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PAIRS OF CYCLOTOMIC POLYNOMIALS WITH INTERLACING

ROOTS

JAMES MCKEE AND CHRIS SMYTH

Abstract. We give a complete classification of all pairs of cyclotomic polynomials whose
roots interlace on the unit circle, making explicit a result essentially contained in work of
Beukers and Heckman. We show that each such pair corresponds to a single polynomial
from a certain special class of integer polynomials, the 2-reciprocal disc-bionic polynomials.
We also show that each such pair also corresponds (in four different ways) to a single
Pisot polynomial from a certain restricted class, the cyclogenic Pisot polynomials. We
investigate properties of this class of Pisot polynomials.

1. Introduction

As usual, let Φn(z) denote the cyclotomic polynomial whose roots are the primitive
nth roots of unity. Suppose that P (z) and Q(z) are cyclotomic polynomials, which for us
(following [Bo1]) means that each is a product of one or more of the polynomials Φn(z). We
say that the pair {P, Q} is an interlacing (cyclotomic) pair if P (z) and Q(z) are coprime,
all their roots are simple, and these roots interlace on the unit circle (in the sense that
between every pair of roots of P (z) there is a root of Q(z), and between every pair of
roots of Q(z) there is a root of P (z)). In particular, P (z) and Q(z) must have the same
degree, and both 1 and −1 must appear amongst the roots of P (z)Q(z). Thus one of P
and Q, say P (z), is a reciprocal polynomial, and the other (Q(z)) is z−1 times a reciprocal
polynomial. As PQ has no repeated roots, it is a product of polynomials Φn for distinct
values of n. Finally, we say that the interlacing pair {P (z), Q(z)} is imprimitive if both are
polynomials in zℓ for some ℓ > 1. Otherwise the pair is primitive. It is known (see [MS1],
or Corollary 4 below) that if {P (z), Q(z)} is an interlacing pair then so is {P (zk), Q(zk)}
for any k ∈ N. Conversely, if {P (zk), Q(zk)} is an interlacing pair for some k, then so
is {P (z), Q(z)}. We also need to remark that {P (z), Q(z)} is an interlacing pair if and
only if {P (−z), Q(−z)} is an interlacing pair. Thus to describe all interlacing pairs it is
clearly enough to describe all primitive interlacing pairs, and indeed only one of the two
interlacing pairs {P (z), Q(z)} and {P (−z), Q(−z)}.

The following result is essentially contained in the paper [BH] of Beukers and Heckman,
although a little work is needed to extract it – see Section 8.
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Theorem 1. The primitive interlacing cyclotomic pairs are the pairs {P (z), Q(z)} and
{P (−z), Q(−z)}, where one of these pairs is given in Table 1 (two infinite families) or
Table 2 (26 sporadic cases).

The proof of Theorem 1 uses, among other results, the Shephard-Todd classification
of finite irreducible complex reflection groups. Our aim in undertaking this work had
originally been to try to find a more direct, and hopefully simpler, proof of Beukers and
Heckman’s result. Such a proof would, for instance, follow immediately from a derivation,
independent of Theorem 1, of the classification (below, Corollary 3) of 2-reciprocal disc-
bionic polynomials. We have not been able to do this. Instead, we have produced a
number of bijections between the set of all interlacing cyclotomic pairs and certain sets of
polynomials (including the set of 2-reciprocal disc-bionic polynomials). Then application
of Theorem 1 enables us to describe these sets precisely. These bijections in turn imply
the existence of other bijections between these sets of polynomials. We describe many of
these bijections explicitly. We hope that our work will be a stepping-stone to producing a
simpler proof of Theorem 1.

Family 1 2

P (z)
zn+1 − 1

z − 1
zn + 1

Q(z)
(zj − 1)(zn+1−j − 1)

z − 1
(zj − 1)(zn−j + 1)

Range of n, j
n ≥ 1, gcd(j, n + 1) = 1

1 ≤ j ≤ (n + 1)/2
n ≥ 3, gcd(j, 2n) = 1

1 ≤ j < n

disc-bionic polynomial
2zn+1 − zn+1−j − zj

z − 1
2zn − zn−j + zj

[BH] # 1, Table 8.3 Theorem 5.8
Table 1. The two infinite families of primitive interlacing cyclotomic pairs,
with the disc-bionic polynomials associated to them by Theorem 2.

In Section 2 we give a bijection between interlacing cyclotomic pairs {P (z), Q(z)} and
what we call 2-reciprocal disc-bionic polynomials. In Section 3 a we define the set C of
cyclogenic Pisot polynomials, which we partition in two ways:

C = Cjust ∪ Cstrictly = C≤2 ∪ C≥2.

In Sections 4 and 5 we produce various explicit bijections, as indicated in Figure 1.
In Section 6 we find the cyclogenic Pisot polynomials corresponding to {P (−z), Q(−z)}

and {P (zℓ), Q(zℓ)} in terms of the cyclogenic Pisot polynomial corresponding to {P (z), Q(z)}.
In Section 7 we prove that the largest cyclogenic Pisot number is 3. In Section 8 we prove
Theorem 1. Finally, in Section 10 we describe how all primitive interlacing cyclotomic
pairs arise naturally from the study of rooted bipartite cyclotomic signed graphs.
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Label Degree P (z) Q(z) P−(z) Q−(z) [BH]
A 4 12 1·2·3 12 1·2·6 37
B 6 3·12 1·2·8 6·12 1·2·8 45
C 6 3·12 1·2·5 6·12 1·2·10 46
D 6 9 1·2·4·6 18 1·2·3·4 47
E 6 9 1·2·8 18 1·2·8 48
F 6 9 1·2·5 18 1·2·10 49
G 7 2·18 1·3·12 2·6·12 1·9 58
H 7 2·18 1·3·5 2·6·10 1·9 59
I 7 2·18 1·7 2·14 1·9 60
J 7 2·14 1·3·12 2·6·12 1·7 61
K 7 2·14 1·3·5 2·6·10 1·7 62
L 8 30 1·2·18 15 1·2·9 63
M 8 30 1·2·3·12 15 1·2·6·12 64
N 8 30 1·2·3·8 15 1·2·6·8 65
O 8 30 1·2·4·5 15 1·2·4·10 66
P 8 30 1·2·3·5 15 1·2·6·10 67
Q 8 30 1·2·7 15 1·2·14 68
R 8 30 1·2·4·12 15 1·2·4·12 69
S 8 30 1·2·4·8 15 1·2·4·8 70
T 8 20 1·2·3·12 20 1·2·6·12 71
U 8 20 1·2·3·8 20 1·2·6·8 72
V 8 20 1·2·7 20 1·2·14 73
W 8 20 1·2·9 20 1·2·18 74
X 8 24 1·2·4·5 24 1·2·4·10 75
Y 8 24 1·2·7 24 1·2·14 76
Z 8 24 1·2·9 24 1·2·18 77

Table 2. The 26 sporadic cases of primitive interlacing cyclotomic pairs.
The numbers in the P (z), Q(z) columns refer to products of cyclotomic
polynomials n ↔ Φn. The final column refers to Table 8.3 of [BH]. Also
P−(z), Q−(z) are (−1)deg P P (−z), (−1)deg QQ(−z), if necessary interchanged
so that Q−(1) = 0.

