∞-smooth in both ∆c and ε, including in a neighborhood of (0, 0). In particular,
12



since ẑ = z + O(r1), cf. Proposition 2.1, and since r1 = ε in Σ+
1 , it follows that ω01 vanishes

in the singular limit as ε → 0+. Writing ω01(∆c, ε) = ω(∆c, ε)ε for some new function ω, we
obtain (2.23), which completes the proof. �

Remark 9. Since ∂v
∂c

(ρ, c0) will become unbounded as ρ → 0+, by Lemma 2.1, (2.22) implies
that ν(ρ,∆c) cannot remain bounded in that limit, either. As will become clear in the following,
this unboundedness will be resolved in the transition through the intermediate region, provided
the ρ-dependence of Π1 is accounted for accordingly; see Lemma 2.4 below.

In general, the function ν2(ρ,∆c) defined above cannot be expected to remain bounded when
∆c > 0 and ρ → 0+. However, ν2(ρ,∆c)(∆c)

−2 will still be uniformly bounded for ρ in a
compact subset of (0, 1). Correspondingly, in the statement of Lemma 2.2, it is assumed that ρ
is positive. �

For given ∆c small, ε ∈ (0, ε0], and ρ ∈ (ε, 1), we now consider the solution to (2.21) with
initial ẑ-value ẑ(0) = ẑ−(ρ,∆c), where ẑ− is as in (2.22). Let ẑ+

− denote the corresponding

value of ẑ(ζ+), where ζ+ = − ln ε
ρ

is the value of ζ in Σ+
1 . (Here, ζ+ can e.g. be found from

r1(ζ) = ρe−ζ , cf. (2.21a), in combination with r1(ζ
+) = ε.)

Lemma 2.3. For ẑ+
− defined as above, there holds

∂ẑ+
−

∂c
(ρ,∆c) > 0. Moreover, there can exist

at most one value of ∆c such that ẑ+
−(ρ,∆c) = ẑ+(∆c, ε), where ẑ+ is as in (2.23).

Proof. The first statement can be seen by considering the variational equations corresponding
to (2.21); in particular, along any orbit with ε = r1ε1 > 0, the equation for ∂ẑ

∂c
obtained from

(2.21b) is given by ∂
∂ζ

(
∂ẑ
∂c

)
= 1+Z(ζ)∂ẑ

∂c
, where Z is some smooth function. Since, by Lemma 2.2,

∂ẑ−

∂c
> 0 for ρ and ∆c sufficiently small, any solution of this equation has to remain strictly

positive for all ζ ≥ ζ− = 0. As ∂ẑ+

∂c
< 0, again by Lemma 2.2, the second statement then follows

trivially. �

Lemma 2.3 implies, in particular, that a connection between the points P̂− and P̂+ under the
flow of (2.21) can exist for at most one value of ∆c in (2.21b). As a consequence, persistence
of the singular heteroclinic orbit Γ constructed in Section 2.1 is also only possible for at most
one value of ∆c.

2.2.3. Existence and asymptotics of ∆c. We are now in a position to prove that there exists,
in fact, a function ∆c = ∆c(ε) so that the singular heteroclinic orbit Γ persists, for ε positive
and sufficiently small and c = c0 + ∆c(ε) in (2.4). To that end, we integrate the normal
form equations obtained in (2.21), taking into account the estimates for ẑ− and ẑ+ found in
Lemma 2.2 above:

Proposition 2.2. Let ε ∈ (0, ε0], with ε0 > 0 sufficiently small, and let γ ∈ (0, 1
2). Then, there

exists a function c(ε) = c0 + ∆c(ε), with ∆c(0) = 0, such that the singular orbit Γ persists if
and only if c = c(ε) in (2.4). Moreover, ∆c is positive, and C1-smooth in ε (including at ε = 0)
and γ.

Proof. Given the normal form system in (2.21), we need to determine ∆c so that P̂−
1 is mapped

to P̂+
1 under Π1. We first integrate (2.21b), using separation of variables, to obtain

(2.25) ζ+ − ζ− − 1

2
ln
∣∣2ẑ2 + 2∆cẑ − 1√

2
(1 − 2γ)∆c− 1

4(1 + 2γ)2
∣∣
∣∣∣
ẑ+

ẑ−

−
1√
2
(1 − 2γ) + ∆c

√
1
2(1 + 2γ)2 +

√
2(1 − 2γ)∆c+ (∆c)2

× arctanh

(
2ẑ + ∆c√

1
2(1 + 2γ)2 +

√
2(1 − 2γ)∆c+ (∆c)2

)∣∣∣∣∣

ẑ+

ẑ−

= 0;
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see also (2.17). Now, we recall that ζ+ = − ln ε
ρ

and ζ− = 0; moreover, we make use of

ẑ+ = −[ 1
2
√

2
(1 − 2γ) + ∆c] + ω(∆c, ε)ε and of ẑ− = − 1

2
√

2
(1 + 2γ) + ν(ρ,∆c)∆c, as given in

(2.23) and (2.22), respectively. Substituting into (2.25), rewriting the hyperbolic arctangent via

arctanhx =
1

2
ln

1 + x

1 − x
,

and expanding the result in terms of ∆c and ε, we find

(2.26) − ln
ε

ρ
− 1

2
ln
∣∣− 2γ −

√
2(1 − 2γ)ω(∆c, ε)ε+O(2)

∣∣

+
1

2
ln
∣∣−

√
2[1 + (1 + 2γ)ν(ρ, 0) +O(1)]∆c

∣∣− 1

2

{
1 − 2γ

1 + 2γ
+

8
√

2γ

(1 + 2γ)3
∆c+O(2)

}

×
{

ln
∣∣∣2γ− 4

√
2γ

1 + 2γ
∆c+

√
2(1+2γ)ω(∆c, ε)ε+O(2)

∣∣∣−ln
∣∣∣
√

2
1 + (1 + 2γ)ν(ρ, 0) +O(1)

(1 + 2γ)2
∆c
∣∣∣
}

= 0.

Here, O(1) denotes terms of at least order 1 in ∆c, and O(2) stands for terms of at least order
2 in ∆c and ε; both O(1) and O(2) are C∞-smooth, and uniform in their respective arguments,
if ρ is restricted to compact subsets of (0, 1). (The uniformity is lost as ρ→ 0+, as before, since
ν(ρ,∆c) becomes unbounded in that limit; recall the proof of Lemma 2.2 and, in particular,
Remark 9.)

Since, by Lemma 2.3, (2.26) can have a solution for at most one value of ∆c, we will restrict
ourselves to ∆c > 0 and show that a solution exists in that case. That solution will then
necessarily be unique.

