

Edinburgh Research Explorer

Iterative refinement techniques for solving block linear systems
of equations

Citation for published version:
Smoktunowicz, A & Smoktunowicz, A 2013, 'Iterative refinement techniques for solving block linear systems
of equations' Applied Numerical Mathematics, vol. 67, pp. 220-229. DOI: 10.1016/j.apnum.2011.11.004

Digital Object Identifier (DOI):
10.1016/j.apnum.2011.11.004

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Applied Numerical Mathematics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.apnum.2011.11.004
https://www.research.ed.ac.uk/portal/en/publications/iterative-refinement-techniques-for-solving-block-linear-systems-of-equations(48a0b506-f789-429f-b27b-9710eef9e16f).html

Iterative refinement techniques for solving block linear

systems of equations

Alicja Smoktunowicza,∗, Agata Smoktunowiczb,c

aFaculty of Mathematics and Information Science, Warsaw University of Technology,
00-661 Warsaw, Plac Politechniki 1, Poland

bSchool of Mathematics, University of Edinburgh, Edinburgh, Scotland EH9 3JZ, UK
cInstitute of Mathematics of the Polish Academy of Sciences, ul. Sniadeckich 8,

P.O. Box 21, 00-956 Warsaw, Poland

Abstract

We study numerical properties of classical iterative refinement (IR) and k-

fold iterative refinement (RIR) of solutions of a nonsingular linear system of

equations Ax = b, with A partitioned into blocks, using only single precision.

We prove that RIR has better numerical quality than IR.

Keywords: Iterative refinement; linear systems; block matrices; condition

number; numerical stability.

2000 MSC: 65F10, 65G50, 15A12

1. Introduction

In many practical applications, e.g. arising in solving differential equa-

tions numerically, we need to solve a linear system of equations Ax = b, where

∗Corresponding author
Email addresses: smok@mini.pw.edu.pl (Alicja Smoktunowicz),

A.Smoktunowicz@ed.ac.uk (Agata Smoktunowicz)
URL: http://www.maths.ed.ac.uk/people/show/person/67 (Agata

Smoktunowicz)

Preprint submitted to Applied Numerical Mathematics November 30, 2010

Smoktunowicz, A & Smotunowicz, A 2013, 'Iterative refinement techniques for solving block
linear systems of equations' Applied Numerical Mathematics, vol 67, pp. 220-229.

A ∈ RN,N is nonsingular and has a special block structure. We assume that

the matrix A ∈ RN,N is partitioned into s × s blocks, i.e. A = (Aij), where

Ai,j ∈ Rni,nj is refereed to as the (i, j) block of A, {n1, . . . , ns} is a given set

of positive integers, n1 + . . . + ns = N .

Very often, the block matrices Aij are sparse and many of them are zero.

Numerical algorithms ought to exploit the structure of the matrix A. We

would like to use algorithms that produce solutions y accurate to full machine

precision. Such algorithms are attractive because they preserve the structure

of the matrix. If y solves a problem that is close to the original one, i.e.

(A + E)y = b, ‖Eij‖2 ≤ ε ‖Aij‖2, i, j = 1, . . . , s,

then A + E has the same block structure as A: Aij = 0 implies that Eij = 0.

If A = (Aij) is symmetric then it is reasonable to have a numerical solution

y as a solution of slightly perturbed symmetric system (A + F)y = b. We

partly resolved this problem by using the blockwise approach (cf. [13]-[15]).

If A = (Aij) ∈ RN,N is a block symmetric matrix and y is a solution of a

nearby linear system (A + E)y = b, then there exists F = F T such that y

solves a nearby symmetric system (A + F)y = b, if A is symmetric positive

definite or the matrix µ(A) is diagonally dominant, or µ(A) is H-matrix,

where µ(A) is a matricial norm of A (cf. [7], [11], [15]),

µ(A) =


‖A11‖2 ‖A12‖2 · · · ‖A1s‖2

‖A21‖2 ‖A22‖2 · · · ‖A2s‖2

· · · · · · · · · · · ·

‖As1‖2 ‖As2‖2 · · · ‖Ass‖2

 . (1)

Without loss of generality we restrict our attention to the spectral matrix

norm (2-norm) and the second vector norm (length of x). It is well-known

2

that ‖A‖2
2 = ρ(AT A), where ρ(A) = max{|λ| : λ ∈ σ(A)} denotes the

spectral radius of A.

