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Quadratic and cubic invariants of

unipotent affine automorphisms

V V Bavula∗ and T H Lenagan

Abstract

Let K be an arbitrary field of characteristic zero, Pn := K[x1, . . . , xn] be a polynomial
algebra, and Pn,x1 := K[x−1

1 , x1, . . . , xn], for n ≥ 2. Let σ′ ∈ AutK(Pn) be given by

x1 7→ x1 − 1, x1 7→ x2 + x1, . . . , xn 7→ xn + xn−1.

It is proved that the algebra of invariants, F ′
n := Pσ′

n , is a polynomial algebra in n − 1
variables which is generated by [n

2 ] quadratic and [n−1
2 ] cubic (free) generators that are

given explicitly.
Let σ ∈ AutK(Pn) be given by

x1 7→ x1, x1 7→ x2 + x1, . . . , xn 7→ xn + xn−1.

It is well-known that the algebra of invariants, Fn := Pσ
n , is finitely generated (Theorem of

Weitzenböck, [5], 1932), has transcendence degree n − 1, and that one can give an explicit
transcendence basis in which the elements have degrees 1, 2, 3, . . . , n − 1. However, it is an
old open problem to find explicit generators for Fn. We find an explicit vector space basis
for the quadratic invariants, and prove that the algebra of invariants Pσ

n,x1
is a polynomial

algebra over K[x1, x
−1
1 ] in n − 2 variables which is generated by [n−1

2 ] quadratic and [n−2
2 ]

cubic (free) generators that are given explicitly.
The coefficients of these quadratic and cubic invariants throw light on the ‘unpredictable

combinatorics’ of invariants of affine automorphisms and of SL2-invariants.

Mathematics subject classification 2000: 14L24, 13A50, 16W20.

1 Introduction

Throughout the paper, K denotes an arbitrary field of characteristic zero. Let Pn = P [n] =
K[x] := K[x1, . . . , xn] be a polynomial ring in n variables over K. First, we consider the

∗This research was done while the first author held a Royal Society/NATO Fellowship at the University of

Edinburgh.
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K-algebra automorphism σ of Pn given by

σ : x1 7→ x1 − 1, x1 7→ x2 + x1, . . . , xn 7→ xn + xn−1.

This automorphism can be written in matrix form as σ(x) = Jn(1)x − e1, where Jn(1) =
E +

∑n−1
i=1 Ei+1,i is the n × n lower triangular Jordan matrix (E is the identity matrix and

Eij are the matrix units), x = (x1, . . . , xn)t, and e1 = (1, 0, . . . , 0)t. It is well-known that the
algebra of invariants, P σ

n , is a polynomial algebra in n − 1 variables and that the generators
can be chosen to have degrees 2, 3, . . . , n. (Briefly, σ can be presented as eδ :=

∑
i≥0

δi

i! where
δ ∈ DerK(Pn) is a locally nilpotent derivation for which there exists an element x ∈ Pn such that
δ(x) = 1, then P σ

n = P δ
n := ker(δ) and the result is old and well-known for δ.) A theorem of

Weitzenböck [5] states that the algebra of invariants P Ga
n is finitely generated for every linear

action of the additive (algebraic) group Ga of the field K (see also [4], [1], and also [3]). The
same result is true for the algebra of invariants P δ

n where δ is a linear derivation of Pn; that
is, δ(x) = Ax where A is an n × n matrix over K. It is an old open problem to find explicit
generators for the algebras P Ga

n and P δ
n . Several cases for small n are considered in [2].

We summarise the main results of the paper below; full proofs are given later.
The proof of the first theorem is ‘direct’; that is, it does not use a reduction to the case of δ.

Theorem 1.1 Let σ(x) = Jn(1)x− e1 ∈ AutK(Pn), for n ≥ 2. The algebra of invariants P σ
n is

a polynomial algebra K[y2, . . . , yn] in n− 1 variables given by

yi+1 =
i∑

j=1

φ−i+jxj+1 + iσ−1(φ−i−1), for i = 1, . . . , n− 1,

where φ0 := 1 and φ−i := x1(x1−1)···(x1−i+1)
i! , for i ≥ 1. (Note that deg(yi+1) = i + 1.)

The polynomial algebra Pn = K[x] = ∪i≥0K[x]≤i is a filtered algebra by using the total
degree of variables; so that K[x]≤i :=

∑
deg(p)≤i Kp. The integer part of r ∈ R is denoted

by [r] := max{m ∈ Z | m ≤ r}. The next theorem gives an explicit basis for the quadratic
invariants of the automorphism σ.