2. The bionic polynomial bijection

For any polynomial F (z) we denote by F ∗(z) its reciprocal polynomial zdeg F F (1/z).
Note that (zrF (z))∗ = F ∗(z): multiplying F by a power of z does not affect its reciprocal
polynomial. Note that we always have F (z) = zdeg FF ∗(1/z) (though not always F (z) =
zdeg F ∗

F ∗(1/z)). We say that a polynomial F (z) is 2-reciprocal if F (z) ≡ F ∗(z) (mod 2),
i.e., all the coefficients of F (z)−F ∗(z) are even. It is clear that if F (z) is 2-reciprocal, then
so is F (zℓ) for every ℓ ≥ 1. We say that F (z) is primitive if it is not of the form F1(z

ℓ) for
any polynomial F1 and integer ℓ > 1.
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Interlacing cyclotomic
pairs

C≤2 C≥2 Cjust Cstrictly

2-reciprocal disc-bionic
polynomials

6

?

Th. 2
��������*���������

Th. 11 6

?
Th. 12

HHHHHHHHjHHHHHHHHY

Th. 10 ?

6
Th. 10

HHHHHHHHYHHHHHHHHj

Th. 76

?
Th. 6

�����������������*

Th. 8?

6
Th. 8

-�Prop. 9-� Cor. 13

Figure 1. Various bijections

We call a nonconstant polynomial with integer coefficients bionic if its leading coefficient
is 2. We call a bionic polynomial disc-bionic if all its roots lie in the open unit disc
{z : |z| < 1}. It is easy to see that a disc-bionic polynomial must be either of the form 2zn

for some n ≥ 1, or the product of an irreducible disc-bionic polynomial and a nonnegative
power of z. Also, it is clear that a 2-reciprocal disc-bionic polynomial H(z) must be
divisible by a positive power of z. Furthermore, then (−1)deg HH(−z) and H(zℓ) (ℓ ≥ 1)
are also 2-reciprocal disc-bionic.

A Garsia polynomial (see Garsia [Ga], Brunotte [Br], Hare [Ha]) is a nonconstant monic
polynomial with integer coefficients, all of whose roots have modulus greater than 1, and
with the product of the roots being ±2. Disc-bionic polynomials and Garsia polynomials
are closely related: if G(z) is a Garsia polynomial then (−1)deg GG∗(z) is a disc-bionic
polynomial. The converse is almost true: if H(z) is disc-bionic, then either H∗(z) is the
constant polynomial 2, or (−1)deg HH∗(z) is a Garsia polynomial.

Theorem 2. There is a bijection between the set of pairs {P, Q} of interlacing cyclotomic
polynomials and the set of 2-reciprocal disc-bionic polynomials H. It is given explicitly by

H(z) = P (z) + Q(z). (1)

In the other direction,

P (z) = 1
2
{H(z) + H∗(z)} ; (2)

Q(z) = 1
2
{H(z) − H∗(z)} . (3)

Proof. Let {P, Q} be a pair of interlacing cyclotomic polynomials of degree n, with say
Q(1) = 0. Then, P + Q has leading term 2 and, by [MS3, Proposition 9.3], all its roots
inside the unit circle. Hence H(z) := P (z) + Q(z) is a disc-bionic polynomial. Further,

H∗(z) = P (z) − Q(z), (4)

so that H(z) − H∗(z) = 2Q(z), showing that H(z) is also 2-reciprocal.
Note, too, that then P and Q are given in terms of H and H∗ by (2) and (3).
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Conversely, let H(z) be a 2-reciprocal disc-bionic polynomial of degree d say, with
2Q(z) := H(z) − H∗(z) having all coefficients even. Then 2P (z) := H(z) + H∗(z) also
has all coefficients even. We claim that P and Q, so defined, are interlacing cyclotomic
polynomials. We consider the rational function R(z) := H(z)/H∗(z). Now |R(z)| = 1 for
|z| = 1, and R(1) = 1, since Q(1) = 0. Also R has d zeros and no poles in |z| < 1. So
as z winds once around the unit circle, anticlockwise, R(z) performs d circuits of the unit
circle. Hence R(z) takes the value 1 at least d times, and similarly the value −1 at least d
times. But for any λ with λ = 1 the polynomial H(z) − λH∗(z) has degree d, so in fact
R(z) takes the value λ exactly d times. Hence as z winds once around the unit circle, R(z)
winds monotonically around the circle (no doubling back). Thus R(z) must take each of
the values 1 and −1 exactly d times, and the values of z where R(z) = 1 must interlace
on the unit circle with the values of z where R(z) = −1. Hence {P, Q} forms a pair of
interlacing cyclotomic polynomials. �

Thus, corresponding to primitive interlacing cyclotomic pairs, there are primitive 2-
reciprocal disc-bionic polynomials. Also, we make a canonical choice between such a poly-
nomial H(z) and (−1)deg HH(−z), as follows. If H(z) = (−1)deg HH(−z), then there is no
choice to make. Otherwise H has a term of lowest even degree and a term of lowest odd
degree. These two terms have the same signs in exactly one of H(z) and (−1)deg HH(−z).
We choose H canonically to be the one where these two terms have the same sign.

We can list all canonical 2-reciprocal disc-bionic polynomials. Combining Theorem 2
with Theorem 1, we obtain the following.

Corollary 3. The canonical 2-reciprocal disc-bionic polynomials consist of the following:

• the infinite family (2zn+m − zn − zm)/(z − 1) for all m, n ∈ N with n ≥ m and
gcd(m, n) = 1;

• the infinite family 2zn+m + (−1)nmzn + zm for all m, n ∈ N with n > m and
gcd(m, n) = 1;

• the 26 polynomials in Table 3.

Since gcd(n, m) = 1, n and m are not both even! In the first case, the coefficients are a
(nonempty) string of 2’s followed by a (possibly empty) string of 1’s, then a (nonempty)
string of 0’s, the smallest-degree such example being 2z.

Proof. The disc-bionic polynomials corresponding to the infinite families can be read off
from Table 1. For the first infinite family we put m = j and replace n + 1 − j by n to
obtain the first bullet-point of the corollary.