If the vector x ∈ RN is partitioned as x = (x1
T , . . . , xs

T)T where xi ∈ Rni ,

then µ(x) = (‖x1‖2, . . . , ‖xs‖2)
T and ‖x‖2 = ‖µ(x)‖2.

Matricial norms have very elegant properties (cf. [7], [11], [13], [15]),

for example, for block matrices A = (Aij), B = (Bij) and vectors x, y,

partitioned conformally, we have

• µ(A + B) ≤ µ(A) + µ(B), µ(AB) ≤ µ(A)µ(B),

• µ(Ax) ≤ µ(A)µ(x), ‖Ax‖2 ≤ ‖µ(A)µ(x)‖2,

• ρ(A) ≤ ρ(µ(A)) (the Frobenius inequality),

• ‖A‖2 ≤ ‖µ(A)‖2.

Here inequalities between matrices A = (Aij) and B = (Bij) are under-

stood to hold for all blocks Aij and Bij, i.e. µ(A) ≤ µ(B) means that for all

i, j we have ‖Aij‖2 ≤ ‖Bij‖2.

Our blockwise analysis extend existing normwise and componentwise re-

sults on preserving symmetric perturbations. Some important cases are:

µ(A) = |A| = (|aij|) for s = n (componentwise case) and µ(A) = ‖A‖2 for

s = 1 (normwise case).

We can measure the sensitivity of the solution of linear system Ax = b

with respect to the perturbations of the blocks Aij. Notice that if x∗ is the

exact solution to Ax = b and x̂ is the exact solution to a slightly perturbed

system (A + ∆A)x̂ = b with µ(∆A) ≤ εµ(A) then x̂− x∗ = −A−1∆Ax̂, so

µ(x̃− x∗) ≤ ε µ(A−1)µ(A)µ(x∗) +O(ε2
M).

3

From this it follows that

‖x̂− x∗‖2 ≤ ε‖µ(A−1)µ(A)µ(x∗)‖2 +O(ε2
M).

Let

Ω = µ(A−1)µ(A), κµ(A) = ‖Ω‖2. (2)

We call κµ(A) the blockwise condition number of A and

condµ(A; x∗) = ‖Ω µ(x∗)‖2/‖x∗‖2 (3)

the blockwise condition number of the nonzero solution x∗ to the system

Ax = b (cf. [13]).

The blockwise condition number measures the sensitivity of the system

Ax = b with respect to the partition {n1, . . . , ns}. It is easy to see that

1 ≤ condµ(A; x∗) ≤ κµ(A) ≤ s2 κ(A),

where κ(A) = ‖A−1‖2 ‖A‖2 is the normwise condition number of A.

Now it is natural to introduce blockwise stability of algorithms in the

solving of linear system of equations.

Definition 1.1. An algorithm for solving a block system Ax = b with non-

singular A partitioned into blocks Aij is strongly blockwise forward stable if

the computed solution x̃ in floating point arithmetic (fl) satisfies

µ(x̃− x∗) ≤ L1εM Ω µ(x∗) +O(ε2
M), (4)

where L1 = L1(N) is a modestly growing function of N , εM is machine

precision and x∗ is the exact solution to Ax = b.

4

An algorithm for solving a block system Ax = b is blockwise forward stable

if the computed solution x̃ satisfies

‖x̃− x∗‖2

‖x∗‖2

≤ L2εM condµ(A; x∗), (5)

where L2 = L2(N) is a modestly growing function of N .

An algorithm for solving a block system Ax = b is strongly blockwise

backward stable if the computed solution x̃ satisfies

(A + ∆A)x̃ = b, µ(∆A) ≤ L3εMµ(A), (6)

where L3 = L3(N) is a modestly growing function of N .

An algorithm for solving a block system Ax = b is blockwise backward

stable if the computed solution x̃ satisfies

‖b− Ax̃‖2 ≤ L4εM ‖µ(A) µ(x̃)‖2, (7)

where L4 = L4(N) is a modestly growing function of N .

