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NON-BIPARTITE GRAPHS OF SMALL MAHLER MEASURE

JONATHAN COOLEY, JAMES MCKEE, AND CHRIS SMYTH

ABSTRACT. The problem of describing the set of all small Mahler measures of
polynomials with integer coefficients is a difficult one. One approach is to look
for possible candidates among polynomials attached to combinatorial objects.
In this paper we study the Mahler measure of polynomials coming from non-
bipartite graphs: we classify all such graphs that have Mahler measure below
¢ = %(1 ++/5). The bound of ¢ is natural in that it is found to be the
smallest limit point of the set of Mahler measures of non-bipartite graphs.
(The bipartite case was covered in an earlier paper by the second and third
authors.)

1. INTRODUCTION

For a monic polynomial p(z) € Z[z], its Mahler measure, written M (p), is defined

by

M(p) = [] max(1,la)), (1)

p(a)=0

where multiple roots contribute to the product according to their multiplicity. The
description of all ‘small’ Mahler measures of polynomials in Z[z] is a notorious open
problem: see [18] for a recent survey of results. For p(z) irreducible and # z or
z — 1, Breusch [2] showed that unless p(z) is a reciprocal polynomial (meaning that
z4¢e(P)p(1/2) = p(z)) one has M(p) > 1.1796. . .; this constant was later improved
( [17]) to the best-possible one M (23 — z — 1) = 1.3247.... The smallest-known
Mahler measure greater than 1 is 1.17628..., the larger real root of what is now
called ‘Lehmer’s polynomial’, the reciprocal polynomial L(z) = 2194 29 — 27 — 26 —
25— 2% — 23 + 2 +1[9]. Is this the smallest Mahler measure greater than 1? This
celebrated question remains unresolved, although several interesting special cases
have been settled [18, 12]. In view of Breusch’s result, the hunt for small values of
M (p) > 1 can be restricted to reciprocal polynomials.

A fruitful way of studying certain algebraic objects is by associating them with
combinatorial structures. Indeed Lehmer’s polynomial itself was discovered in this
way: L(—z) is the Alexander polynomial of a pretzel knot [15]. There is a natu-
ral way to attach reciprocal polynomials to graphs, and it becomes an interesting
question to ask about the spectrum of possible Mahler measures for reciprocal poly-
nomials that arise in this way (not all reciprocal polynomials do, but L(z) is an
example of one that does).

Let G be a finite graph, with n vertices. (For definitions of graph-theoretical
terms, see [1] or [7].) The notion of the Mahler measure of a graph was introduced
n [10]. If xg(z) is the characteristic polynomial of G, then G has the associated
reciprocal polynomial R (2) = 2"xa(z + 1/2). The Mahler measure of a graph G,
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FiGURE 1. The kite graphs: Kt, has n vertices.

written M (G), is defined to be the Mahler of measure of its associated reciprocal
polynomial.

It is convenient to translate (1), with p = R, into an equation involving the
eigenvalues of G:

M@= I s(N+VR—19). (2)
xa(A)=0, [A|>2
Again one treats multiple roots according to multiplicity. As a shorthand, we shall
say simply that a graph G has small Mahler measure to mean that M(G) < ¢ :=
1(1+V5).

Bipartite graphs having small Mahler measure were classified in [10, Theorem
10.2] (the word ‘bipartite’ was mistakenly omitted from the statement), and the re-
marks following it. If a graph is bipartite, then its roots are symmetric about the ori-
gin [4], and consequently having Mahler measure below ¢ implies that the spectral
radius is below 6 = /2 4+ /5 (with A = v/2 + /5 one has (A + VA2 —4)/2 = /¢,
and in the bipartite case both A and —\ contribute to (2)). The set of connected
graphs with largest eigenvalue in the interval (2, 6] is described completely in the
survey paper of Cvetkovié and Rowlinson [6, Theorem 2.4], drawing on work of
Brouwer and Neumaier [3] and Cvetkovié¢, Doob, and Gutman [5]. The work of [10]
identifies the intersection of this set of graphs with the set of those that have Mahler
measure below ¢, and hence deals with the bipartite case. But in the non-bipartite
case, it is possible for the spectral radius to be larger, with the Mahler measure
still below ¢. The current paper completes the classification of all graphs that have
small Mahler measure by dealing with the non-bipartite case.

Theorem 1. Every connected non-bipartite graph that has Mahler measure below
o= %(1 +/5) is of one of the following types:

an odd cycle;

a ‘kite’ graph, shown in Figure 1;

a ‘balloon’ graph, shown in Figure 2;

one of eight sporadic examples, Sp,, ..., Spy,, shown in Figure 3.