Hence, taking into account that ν(ρ, 0) > 0, by Lemma 2.2, we exponentiate (2.26) to obtain

(2.27)
(ε
ρ

)2(1+2γ)
= (2γ)−(1+2γ)

{√
2
[
1 + (1 + 2γ)ν(ρ, 0)

]
∆c
}1+2γ

× (2γ)−(1−2γ)
{√

2
1 + (1 + 2γ)ν(ρ, 0)

(1 + 2γ)2
∆c
}1−2γ

[1 +O(1)],

where the O(1)-terms are now C∞-smooth in ∆c, ∆c ln(∆c), and ε. (Here, the occurrence of
logarithmic terms in ∆c is due to the ∆c ln(∆c)-terms in (2.26).) Clearly, the relation in (2.27)
is satisfied at (∆c, ε) = (0, 0); moreover, it is C1-smooth, in ε, ∆c, γ, and ρ, in a uniform
fashion, for ε and ∆c sufficiently small (including at (∆c, ε) = (0, 0)) and γ and ρ in a compact
subset of (0, 1

2) and (0, 1), respectively. Finally, since 1+(1+2γ)ν(ρ, 0) > 0, it follows from the

Implicit Function Theorem that (2.27) has a solution ∆c(ε, γ, ρ) which is C1-smooth in ε (down
to ε = 0), γ, and ρ, as claimed.

By definition, that solution yields precisely the value of ∆c for which a heteroclinic connection
exists between the points Q−

ε and Q+
ε in (2.4). Hence, ∆c = ∆c(ε, γ) must hold, i.e., ∆c cannot

depend on ρ. (In other words, ∆c must be independent of the definition of the section Σ−,
which is arbitrary.) Finally, to determine the leading-order ε-asymptotics of ∆c(ε) ≡ ∆c(ε, γ),
we solve (2.27) to leading order:

∆c(ε) = Kγε
1+2γ + o(ε1+2γ),

where the constant Kγ is defined by

Kγ =

√
2γ(1 + 2γ)1−2γ

1 + (1 + 2γ)ν(ρ, 0)

1

ρ1+2γ
≡

√
2γ(1 + 2γ)1−2γ

(1 + 2γ)δ(γ)
> 0.(2.28)

Here,

δ(γ) =
[ 1

1 + 2γ
+ ν(ρ, 0)

]
ρ1+2γ(2.29)

denotes a strictly positive function that is C∞-smooth in γ ∈ (0, 1
2), for any ρ ∈ (0, 1) fixed and

sufficiently small. This completes the proof of Proposition 2.2. �
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Remark 10. The proof of Proposition 2.2 implies that ∆c is, in fact, obtained as the solution
of an implicit equation of the form

K(γ)ε1+2γ = ∆c[1 + θ(ε,∆c,∆c ln(∆c), γ)],(2.30)

where K(γ) ≡ Kγ and θ are C∞-smooth in their respective arguments, with K(γ) positive, see
(2.28), and θ(0, 0, 0, γ) = 0. Even though ∆c is only C1-smooth when considered as a function
of ε, the relation in (2.30) allows us to calculate the ε-asymptotics of ∆c to higher order than
a mere C1-dependence might suggest. �

We emphasize that the definition of Kγ in (2.28) has to be independent of ρ, as ∆c(ε) is
defined by the global condition that the singular heteroclinic orbit Γ persists, for ε sufficiently
small: while the Implicit Function Theorem is applied for ρ fixed in the proof of Proposition 2.2,
our argument is valid for arbitrary ρ. (To state it differently, although the function ν(ρ, 0), as
defined in (2.22), may depend on the definition of Σ−

1 and, hence, on ρ, that dependence must
cancel, as a matter of principle, once the dynamics of (2.4) in the outer region has been taken
into account.) Therefore, the function δ(γ) also cannot depend on ρ, and we may obtain the
value of δ by evaluating (2.29) for any ρ ∈ (0, 1); in particular, we may pass to the zero-ρ limit.
Recalling the definition of ν(ρ, 0) from (2.22), we have

δ(γ) = lim
ρ→0+

{
ρ1+2γν(ρ, 0)

}
= lim

ρ→0+

{
ρ2γ ∂v

∂c
(ρ, c0)

}
;(2.31)

cf. the proof of Lemma 2.2. It remains to evaluate the above limit. To that end, we make use of
the explicit solution ∂v

∂c
of the variational equation that is associated to the first-order system

without cut-off in (2.5), as found in Lemma 2.1:

Lemma 2.4. The function δ defined in (2.29) satisfies

δ(γ) = lim
ρ→0+

{
ρ2γ ∂v

∂c
(ρ, c0)

}
=

Γ(3 − 2γ)Γ(2γ + 1)

Γ(4)
,(2.32)

where ∂v
∂c

(u, c0) is as given in (2.10) and Γ(·) denotes the standard Gamma function, as before.

Proof. Evaluating (2.10) at u = ρ, for ρ positive and small, and noting that the hypergeometric
function F converges absolutely at ρ = 0 due to ℜ(1 + 2γ) > 0 [1, Section 15.1.1], we find

ρ2γ ∂v

∂c
(ρ, c0) =

1

3 − 2γ
(1 − ρ)F (3 − 2γ,−2γ; 4 − 2γ; 1 − ρ).

Making use of the identity [1, Equation (15.1.20)]

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
for c 6∈ Z− and ℜ(c− a− b) > 0(2.33)

and taking the limit as ρ→ 0+ in the resulting equation, we obtain

δ(γ) =
1

3 − 2γ

Γ(4 − 2γ)Γ(2γ + 1)

Γ(1)Γ(4)
.(2.34)

Since Γ(1) = 1 and Γ(4 − 2γ) = (3 − 2γ)Γ(3 − 2γ), (2.32) follows, as claimed, which completes
the proof. �

2.2.4. End of proof of Theorem 2.1. We are now in a position to complete the proof of Theo-
rem 2.1:

Proposition 2.3. The constant Kγ introduced in (2.2) is given by

Kγ =
Γ(4)

Γ(1 + 2γ)Γ(3 − 2γ)

√
2γ

(1 + 2γ)2γ
;(2.35)

cf. (2.30).

Proof. The result is immediate from (2.28) and (2.31), in combination with (2.32). �
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Since Equation (2.35) is precisely (2.3), this completes the proof of Theorem 2.1.