Rigal and Gaches (cf. [17]) prove that (6) is equivalent to the following

condition

µ(b− Ax̃) ≤ L3εMµ(A) µ(x̃). (8)

Clearly, strong blockwise stability implies blockwise stability and block-

wise backward stability implies blockwise forward stability. In component-

wise analysis, our definition of blockwise backward stability is the same as

R-stability introduced by Skeel ([12]). In this paper we focus our attention

only on blockwise forward stability. Full consideration of other measures of

numerical stability of algorithms for solving block linear systems of equations

exceeds the scope of this paper.

5

We consider some ways in which iterative refinement may be used to

improve the computed results. Several papers and reports on iterative re-

finement have appeared (cf. [1]-[6]).

We present various kinds of iterative refinement techniques, e.g. k-fold

iterative refinement, for the solution of a nonsingular system Ax = b with

A partitioned into blocks using only single precision arithmetic. Iterative

refinement may give solutions to full single precision even when the initial

solution has no correct significant figures. Very often, one or two steps are

sufficient to terminate the process successfully. Numerical tests were done in

MATLAB to compare the performance of some direct methods for solving

linear system of equations of special block matrices.

2. Algorithms

We investigate some computational aspects of Recurrent Iterative Re-

finement (RIR) for linear system of equations Ax = b, where A ∈ RN,N is

partitioned into s × s blocks, i.e. A = (Aij) with Ai,j ∈ Rni,nj . RIR (k-fold

iterative refinement) is a generalization of the well-known classical Iterative

Refinement (IR) technique for improving the accuracy of weakly stable

algorithms for solving linear system of equations. Recurrent iterative refine-

ment was proposed by Woźniakowski (cf. [9], [13]).

The idea of Recurrent Iterative Refinement is to decompose first the ma-

trix A to factors of simple structure (e.g. triangular, orthogonal, bidiagonal,

diagonal, block LU, block Q-R etc.) and then use iterative refinement tech-

niques to correct a computed solution x0 by a solver S0(b) (i.e. x0 = S0(b)).

S0(b) solves in floating point arithmetic (fl) the linear system Ax = b using

6

the given decomposition of A.

A single iteration of iterative refinement in floating point arithmetic (fl)

is given by 1-fold iterative refinement as follows:

x1 = S1(b) ⇐⇒



x0 = S0(b)

r0 = b− Ax0

p0 = S0(r0)

x1 = x0 + p0.

(9)

Notice that ”in theory” x1 will be the exact solution x∗ to Ax = b but hardly

ever in floating point arithmetic.

If we replace S0 in (1) by Sk then we define (k+1)-fold iterative refinement.

Thus xk+1 = Sk+1(b) is as follows:

xk+1 = Sk+1(b) ⇐⇒



xk = Sk(b)

rk = b− Axk

pk = Sk(rk)

xk+1 = xk + pk.

(10)

If pk = Sk(rk) in (10) is replaced by pk = S0(rk) then this method is k

iterations of classical Iterative Refinement (IR).

We see that k-fold iterative refinement requires additional storage pro-

portional to the depth of the recursion which is not so large.

3. Blockwise stability

Let x∗ = A−1b is the exact solution to Ax = b. We need a basic (direct

or iterative) linear equation solver S0 for Ax = b such that

‖S0(b)− x∗‖2 ≤ q0 ‖x∗‖2, q0 ≤ 0.1. (11)

7

This condition can be replaced by the assumption that q0 < 1 and q0 is not

too close to unity. We use (11) to simplify error analysis.

Next, we assume that the matrix-vector multiplication is blockwise back-

ward stable, i.e. there exists a matrix E such that

fl(Ax) = (A + E)x, µ(E) ≤ LεMµ(A), L ≥ 1, (12)

where L = L(N) is a small constant depending only on N .

Lemma 3.1. Let k-fold iterative refinement be applied to the nonsingular

block linear system Ax = b, using the solver S0 satisfying (11)-(12). Let

xk = Sk(b) denote the computed vectors in floating point arithmetic. Assume

that

εM ≤ 0.01, LεM κµ(A) ≤ 0.01. (13)

Then for k = 0, 1, . . .