Following [10], we shall call a graph cyclotomic if all its eigenvalues are in the
interval [—2,2]. Equivalently, G is cyclotomic if and only if M(G) = 1. Cyclo-
tomic graphs were classified by Smith [16]. In particular, he showed that the only
connected cyclotomic non-bipartite graphs are the odd cycles.

From Theorem 1 and [10, Theorem 10.2], it is easy to describe all (not necessarily
connected) non-bipartite graphs of small Mahler measure. See also the remark in
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FIGURE 2. The balloon graphs: Bls,, has 2n vertices. The smallest
balloon is also a kite.

q *—4

[ Sp, Spq 1::>‘S_Pg‘
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L Spy, Spe '_‘::>SI:}L

FI1GUrRE 3. The sporadic graphs Sp,, ..., Spy,.

[10], following Theorem 10.2, concerning non-connected bipartite graphs of small
Mahler measure.

Corollary 2. Every non-bipartite graph of small Mahler measure is of one of the
following types:
o A (not necessarily connected) bipartite graph of small Mahler measure, with
one or more additional connected components consisting of odd cycles;
o A graph with one connected component as given in Theorem 1, with any
other components cyclotomic;
o A graph with one connected component Blg, one connected component the

et oo w_o_o_o_o_o_s , With any other components cyclotomic.

As an immediate consequence of Theorem 1, and the computations involved in
its proof, we find the following lower bound on Mahler measures greater than 1 for
non-bipartite graphs.

Corollary 3. Let G be a non-bipartite graph. Then either M(G) =1 or M(G) >
M (Blg) = 1.35098. .., the larger real root of 210 — 2% — 26 4 2° — 2% — 2 4+ 1.

We note that if H is an induced subgraph of G, then by interlacing [7, Theorem
9.1] one has M(H) < M(G).
All computations were performed using either PARI [14] or Maple [13].
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2. PROOF OF THEOREM 1

The plan of the proof is as follows. After Smith’s result [16] we are reduced
to considering non-cyclotomic graphs. We prove that all kites (§2.1) and balloons
(§2.2) have small Mahler measure. We record the results of some computations
(§2.3) that deal with all small examples. We list some special graphs whose Mahler
measure is not small (§2.4): by interlacing these examples cannot appear as induced
subgraphs of graphs that have small Mahler measure. We then prove that any con-
nected graph that has small Mahler measure and contains a triangle must be a kite
(Lemma 9). To complete the proof, we show that all remaining cases of connected,
non-bipartite graphs that have small Mahler measure are in fact balloons (Lemma
11). The paper ends with the proof of Corollary 2, and some open problems.

2.1. All kites have small Mahler measure. The spectrum of a kite is no doubt
well-known and in any event is not difficult to derive. For completeness we give a
short argument that the Mahler measure of a kite is small.

The graph Kt,, is a line graph [7, §1.7], so has all eigenvalues in the interval
[-2,00) [1, Proposition 3.7]. Deleting one of the vertices in the triangle leaves a
cyclotomic graph, as is seen from Smith’s classification [16]. But Kt,, itself is not one
of Smith’s graphs, so does not have all eigenvalues in [—2, 2], and so by interlacing
[7, Theorem 9.1.1] Kt,, has a unique eigenvalue larger than 2, and this is the only
eigenvalue that contributes to the Mahler measure via (2). (In the language of [10],
Kt,, is a Salem graph.) Let A, be the largest eigenvalue of Kt,,.

As n increases, so does A, and indeed it strictly increases [7, Theorem 8.8.1(b)].
Write A\, = z, + 1/z,, with z, > 1; then z, also strictly increases with n, and
equals the Mahler measure of Kt,,. By [10, Lemma 4.3], using the explicit formula
in the proof of [10, Lemma 4.1], z, converges to a root of 22 — z — 1 = 0, and it
must be the positive root ¢. Hence z, = M(Kt,) < ¢ for all n > 4, and we see
that ¢ is a limit point of the set of Mahler measures of non-bipartite graphs.

2.2. All balloons have small Mahler measure. Balloons cause more trouble
than kites, as (apart from small cases) they have two eigenvalues outside the inter-
val [-2,2]. Computing the characteristic polynomial by expanding along the row
corresponding to the leaf, one readily computes that the reciprocal polynomial of
Blgn is

Z?nfl_l (24_22_1)227171_(24_*_22_1)
z—1 z+1 '

Removing cyclotomic factors from this reciprocal polynomial, and multiplying by
241, gives (24 — 22 —1)22"71 — (2* + 22 — 1) = P,(2), say. To show that Bly, has
small Mahler measure, we must show that M(P,) < ¢. For n < 5, we check this
by direct computation. It remains to deal with n > 5.