Theorem 1.2 Let σ(x) = Jn(1)x−e1, for n ≥ 2, and suppose that K is a field of characteristic
zero. Then the elements u0 = 1, and

uk = x2
k +

k−1∑
i=1

2k−i∑
j=k

λk
i,jxixj +

2k∑
i=k

µk
i xi,

where
λk

i,j = (−1)k−i

{(
k − i

j − k

)
+
(

k − i− 1
j − k − 1

)}
2



and
µk

i = (−1)k−1

{(
k

i− k

)
+
(

k − 1
i− k − 1

)}
,

for k = 1, . . . ,m := [n/2], form a basis of the vector space K[x]σ ∩ K[x]≤2. In particular,
dimK(K[x]σ ∩K[x]≤2) = m + 1 and K[x]σ ∩K[x]≤1 = K. Each of the coefficients λk

i,j and µk
i

is nonzero.

Remark. In particular, u1 = x2
1 + x1 + 2x2 and u2 = x2

2 − x1(x2 + 2x3) − x2 − 3x3 − 2x4.
Note that y3 = x3 + x1x2 + x3

1−x1

3 . Consider the cubic σ-invariant polynomial

v1 := 3y3 = x3
1 + 3x1x2 − x1 + 3x3 ∈ K[x1, x2, x3]. (1)

Theorem 1.3 Let σ(x) = Jn(1)x−e1, for n ≥ 5, and suppose that K is a field of characteristic
zero. Then, for k = 2, . . . , µ := [(n− 1)/2], the following polynomials, vk, belong to
K[x]σ ∩K[x]≤3:

vk = x1uk + xkxk+1 +
k−1∑
i=1

2k−i+1∑
j=k+1

αk
i,jxixj +

2k+1∑
i=k+1

βk
i xi, (2)

where

αk
i,j = (−1)k−i

{
2
(

k − i− 1
j − k − 1

)
+ 3
(

k − i− 1
j − k − 2

)}
+ (k − i− 1)λk

i,j−1

= (−1)k−i

{
2
(

k − i− 1
j − k − 1

)
+ 3
(

k − i− 1
j − k − 2

)
+ (k − i− 1)

[(
k − i

j − k − 1

)
+
(

k − i− 1
j − k − 2

)]}
,

and
βk

j = αk
1,j−1 + αk

1,j + µk
j−1, for j = k + 1, . . . , 2k + 1,

where uk, λ
k
i,j and µk

i are as defined in Theorem 1.2. Note that each of the coefficients αk
i,j and

βk
i is nonzero.

Remark. In particular,

αk
i,2k+1−i = (−1)k−i(1 + 2(k − i)) and αk

i,k+1 = (−1)k−i(k − i + 1), (3)

and
v2 = x1u2 + x2x3 − 2x1x3 − 3x1x4 − 3x3 − 8x4 − 5x5. (4)

The quadratic and cubic invariants obtained in the previous two theorems provide a gener-
ating set for the algebra of invariants, as the next theorem shows.
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Theorem 1.4 Let σ(x) = Jn(1)x− e1, for n ≥ 2. Set m := [n
2 ] and µ := [n−1

2 ]. Then

1. P σ
n = K[u1, . . . , um, v1, . . . , vµ] is polynomial ring in n− 1 (= m + µ) variables.

2. Pn = P σ
n [x1].

Proof. For each k ≥ 1, we have

uk = (−1)k−12x2k + . . . and vk = (−1)k−1(1 + 2k)x2k+1 + . . . , (5)

where the three dots denote terms from P2k−1 and P2k respectively. These imply that Pn =
K[u1, . . . , um, v1, . . . , vµ][x1]. It then follows that P σ

n = K[u1, . . . , um, v1, . . . , vµ] and Pn =
P σ

n [x1], since K[u1, . . . , um, v1, . . . , vµ] ⊆ P σ
n , σ(x1) = x1 − 1 and char(K) = 0.

Now, consider the K-automorphism σ(x) = Jn+1(1)x of the polynomial algebra Pn+1 :=
K[x1, . . . , xn+1]:

σ : x1 7→ x1, x2 7→ x2 + x1, . . . , xn+1 7→ xn+1 + xn.