Remark 11. Clearly, Kγ reduces to zero in the limit as f ′(0) = γ → 0+, which is in agreement
with [16, Theorem 2]: there, it was shown that the correction ∆c to c0 = 1√

2
that is induced by

the cut-off in the resulting Zeldovich equation, with f(u) = u2(1− u), is of the order O(ε2); see
also [4, Equation (9)]. �

Remark 12. The approach developed in this section can be extended to more general choices
of cut-off function Θ in (2.1). (In particular, for Θ as defined in (1.4), the dynamics of the associ-
ated traveling front equation will remain unchanged in the outer and intermediate regions, since
Θ ≡ 1 there.) However, while the exponent 1+2γ in the leading-order ε-asymptotics of ∆c will
be Θ-independent, the numerical value of Kγ will depend on the choice of Θ, in contrast to the
expansion for ∆c obtained in [5, 8], in the context of the cut-off Fisher-Kolmogorov-Petrowskii-
Piscounov (FKPP) equation in (1.1), where the corresponding coefficient was universal. Since,
moreover, the governing equations in the inner region will typically have no closed-form solution
in the singular limit as ε→ 0+, it will not be possible to evaluate Kγ in closed form for general
Θ. �

Remark 13. The leading-order approximation ζ+ = − ln ε + O(1) made in [15, Section 3],
while sufficient to prove ∆c(ε) = O(ε1+2γ), is not accurate enough to give the value of the
coefficient Kγ : that value can only be determined if δ(γ) is known; however, the definition of δ
crucially depends on the factor of ρ1+2γ that was neglected in [15]. �

Remark 14. Alternatively, existence and uniqueness of c(ε) can be shown via a phase plane
argument, as was done in the analysis of the cut-off FKPP equation in [8, Proposition 3.1]:
first, Wu(ℓ−) is tracked in forward ‘time’ ξ to the hyperplane {u = ε}, where it lies inside of
Ws(ℓ+) for c > c(ε), whereas it is located outside for c < c(ε). Hence, the two manifolds must
coincide for some value c(ε) of c close to c0. Moreover, by that same argument, it follows that
c(ε) > c0. Finally, c(ε) is unique, as the positions of the points of intersection of Wu(ℓ−) and
Ws(ℓ+) with {u = ε} change monotonically with c.

The ε-asymptotics of ∆c, however, cannot be obtained in that manner, but has to be derived
separately, via an analysis of the transition through the intermediate region, as was done in [8,
Proposition 3.2] and in the proof of Proposition 2.2 above. That proof shows the existence of ∆c
in addition to yielding its leading-order asymptotics, rendering a separate existence argument
unnecessary. �

3. The cut-off Schlögl equation

In this section, we briefly discuss the Schlögl equation with cut-off:

φt = φxx − [2(1 − σ)φ+ (σ − 3)φ2 + φ3]H(φ− ε).(3.1)

Here, 0 < σ < 1 is a (fixed) parameter [13], and φ is defined so that the metastable state, which
in the usual formulation is located at φ+ = −1, lies at zero now. Additional rest states of (3.1)
are found at φ◦ = 1−σ and φ− = 2. Moreover, we note that an explicit expression is known for
the traveling front solution that propagates between the rest states at 2 and 0, with propagation
speed c0 =

√
2σ, in the corresponding equation without cut-off; that solution is given by

u(ξ) = 1 − tanh
(ξ − ξ−√

2

)
,(3.2)

with arbitrary phase ξ−; see e.g. [13, 15].
The following corollary is the main result of this section:

Corollary 3.1. Let ε ∈ (0, ε0], with ε0 > 0 sufficiently small, and let σ ∈ (0, 1). Then,
the unique (σ-dependent) value c(ε) of c for which Equation (4.1) supports a unique traveling
front solution propagating between φ− = 2 and φ+ = 0 is given by c(ε) = c(0) + ∆c(ε), where
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c(0) =
√

2σ (the propagation speed in the absence of a cut-off) and ∆c is a positive, C1-smooth
function in ε (including at ε = 0) and σ that satisfies

∆c(ε) = Kσε
2−σ + o(ε2−σ),(3.3)

for

Kσ =
Γ(4)

Γ(2 + σ)Γ(2 − σ)

√
2(1 − σ)

22−σ(2 − σ)1−σ
(3.4)

a positive constant. (Here, Γ(·) denotes the standard Gamma function, as before.)

Proof. The result is most easily seen from the well-known equivalence of the Schlögl and Nagumo
equations [4, 13]: introducing the new variables

Φ =
1

2
φ, T = 4t, X = 2x, E =

1

2
ε, and Σ =

1

2
(1 − σ)

in (3.1), we obtain

ΦT = ΦXX + Φ(1 − Φ)(Φ − Σ)H(Φ − E),(3.5)

which corresponds precisely to Equation (2.1). (In particular, there holds Σ ∈ (0, 1
2) for σ ∈

(0, 1), as required.) Defining the new traveling wave variable Ξ by Ξ = X − CT , we note that
Ξ = 2ξ, with ξ = x − ct, as before. Hence, c = 2C, and applying the result of Theorem 2.1 to
(3.5), we have

C(E) = C0 +KΣE
1+2Σ + o(E1+2Σ),(3.6)

where C0 = 1√
2
−
√

2Σ and KΣ are defined as in (2.3), with γ replaced with Σ there. Rewriting

(3.6) in terms of ε, c, and σ, we find (3.3) and (3.4), as claimed, which completes the proof. �

To the best of our knowledge, the value of Kσ had not been calculated explicitly before.
Finally, we remark that a preliminary, geometric analysis of the cut-off Schlögl equation has
appeared previously in [15]. (In particular, the statement of Corollary 3.1 makes rigorous the
reasoning presented in [15, Section 3].)

Remark 15. Alternatively, the result of Corollary 3.1 can also be obtained from the equivalent
first-order system

u′ = v,(3.7a)

v′ = −cv + [2(1 − σ)u+ (σ − 3)u2 + u3]H(u− ε),(3.7b)

ε′ = 0(3.7c)

corresponding to (3.1), as was done for the Nagumo equation in Section 2. In particular, the

existence and uniqueness of ∆c(ε) = Kσε
2−σ + o(ε2−σ), with Kσ =

√
2(1−σ)

(2−σ)1−σδ(σ)
> 0 and δ(σ) a

C∞-smooth, positive function, can be shown exactly as in Section 2.2 above. To determine the
value of δ, one considers the corresponding variational equation along the heteroclinic connection
v(u, c0) = 1√

2
u(u − 2) between the equilibrium points at Q−

0 = (2, 0, 0) and Q+
0 = (0, 0, 0) in

(3.7):

∂

∂u

(∂v
∂c

(u, c0)
)

= −1 + 2
u+ σ − 1

u(2 − u)

∂v

∂c
(u, c0).(3.8)

The unique solution of (3.8) that satisfies ∂v
∂c

(2, c0) = 0 is given by

∂v

∂c
(u, c0) =

21−σ

2 + σ
uσ−1(2 − u)F (2 + σ,−1 + σ; 3 + σ; 1 − u

2 ),(3.9)

where F (·, ·; ·; ·) denotes the hypergeometric function [1, Section 15], as before. Hence, we have

δ(σ) = lim
ρ→0+

{
ρ1−σ ∂v

∂c
(ρ, c0)

}
= 22−σ Γ(2 + σ)Γ(2 − σ)

Γ(4)
,(3.10)
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which we substitute into Kσ to find (3.4), as required. �

4. General cut-off bistable dynamics

The results obtained in Sections 2 and 3 for the Nagumo and Schlögl equations, respectively,
generalize to bistable front propagation into a metastable state in the more general class of
cut-off reaction-diffusions equations defined in (1.5), which we restate for reference here:

φt = φxx + f(φ)H(φ− ε),(4.1)

where H again denotes the Heaviside cut-off, as before, and the smooth reaction function f

satisfies several mild assumptions that are specified in the following.
Assumption A1. The function f(φ) in (4.1) has three roots, corresponding to the three rest
states at φ+, φ−, and φ◦ in (4.1). Moreover, the stable rest state at φ+ is located at the origin,
i.e., f may be written as f(φ) = φg(φ), where g is a smooth function, with

g(0) < 0 and g′(0) > 0, as well as g(φ−) = 0 and g′(φ−) < 0.(4.2)

For future reference, we note that, clearly, g(0) = f ′(0). We also remark that, by Assump-
tion A1, the third rest state at φ◦ satisfies g(φ◦) = 0 and g′(φ◦) ≥ 0.