For the second infinite family we note that j is odd. If n is also odd then n−j is even, so
that, on replacing z by −z and multiplying by −1 the disc-bionic polynomial of the second
family becomes 2zn+zn−j+zj . Putting m = j and replacing n−j by n we have (−1)nm = 1,
so that this disc-bionic polynomial becomes 2zn+m + zn + zm = 2zn+m + (−1)nmzn + zm,
which is canonical.

If n is even then n− j is odd, so that 2zn − zn−j + zj is canonical. Again putting m = j
and replacing n− j by n, this becomes 2zn+m − zn + zm = 2zn+m + (−1)nmzn + zm. So in
each case we get the second bullet-point of the corollary.
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�

The following result is an immediate consequence of Theorem 2 and the fact that if H(z)
is a 2-reciprocal disc-bionic polynomial then so is H(zℓ) for every ℓ ≥ 1.

Corollary 4. If {P (z), Q(z)} is an interlacing cyclotomic pair, then so is {P (zℓ), Q(zℓ)}
for every ℓ ≥ 1.

3. Cyclogenic Pisot polynomials

A Pisot number is a real algebraic integer θ > 1, all of whose Galois conjugates 6= θ
have modulus strictly less than 1. As in [MS3], we define a Pisot polynomial to be a monic
integer polynomial having one real root > 1, with all other roots in |z| < 1. It is thus the
minimal polynomial of a Pisot number, possibly multiplied by a power of z. For a Pisot
polynomial A(z) of degree d we say that it is cyclogenic if 2A′(1) ≥ (d− 2)A(1). It is easy
to check that a Pisot polynomial A is cyclogenic if and only if z2A(z) − A∗(z) is positive
on the interval (1,∞). Also, we say that a Pisot number is cyclogenic if it is the root of
some cyclogenic Pisot polynomial. It turns out that the largest cyclogenic Pisot number
is 3 (see Proposition 16 below.) For our purposes we need to extend the cyclogenic Pisot
polynomials a little: we define C to be the set of all cyclogenic Pisot polynomials, plus the
polynomials zr and zr(z − 1) for r ≥ 0. (So we include the constant polynomial 1.)

We take C≥2 to be the polynomials in C whose largest root is in (2, 3], along with the
polynomial z(z − 2) ∈ C, and C≤2 to be the polynomials in C having no root in [2, 3], along
with the polynomial z − 2 ∈ C. After Proposition 16, we have C = C≤2 ∪ C≥2.

For A ∈ C of degree d we say that A is just cyclogenic if 2A′(1) = (d − 2)A(1), and
strictly cyclogenic if 2A′(1) > (d − 2)A(1). We define Cjust and Cstrictly to be respectively
the set of just cyclogenic polynomials and strictly cyclogenic polynomials. We define the
Boyd number of A ∈ C of degree d to be d−2−2A′(1)/A(1) (compare Boyd [Bo1, eq.(17)]).
In particular zr(z − 1) (r ≥ 0) is defined to have Boyd number +∞. So the Boyd number
is 0 for A ∈ Cjust, and positive for A ∈ Cstrictly, with the exception that zr (r ≥ 0) has Boyd
number −(r + 2).

The significance of the Boyd number lies in the following.

Proposition 5. Suppose that α is a cyclogenic Pisot number with minimal polynomial
Aα(z) having Boyd number b. Then zkAα(z) is a cyclogenic Pisot polynomial precisely for
k = 0, . . . , ⌊b⌋. Further, zkAα(z) is a just cyclogenic Pisot polynomial if and only if b is
an integer and k = b.

Proof. It is easily checked that if A(z) has Boyd number b then zA(z) has Boyd number
b − 1, from which the results follow immediately. �

Note that this Proposition concerns all cyclogenic Pisot polynomials, apart from the
exceptional ones zr and zr(z − 1) whose roots are not (cyclogenic) Pisot numbers.
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Label Canonical 2-reciprocal disc-bionic Pisot polynomials in Cjust root Pisot polynomials in Cstrictly root Boyd #

A 2z4 + z3 − z2 − z (z2 − z − 1)z2 1.6180 z3 − z2 − 3z − 2 2.5115 1/5
B 2z6 + z5 − z4 − z3 + z2 + z z6 − 2z5 − 2z4 + z3 + 2z2 − z − 2 2.5519 (z3 − z − 1)z2 1.3247 3
−C 2z6 − 2z5 + z3 z6 − 3z5 + 2z4 − z2 + z − 1 2.1431 z5 − 2z4 + z2 − 1 1.7846 1
−D 2z6 + z5 + z4 − z3 − z2 − z (z3 − z2 − 1)z3 1.4656 z5 − z4 − 2z3 − 4z2 − 3z − 2 2.5878 1/11
E 2z6 − z4 + z3 + z2 z6 − 2z5 − z4 + z3 − z − 1 2.2973 z5 − z4 − z3 + z2 − 1 1.4433 3
−F 2z6 − z5 − z3 + z z6 − 3z5 + z4 + z2 + z − 2 2.5402 (z3 − z2 − 1)z2 1.4656 1
G 2z7 + z6 − z5 − 2z4 + z2 + z z7 − 2z6 − 2z5 + 3z3 + z2 − z − 2 2.5923 (z3 − z − 1)z3 1.3247 2
H 2z7 + 2z6 + z5 − z4 − z3 − z2 z7 − z6 − z5 − z4 + z3 − 1 1.7475 z6 − 2z4 − 4z3 − 4z2 − 3z − 1 2.2201 2/13
−I 2z7 − z6 + z4 − z3 + z z7 − 3z6 + z5 + z4 − 2z3 + z2 + z − 2 2.5488 (z4 − z3 − 1)z2 1.3803 2
J 2z7 − z5 − z4 + z3 + z2 z7 − 2z6 − z5 + 2z3 − z − 1 2.2929 z6 − z5 − z4 + z2 − 1 1.5016 2
K 2z7 + z6 + z5 − z2 − z (z5 − z4 − z2 − 1)z2 1.5701 z6 − z5 − 2z4 − 3z3 − 3z2 − 3z − 2 2.5334 2/13
L 2z8 + z7 − z6 − 2z5 − z4 + z2 + z z8 − 2z7 − 2z6 + 2z4 + 2z3 + z2 − z − 2 2.6082 (z3 − z − 1)z4 1.3247 1
M 2z8 + 2z7 − z6 − 3z5 − z4 + z3 + z2 z8 − z7 − 3z6 − z5 + 3z4 + 3z3 − 2z − 1 2.1857 z7 − 2z5 − 2z4 − z − 1 1.8042 1/5
N 2z8 + 2z7 − 2z5 − z4 z8 − z7 − 2z6 − z5 + 2z4 + 2z3 − z − 1 1.9145 z7 − 2z5 − 3z4 − 2z3 − 2z2 − 2z − 1 2.0686 1/11
O 2z8 + 2z7 + z6 − z4 − 2z3 − z2 z8 − z7 − z6 + z2 − 1 1.5737 z7 − 2z5 − 4z4 − 5z3 − 5z2 − 3z − 1 2.2896 1/19
P 2z8 + 3z7 + 2z6 − z4 − 2z3 − 2z2 − z (z3 − z − 1)z5 1.3247 z7 − 3z5 − 6z4 − 7z3 − 7z2 − 5z − 2 2.6143 1/29
Q 2z8 + 2z7 − z5 − z4 − z3 z8 − z7 − 2z6 + z4 + z3 + z2 − z − 1 1.8326 z7 − 2z5 − 3z4 − 3z3 − 3z2 − 2z − 1 2.1241 1/13
R 2z8 + z7 − z6 − z5 − z4 − z3 + z2 + z z8 − 2z7 − 2z6 + z5 + z4 + z3 + 2z2 − z − 2 2.5354 (z5 − z3 − z2 − z − 1)z2 1.5342 1/3
−S 2z8 − z7 + z5 − z4 + z3 − z (z6 − 2z5 + z4 − z2 + z − 1)z2 1.5618 z7 − 2z6 − z5 − 2z3 − z − 2 2.5345 1/7
−T 2z8 − z7 − 2z6 + 2z5 + z4 − 2z3 + z z8 − 3z7 + 4z5 − 2z4 − 3z3 + 3z2 + z − 2 2.5469 (z5 − z4 − z3 + z2 − 1)z2 1.4433 1
U 2z8 + z7 − z6 − z5 + z4 + z3 − z2 − z (z6 − z5 − z4 + z2 − 1)z2 1.5016 z7 − z6 − 3z5 − 2z4 − z2 − 3z − 2 2.5460 1/11
V 2z8 + z7 − z6 + z4 − z2 − z (z5 − z4 − z3 + z2 − 1)z3 1.4433 z7 − z6 − 3z5 − 2z4 − z3 − 2z2 − 3z − 2 2.5904 1/13