The algebra of invariants F := P σ
n+1 = ⊕i≥0Fi is a positively graded subalgebra of the polynomial

algebra Pn+1 = ⊕i≥0Pn+1,i (the natural grading) where Fi := F ∩ Pn+1,i. Let Pn+1,x1 =
K[x−1

1 , x1, x2, . . . , xn+1] be the localization of Pn+1 at the powers of the element x1. Then
Pn+1,x1 = K[x±1 , z1, . . . , zn] = Q[x±1 ] where Q := K[z1, . . . , zn] is a polynomial algebra in the n

variables zi := −xi+1

x1
, i = 1, . . . , n. We denote by the same letter σ the unique extension of the

automorphism σ to Pn+1,x1 . Then σ(Q) = Q and σ(z) = Jn(1)z − e1; that is,

σ(z1) = z1 − 1, σ(z2) = z2 + z1, . . . , σ(zn) = zn + zn−1.

Define polynomials pk and qk in Pn+1 as follows:

pk := x2
1uk(z) = x2

k+1 +
k−1∑
i=1

2k−i∑
j=k

λk
i,jxi+1xj+1 − x1

2k∑
i=k

µk
i xi+1, for k ≥ 1, (6)

while
q1 := x3

1 − x3
2 + 3x1x2x3 + x2

1x2 − 3x2
1x4, (7)

and

qk := x3
1vk(z) = −x2pk + x1xk+1xk+2 + x1

k−1∑
i=1

2k−i+1∑
j=k+1

αk
i,jxi+1xj+1 − x2

1

2k+1∑
i=k+1

βk
i xi+1, (8)

for k ≥ 2.
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Theorem 1.5 Let σ(x) = Jn+1(1)x, for n ≥ 2. Set m := [n
2 ] and µ := [n−1

2 ]. Then the set of
elements of P σ

n+1:
x1, p1, . . . , pm, q1, . . . , qµ

is a transcendence basis for the algebra P σ
n+1, with deg(pi) = 2 and deg(qj) = 3. Further,

P σ
n+1,x1

= K[x1, x
−1
1 ][p1, . . . , pm, q1, . . . , qµ].

Proof. This follows directly from Theorem 1.4.

Corollary 1.6 Let σ(x) = Jn+1(1)x, for n ≥ 2, and set m := [n
2 ]. Then x2

1, p1, . . . , pm is a
K-basis of the vector space of quadratic invariants.

Proof. This follows from Theorem 1.2 and Corollary 5.1(3).

2 σ-exponentials

Let K be a field of characteristic zero, and let σ denote the affine automorphism of K[x] such
that σ(x) = x − 1. Our aim is to choose a basis for K[x] as a K-vector space that facilitates
calculations involving σ. The idea is to exploit the fact that 1 − σ is a σ-derivation, and to
choose the basis with this in mind. Accordingly, we define

φ0 := 1, φi := φi(x) =
x(x + 1) · · · (x + i− 1)

i!
=

xσ−1(x) · · ·σ−i+1(x)
i!

, i ≥ 1 (9)

and

φ0 := 1, φ−i := φ−i(x) =
x(x− 1) · · · (x− i + 1)

i!
=

xσ(x) · · ·σi−1(x)
i!

, i ≥ 1. (10)

Each of the two sets {φi} and {φ−i} forms a K-basis of K[x].

Note that (1 − σ)φi = φi−1 and (1 − σ)φ−i = σ(φ−i+1), for i ≥ 1, while (1 − σ)φ0 = 0. Note
also that φ−i(−x) = (−1)iφi(x), and that σi−1(φi) = φ−i, for i ≥ 1.

The choice of bases and the action of 1 − σ suggests that we should construct exponential
functions, twisted by σ. In order to do this, we extend the automorphism σ to an automorphism
of the the power series ring K[x][[Θ]] by defining σ(Θ) = Θ.

Now, define

E = E(x) :=
∞∑
i=0

φ−iΘi = 1 +
∞∑
i=1

xσ(x) · · ·σi−1(x)
Θi

i!
(11)
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and

E− = E(−x) :=
∞∑
i=0

φ−i(−x)Θi = (12)

∞∑
i=0

(−1)iφiΘi = 1 +
∞∑
i=1

(−1)ixσ−1(x) · · ·σ−i+1(x)
Θi

i!
. (13)

The following identities are easily established by direct computation:

(1− σ)E = Θσ(E), and (1− σ)E− = −ΘE−.

Lemma 2.1 E(x)−1 = E(−x) in K[x][[Θ]].