‖xk − x∗‖2 ≤ qk ‖x∗‖2, qk ≤ 0.1, (14)

where

qk+1 = q2
k + 2.5LεM (condµ(A; x∗) + qkκµ(A)). (15)

Proof. Assume that (14) holds for k. We prove that it holds also for k + 1,

i.e. ‖xk+1 − x∗‖2 ≤ qk+1 ‖x∗‖2, where qk+1 ≤ 0.1 and qk+1 satisfies (15).

The computed vectors rk, pk and xk+1 in floating point arithmetic by k-

fold iterative refinement Sk satisfy

xk = x∗ + ∆xk, x∗ = A−1b, ‖∆xk‖2 ≤ qk ‖x∗‖2,

rk = (I + Dk)(b− (A + Ek)xk),

pk = p∗k + ∆pk, p∗k = A−1rk, ‖∆pk‖2 ≤ qk ‖p∗k‖2,

xk+1 = (I + Gk)x∗
k+1, x∗

k+1 = xk + pk,

(16)

8

where

µ(Ek) ≤ LεMµ(A), µ(Dk) ≤ εMI, µ(Gk) ≤ εMI. (17)

Notice that

∆xk+1 = xk+1 − x∗ = (I + Gk)(x∗
k+1 − x∗) + Gkx

∗,

so

‖∆xk+1‖2 ≤ (1 + εM)‖x∗
k+1 − x∗‖2 + εM‖x∗‖2. (18)

Now we would like to estimate ‖x∗
k+1 − x∗‖2. We have

x∗
k+1 − x∗ = (xk − x∗) + p∗k + ∆pk.

After easy algebraic manipulations we obtain

p∗k = (x∗ − xk)− (ξk + ηk),

x∗
k+1 − x∗ = ∆pk − (ξk + ηk),

ξk = A−1(I + Dk)Ek x∗,

ηk = A−1((I + Dk)Ek + DkA) ∆xk.

(19)

We see that

µ(ξk) ≤ LεM(1 + εM)Ω µ(x∗)

and

µ(ηk) ≤ (1 + L(1 + εM))εMΩ µ(∆xk).

Applying (13), taking norms and using the assumption ‖∆xk‖2 ≤ qk‖x∗‖2

we get

‖ξk‖2 ≤ 1.01LεM‖Ω µ(x∗)‖2. (20)

Since 1 ≤ L and εM ≤ 0.01 we obtain

‖ηk‖2 ≤ 2.01LqkεMκµ(A) ‖x∗‖2. (21)

9

From (16) and (19) we get

‖x∗
k+1 − x∗‖2 ≤ ‖∆pk‖2 + ‖ξk‖2 + ‖ηk‖2

and

‖p∗k‖2 ≤ ‖∆xk‖2 + ‖ξk‖2 + ‖ηk‖2.

Since ‖∆xk‖2 ≤ qk‖x∗‖2 and ‖∆pk‖2 ≤ qk‖p∗k‖2, we obtain

‖x∗
k+1 − x∗‖2 ≤ q2

k‖x∗‖2 + (1 + qk)(‖ξk‖2 + ‖ηk‖2).

By assumption, qk ≤ 0.1, hence from (20)- (21) we get

‖x∗
k+1 − x∗‖2 ≤ q2

k‖x∗‖2 + 1.2LεM(‖Ω µ(x∗)‖2 + 2qkκµ(A) ‖x∗‖2).

From this, (18), (13) and the inequality ‖x∗‖2 ≤ ‖Ω µ(x∗)‖2 it follows that

‖xk+1 − x∗‖2 ≤ q2
k‖x∗‖2 + 2.5LεM(‖Ω µ(x∗)‖2 + qkκµ(A) ‖x∗‖2).

Dividing this equation by ‖x∗‖2 and using (2)-(3) we see that ‖xk+1−x∗‖2 ≤

qk+1‖x∗‖2, with qk+1 given by (15). Notice that qk+1 ≤ (0.1)2 +0.025+0.025,

so qk+1 ≤ 0.1. This completes the proof.

Theorem 3.1. Under the assumptions of Lemma 3.1 S0 with k-fold iterative

refinement is blockwise forward stable. There exists k0 depending only on n

such that for every k ≥ k0

‖xk − x∗‖2

‖x∗‖2

≤ 2.1LεM condµ(A; x∗). (22)

10

Proof. We apply the results of Lemma 3.1. By assumptions (13), we have

qk+1 ≤ qk(0.1 + 2.5 ∗ 0.01) + 2.5LεM condµ(A; x∗),

so

qk+1 ≤ qk0.2 + 2.5LεM condµ(A; x∗).