Next, we require an assumption about the global dynamics of Equation (4.1) in the absence
of a cut-off:
Assumption A2. The equation φt = φxx + f(φ) supports a traveling front solution that
propagates between the rest states at φ− and φ+(= 0), with propagation speed c0.

Finally, to ensure that the front propagation speed c0, as defined in Assumption A2, is non-
negative, we impose the following assumption on the integral of f , cf. e.g. [12, Section 6.2]:

Assumption A3. The reaction function f in (4.1) satisfies
∫ 1
0 f(φ) dφ > 0.

Remark 16. The requirement in Assumption A3 can be seen by considering the traveling front
equation u′′ + c0u

′ + f(u) = 0 (without cut-off): multiplying that equation with u′, integrating
over ξ, and taking into account that u′ → 0 as ξ → ±∞, one finds

c0

∫ ∞

−∞
[u′(ξ)]2 dξ =

∫ 1

0
f(u) du;

hence, the sign of c0 must equal the sign of the integral of f over (0, 1). �

As in Section 2, we will study front propagation in (4.1) in the framework of the first-order
system

u′ = v,(4.3a)

v′ = −cv − ug(u)H(u− ε),(4.3b)

ε′ = 0(4.3c)

that is equivalent to the traveling front equation corresponding to (4.1); see also (1.7). For
ε small and fixed, the relevant equilibrium points of (4.3) are found at Q−

ε = (φ−, 0, ε) and
Q+

ε = (0, 0, ε); recall Assumption A1. These points are hyperbolic saddle equilibria, in (u, v),
of the corresponding system

u′ = v,(4.4a)

v′ = −cv − ug(u)(4.4b)

that is obtained from (4.3) in the absence of a cut-off; the associated eigenvalues are given by

λ−± = − c
2 ± 1

2

√
c2 − 4φ−g′(φ−) and λ+

± = − c
2 ± 1

2

√
c2 − 4g(0), respectively. Traveling front

solutions of (4.1) propagating with speed c between the rest states at φ− and 0 then correspond
to heteroclinic orbits that connect Q−

ε and Q+
ε in (4.3), as before. In particular, Assumption A2

implies that there exists a heteroclinic connection between Q−
0 and Q+

0 for a locally unique value
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of the parameter c = c0 in the equations without cut-off in (4.4). Finally, c0 is non-negative by
Assumption A3.

The following theorem is the main result of this section:

Theorem 4.1. Let ε ∈ (0, ε0], with ε0 > 0 sufficiently small. Then, there exists a unique value
c(ε) of c such that Equation (4.1) possesses a unique traveling front solution propagating between
φ− and φ+(= 0). Moreover, c(ε) = c(0) + ∆c(ε), where c(0) = c0 (the propagation speed in the
absence of a cut-off) and ∆c is a positive, C1-smooth function in ε (including at ε = 0) and p
that satisfies

∆c(ε) = Kεp + o(εp),(4.5)

with

p =
2
√
c20 − 4g(0)

c0 +
√
c20 − 4g(0)

(4.6)

and

K = |f ′(0)|
p

2

[−c0 +
√
c20 − 4f ′(0)

c0 +
√
c20 − 4f ′(0)

]1− p

2 [c20 − 4f ′(0)]
1−p

2

δ(p)
(4.7)

a positive constant. Here, δ is a C∞-smooth, positive function that is defined as

δ(p) = lim
ρ→0+

{
ρp−1∂v

∂c
(ρ, c0)

}
,(4.8)

where ∂v
∂c

(u, c0) denotes the solution of the variational equation corresponding to (4.3), taken
along the heteroclinic orbit v(u, c0).

We remark that, in general, the value of the leading-order coefficient K in (4.5) cannot be
determined in closed form, as the function δ(p) defined in (4.8) can only be evaluated exactly if
a closed-form expression for ∂v

∂c
(u, c0) is known. As will become clear in the following, explicit

knowledge of v(u, c0) is a necessary, but not a sufficient, condition for the computability of ∂v
∂c

and, hence, of K.

Remark 17. The Nagumo equation discussed in Section 2 is a special case of the very general
scenario considered here, as Equation (2.1) satisfies (4.2) with g(φ) = (1 − φ)(φ − γ) and
φ− = 1. Correspondingly, the leading-order ε-asymptotics of c(ε), as stated in Theorem 4.1,
agrees with the results of Section 2 in that case: substituting c0 = 1√

2
−

√
2γ and g(0) = −γ

into (4.6) and (4.7), we recover p = 1 + 2γ and K = Kγ , as in the statement of Theorem 2.1.
Similarly, the Schlögl equation discussed in Section 3 is of the form in (4.1), with g(φ) =
−[φ2 + (σ − 3)φ+ 2(1 − σ)] and φ− = 2: since c0 =

√
2σ and g(0) = −2(1 − σ), it follows that

p = 2 − σ and K = Kσ, as claimed in Corollary 3.1. �

Remark 18. To obtain classical bistable reaction kinetics in (4.1), one would typically require
the following additional assumption; cf. again [12] for details and references.
Assumption A′

1. The function g defined in Assumption A1 has exactly two roots. Moreover,
g′(φ◦) is strictly positive.

Assuming, without loss of generality, that φ− = 1 and φ◦ = γ for γ ∈ (0, 1), one could rewrite
(4.1) as

φt = φxx + φ(1 − φ)(φ− γ)g̃(φ)H(φ− ε),(4.9)

where g̃(φ) = 1 + O(φ) denotes a smooth function that is strictly positive on (0, 1). As-
sumption A2 would then imply the existence of a front solution propagating between the rest
states at 1 and 0 in (4.9). For the propagation speed c0 to be non-negative, we would assume∫ 1
0 φ(1 − φ)(φ− γ)g̃(φ) dφ > 0, as in Assumption A3.
Equation (4.9) is, to leading order, precisely the Nagumo equation studied in Section 2 and

can be analyzed accordingly. The proof of Theorem 4.1, however, only requires information on
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g in a neighborhood of the rest states at φ− and φ+(= 0), in addition to the global requirement
that a front solution connecting the two exists. Hence, the stricter Assumption A′

1 is of no
relevance to us and will not be imposed here. �

The proof of Theorem 4.1 follows the procedure outlined in the Introduction: the origin
in (4.3) is desingularized via the blow-up transformation in (1.8). The singular heteroclinic
connection Γ is then constructed in the blown-up vector field that is induced by (4.3) on S

2
+. The

required construction is again performed in the two charts K2 and K1, in which the dynamics
of (4.3) is analyzed in the inner and intermediate regions, respectively; the dynamics in the
outer region can conveniently be described in the original (u, v, ε)-variables, as before. Finally,
persistence of Γ as a heteroclinic connection between Q−

ε and Q+
ε for ε > 0 sufficiently small

may be established in exactly the same manner as was done in Sections 2 and 3; see also
[8]. As before, that connection will yield the sought-after traveling front solution of (4.1) that
propagates between φ− and 0, with speed c(ε). Since the corresponding analysis is in many
ways similar to that presented in Section 2, we will omit some of the details in the following.