Proof. Set E = E(x) and E− = E(−x). By applying the σ-derivation (1− σ) to the product
E−E, and, by using the identities (1− σ)E = Θσ(E) and (1− σ)E− = −ΘE−, we obtain

(1− σ)(E−E) = (1− σ)E− · E + σ(E−)(1− σ)E (14)

= −Θ(1− σ)(E−E). (15)

It follows that (1 − σ)(E−E) ∈ ∩∞n=1Θ
nK[x][[Θ]] = 0 and so σ(E−E) = E−E. Hence, E−E ∈

k[x][[Θ]]σ = K[[Θ]], and we may write E−E = 1 +
∑∞

i=1 λiΘi, with each λi ∈ K.

By setting x = 0 in the previous equality, we get

1 = 1 · 1 = E−(0)E(0) = 1 +
∑

λiΘi,

and it follows that each λi = 0; so that E−E = 1 in K[x][[Θ]].

Consider the K-automorphisms σi of the polynomial ring K[x1, x2] in two variables, defined by
σi(xj) := xj − δij , for i, j = 1, 2, where δij is the Kronecker delta symbol. The automorphisms
σi extend uniquely to automorphisms of the algebra K[x1, x2][[Θ]], by setting σi(Θ) = Θ.

Lemma 2.2 E(x1)E(x2) = E(x1 + x2) in K[x][[Θ]].

Proof. It suffices to show that the product P := E−(x1)E−(x2)E(x1 +x2) is equal to one. Note
that the identity (1−σi)(E(x1 +x2)) = Θσi(E(x1 +x2)) holds, since σi(x1 +x2) = (x1 +x2)−1.
Hence, by using the same argument as in the proof of (14), one easily obtains (1 − σi)P =
(−Θ)n(1− σi)P , for all n ≥ 1, and i = 1, 2. Hence,

P = 1 +
∞∑
i=1

λiΘi ∈ ∩2
i=1 ker(1− σi) = K[[Θ]],

6



so that each λi ∈ K. Now, set x1 = x2 = 0 in the previous equality, to obtain

1 = E−(0)E−(0)E(0) = 1 +
∞∑
i=1

λiΘi.

Hence, all λi = 0; and so P = 1, as required.

The following useful identity now follows immediately.

Lemma 2.3 1. For all k ≥ 1,

(−1)k
∑

i+j=k
i≥0, j≥0

(−1)jφiφ−j =
∑

i+j=k
i≥0, j≥0

(−1)iφiφ−j = 0.

2. For all n, k ≥ 1,

(−1)k
∑

i+j=k
n≥i≥0, n≥j≥0

(−1)jφiφ−j =
∑

i+j=k
n≥i≥0, n≥j≥0

(−1)iφiφ−j = 0.

Proof. 1. This follows immediately from the equality

1 = E−E = (
∑
i≥0

(−1)iφiΘi)(
∑
j≥0

φ−jΘj) =
∑
k≥0

 ∑
i+j=k

(−1)iφiφ−j

Θk.

2. Follows immediately from the equality above by working modulo θn.

In order to study the Jordan blocks occurring in the canonical form of an affine automor-
phism, we need to consider specializing the above results to the case that Θ is the nilpotent
(n− 1)× (n− 1) matrix 

0 0 0 0 · · · 0
1 0 0 0 · · · 0
0 1 0 0 0

. . . . . .
. . . . . .

0 0 0 · · · 1 0


.

Note that Θn−1 = 0, but Θn−2 6= 0.

7



Consider the matrix

Λ =
n−2∑
i=0

(−1)iφiΘi (16)

=



1 0 0 · · · · · · 0 0
−φ1 1 0 · · · · · · 0 0

φ2 −φ1 1
. . .

−φ3 φ2 −φ1
. . .

...
... · · ·

...
...

...
...

(−1)n−2φn−2 (−1)n−3φn−3 · · · · · · −φ1 1


∈ SLn−1(K[x]). (17)

The above analysis reveals that

Λ−1 =
n−2∑
i=0

φ−iΘi.

Set Φ := (−φ2, φ3, . . . , (−1)iφi+1, . . . , (−1)n−1φn)t ∈ K[x]n−1.

Lemma 2.4

Λ−1Φ =



−σ−1(φ−2)
...

−iσ−1(φ−i−1)
...

−(n− 1)σ−1(φ−n)


,

where the ith entry is displayed.

Proof. Set

8




η1

...

...
ηn−1

 := Λ−1Φ =



1 0 0 · · · · · · 0 0
φ−1 1 0 · · · · · · 0 0

φ−2 φ−1 1
. . .

φ−3 φ−2 φ−1
. . .

...
... · · ·

φ−i+1

...
...