−W 2z8 − 2z6 − z5 + z4 + z3 z8 − 2z7 − z6 + z5 + z4 − 1 2.1532 z7 − z6 − 2z5 + 2z3 + z2 − z − 1 1.7583 1
X 2z8 + z7 + z6 + z5 − z4 − z3 − z2 − z (z4 − z3 − 1)z4 1.3803 z7 − z6 − 2z5 − 3z4 − 5z3 − 4z2 − 3z − 2 2.6078 1/19
Y 2z8 + z7 − z4 − z (z7 − z6 − z5 + z2 − 1)z 1.5452 z7 − z6 − 2z5 − 2z4 − 3z3 − 2z2 − 2z − 2 2.4455 1/13
−Z 2z8 − z6 − z5 − z4 + z3 + z2 z8 − 2z7 − z6 + z4 + 2z3 − z − 1 2.2907 z7 − z6 − z5 + z2 − 1 1.5452 1

Table 3. The 26 sporadic cases: canonical 2-reciprocal disc-bionic polynomials, Cyclogenic Pisot
polynomials in Cjust and in Cstrictly, with their Pisot number roots, and Boyd numbers. (Those in Cjust

have Boyd number 0.) The negative labels in column 1 refer to the fact that the canonical polynomial in
column 2 is associated with the interlacing cyclotomic pair {P−, Q−} rather than {P, Q} in the relevant
row of Table 2.
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Family Cyclogenic Pisot Boyd number

1 Just
zn+1−2zn−zn+1−j +zn−j−zj +zj−1+1

z − 1
0

1 Strictly
zn+1−2zn+zn−j+zj−1−1

(z − 1)2







∞ if j = 1;
n + 1

(j − 1)n − (j2 − j + 1)
if j ≥ 2.

2 Just zn−2zn−1−zn−j+zn−1−j+zj−zj−1−1 0

2 Strictly
zn−2zn−1+zn−1−j−zj−1+1

z − 1







∞ if j = 1;
1

j − 1
if j ≥ 2.

Table 4. The cyclogenic Pisot polynomials associated via Theorem 8 to the
two infinite families of interlacing cyclotomic pairs given in Table 1.

4. Cyclogenic Pisot polynomial bijections

Our first result in this section is the following.

Theorem 6. There is a bijection between the set of 2-reciprocal disc-bionic polynomials
H(z) and the set Cjust is given explicitly by

A(z) = 1
2

{

(1 − 2/z)H(z) − H∗(z)
}

. (5)

In the other direction it is given by

H(z) =
z

(z − 1)2

{

(2z − 1)A(z) − A∗(z)
}

. (6)

Proof. Given a 2-reciprocal disc-bionic polynomial H , define A by (5). Now |(1−2/z)H(z)| >
|H∗(z)| for |z| = 1, z 6= 1. Since A(1) = −H(1) 6= 0, A(z) has by Rouché’s Theorem the
same number of roots inside the unit circle as (1−2/z)H(z), namely (using the fact that H
is disc-bionic) deg A−1. Since H does not change sign on [1,∞), we have A(1) < 0. As H
is 2-reciprocal (1−2/z)H(z)−H∗(z) has all coefficients even. Hence A ∈ Z[z] and is monic.
Thus it is a Pisot polynomial. Direct calculation shows that 2A′(1)− (deg A− 2)A(1) = 0,
so that A is just cyclogenic.

Conversely, given a polynomial A ∈ Cjust, define H by (6). By applying Rouché’s The-
orem to λ(2z − 1)A(z) − A∗(z) for λ > 1 and then letting λ → 1 we see that H has at
least deg A roots in |z| < 1, with the remaining roots on the unit circle, which must be at
z = 1. Since A ∈ Cjust, both (2z − 1)A(z)−A∗(z) and its derivative are zero at z = 1, and
we see that H , as defined by (6), is a polynomial with all its roots inside the unit circle.
Moreover, H has leading coefficient 2.

We now show that H is 2-reciprocal. Let a = deg A. Then deg H∗ < deg H = a. Now

zaH(1/z) =
1/z

(1/z − 1)2

{

(2/z − 1)zaA(1/z) − zaA∗(1/z)
}

,
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giving

H∗(z) = − 1

(z − 1)2

{

zA(z) + (z − 2)A∗(z)
}

. (7)

Hence H(z) − H∗(z) = 2
(z−1)2

{

z2A(z) − A∗(z)
}

. Thus H is 2-reciprocal.