Deleting the vertex of valency 3 leaves a (disconnected) cyclotomic graph, so by
interlacing P, has at most two roots outside the unit disc. Note that P, (—+v/¢) < 0,
P,(-1)=0, P, (-1)=9—-2n <0 for n > 5, P,(v/$) <0, P,(c0) = +o0, so that
for n > 5, P, has a root z, in (—v/@,—1) and a root 2, in (v/¢,00), and these
account for all possible roots outside the unit disc.
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From P,(z) =0, we get

1 22422 -1
08 24 —22—-1] 2n-1 3)
log | 22| 2

Putting 22 = (1 + z)¢ in (3), the left-hand side becomes
_log|1/x| 4+ C +log|l + zR(x)|

| 4
9(x) log & + log |1 + | ’ W

e (4 +3)z+T+5

where €' =log 2= ~ —0.11157, and R(z) = o-—5r—g -

The two roots z, and z] correspond to real roots of the equation g(z) = 2”2—_1

call these —u!, and w,, say, where 2z, = —+/(1 —ul)¢ and z} = /(1 + un)9.
We easily see that g(z) is decreasing for = > 0: rearranging the numerator in (4)
as log |1 + %| one checks that it is decreasing, and the denominator is
increasing. Since ¢(0.1) < 9/2, we see from (3) that u, € (0,0.1), for all n > 5. We
have

M(P,) = ¢\/(1 +up) (1 —up) = (b\/l + Un — Uy, — Unty,
which is less than ¢ if u], > u,. We now show that this is indeed the case.
Knowing that g(z) is decreasing in (0,00), and u,, € (0,0.1), it will be enough
to show that g(—z) > g(x) for x € (0,0.1). One readily checks that g(—x) — g(z) ~
2
ﬁ log|1/x| as * — 0+, and simple estimates involving approximations to
og
the logarithm function show that this positive main term dominates in the interval
(0,0.1), as desired.

2.3. Details of some computations. A consequence of interlacing is that any
connected graph that has small Mahler measure can be ‘grown’ from smaller con-
nected examples by adding vertices. For non-bipartite graphs this process proceeds
as follows. The complete list of connected, non-bipartite graphs that have three
vertices (and Mahler measure below ¢) is very short: just the triangle. Consider all
possible ways of adding a new vertex to produce a connected non-bipartite graph
with 4 vertices; keep only those that have Mahler measure below ¢, and keep only
one representative of each isomorphism class. Grow similarly to get a list of 5-
vertex graphs, now adding to this list the 5-cycle (which cannot be grown from a
triangle). One can proceed in this way for larger and larger graphs, until computa-
tional limitations prevent further growing. In particular, growing up to 8 vertices
is a trivial matter, and it establishes the following Lemma.

Lemma 4. Let G be a connected, non-bipartite graph with 1 < M (G) < ¢ and with
at most 8 vertices. Then G is either a kite (Figure 1), a balloon (Figure 2), or one

Of Sp(w Spb7 Spd7 Spe7 Sph (Figure 3)

The growing process can also be used to investigate connected, non-bipartite
graphs that have small Mahler measure and contain a particular induced subgraph
H. One starts with the singleton graph H, and applies the growing process. For
certain subgraphs H this process terminates, revealing only a finite number of pos-
sible larger graphs. In particular, we record the results of growing from a pentagon
and from a heptagon.
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Hnalin s

FIGURE 4. The graphs Ly, ..., Ly.

D S

5 Ktﬁ n

FIGURE 5. The tailed kites Ian, n vertices, n > 5.

Lemma 5. The only connected, mnon-bipartite graphs of Mahler measure in the
interval (1, ¢) that contain either a 5-cycle or a 7-cycle are Blg, Blg, and the eight
sporadic graphs of Figure 3.

2.4. Some graphs that do not have small Mahler measure. We present here
some graphs that have Mahler measure greater than ¢. There are, of course, many
others—we merely list those which will play a réle in our later proofs. First we list
some bipartite examples, for which we can appeal to [10, Theorem 10.2].

Lemma 6. The four graphs Ly, Lo, L3, Ly in Figure 4 all have Mahler measure
greater than ¢.

The graphs L3 and L4 are the first two members of an infinite family of balloons
containing an even cycle (by contrast to the balloons of Figure 2). We leave it as
an exercise to check that the corresponding sequence of Mahler measures forms a
decreasing sequence, converging to ¢.