4.1. Construction of Γ.

4.1.1. Outer region. In the outer region, which is again defined by u = O(1), the governing
equations are given by (4.3) withH ≡ 1, i.e., by (4.4). (Equivalently, the dynamics in this region
is governed by the corresponding traveling front equation u′′+cu′+ug(u) = 0; cf. Section 2.1.1.)
As noted above, we assume the existence of a heteroclinic connection between u = φ− and u = 0
in that equation for some (locally unique, non-negative) value c0 of the front speed c. In the
context of (4.4), this heteroclinic orbit corresponds precisely to the unstable manifold Wu(Q−

0 )
of the point Q−

0 , since Assumption A2 implies (u, v) → (φ−, 0) as ξ → −∞. Moreover, as before,
we may assume an expansion for that manifold of the form

v(u, c) =
∞∑

j=0

1

j!

∂jv

∂c
(u, c0)(∆c)

j ,(4.10)

where ∆c = c− c0 is taken to be o(1); cf. (2.8). For future reference, we note that the leading-
order asymptotics of the lowest-order term v(u, c0) in (4.10) near u = 0 is given by the linear

approximation v(u, c0) = λ+
−u + O(u2), where λ+

− = − c0
2 − 1

2

√
c20 − 4g(0), as above, with c

replaced with c0. (In fact, noting that v(u, c0) must be C∞-smooth in u as u → 0+, we may
make a series expansion for v, which can be used to determine the asymptotics of v(u, c0) near
u = 0 to arbitrary order.)

The next-order term ∂v
∂c

(u, c) is again obtained as the solution of the variational equation
associated to (4.4), taken along the orbit v(u, c0) that corresponds to the traveling front solu-
tion u(ξ) of the problem without cut-off; recall Section 2.1.1. Rewriting (4.4) with u as the
independent variable, differentiating the resulting equation with respect to c, and evaluating at
c0, we find

∂

∂u

(∂v
∂c

(u, c0)
)

= −1 − c0 + ∂v
∂u

(u, c0)

v(u, c0)

∂v

∂c
(u, c0) = −1 +

ug(u)

[v(u, c0)]2
∂v

∂c
(u, c0).(4.11)

(Here, the last equality follows immediately from (4.4).) While (4.11) will, in general, have no
explicit solution, as not even v(u, c0) will typically be known in closed form, we can still prove
that ∂v

∂c
(u, c0) will be strictly positive on (0, φ−).

Lemma 4.1. The unique solution ∂v
∂c

(u, c0) of (4.11) that satisfies ∂v
∂c

(φ−, c0) = 0 is strictly
positive for any u ∈ (0, φ−).

Proof. The proof is based on a phase plane analysis of the first-order system

u̇ = u(φ− − u),

ẇ = −u(φ− − u) +
u2(φ− − u)g(u)

[v(u, c0)]2
w
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that is equivalent to the variational equation in (4.11), with w ≡ ∂v
∂c

. Considering the lineariza-
tion of the above system at the saddle equilibrium that is located at (φ−, 0), we find

[ −φ− 0

φ− u2(φ−−u)g(u)
[v(u,c0)]2

∣∣∣
u=φ−

]
=

[ −φ− 0

φ− (φ−)2g′(φ−)

(λ−
+)2

]
.

As (φ−)2g′(φ−)

(λ−
+)2

< 0, it follows that the only orbits that are asymptotic to (φ−, 0) for u→ φ− are

those on the corresponding stable manifold. Since the slope of that manifold is negative and
since, clearly, ẇ|{w=0} < 0 for u ∈ (0, φ−), w is strictly positive on this interval (and, in fact,

becomes unbounded as u → 0+, which can be seen by linearizing the equations at the saddle
equilibrium at the origin). �

Remark 19. The qualitative dynamics of Equation (4.11) in this general setting agrees with
that of the exactly solvable variational equation in (2.9). However, as will become clear in the
following, the limit as u → 0+ in ∂v

∂c
(u, c0) cannot be evaluated analytically unless v(u, c0) is

known explicitly, as was the case in Section 2.1. �

Finally, as in Section 2.1, let Σ− be defined as the hyperplane {u = ρ} in (u, v, ε)-space, with
ρ ≥ ε0 for ε0 > 0 sufficiently small, and let P−

0 denote the point of intersection of Wu(Q−
0 )

with Σ−. Then, the segment of Γ that is located in this outer region is given by the manifold
Wu(Q−

0 ), restricted to {u ≥ ρ}. In the context of (4.3), that singular heteroclinic connection is
determined precisely by the leading-order term v(u, c0) in (4.10).

4.1.2. Inner region. The dynamics of (4.3) in the inner region is governed by the cut-off system
that is obtained by imposing H ≡ 0 in (4.3b). Since the blow-up transformation defined in (1.8)
is again given by (2.11) in the corresponding (rescaling) chart K2, the resulting equations are
identical to those found previously in (2.12); cf. Section 2.1.2.

In particular, the line of equilibria ℓ+2 , which is the segment of the r2-axis obtained for
r2 ∈ [0, r0], again corresponds to the point Q+

ε , after blow-up and transformation to chart
K2; given r2(= ε) fixed, we write Q+

2 = (0, 0, r2) ∈ ℓ+2 , as before. In the limit as r2 → 0+,

the unique solution of the resulting singular equation dv2
du2

= −c0, with v2(0) = 0, is found

as v2(u2) = −c0u2. The corresponding orbit coincides with the stable manifold Ws
2(Q+

02
) of

Q+
02

= (0, 0, 0) and intersects the section Σ+
2 defined in (2.14) in the point P+

02
= (1,−c0, 0),

as before. Thus, the restriction of Ws
2(Q+

02
) to {u2 < 1} yields precisely the segment Γ+

2 of
the sought-after singular connection Γ that lies in this inner region; see again Figure 1 for an
illustration.