An easy check shows that (5) and (6) are mutually inverse maps. �

Theorem 7. The bijection between the set of 2-reciprocal disc-bionic polynomials H(z)
and the set of polynomials B ∈ Cstrictly is given explicitly by

B(z) =
1

2(z − 1)

{

(1 − 2/z)H(z) + H∗(z)
}

. (8)

Furthermore, the Boyd number of B is

2H(1)

2H ′(1) − (deg(H) + 2)H(1)
. (9)

In the other direction it is given by

H(z) =
z

(z − 1)

{

(2z − 1)B(z) − B∗(z)
}

. (10)

The proof of this theorem is similar to that of Theorem 6. The computation of the Boyd
number is straightforward, using (8) and the fact that d = deg H = deg B + 1 = dB + 1,
say. We note the following formulae:

2B(1) = (d + 2)H(1) − 2H ′(1);

4B′(1) = (d2 − d − 4)H(1) − 2(d − 3)H ′(1); (11)

H(1) = 2B′(1) − (d − 3)B(1) = 2B′(1) − (dB − 2)B(1);

H ′(1) = (dB + 3)B′(1) − 1
2
(d2

B + dB − 4)B(1).

Theorem 8. Suppose that {P, Q} is an interlacing pair of cyclotomic polynomials, with
say (z − 1) | Q. Then

(i) there is a bijection between such pairs {P, Q} and polynomials A in Cjust. This
bijection is given explicitly in one direction for A by

P (z) =
zA(z) − A∗(z)

z − 1
, Q(z) =

z2A(z) − A∗(z)

(z − 1)2
. (12)

In the other direction it is given by

zA(z) = (z − 1)Q(z) − P (z). (13)

(ii) There is a bijection between such pairs {P, Q} and polynomials B in Cstrictly. This
bijection is given explicitly in one direction by

P (z) =
z2B(z) − B∗(z)

z − 1
, Q(z) = zB(z) − B∗(z). (14)
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In the other direction it is given by

zB(z) = P (z) − Q(z)

(z − 1)
. (15)

(iii) For A and B as in (i) and (ii), one of them is in C≤2 and the other is in C≥2.

Proof. The proof is by composing the bijections in Theorems 2 and 6.

(i) We obtain (12) by substituting (6) and (7) into (2). Then elimination of A∗ from
(12) gives (13).

(ii) From (8) we obtain via z 7→ 1/z and deg B = deg H − 1 that

H∗(z) =
1

(z − 1)

{

zB(z) + (z − 2)B∗(z)
}

. (16)

Then substituting (8) and (16) into (2) we obtain (14). Elimination of B∗ from
(14) gives (15).

Then proceed as in (i).
(iii) We see that A(2) = Q(2)−P (2), while B(2) = P (2)−Q(2). So if each of A and B are

Pisot polynomials with a root in [1, 2)∪ (2, 3], or of the form za with a ≥ 0 then the
result follows immediately. If A has 2 as a root, it must be A(z) = z(z − 2) ∈ C≥2,
which corresponds using (6) to H(z) = 2z − 1. Then, using (8), we see that H
corresponds to B(z) = z − 2 ∈ C≤2.

�

Proposition 9. For the two cyclogenic Pisot polynomials A ∈ Cjust and B ∈ Cstrictly

corresponding to the same pair of interlacing cyclotomic polynomials we have

B =
1

(z − 1)3

{

(z2 − 3z + 1)A(z) − (z − 2)A∗(z)
}

; (17)

A =
1

(z − 1)

{

(z2 − 3z + 1)B(z) − (z − 2)B∗(z)
}

.

Proof. We apply equations (6) and (10), and eliminate H to obtain

(2z − 1)A(z) − A∗(z) = (z − 1)
(

(2z − 1)B(z) − B∗(z)
)

. (18)

Noting that deg B = deg H − 1 = deg A − 1, we replace z by 1/z in (18) and multiply
by zdeg A to obtain

zA(z) + (z − 2)A∗(z) = −(z − 1)
(

zB(z) + (z − 2)B∗(z)
)

. (19)

Then we obtain (17) by successively eliminating one of A∗ and B∗ from (18) and (19). �

5. Bijections involving C≤2 and C≥2

There are similar bijections between pairs of interlacing cyclotomic polynomials and
polynomials in C≤2, and also polynomials in C≥2. These follow readily from our earlier
results.
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Theorem 10. Suppose that {P, Q} is an interlacing pair of cyclotomic polynomials, with
say (z − 1) | Q. Then

(i) there is a bijection between such pairs {P, Q} and polynomials A in C≤2. This
bijection is given explicitly in one direction for A strictly cyclogenic by

P (z) =
z2A(z) − A∗(z)

z − 1
, Q(z) = zA(z) − A∗(z),

and by

P (z) =
zA(z) − A∗(z)

z − 1
, Q(z) =

z2A(z) − A∗(z)

(z − 1)2

if A is just cyclogenic. In the other direction it is given by

zA(z) =







P (z) − Q(z)

(z − 1)
if P (2) ≥ Q(2)

(z − 1)Q(z) − P (z) if P (2) < Q(2);

(ii) there is a bijection between such pairs {P, Q} and polynomials B in C≥2. This
bijection is given explicitly in one direction for B strictly cyclogenic by

P (z) =
zB(z) − B∗(z)

z − 1
, Q(z) =

z2B(z) − B∗(z)

(z − 1)2
,

and by

P (z) =
z2B(z) − B∗(z)

z − 1
, Q(z) = zB(z) − B∗(z)

if B is just cyclogenic. In the the other direction it is given by

zB(z) =







(z − 1)Q(z) − P (z) if P (2) ≥ Q(2)

P (z) − Q(z)

(z − 1)
if P (2) < Q(2).

Theorem 11. The bijection between the set of 2-reciprocal disc-bionic polynomials H(z)
and the set of polynomials C(z) ∈ C≤2 is given explicitly by

C(z) =

{

A(z) given by (5) if H(1
2
) > 0;

B(z) given by (8) if H(1
2
) ≤ 0.

In the other direction it is given by

H(z) =

{

A(z) given by (6) if C is just cyclogenic;

B(z) given by (10) if C is strictly cyclogenic.

Here C replaces A in (6) or B in (10).

The significance of H(1
2
) comes from equations (5) and (8), from which we see that it

determines the sign of A(2) and B(2), and thus whether the associated Pisot number is
less than, equal to, or greater than 2.
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Note that, since H(z) has no roots in the interval (0, 1
2
), H(1

2
) is positive if and only if

the coefficient of the lowest-degree monomial in H is +1. So this coefficient is −1 if and
only if H(1

2
) ≤ 0. Thus, for instance, as a check, we see that in Table 3 the just cyclogenic

Pisot numbers greater (less) than 2 correspond to the polynomials H with smallest-degree
coefficient positive (negative).