Lemma 7. The ‘tailed kites’ Ian of Figure 5 (n vertices, n > 5) all have Mahler
measure greater than ¢.

Proof. Note that thn is not one of Smith’s graphs [16], but that deleting one of the
degree-2 vertices in the triangle of Kt, leaves a subgraph of one of those graphs.
By interlacing, Ian has at most one eigenvalue greater than 2, and indeed exactly
one, since the spectral radius of a graph always equals an eigenvalue [7, Lemma

8.7.3]. On the other hand, Kt,, is a generalised line graph [1, 3h]. Hence Kt,

has all eigenvalues at least —2. Thus Kt, has a unique eigenvalue outside the
interval [—2,2], and this is > 2. From [8, Proposition 2.4], the Mahler measure of

Kt,, strictly decreases as n increases. In the limit, using [10, §4], this sequence of
Mabhler measures converges to ¢. Hence M (Kt,) > ¢ for all n > 5. O

Lemma 8. Let @(d, e) be the graph shown in Figure 6, where d, e > 1 and d+e > 2.
Then with the exceptions of Spy, Sp,, Sp;, (corresponding to (d,e) = (2,3), (3,4),
(1,4)) one has M(Q(d,e)) > ¢.
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e—1
—_—~
i z Q(d,e)
~—_————
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[ cee —@

b—1
Q(a,b,c)
FIGURE 6. The graphs @(d, e) and Q(a,b, ).

Proof. We may assume that d < e. For e < 9, we check the result by direct
computation. For e > 9, delete suitable vertices from the middle of the longer path
between the two degree-3 vertices to leave a subgraph Q(a,d, ¢) (see Figure 6; here
(a—1)+ (¢—1) <7< e—1) in the following list: Q(3,1,3), Q(3,2,3), Q(3,3,3),
Q(3,4,4), Q(3,5,5), Q(3,6,5), Q(3,7,6), Q(4,8,5), or Q(4,d,4) if d > 9. From
the computations in the proof of [10, Theorem 10.2], this (bipartite) subgraph has
Mahler measure greater than ¢, and hence by interlacing so does é(d, e). O

2.5. All large enough connected, non-cyclotomic, non-bipartite graphs of
small Mahler measure are either kites or balloons.

Lemma 9. Let G be a connected graph, with Mahler measure in the interval (1, ¢).
If G contains a triangle, then G is a kite.

Proof. We use induction on n > 1. For n < 8, the direct computations in §2.3
establish the result.

Suppose that n > 8 and that the result is known for relevant graphs with fewer
vertices. Let T' be a triangle in G, and for any vertex v define the distance from v
to T to be the minimal number of edges in a path from v to one of the vertices in 7.
Take v a vertex of maximal distance from T. Let G’ be the subgraph obtained by
deleting v and all incident edges. Maximality of the distance from v to T" ensures
that G’ is connected. By interlacing, the Mahler measure of G’ is at most that of G,
so either equals 1 or is in the interval (1, ¢). The former is excluded by inspection
of Smith’s graphs [16], so by our inductive hypothesis G’ = Kt,,—1. Let = be the
leaf in G', with y its neighbour. By maximality of the distance of v from T, the
only possible neighbours of v in G are x and y.

First consider the possibility that v is adjacent to both x and y. Using n—1 > 8,
we could then delete vertices from the middle of the path from y to T to leave
two disjoint copies of Kt4. By interlacing, we would have M(G) > M (Kt4)? >
1.50613% > ¢, contradicting M (G) < ¢. We deduce that v is adjacent to exactly
one of z and y.

Next consider the possibility that v is adjacent to y only. Then G is a tailed kite
(Figure 5), and Lemma 7 gives a contradiction.

We are forced to the conclusion that v is adjacent to = only, and therefore that
G = Kt,,. O
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Lemma 10. Let G be a connected, non-bipartite graph, with Mahler measure below
¢. Let C be an odd cycle in G, of shortest length. If v is a vertex not in C, then v
is adjacent to at most one vertex of C'.

Proof. If G contains a triangle, then the result follows from Lemma 9. We may
therefore suppose that G contains no triangles.