4.1.3. Intermediate region. The system of equations corresponding to (4.3) in the intermediate
region, where ε < u < O(1) and H ≡ 1, is given by

r′1 = r1v1,(4.12a)

v′1 = −cv1 − v2
1 − g(0) − [g(r1) − g(0)],(4.12b)

ε′1 = −ε1v1,(4.12c)

as the blow-up transformation in chart K1 again reduces to (2.15); recall the equations in (2.16).
(Here, we note that g(r1) − g(0) = O(r1) may be of higher order, due to our assumptions on g
in (4.2).) The two equilibria of (4.12) are located at P s

1 = (0, λ+
−, 0) and P u

1 = (0, λ+
+, 0), where

λ+
± = − c0

2 ± 1
2

√
c20 − 4g(0), as before; these equilibria correspond to the stable eigendirection

and the unstable eigendirection, respectively, of the linearization at Q+
0 of (4.4), in the absence

of a cut-off. The associated eigenvalues are given by λ+
−, −c0 − 2λ+

−, and −λ+
−, respectively, λ+

+,

−c0 − 2λ+
+, and −λ+

+. The relevant equilibrium for us is again P s
1 , since u′

u
→ λ+

− must hold as
ξ → ∞ along the traveling front solution of (4.1) that corresponds to the singular heteroclinic
orbit Γ.
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The portion of that orbit that is located in this intermediate region can be found by analyzing
the dynamics of (4.12) in the invariant hyperplanes defined by {r1 = 0} and {ε1 = 0}, as before.
Specifically, we denote by Γ−

1 the singular orbit obtained for ε1 = 0 that is asymptotic to P s
1 as

ξ → ∞, and we write Γ+
1 for the orbit that asymptotes to P s

1 as ξ → −∞ in {r1 = 0}; recall
Figure 2. Then, the restriction of Γ to the intermediate region is given by the union of Γ−

1 , P s
1 ,

and Γ+
1 , as indicated in Figure 3 above.

This completes the construction of the singular heteroclinic orbit Γ.

Remark 20. The exponent p in (4.6) is given precisely by the ratio of the second and third
eigenvalues of the linearization of (4.12) at P s

1 , as noted already in Section 2.1.2; cf. Remark 8.
�

4.2. Existence and asymptotics of c(ε). As in Section 2.2, the persistence of the singular
heteroclinic connection Γ for a unique value c(ε) of c in (4.5), with ε ∈ (0, ε0] sufficiently small,
can be proven by considering the transition map Π1 : Σ−

1 7→ Σ+
1 between the two sections Σ−

1

and Σ+
1 defined in (2.18). Moreover, the corresponding persistence proof will again yield the

leading-order ε-asymptotics of c(ε), provided Π1 is described sufficiently accurately to the order
considered here. The required analysis is carried out entirely in chart K1, as before.

4.2.1. Preparatory analysis. We begin by introducing the new variables ∆c = c − c0 and z =
v1 + 1

2c0 in (4.12):

r′1 = −(1
2c0 − z)r1,(4.13a)

z′ = (1
2c0 − z)∆c− z2 + 1

4c
2
0 − g(0) − [g(r1) − g(0)],(4.13b)

ε′1 = (1
2c0 − z)ε1.(4.13c)

Reparametrizing the independent variable in (4.13) by dividing out the (positive) factor of
1
2c0 − z, we find

r′1 = −r1,(4.14a)

z′ = ∆c− z2 − [14c
2
0 − g(0)]

1
2c0 − z

+
g(0) − g(r1)

1
2c0 − z

,(4.14b)

ε′1 = ε1,(4.14c)

cf. (2.20), where the prime again denotes differentiation with respect to the new variable ζ.
The normal form equations corresponding to (4.14) can now be obtained as in the proof of

Proposition 2.1:

Proposition 4.1. Let V :=
{
(r1, z, ε1)

∣∣ (r1, z, ε1) ∈ [0, ρ]× [−z0, 0]× [0, 1]
}
, where z0 = v0 + c0

2 ,
with v0 as in (2.18). Then, there exists a C∞-smooth coordinate transformation

ψ :

{
V → ψ(V),

(r1, z, ε1) 7→ (r1, ẑ, ε1),

with ẑ(z, r1) = z +O(r1), such that (4.13) can be written as

r′1 = −r1,(4.15a)

ẑ′ = ∆c− ẑ2 − [14c
2
0 − g(0)]

1
2c0 − ẑ

,(4.15b)

ε′1 = ε1.(4.15c)

As in Section 2, we write P− and P+
2 for the points of intersection of Wu(Q−

ε ) and Ws
2(Q+

2 )
with Σ− and Σ+

2 , respectively, where ε ∈ (0, ε0]. Let P−
1 and P+

1 denote the corresponding
respective points in (r1, v1, ε1)-coordinates. Given Proposition 4.1, we can then derive the

following estimates for the ẑ-coordinates of the points P̂∓
1 that are obtained from P∓

1 after
application of the normal form transformation ψ defined in Proposition 4.1:
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Lemma 4.2. For any ρ ∈ (ε, 1), with ε ∈ (0, ε0] and ∆c sufficiently small, the points P̂−
1 =

(ρ, ẑ−, ερ−1) and P̂+
1 = (ε, ẑ+, 1) satisfy

ẑ− = ẑ−(ρ,∆c) = −1
2

√
c20 − 4g(0) + ν(ρ,∆c)∆c, with ν(ρ, 0) =

1

ρ

∂v

∂c
(ρ, c0)[1 + ν1(ρ)] > 0,

(4.16)

and

ẑ+ = ẑ+(∆c, ε) = −
(c0

2
+ ∆c

)
+ ω(∆c, ε)ε.(4.17)

Here, ν(ρ,∆c) is a C∞-smooth function in ρ and ∆c, while ν1 is C∞-smooth down to ρ = 0,
with ν1(0) = 0. Finally, ω(∆c, ε) is C∞-smooth in ∆c and ε, including in a neighborhood of
(0, 0).

Proof. The proof is analogous to that of Lemma 2.2: making use of the expansion for v(u, c) in
(4.10), we find (2.24), as before. Next, we recall that v(ρ, c0) = −λ+

−ρ+O(ρ2); see Section 4.1.1.

Given that v− = ρv−1 as well as that z− = v−1 + c0
2 , we obtain

z− = −1
2

√
c20 − 4g(0) +O(ρ) +

1

ρ

∂v

∂c
(ρ, c0)∆c+O[(∆c)2];

cf. the proof of Lemma 2.2. Applying the normal form (near-identity) transformation ψ to z−

and noting that ẑ− = ±1
2

√
c20 − 4g(0) is invariant for ∆c = 0 in (4.15b), we have

ẑ− = −1
2

√
c20 − 4g(0) +

1

ρ

∂v

∂c
(ρ, c0)[1 + ν1(ρ)]∆c+ ν2(ρ,∆c)(∆c)

2

≡ −1
2

√
c20 − 4g(0) + ν(ρ,∆c)∆c,

where ν1 and ν2 are C∞-smooth in ρ and (ρ,∆c), respectively; moreover, ν1 is smooth down to
ρ = 0, as before, with ν1(0) = 0. Finally, ν(ρ, 0) is positive for ρ ∈ (0, 1) sufficiently small, by
Lemma 4.1, which yields (4.16), as claimed.