φ−n+2 φ−n+3 · · · · · · φ−1 1





−φ2

φ3

...
(−1)iφi+1

...
(−1)n−1φn


.

Then

ηi =
i∑

j=1

φ−i+j(−1)jφj+1 = −
i+1∑
l=2

(−1)lφlφ−i−1+l

= −
i+1∑
l=0

(−1)lφlφ−i−1+l + φ−i−1 − φ1φ−i

= 0 + φ−i

(
x− i

i + 1
− x

)
= −i

(x + 1)φ−i

i + 1
= −iσ−1(φ−i−1),

as claimed. Note that the 0 in the above calculation arises by applying Lemma 2.3.

3 The invariant polynomials ui and vj

Let K be a field of characteristic zero, and let σ be the affine automorphism of K[x] :=
K[x1, . . . , xn], for n ≥ 2, defined by the rule

σ(x1) = x1 − 1, σ(x2) = x2 + x1, . . . , σ(xn) = xn + xn−1.

In matrix form,
σ(x) = Jn(1)x− e1,

where Jn(1) = E +
∑n−1

i=1 Ei+1,i is the n × n lower triangular Jordan matrix (E is the identity
matrix and Eij are the matrix units). Observe that σ(K[x1, . . . , xm]) = K[x1, . . . , xm], for each
i ≥ 1. In particular, σ(K[x1]) = K[x1], and σ(x1) = x1 − 1.

Recall, from the previous section, that the set of polynomials {φi := φi(x1)} defined by

φ0 := 1, φi := φi(x1) =
x1(x1 + 1) · · · (x1 + i− 1)

i!
, i ≥ 1 (18)

9



is a K-basis of K[x1], and that (1− σ)φi = φi−1, for all i ≥ 1, while (1− σ)φ0 = 0.

The matrix Θ := Jn−1(1) − I is a nilpotent matrix with Θn−1 = 0, but Θn−2 6= 0. As in the
previous section, we consider the matrix

Λ =
n−2∑
i=0

(−1)iφiΘi

=



1 0 0 · · · · · · 0 0
−φ1 1 0 · · · · · · 0 0

φ2 −φ1 1
. . .

−φ3 φ2 −φ1
. . .

...
... · · ·

...
...

...
...

(−1)n−2φn−2 (−1)n−3φn−3 · · · · · · −φ1 1


∈ SLn−1(K[x1]).

Set

x′ = (x2, . . . , xi+1, . . . , xn)t and Φ = (−φ2, φ3, . . . , (−1)iφi+1, . . . , (−1)n−1φn)t.

Define y = (y2, . . . , yn)t ∈ K[x]n−1 by the linear equation x′ = Λy +Φ; so that y = Λ−1(x′−Φ).
In more detail, we have

xi+1 =
i∑

j=1

(−1)i−jφi−jyj+1 + (−1)iφi+1 (19)

and

yi+1 =
i∑

j=1

φ−i+jxj+1 + iσ−1(φ−i−1), (20)

for i = 1, . . . , n− 1, by Lemma 2.4. We extend the action of σ to the (n− 1)× (n− 1) matrix
ring Mn−1(K[x]) and to the column space K[x]n−1 in the obvious way (that is, elementwise).

The following proposition contains the claim of Theorem 1.1.

Proposition 3.1 Let σ(x) = Jn(1)x− e1, for n ≥ 2, and suppose that char(K) = 0. Then, the
fixed ring K[x]σ is equal to the polynomial ring K[y2, . . . , yn] in the n − 1 variables defined by
(20). Further, K[x] = K[x1]⊗K[x]σ = K[x1, y2, . . . , yn].
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Proof. Note that the subalgebra K[y] of K[x], generated by y2, . . . , yn, is isomorphic to a
polynomial ring in n− 1 variables, by (20).

Observe that

(1− σ)x′ = −Θx′ − (φ1, 0, . . . , 0)t, (1− σ)Φ = −ΘΦ− (φ1, 0, . . . , 0)t

and
(1− σ)Λ−1 = Θσ(Λ−1).

By applying the σ-derivation (1− σ) to the equation y = Λ−1(x′ − Φ), we obtain

(1− σ)y = (1− σ)Λ−1 · (x′ − Φ) + σ(Λ−1) · (1− σ)(x′ − Φ)

= Θσ(Λ−1)(x′ − Φ)− σ(Λ−1)Θ(x′ − Φ) = 0,

since Θσ(Λ−1) = σ(Λ−1)Θ.