From this it follows that

qk+1 ≤ (0.2)k + 2LεM condµ(A; x∗).

From this (22) follows immediately.

Remark 3.1. Similar results can also be obtained for classical iterative re-

finement. However, in this case, in (15) we have

qk+1 = qkq0 + 2.5LεM (condµ(A; x∗) + qkκµ(A)). (23)

Clearly, this sequence {qk} converges more slowly than in the case of k-fold

iterative refinement. We also see that S0 with classical iterative refinement

is blockwise forward stable.

4. Numerical experiments

We now give some numerical tests to illustrate our theoretical results of

the previous sections. All tests were carried in MATLAB, version 6.5.0.180913a

(R13) with unit roundoff εM ≈ 2.2 · 10−16 in IEEE double precision.

Let x∗ = A−1b be the exact solution to Ax = b and let xk be the computed

approximation to x∗ by IR or RIR, respectively.

We report the following statistics for each iteration:

11

• blockwise relative forward error: γµ(A, b, xk) = ‖xk−x∗‖2

condµ(A;x∗) ‖x∗‖2
,

• normwise relative backward error: βnorm(A, b, xk) = ‖b−Axk‖2

‖A‖2 ‖xk‖2
,

• blockwise relative backward error: βµ(A, b, xk) = ‖b−Axk‖2

‖µ(A) µ(xk)‖2
,

• componentwise relative backward error: βcomp(A, b, xk) = ‖b−Axk‖2

‖|A| |xk|‖2
.

Example 4.1. We produced the n × n matrix A and the vector b(n × 1)

with the following MATLAB code:

A=pascal(n)+1.12e-12*magic(n);

x_star=ones(n,1); %The exact solution is x_star=[1;1;...;1]

b=A*x_star;

The command ones(m,n) produces an m × n matrix of ones, and the

command pascal(n) produces an n × n matrix from Pascal’s triangle, and

magic(n) is an n×n matrix constructed from the integers 1 through n2 with

equal row, column, and diagonal sums.

The solver x0 = S0(b) computes the approximation x0 to the exact solu-

tion x∗ of the system Ax = b with the following MATLAB code:

x0=A\b; % Gaussian Elimination with Partial Pivoting

x0=x0+1.1e-3*norm(x)*ones(n,1);

We partition A(n× n) as follows

A =

 A11 A12

A21 A22

 ,

12

where A11(m×m), with 1 ≤ m ≤ n.

The matrix A−1 in Ω = µ(A−1 µ(A) was computed by the MATLAB

command inv.

The results are listed below.

Table 1: Results for the computed solutions to Ax = b for n = 10, m = 5, and Iterative

Refinement (IR). Here κ2(A) = 4.1552 · 109, κmu = 4.6485 · 108, and condµ(A, b, x∗) =

2.7331 · 108.

k γµ(A, b, xk) βnorm(A, b, xk) βµ(A, b, xk) βcomp(A, b, xk)

0 1.2683e− 011 1.8354e− 003 2.5556e− 003 3.4664e− 003

1 4.4272e− 014 6.4066e− 006 8.9205e− 006 3.4664e− 003

2 1.5403e− 016 2.2286e− 008 3.1030e− 008 4.2090e− 008

3 2.4762e− 018 7.7567e− 011 1.0800e− 010 1.4650e− 010

4 5.6001e− 017 2.9400e− 011 4.0936e− 011 5.5526e− 011

5 1.6620e− 018 2.8972e− 011 4.0340e− 011 5.4718e− 011

6 3.5112e− 017 1.8458e− 011 2.5700e− 011 3.4860e− 011

7 3.5663e− 017 4.3422e− 013 6.0460e− 013 8.2009e− 013

8 6.3066e− 017 1.3808e− 011 1.9226e− 011 2.6078e− 011

9 3.0336e− 017 1.6486e− 011 2.2955e− 011 3.1136e− 011

10 2.1622e− 017 4.3869e− 012 6.1082e− 012 8.2852e− 012

100 7.6738e− 017 1.1605e− 011 1.6159e− 011 2.1918e− 011

1000 2.6456e− 017 9.3592e− 012 1.3032e− 011 1.7676e− 011

These numerical results indicate that k-fold iterative refinement is very

13

Table 2: Results for the computed solutions to Ax = b for n = 10, m = 5, and Re-

current Iterative Refinement (RIR). Here κ2(A) = 4.1552 · 109, κmu = 4.6485 · 108, and

condµ(A, b, x∗) = 2.7331 · 108.