Theorem 12. The bijection between the set of 2-reciprocal disc-bionic polynomials H(z)
and the set of polynomials C(z) ∈ C≥2 is given explicitly by

C(z) =

{

B(z) given by (8) if H(1
2
) > 0;

A(z) given by (5) if H(1
2
) ≤ 0.

In the other direction it is given by

H(z) =

{

B(z) given by (10) if C is just cyclogenic;

A(z) given by (6) if C is strictly cyclogenic.

Here C replaces B in (10) or A in (6).

The following is a consequence of Proposition 9.

Corollary 13. For the two cyclogenic Pisot polynomials A ∈ C≤2 and B ∈ C≥2 correspond-
ing to the same pair of interlacing cyclotomic polynomials we have

B =
1

(z − 1)eA

{

(z2 − 3z + 1)A(z) − (z − 2)A∗(z)
}

; (20)

A =
1

(z − 1)eB

{

(z2 − 3z + 1)B(z) − (z − 2)B∗(z)
}

,

where the exponent eA (respectively eB) is 3 or 1 depending on whether A (respectively B)
is just cyclogenic or strictly cyclogenic.

Proof. This follows easily from Proposition 9. From (17) we see that for A and B as in
Proposition 9 we have A(2) = −B(2). Also, A(z) = z(z − 2) iff B(z) = z − 2. Since we
have specified that z − 2 ∈ C≤2 and z(z − 2) ∈ C≥2, we see that one of A, B in (17) is in
C≤2 and the other is in C≥2. Thus (20) gives the required bijection. �

6. The relationship between cyclogenic Pisot polynomials from

{P (z), Q(z)} and those from {P (−z), Q(−z)} and {P (zℓ), Q(zℓ)}.
Suppose that A(z) is the just cyclogenic polynomial related to the interlacing cyclotomic

pair {P (z), Q(z)}, as described in Theorem 8. Then what is the just cyclogenic polynomial
A−(z) related to the interlacing cyclotomic pair {P (−z), Q(−z)}? More accurately, A−(z)
is related to the pair {P (−z), Q(−z)} only if P and Q have even degree. If their degree is
odd, then we must take the pair {−Q(−z),−P (−z)} so that the polynomials are monic,
and the second one is divisible by z − 1. (The factors z − 1 and z + 1 always occur in PQ,
and are the only ones of odd degree. So if P and Q have even degree then Q is divisible
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by z2 − 1, while if they have odd degree then P is divisible by z + 1 and Q is divisible by
z − 1.)

The following result describes A− in terms of A, and B− in terms of B.

Theorem 14. (i) Given a just cyclogenic Pisot polynomial A(z), the polynomial

A−(z) =











1

(z + 1)2

{

(z2 − 2z − 1)A(−z) − 2A∗(−z)
}

if A has even degree;

1

(z + 1)2

{

−(z2 − z − 1)A(−z) − zA∗(−z)
}

if A has odd degree.
(21)

is also a just cyclogenic Pisot polynomial. Moreover, if A is related to the in-
terlacing cyclotomic pair P (z), Q(z), as described in Theorem 8, then A−(z) is
related to the pair {P (−z), Q(−z)} if P and Q have even degree, and to the pair
{−Q(−z),−P (−z)} if P and Q have odd degree.

(ii) Given a strictly cyclogenic Pisot polynomial B(z), the polynomial

B−(z) =











1

z2 − 1

{

(z2 − z − 1)B(−z) + zB∗(−z)
}

if B has even degree;

1

z2 − 1

{

−(z2 − 2z − 1)B(−z) + 2B∗(−z)
}

if B has odd degree.
(22)

is also a strictly cyclogenic Pisot polynomial. Its Boyd number is














−4B(−1)

2B′(−1) + (dB + 2)B(−1)
if B has even degree;

−B(−1)

2B′(−1) + dBB(−1)
if B has odd degree.

(23)

(Here dB = deg(B).) Moreover, if A is related to the interlacing cyclotomic
pair {P (z), Q(z)}, as described in Theorem 8, then A−(z) is related to the pair
{P (−z), Q(−z)} if P and Q have even degree, and to the pair {−Q(−z),−P (−z)}
if P and Q have odd degree.

Proof. For (i): From (13) we see that

zA−(z) =

{

(z − 1)Q(−z) − P (−z) if A has even degree;

Q(−z) − (z − 1)P (−z) if A has odd degree.
(24)

We then replace z by −z in the formulae (12) for P and Q, and substitute into (24).
The proof for (22) of (ii) is similar. The formula for the Boyd number is a routine

calculation using (22). �

Theorem 15. (i) Suppose that A is the just cyclogenic Pisot polynomial correspond-
ing to the interlacing cyclotomic pair {P (z), Q(z)}. Then for any ℓ ∈ N the just
cyclogenic Pisot polynomial Aℓ corresponding to the interlacing cyclotomic pair
{P (zℓ), Q(zℓ)} is given by

Aℓ(z) =
1

(zℓ − 1)2

{

zℓ−1(zℓ+1 − 2zℓ + 1)A(zℓ) + (zℓ−1 − 1)A∗(zℓ)
}

. (25)
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(ii) Suppose that B is the strictly cyclogenic Pisot polynomial corresponding to the in-
terlacing cyclotomic pair {P (z), Q(z)}. Then for any ℓ ∈ N the strictly cyclogenic
Pisot polynomial Bℓ corresponding to the interlacing cyclotomic pair {P (zℓ), Q(zℓ)}
is given by

Bℓ(z) =
1

(z − 1)(zℓ − 1)

{

zℓ−1(zℓ+1 − 2zℓ + 1)B(zℓ) + (zℓ−1 − 1)B∗(zℓ)
}

. (26)

Furthermore, writing b for the Boyd number of B(z), the Boyd number of Bℓ(z)
is

1

ℓ
(

1 + 1
b

)

− 1
,

(So, in particular, it is 1/(ℓ − 1) if b = ∞.)
(iii) As ℓ → ∞ the Pisot number roots of both Aℓ(z) and Bℓ(z) tend to 2.

Proof. (i) From (5) we have, first on replacing z by zℓ and then on replacing H(z) by
H(zℓ), that

A(zℓ) = 1
2

{

(1 − 2/zℓ)H(zℓ) − H∗(zℓ)
}

;

Aℓ(z) = 1
2

{

(1 − 2/z)H(zℓ) − H∗(zℓ)
}

.

Taking the reciprocal of the first of these equations, and using the fact that A and
H have the same degree, we obtain

A∗(zℓ) = 1
2

{

(1 − 2zℓ)H∗(zℓ) − H(zℓ)
}

.