The corresponding expression for ẑ+ is obtained by noting that the v1-coordinate of P+
1 must

necessarily satisfy v+
1 = −c0 − ∆c and, hence, that z+ = − c0

2 − ∆c must hold. Recalling that

ẑ = z +O(r1) and r1 = ε in Σ+
1 , we find (4.17), which completes the argument. �

4.2.2. Uniqueness of ∆c. Let ẑ− denote the solution to (4.15b) with initial value ẑ−(ρ,∆c), and
let ẑ+

− ≡ ẑ−(ζ+), with ζ+ = − ln ε
ρ
, as before. In analogy to Lemma 2.3, it then follows that the

singular heteroclinic connection Γ can persist in the transition through the intermediate region
for at most one value of ∆c:

Lemma 4.3. For ẑ+
− defined as above, there holds

∂ẑ+
−

∂c
(ρ,∆c) > 0. Moreover, there can exist

at most one value of ∆c such that ẑ+
−(ρ,∆c) = ẑ+(∆c, ε), where ẑ+ is as in (4.17).

4.2.3. Existence and asymptotics of ∆c. Both the existence of c(ε) and its leading-order ε-as-
ymptotics can now be obtained from the following analogue of Proposition 2.2:

Proposition 4.2. Let ε ∈ (0, ε0], with ε0 > 0 sufficiently small. Then, there exists a function
c(ε) = c0 + ∆c(ε), with ∆c(0) = 0, such that the singular orbit Γ persists if and only if c = c(ε)
in (4.1). Moreover, ∆c is positive, and C1-smooth in ε (including at ε = 0) and p, where p is
defined as

p =
2
√
c20 − 4g(0)

c0 +
√
c20 − 4g(0)

.(4.18)
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Proof. As in the proof of Proposition 2.2, we first integrate (4.15b) by separating variables to
find

(4.19) ζ+ − ζ− − 1

2
ln
∣∣2ẑ2 + 2∆cẑ − c0∆c− 1

2c
2
0 + 2g(0)

∣∣
∣∣∣
ẑ+

ẑ−

− c0 + ∆c√
−4g(0) + c20 + 2c0∆c+ (∆c)2

arctanh

(
2ẑ + ∆c√

−4g(0) + c20 + 2c0∆c+ (∆c)2

)∣∣∣∣
ẑ+

ẑ−
= 0.

Recalling that ζ+ = − ln ε
ρ

and ζ− = 0, substituting in the expressions for ẑ+ and ẑ− from

(4.17) and (4.16), respectively, and making use of the identity arctanhx = 1
2 ln 1+x

1−x
, we obtain

(4.20) − ln
ε

ρ
− 1

2
ln
∣∣2g(0) − 2c0ω(∆c, ε)ε+O(2)

∣∣

+
1

2
ln
∣∣∣−
{
c0+

√
c20 − 4g(0)[1+2ν(ρ, 0)]+O(1)

}
∆c
∣∣∣−1

2

{
c0√

c20 − 4g(0)
− 4g(0)

(c20 − 4g(0))
3
2

∆c+O(2)

}

×
{

ln

∣∣∣∣
−c0 +

√
c20 − 4g(0)

c0 +
√
c20 − 4g(0)

+
8g(0)√

c20 − 4g(0)[c0 +
√
c20 − 4g(0)]2

∆c

+
4
√
c20 − 4g(0)

[c20 +
√
c20 − 4g(0)]2

ω(∆c, ε)ε+O(2)

∣∣∣∣− ln

∣∣∣∣
c0 +

√
c20 − 4g(0)[1 + 2ν(ρ, 0)] +O(1)

2[c20 − 4g(0)]
∆c

∣∣∣∣

}
= 0.

Here, O(1) and O(2) denote first-order terms in ∆c and second-order terms in (∆c, ε), respec-
tively, that are C∞-smooth and uniform as long as ρ is restricted to compact subsets of (0, 1);
cf. the proof of Proposition 2.2.

Given that (4.20) is solvable for at most one value of ∆c, as shown in Lemma 4.3, we may
attempt to find a solution for positive ∆c first. Since ν(ρ, 0) > 0, by Lemma 4.1, we obtain

(4.21)
(ε
ρ

)2
√

c20−4g(0)
= [2|g(0)|]−

√
c20−4g(0)

{[
c0 +

√
c20 − 4g(0)[1 + 2ν(ρ, 0)]

]
∆c
}c0+

√
c20−4g(0)

×
[
c0 +

√
c20 − 4g(0)

−c0 +
√
c20 − 4g(0)

]c0
[
c0 +

√
c20 − 4g(0)[1 + 2ν(ρ, 0)]

2[c20 − 4g(0)]

]c0

[1 +O(1)],

where O(1) denotes terms that are C∞-smooth in ∆c, ∆c ln(∆c), and ε. As in the proof of
Proposition 2.2, the Implicit Function Theorem now implies that (4.21) has a solution ∆c(ε, p, ρ),
for any ρ ∈ (0, 1) and p as defined in (4.18), which is C1-smooth in ε (down to ε = 0), p, and ρ.
Moreover, ∆c is necessarily unique, and independent of ρ, as it again yields the unique value of
c for which Γ persists, as a heteroclinic connection between Q−

ε and Q+
ε in (4.3), irrespective of

the definition of Σ−.
Finally, solving (4.21) for ∆c(ε) ≡ ∆c(ε, p) and taking into account that g(0) = f ′(0) < 0,

by (4.2), we find ∆c(ε) = Kεp + o(εp) for the leading-order ε-asymptotics of ∆c. Here, the
constant K is given by

K = 2|f ′(0)|
p

2

[−c0 +
√
c20 − 4f ′(0)

c0 +
√
c20 − 4f ′(0)

]1− p

2 [c20 − 4f ′(0)]1−
p

2

c0 +
√
c20 − 4f ′(0)[1 + 2ν(ρ, 0)]

1

ρp

≡ |f ′(0)|
p

2

[−c0 +
√
c20 − 4f ′(0)

c0 +
√
c20 − 4f ′(0)

]1− p

2 [c20 − 4f ′(0)]
1−p

2

δ(p)
,

(4.22)

with

δ(p) =

[
1

2
+

c0

2
√
c20 − 4f ′(0)

+ ν(ρ, 0)

]
ρp(4.23)

a strictly positive, C∞-smooth function, which concludes the argument. �

This completes the proof of Theorem 4.1.
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Remark 21. The numerical value of the leading-order coefficient K in the ε-asymptotics of
∆c will, in general, depend on the choice of Θ in (1.5); recall Remark 12. In other words, while
the exponent p in that asymptotics is universal within the class of cut-off functions defined in
(1.4), cf. (4.6), the value of K given in (4.7) is specific to the Heaviside cut-off H. �

4.3. Computability of ∆c. We conclude this section by discussing the computability of the
correction ∆c that is induced by the cut-off in (4.1), for general f . We begin by noting that the
exponent p in the ε-asymptotics of ∆c will always be computable if the front propagation speed
c0 in the absence of a cut-off is known; cf. Equation (4.6). However, to determine the value of
the corresponding coefficient K, as defined in (4.7), in closed form, we would need to evaluate
δ(p). Since the definition of δ must be independent of ρ, we may take the limit as ρ → 0+ in
(4.23),

δ(p) = lim
ρ→0+

{
ρpν(ρ, 0)

}
= lim

ρ→0+

{
ρp−1∂v

∂c
(ρ, c0)

}
,(4.24)

see Section 2.2, where ∂v
∂c

denotes the solution of the variational equation in (4.11), which we
restate for convenience here:

∂

∂u

(∂v
∂c

(u, c0)
)

= −1 +
ug(u)

[v(u, c0)]2
∂v

∂c
(u, c0).(4.25)

Equation (4.25) can be solved by variation of constants; however, an exact solution for ∂v
∂c

(u, c0)
can only be found in cases where a solution to the corresponding traveling front problem without
cut-off is known explicitly.

To clarify this point further, we recall the linear approximation for v(u, c0) from Section 4.1.1:

v(u, c0) = λ+
−u + O(u2), with λ+

− = − c0
2 − 1

2

√
c20 − 4g(0). Substituting into (4.25) and solving

the resulting approximate equation

∂

∂u

(∂v
∂c

(u, c0)
)

= −1 +
g(0)

(λ+
−)2

∂v

∂c
(u, c0),

we find the leading-order solution

∂v

∂c
(u, c0) = − (λ+

−)2

−g(0) + (λ+
−)2

u+ Cu

g(0)

(λ+
−)2(4.26)

for ∂v
∂c

(u, c0). Since, however, that solution is only valid locally, in a neighborhood of u = 0,

the constant of integration C has to remain undetermined, as the boundary condition on ∂v
∂c

is
prescribed at u = φ−. Knowledge of C, on the other hand, is necessary for evaluating (4.24):

since g(0)

(λ+
−)2

< 0, the dominant term in the u-asymptotics of ∂v
∂c

is precisely that second term in

(4.26). (In fact, recalling our discussion of the Nagumo and Schlögl equations in Sections 2 and
3, respectively, one finds that the order (in u) in the leading-order asymptotics of ∂v

∂c
, which was

found as −2γ and σ − 1 in (2.10) and (3.9), respectively, equals 1 − p = g(0)

(λ+
−)2

.)

Similarly, approximating v(u, c0) locally in a neighborhood of φ−, one would obtain a leading-
order expression for ∂v

∂c
that satisfies the boundary condition ∂v

∂c
(φ−, c0) = 0. However, that

approximation will not be valid up to and including the equilibrium state at zero. In other
words, the two expansions cannot be equivalent unless v(u, c0) is known explicitly and in closed
form. (Here, we only consider equivalence from an analytical point of view, as Equation (4.25)
can, in principle, be integrated numerically, and the resulting approximation for ∂v

∂c
evaluated

in Σ−, to obtain an approximate value for K.)
Hence, we conclude that, while the exact form of g does not play a role in determining the

solution asymptotics of (4.25), knowledge of an explicit solution to the traveling front problem
in the absence of a cut-off – and, consequently, of v(u, c0) – is crucial for evaluating the leading-
order coefficient K in the ε-asymptotics of ∆c in closed form. Finally, we remark that it might
not be possible to evaluate K even then: while explicit knowledge of v(u, c0) certainly is a
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necessary condition for the closed-form computability of K, the integrals that arise in solving
(4.25) may not be computable in closed form even when v(u, c0) is known explicitly.

Remark 22. The observation that an exact solution to the traveling front problem without cut-
off has to be available for the coefficientK defined in (4.7) to be computable was also made in [4]:
there, it was shown that K can always be evaluated in closed form if the function that maximizes
the functional underlying their variational approach is known explicitly. We conjecture that this
requirement is in fact equivalent to the condition that the variational equation in (4.25) can be
solved exactly. However, a proof is beyond the scope of this article. �
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Appendix A. Proof of Lemma 2.1

In this appendix, we give the proof of Lemma 2.1, which we restate for reference here:

Lemma A.1. For u ∈ (0, 1], the unique solution ∂v
∂c

(u, c0) to

∂

∂u

(∂v
∂c

(u, c0)
)

= −1 + 2
u− γ

u(1 − u)

∂v

∂c
(u, c0)(A.1)

that satisfies ∂v
∂c

(1, c0) = 0 is given by

∂v

∂c
(u, c0) =

1

3 − 2γ
u−2γ(1 − u)F (3 − 2γ,−2γ; 4 − 2γ; 1 − u),

where F (·, ·; ·; ·) denotes the hypergeometric function [1, Section 15]. In particular, ∂v
∂c

(u, c0) is
strictly positive for any u ∈ (0, 1).

Proof. We first note that the variational equation in (A.1) can be solved by variation of con-
stants, which gives the general solution

∂v

∂c
(u, c0) = Cu−2γ(u− 1)−2(1−γ) −

∫ u

1
s2γ(s− 1)2(1−γ) ds · u−2γ(u− 1)−2(1−γ).(A.2)

To fix the constant of integration C in (A.2), we apply the boundary condition that ∂v
∂c

(u, c0)

has to satisfy, with ∂v
∂c

→ 0 as u → 1−. Since the second term in the solution goes to zero, by
l’Hôspital’s Rule, we must set C = 0 for (A.2) to remain bounded (and, indeed, vanish) in that
limit.

Next, we make the substitution s 7→ 1 − s in (A.2), which yields

∂v

∂c
(u, c0) = (−1)−2γ

∫ 1−u

0
s2(1−γ)(1 − s)2γ ds · u−2γ(u− 1)−2(1−γ)

= B1−u(3 − 2γ, 1 + 2γ)u−2γ(1 − u)−2(1−γ);

(A.3)

here, Bx denotes the incomplete Beta function [1, Section 6.6], with

Bx(a, b) =

∫ x

0
ta−1(1 − t)b−1 dt.

Finally, we apply the relation Bx(a, b) = a−1xaF (a, 1 − b; a+ 1;x), with F the hypergeometric
function, see again [1, Sections 6.6 and 15], to rewrite (A.3) as

∂v

∂c
(u, c0) =

1

3 − 2γ
F (3 − 2γ,−2γ; 4 − 2γ; 1 − u)u−2γ(1 − u).

The strict positivity of ∂v
∂c

(u, c0) on (0, 1) now follows from the fact that F is strictly positive
on that interval, which completes the proof. �
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