Thus, (1−σ)y = 0, and so σ(yi) = yi, for each i = 2, . . . , n. Hence, k[y] := k[y2, . . . , yn] ⊆ k[x]σ,
and k[x] = k[y]⊗ k[x1].

Let f =
∑s

i=0 fiφi ∈ K[x]σ, where each fi ∈ K[y]. Then,

0 = (1− σ)f = f1φ0 + · · ·+ fsφs−1,

and it follows that fi = 0, for all i ≥ 1. Thus, f = f0 ∈ K[y], and K[x]σ ⊆ K[y], as required.

Let K be a commutative ring and let Z = I × Z be a subset of Z2, where I = [a, a + 1, . . . , b],
for some a < b. Suppose that λ, µ : Z → K are functions such that (i, j) → λi,j and (i, j) → µi,j

and such that the relation

λi,j = δ(λi+1,j−1 + λi+1,j) + µi,j−1,

holds for all (i, j) ∈ Z and for some δ ∈ K, then we write µ
δ
 λ

Lemma 3.2 Let K be a commutative ring and suppose that two functions λ, µ : Z → K given
by (i, j) 7→ λi,j and (i, j) 7→ µi,j satisfy the relation λi,j = δ(λi+1,j−1 + λi+1,j) + µi,j−1, for all
(i, j) ∈ Z and for some δ ∈ K. Then,

1.

λi,j = δc
c∑

d=0

(
c

d

)
λi+c,j−d +

c−1∑
c′=0

δc′
c′∑

d′=0

(
c′

d′

)
µi+c′,j−1−d′ , (21)

11



for each integer c ≥ 0, such that i + c ∈ [a, b].

In particular, when µ = 0, we have

λi,j = δc
c∑

d=0

(
c

d

)
λi+c,j−d, (22)

for each integer c ≥ 0, such that i + c ∈ [a, b].
2. If, in addition, the function µ satisfies the relation µi,j = γ(µi+1,j−1+µi+1,j), for all (i, j) ∈ Z

and for some unit γ ∈ K, then

λi,j = δc
c∑

d=0

(
c

d

)
λi+c,j−d +

(
1 +

δ

γ
+
(

δ

γ

)2

+ · · ·+
(

δ

γ

)c−1
)

µi,j−1. (23)

Proof. 1. We use induction on c. The base cases of the induction c = 0, 1 are obvious.
Suppose that c ≥ 2 and that the result holds for c − 1. Denote by Ω = Ωc the second sum in
(21). Then, by induction,

λi,j = δc−1
c−1∑
d=0

(
c− 1

d

)
λi+c−1,j−d +

c−2∑
c′=0

δc′
c′∑

d′=0

(
c′

d′

)
µi+c′,j−1−d′

= δc
c−1∑
d=0

(
c− 1

d

)
(λi+c,j−d−1 + λi+c,j−d) +

c−1∑
c′=0

δc′
c′∑

d′=0

(
c′

d′

)
µi+c′,j−1−d′

= δc
c∑

d=0

{(
c− 1

d

)
+
(

c− 1
d− 1

)}
λi+c,j−d + Ω

= δc
c∑

d=0

(
c

d

)
λi+c,j−d + Ω.

as required.

2. By (22), µi,j−1 = γc′
∑c′

d=0

(
c′

d′

)
ui+c′,j−1−d′ , for each integer c′ ≥ 0. The element γ is a unit,

so

Ωc =

(
1 +

δ

γ
+
(

δ

γ

)2

+ · · ·+
(

δ

γ

)c−1
)

µi,j−1,

and the equation (23) follows.

Remark. We are setting
(
a
b

)
= 0, for each pair a, b ∈ Z that does not satisfy 0 ≤ b ≤ a.

Corollary 3.3 Let K be a commutative ring. Suppose that the functions λ, λ1, . . . , λn : Z → K

satisfy
0 δn λn δn−1

 λn−1 δn−2
 · · · δ1 λ1 δ0 λ0 ≡ λ,

12



where δ1, . . . , δn are units in K.
Then
1.

λi,j = δc
0

c∑
d=0

(
c

d

)
λi+c,j−d +

n∑
k=1

(−1)k−1λk
i,j−k

 c−1∑
c1=0

c1−1∑
c2=0

· · ·
ck−1−1∑
ck=0

k∏
l=1

(
δl−1

δl

)cl

 ,

for each integer c ≥ 0 such that i + c ∈ [a, b].