Suppose that v is a vertex not in C' that is adjacent to two vertices x and y on
C (and perhaps adjacent to others). The cycle C provides us with two paths from
x to y, and since C' has odd length one of these paths P contains an even number
of edges. If P had more than two edges, then following the odd-length path from x
to y, then going from y to v and from v to x would give an odd cycle shorter than
C. Hence P has exactly two edges; let z be the vertex on P between x and y, and
let u be the other neighbour of y on C. Since G has no triangles, and w cannot be
a neighbour of  (else we could shorten C' by replacing the path zzyu by the path
zu) the subgraph induced by x, y, z, u, v is L3 in Figure 4. Lemma 6 records that
M(L3) > ¢, hence by interlacing we have M(G) > ¢, which is a contradiction. We
conclude that no such vertex v exists, which is the claim of the current Lemma. [J

We complete the proof of Theorem 1 by showing that any connected, non-
bipartite graph with Mahler measure in the interval (1, ¢) and with no odd cycle
of length below 9 is a balloon.

Lemma 11. Let G be a connected, non-bipartite graph, with Mahler measure in
the interval (1, ¢). Suppose that G has n vertices and that the shortest odd cycle in
G has length 2m — 1. If m > 5 then G = Blg,,.

Proof. We use induction on n. For n < 9 the result is vacuous.

We suppose that n > 9, and that the result is known for all relevant smaller
graphs. Let C be a shortest odd cycle in G. We may assume that C has at least 9
edges, or there is nothing to prove. Since M (C) = 1, there must be other vertices
in G. Let v be a vertex in G that is as far distant from C' as possible. Deleting v
leaves a connected graph H, containing C' as a shortest odd cycle. If M(H) = 1,
then H = C (Case 1). Otherwise, by our inductive hypothesis, n — 1 is even and
H = Bl,,—1 (Case 2): we shall in fact show that this case cannot arise.

Case 1: H=C. Then n —1is odd, so n is even. And by Lemma 10, G = Bl,,.

Case 2: H = Bl,_1. Let x be the leaf of H, and let y be its neighbour on C.
We split into three subcases: (a) v is adjacent to x only; (b) v is adjacent to x and
to a vertex z on C (exactly one such neighbour on C, after Lemma 10); (c) v is
adjacent to a vertex z on C' (again unique, after Lemma 10), but not to x.

Case 2(a). Noting that Ly of Figure 4 is an induced subgraph, we see that this
case is ruled out by Lemma 6.

Case 2(b). Counsider the path P on C that connects y and z via an odd number
of edges. By minimality of the length of C, the only possible lengths for P are 1
and 3 (else we could find a shorter odd closed walk by replacing the path P within
C by the path zvxy). If P has length 1, then G contains L3 of Figure 4 as an
induced subgraph; if P has length 3, then it contains L4. In either case we see that
Lemma 6 gives a contradiction.

Case 2(c). We have two further subcases. If z = y, then we have Ly of Figure
4 as an induced subgraph of G. If z # y, then we appeal to Lemma 8, noting that
m > 5 excludes the sporadic cases.
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Each subcase of Case 2 produces a contradiction, so we must be in Case 1:
H = C and G = Bl,,. O

3. PROOF OF COROLLARY 2

The proof of the Corollary 2 follows readily from Theorem 1, using the facts that

e A graph is non-bipartite if and only if at least one connected component is
non-bipartite;

e The Mahler measure of a graph is the product of the Mahler measures of
its connected components.

Let G be a non-cyclotomic graph of small Mahler measure. If all the non-cyclotomic
components are bipartite, then at least one cyclotomic component must be non-
bipartite, and so an odd cycle. This gives the first case of the Corollary. Otherwise,
G has a non-bipartite non-cyclotomic component, as described by the Theorem.
As all of these have Mahler measure at least M (Bls) = 1.350980338 > /¢, there
can be only one of these components. If all other components are cyclotomic,
we have the second case. Otherwise, some component is non-cyclotomic and bi-
partite, in which case, by [10, Theorem 10.2], it has Mahler measure at least
M(T(1,2,6)) = 1.176280818. Here T'(1,2,6), defined in [10, Figure 15], is the

tree o o v o o o o oo - But then the non-bipartite component of G' can have
Mahler measure at most ¢/1.176280818 = 1.375550773. But Blg is the only such

non-bipartite non-cyclotomic connected graph, all others having Mahler measure
at least M (Blg) = 1.401268368, and the only connected bipartite non-cyclotomic
graph that has Mahler measure below ¢/M (Blg) is T'(1,2,6). This gives the third

case.

4. OPEN PROBLEMS

It would be nice to push knowledge of graphs of small Mahler measure beyond
the ¢ boundary, in either the bipartite or non-bipartite case. In another direction,
one might ask about signed graphs, or more generally the Mahler measure of integer
symmetric matrices, as defined in [12]. The best result known in this setting is a
classification of all indecomposable integer symmetric matrices that have Mahler
measure below 1.3 ([12, Theorem 4], along with [11, §4] for a description of the
cyclotomic cases).
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