k γµ(A, b, xk) βnorm(A, b, xk) βµ(A, b, xk) βcomp(A, b, xk)

0 1.2683e− 011 1.8354e− 003 2.5556e− 003 3.4664e− 003

1 4.4272e− 014 6.4066e− 006 8.9205e− 006 1.2100e− 005

2 2.9287e− 018 7.7521e− 011 1.0794e− 010 1.4641e− 010

3 5.0335e− 017 3.9907e− 017 5.5566e− 017 7.5371e− 017

4 4.3737e− 018 1.7882e− 017 2.4899e− 017 3.3773e− 017

stable and robust. Iterative refinement also provides an effective way to make

almost every solver S0 forward stable but not backward stable. We suggest

to use a few Sk (k = 1, . . . , 4 instead of a few steps of IR, to correct results.

References

[1] M. Arioli, J. Demmel, I.S. Duff, Solving sparse linear systems with sparse

backward error, SIAM J. Matrix Anal. Appl. 10 (1989) 165–190.

[2] Å. Björck, Iterative refinement of linear least squares solutions I, BIT

7 (1967) 257–278.

[3] Å. Björck, Iterative refinement of linear least squares solutions II, BIT

8 (1968) 8–30.

14

[4] Å. Björck, Iterative refinement and realiable computing. In Reliable

Numerical Computation, M. G. Cox and S. J. Hammarling, editors,

Oxford University Press (1990) 249–266.

[5] A. Buttari, J. Dongarra, J. Langou, J. Langou, J.P. Luszczek, J. Kurzak,

Mixed Precision Iterative Refinement Techniques for the Solution of

Dense Linear Systems, International Journal of High Performance Com-

puting Applications 21(4) (2007) 457–466.

[6] J. Demmel, Y. Hida, W. Kahan, X.S. Li, S. Mukherjee, E.J. Riedy, Error

bounds from extra-precise iterative refinement, ACM TOMS, Vol. 32 (2)

(2006) 325–351.

[7] E. Deutsch, Matricial norms, Numer.Math. 16 (1970) 73–84.

[8] J. G luchowska, A. Smoktunowicz, Solving the linear least squares prob-

lem with very high relative accuracy, Computing 45 (1990) 345–354.

[9] M. Jankowski, H. Woźniakowski, Iterative refinement implies numerical

stability, BIT 17 (1977) 303–311.

[10] A. Kie lbasiński, Iterative refinement for linear systems in variable-

precision arithmetics, BIT 21 (1981) 97–103.

[11] A.M. Ostrowski, On some metrical properties of operator matrices and

matrices partitioned into blocks, J.Math.Anal.Appl. 2 (1961) 161–209.

[12] R.D. Skeel, Iterative refinement implies numerical stability for Gaussian

elimination, Math. Comp. 35 (1980) 817–832.

15

[13] A. Smoktunowicz, Blockwise analysis for solving linear systems of equa-

tions, J. KSIAM Vol. 3 No. 1 (1999) 31–41.

[14] A. Smoktunowicz, A note on the strong componentwise stability of al-

gorithms for solving symmetric linear systems, Demonstratio Math. Vol.

XXVIII No 2 (1995) 443–448.

[15] A. Smoktunowicz, Block matrices and symmetric perturbations, Linear

Algebra Appl. 429 (2008) 2628–2635.

[16] A. Smoktunowicz, J. Sokolnicka, Binary cascades iterative refinement in

doubled-mantissa arithmetic, BIT 24 (1984) 123–127.

[17] J.L. Rigal, J. Gaches, On the comparability of a given solution with the

data of a linear system, J.Assoc. Comput.Mach. 14(3) (1967) 543–548.

16