2. In particular, when δ0 = δ1 = · · · = δn, we have

λi,j = δc
0

c∑
d=0

(
c

d

)
λi+c,j−d +

min(n,c)∑
k=1

(−1)k−1φk(c− k + 1)λk
i,j−k (24)

= δc
0

c∑
d=0

(
c

d

)
λi+c,j−d +

n∑
k=1

(−1)k−1

(
c

k

)
λk

i,j−k. (25)

Moreover,

λi,j = δc
0

c∑
d=0

(
c

d

)min(n,c)∑
k=0

φk(c)λk
i+c,j−k−d

 (26)

= δc
0

min(n,c)∑
k=0

(
c + k − 1

k

){ c∑
d=0

(
c

d

)
λk

i+c,j−k−d

}
. (27)

Proof. 1. We use induction on n. The base case n = 1 was proved in (23). Suppose that
n ≥ 2, and that the result holds for the case n− 1. By induction, we have

λ1
i,j−1 = δc1

1

c1∑
d′=0

(
c1

d′

)
λ1

i+c1,j−1−d′ +
n−1∑
k=1

(−1)k−1λk+1
i,j−1−k

c1−1∑
c2=0

· · ·
ck−1∑

ck+1=0

k∏
l=1

(
δl

δl+1

)cl+1

 ,

for each integer c1 ≥ 0 such that i + c1 ∈ [a, b]. Combining the above equality with (21) in the
case λ1; that is, with λ1 δ0 λ,

λi,j = δc
0

c∑
d=0

(
c

d

)
λi+c,j−d +

c−1∑
c1=0

δc1
0

c1∑
d′=0

(
c1

d′

)
λ1

i+c1,j−1−d′ ,
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we obtain

λi,j = δc
0

c∑
d=0

(
c

d

)
λi+c,j−d

+
c−1∑
c1=0

(
δ0

δ1

)c1

λ1
i,j−1 −

n−1∑
k=1

(−1)k−1λk+1
i,j−1−k

c1−1∑
c2=0

· · ·
ck−1∑

ck+1=0

k∏
l=1

(
δl

δl+1

)cl+1


= δc

0

c∑
d=0

(
c

d

)
λi+c,j−d +

n∑
k=1

(−1)k−1λk
i,j−k

 c−1∑
c1=0

c1−1∑
c2=0

· · ·
ck−1−1∑
ck=0

k∏
l=1

(
δl−1

δl

)cl

 .

2. If δ0 = · · · = δn, we will prove by induction on k that

Ik :=
c−1∑
c1=0

c1−1∑
c2=0

· · ·
ck−1−1∑
ck=0

k∏
l=1

(
δl−1

δl

)cl

=

φk(c− k + 1), if c ≥ k

0, if c < k.
(28)

Obviously, Ik = 0, whenever c < k, so we assume that c ≥ k. Now,

Ik =
c−1∑
c1=0

φk−1(c1 − k + 2) = φk−1(1) + φk−1(2) + · · ·+ φk−1(c− k + 1) = φk(c− k + 1),

since 0,−1,−2, . . . ,−(k−2) are roots of the polynomial φk−1 and c ≥ k. Since σk−1(φk) = φ−k,
for all k ≥ 1, we see that

φk(c− k + 1) =
(
σk−1(φk)

)
(c) = φ−k(c) =

c(c− 1) . . . (c− k + 1)
k!

,

for c ≥ k. Hence, Ik =
(

c
k

)
, since we are setting

(
a
b

)
= 0, for each pair a, b ∈ Z that does not

satisfy 0 ≤ b ≤ a. Thus, the formula (24) follows.

Since
φk(c) =

c(c + 1) . . . (c + k − 1)
k!

=
(

c + k − 1
k

)
,

for k ≥ 0, the second equality in (26) follows from the first; so, it remains to prove the first
equality in (26). We use induction on n. The case n = 0 is evident, see (22), so we suppose that
n ≥ 1. By (24),

λi,j = δc
0

c∑
d=0

(
c

d

)
λi+c,j−d −

min(n,c)∑
k=1

(−1)kφ−k(c)λk
i,j−k.