We now eliminate H(zℓ) and H∗(zℓ) from these three equations to obtain the result.
(ii) Similarly, we obtain from (8) that

B(zℓ) =
1

2(zℓ − 1)

{

(1 − 2/zℓ)H(zℓ) + H∗(zℓ)
}

; (27)

Bℓ(z) =
1

2(z − 1)

{

(1 − 2/z)H(zℓ) + H∗(zℓ)
}

;

B∗(zℓ) =
1

2(zℓ − 1)

{

(2zℓ − 1)H∗(zℓ) − H(zℓ)
}

.

For the third equation we have used the fact that deg B = deg H − 1. Again,
elimination of H(zℓ) and H∗(zℓ) from these three equations gives the result.

The calculation of the Boyd number of Bℓ is routine, if tedious, using its definition
and (26). Alternatively, one can use (27) along with the formulae from (11).

(iii) Suppose that A(z) = zd + · · · + azk, where a 6= 0 and k ≥ 0, so that A∗(z) =
azd−k + · · · + 1. Take δ 6= 0 small and put z = 2 + δ. Now for fixed real z > 1 we
have ℓ → ∞ we have A(zℓ) = zdℓ + O(zd−1ℓ) and A∗(zℓ) = az(d−k)ℓ + O(z(d−k−1)ℓ).
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We then see that

zℓ−1(zℓ+1 − 2zℓ + 1)A(zℓ) + (zℓ−1 − 1)A∗(zℓ) = z2ℓ−1δ(zdℓ + O(zd−1ℓ))

+ (1 + a)z(d+1)ℓ−1 + O(zdℓ−1)

= z(d+2)ℓ−1δ + O(z(d+1)ℓ−1).

Hence for ℓ sufficiently large Aℓ(z), and, similarly, Bℓ(z), has a root in the interval
(2− |δ|, 2 + |δ|), which of course must be the Pisot number root of Aℓ(z) or Bℓ(z).

�

7. The largest cyclogenic Pisot number is 3

Proposition 16. The largest cyclogenic Pisot number is 3. All other cyclogenic Pisot
numbers have norm at most 2, the largest of norm 2 being 1 +

√
3 = 2.7320 . . . , and the

largest of norm 1 being 1 +
√

2 = 2.4142 . . . .

For the proof, we need the following simple lemma.

Lemma 17. Let u1, u2, . . . , un be a sequence of n ≥ 1 nonnegative numbers. Then

∏

i

1 − ui

1 + ui
≥ 1 −

∑

i ui

1 +
∑

i ui
.

This lemma is the instance f(x) = log((1 − x)/(1 + x)) of the general inequality
∑

i f(ui) ≥ f(
∑

i ui), valid for all sets of ui in a subinterval of (0,∞) and all f where
f(x)/x is decreasing on that interval– see [HLP, §103 p. 83].

Proof of Proposition 16. Suppose that the cyclogenic polynomial A has a root α > 3, and
that its other roots are the αi. From the identity

1

1 − z
+

1

1 − z̄
= 1 +

1 − |z|2
|1 − z|2

we have that

d − 2A′(1)

A(1)
= d +

2

α − 1
−

∑

αi 6=α

2

1 − αi

= 2 +
3 − α

α − 1
−

∑

αi∈R

1 + αi

1 − αi
−

∑

αi 6∈R

1 − |αi|2
|1 − αi|2

(28)

≤ 2 +
3 − α

α − 1
,

which is less than 2 for α > 3. Hence, as A(1) < 0, 2A′(1) < (d−2)A(1) for α > 3, showing
that A is not cyclogenic. On the other hand, it is easily checked that z − 3 is cyclogenic.
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We shall also need from (28) and the cyclogenic condition the fact that

3 − α

α − 1
≥

∑

αi∈R

1 + αi

1 − αi

+
∑

αi 6∈R

1 − |αi|2
|1 − αi|2

(29)

≥
∑

αi∈R

1 − |αi|
1 + |αi|

+
∑

αi 6∈R

1 − |αi|2
(1 + |αi|)2

=
∑

αi 6=α

1 − |αi|
1 + |αi|

.

Now for αi 6= α put ri := |αi|, ui := 1−ri

1+ri
, so that also ri := 1−ui

1+ui
, and thus (29) gives

3 − α

α − 1
≥

∑

i

ui.

Suppose that α < 3. Then Norm(α) = α
∏

i ri ≤ 2. So if N := Norm(α) = 1 or 2 then

N

α
=

∏

i

ri =
∏

i

1 − ui

1 + ui
≥ 1 −

∑

i ui

1 +
∑

i ui
≥ α − 2, (30)

using Lemma 17 and (28). Hence α(α − 2) − N ≤ 0, giving the rest of the result. �

8. Proof of Theorem 1

Proof. For the proof, we first recall some definitions from [BH]. Let a = (a1, . . . , an),
b = (b1, . . . , bn) ∈ C∗n be complex parameters, and pa(t) = (t − a1) . . . (t − an), pb(t) =
(t−b1) . . . (t−bn), with A, B ∈ Cn×n being the companion matrices of pa and pb respectively.
Then a hypergeometric group H(a;b) is any group conjugate inside GLn(C) to the group
〈A, B〉 generated by A and B (see [BH, 3.1, 3.5]). A matrix C ∈ GLn(C) is a complex
reflection if C − I has rank 1. Now A−1B − I = A−1(B − A) has rank 1, provided that
A 6= B, so that A−1B is a complex reflection. The complex reflection subgroup Hr(a;b)
of H = H(a;b) is the subgroup generated by all complex reflections Ak−1BA−k for k ∈ Z
([BH, 3.5, 5.2]). We are interested in the case where pa and pb are both cyclotomic
polynomials, and with the additional property that their roots interlace on the unit circle.

A subgroup G of GLn(C) acts reducibly on Cn if there is a nonzero proper subspace of
Cn that is invariant under the action of G. Otherwise G is called irreducible. Further, G
is called imprimitive if there is a direct sum decomposition of Cn as V1 ⊕V2 ⊕ · · ·⊕Vd into
more than one nonzero subspace Vi such that the action of G permutes the Vi. Otherwise
G is called primitive.

By [BH, Theorem 4.8], we know that we are looking for H finite, this being a necessary
and sufficient condition for pa and pb to have interlacing roots. We separate three cases:

(i) The case when Hr acts reducibly on Cn.
By [BH, Theorem 5.3], Hr is imprimitive, and further (for the moment viewing

a and b as sets) ζa = a, ζb = b for some primitive ℓth root of unity ζ with ℓ > 1,
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where l is taken to be maximal, giving the interlacing pair P∗(z
ℓ), Q∗(z

ℓ) , where
P∗ and Q∗ are a primitive cyclotomic interlacing pair.

(ii) The case H primitive.
By [BH, Theorem 7.1], (ii) holds precisely for the first infinite family (see [BH,

Table 8.3, # 1]), and the 26 sporadic examples—see final column of Table 2 above.
(iii) The case Hr irreducible and H imprimitive.

By [BH, Theorem 5.8], we then know that the interlacing cyclotomic polynomials
P (z), Q(z) must be of the form (up to interchanging) P (z) = zn − bjcn−j , Q(z) =
(zj − bj)(zn−j − cn−j), where gcd(j, n) = 1. In particular j and n − j are not both
even, so, by interchanging j and n − j if necessary, we can assume that j is odd.
As P and Q are cyclotomic, bj = ±1 and cn−j = ±1. If bj = 1, then cn−j must be
−1 in order that (z − 1)2 ∤ Q(z), giving P (z) = zn + 1, Q(z) = (zj − 1)(zn−j + 1).
If bj = −1, then cn−j must be (−1)n in order that (z + 1)2 ∤ Q(z), giving P (z) =
zn +(−1)n, Q(z) = (zj +1)(zn−j − (−1)n). Now replacing z by −z and multiplying
the polynomials by (−1)n gives P (z) = zn + 1, Q(z) = (zj − 1)(zn−j + 1) again. So
in either case P and Q are in the second infinite family in Table 2.

�

9. Small cyclogenic Pisot numbers

As is well-known, Siegel [Si] showed that the smallest element of the set S of Pisot
numbers is 1.3247 . . . , with minimal polynomial z3−z−1. All elements of S in an interval
not containing a limit point of S can be found, using the Dufresnoy-Pisot-Boyd algorithm
[Bo2]. This algorithm can easily be tweaked to compute also the Boyd number of all
Pisot numbers found. Thus we find that the smallest ten Pisot numbers are cyclogenic.
The eleventh smallest, 1.5911843 . . . , with minimal polynomial z9 − z8 − z7 + z2 − 1, is
noncyclogenic.

As another example, Boyd [Bo2, p.1252] determined using this algorithm that the in-
terval (1.755, 1.839) contains 165 Pisot numbers. The largest of their degrees is 31. Of
these Pisot numbers, 38 of their minimal polynomials are cyclogenic (i.e., have nonnegative
Boyd number), with 19 being just cyclogenic (i.e., having Boyd number 0), 13 have Boyd
number in the interval (0, 1), while five have Boyd number 1 (so, by Proposition 5, z×
their minimal polynomial is just cyclogenic). The polynomial z6 − z4 − 2z3 − 2z2 − 2z − 1,
with Boyd number 8/7, is the only one having Boyd number greater than 1.

The smallest element of S ′ is the cyclogenic Pisot number 1.618033989 . . . , the golden
ratio, with minimal polynomial z2 − z − 1. It is a limit point both of the cyclogenic Pisot
numbers having minimal polynomials (zn(z2 − z − 1) + 1)/(z − 1) and the noncyclogenic
Pisot numbers having minimal polynomials zn(z2 − z − 1) + z2 − 1. This shows that the
set of noncyclogenic Pisot numbers is not closed.

The smallest noncyclogenic element of S ′ is 1.90516616775 with minimal polynomial
z4 − z3 − 2z2 + 1. It is a limit point only of noncyclogenic Pisot numbers, for instance of
the sequence with minimal polynomials zn(z4 − z3 − 2z2 +1) + z3 + z2 − z − 1. This shows
that the set of noncyclogenic Pisot numbers contains some but not all of its limit points.
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The noncyclogenic Pisot number 1.933184981899, with minimal polynomial z5 − 2z4 +
z − 1, is the limit point of the sequence of (just) cyclogenic Pisot numbers having minimal
polynomials zn(z5 − 2z4 + z − 1) − z4 + z3 − 1, showing that the set of cyclogenic Pisot
numbers is not closed, either. It is also the limit point of the sequence of noncyclogenic
Pisot numbers having minimal polynomials zn(z5 − 2z4 + z − 1)− z4 + z − 1, showing that
the set of Pisot numbers that are limit points both of the set of cyclogenic Pisot numbers
and of the set of noncyclogenic Pisot numbers contains both cyclogenic Pisot numbers and
noncyclogenic Pisot numbers.

S1

S5

S7

S6

S8

S4S3

S2

Figure 2. The distinguished-vertex signed graphs S1, . . . , S8 used in Table
5. The solid edges correspond to an entry 1 in the adjacency matrix, while
the broken edges correspond to an entry −1. The distinguished vertices are
circled.

10. Interlacing cyclotomic polynomials from graphs and signed graphs

In this section we remark that all primitive interlacing cyclotomic pairs can also be
produced from graphs or signed graphs. The method is as follows. Suppose that A is
an n × n integer symmetric matrix with characteristic polynomial χA(x). For some i
delete the ith row and column of A, to obtain A′, with characteristic polynomial χA′(x).
Then by Cauchy’s Interlacing Theorem (see Fisk [Fi] for a slick proof) the eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn of A and the eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn−1 of B interlace, so that
they satisfy

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−1 ≤ λn .

We now assume that χA(x) is an even or odd function of x. This occurs, for instance,
when A is the adjacency matrix of a bipartite graph or signed graph. Then also A has all
entries 0 or 1 (respectively 0, 1 or −1). We assume further that A has all its eigenvalues in
[−2, 2]. Then it is readily checked (see [MS1]) that the pair of polynomials zn/2χA(

√
z +
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Family [MS2]
1 An(j, n + 1 − j)
2 Dn+1(j, n + 1 − j)

Label [MS2]

A Ẽ6(1)
B E6(1)
C E6(2)
−D E7(3)
−E E7(5)
−F E7(1)
G E7(6)
H E7(4)
I E7(7)
J S1

K Ẽ8(1)
L E8(7)
M E8(6)
N E8(5)
O E8(4)
P E8(3)
Q E8(2)
R E8(1)
S E8(8)
T S2

U S3

V S4

W S5

X S6

Y S7

Z S8

Table 5. Graphs associated to the two infinite families of Table 1 and the
26 sporadic cases of interlacing cyclotomic pairs of Table 2. The second
column refers to the graphs of [MS2, Figures 2,3,5] and the signed graphs Si

of Figure 2.

1/
√

z) and (z − 1)z(n−1)/2χA′(
√

z + 1/
√

z), when deprived of any common factor, is a pair
of interlacing cyclotomic polynomials.

Table 5, with Figure 2, gives a graph or signed graph with a distinguished vertex for every
primitive cyclotomic pair {P (z), Q(z)}. Take A to be the adjaceny matrix of the (signed)
graph, and A′ to be the adjacency matrix of the (signed) graph with the distinguished
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vertex removed. Then the construction above gives the pair {P (z), Q(z)} of interlacing
cyclotomic polynomials.
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