14



By induction on n, setting m := min(n, c), we have

λi,j = δc
0

c∑
d=0

(
c

d

)
λi+c,j−d −

min(n,c)∑
k=1

(−1)kφ−k(c)

δc
0

c∑
d=0

(
c

d

)min(n−k,c)∑
l=0

φl(c)λk+l
i+c,j−(k+l)−d


= δc

0

c∑
d=0

(
c

d

)λi+c,j−d −
min(n,c)∑

k=1

min(n−k,c)∑
l=0

(−1)kφ−k(c)φl(c)λk+l
i+c,j−(k+l)−d


= δc

0

c∑
d=0

(
c

d

)λi+c,j−d −
m∑

s=1

 ∑
k+l=s

m≥k≥1,m≥l≥0

(−1)kφ−k(c)φl(c)

λs
i+c,j−s−d


= δc

0

c∑
d=0

(
c

d

)λi+c,j−d +
min(n,c)∑

s=1

φs(c)λs
i+c,j−s−d

 ,

as required, since∑
k+l=s

m≥k≥1,m≥l≥0

(−1)kφ−k(c)φl(c) = −φs(c)+
∑

k+l=s
m≥k≥0,m≥l≥0

(−1)kφ−k(c)φl(c) = −φs(c)+0 = −φs(c),

by Lemma 2.3.

We are now in a position to prove Theorem 1.2 in which we find a basis for the quadratic
invariants.

Proof of Theorem 1.2. Any element of the set K[x]≤2 which has constant term equal to zero
can be written as a sum

u =
n∑

j=1

λjx
2
j +

n−1∑
i=1

xi

 n∑
j=i+1

λijxj

+
n∑

j=1

µjxj .

The element u is uniquely determined by the upper triangular n×n matrix Λ = (λij) ∈ Mn(K)
and the vector (µ1, . . . , µn) ∈ Kn. For the sake of convenience, we will set λi = λii.

Observe that u ∈ K[x]σ if and only if ∂(u) = 0, where ∂ = 1 − σ. In order to calculate ∂(u),
we perform elementary computations using the fact that ∂ is a σ-derivation, and the following
facts: ∂(x1) = 1 and ∂(x2

1) = 2x1 − 1; while ∂(xi) = −xi−1 and ∂(x2
i ) = −2xi−1xi − x2

i−1, for

15



i = 2, . . . , n. We obtain

∂(u) = −
n−1∑
j=1

(λj,j+1 + λj+1)x2
j

−
n−2∑
i=2

xi

(λi,i+2 + λi+1,i+2 + 2λi+1)xi+1 +
n−1∑

j=i+2

(λi+1,j + λi,j+1 + λi+1,j+1)xj + λi+1,nxn


− x1

(λ2,3 + λ1,3 + 2λ2)x2 +
n−1∑
j=3

(λ2,j + λ1,j+1 + λ2,j+1)xj + λ2,nxn


− 2λnxn−1xn + (2λ1 + λ1,2 − µ2)x1

+
n∑

j=3

(λ1,j−1 + λ1,j − µj)xj−1 + λ1,nxn + (µ1 − λ1).

(29)

Thus, ∂(u) = 0 if and only if each of the coefficients in the expression above are zero. This gives
the system of linear equations below (see (30), (31), (32), (33), (34) below).

We can immediately see from the coefficients that the entries in the last column of the matrix
Λ must all be zero for a solution to ∂(u) = 0. Also, the linear terms are specified by the last
few coefficients, viz:

µ1 = λ1, µ2 = 2λ1 + λ1,2, µj = λ1,j−1 + λ1,j , j = 3, . . . , n. (30)

The remaining equations can be separated into four classes:

λ2,3 + λ1,3 + 2λ2 = 0, (31)

λj,j+1 + λj+1 = 0, j = 1, . . . , n− 1, (32)

λi+1,j + λi,j+1 + λi+1,j+1 = 0, i = 1, . . . , n− 2, j = i + 2, . . . , n− 1, (33)

λi,i+2 + λi+1,i+2 + 2λi+1 = 0, i = 2, . . . , n− 2. (34)

Obviously, the elements ui are linearly independent; so, it suffices to prove that an element
u ∈ K[x]σ ∩ K[x]≤2, with zero constant term, is a linear combination of the elements ui. In
order to do this, we will use induction on n ≥ 2. In the case that n = 2, we see that the element
u1 = x2

1+x1+2x2 is the unique solution (up to non-zero scalar multiple) of the system ∂(u) = 0.
The same is true for n = 3, since λ2 = λ12 = 0, by using (31) and (32).

Thus, we may assume that n ≥ 4, and that the result is true for all n′ strictly less than n.
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The last column of the matrix (λij) is zero. By using (33) with i = 1, . . . , n− 2 and j = n− 1,
we see that λi,n−1 = 0, for i = 2, . . . , n−2. Since λn−1 = −λn−2,n−1 = 0, by (32) with j = n−2,
it follows that λi,n−1 =0, for all i > 1. By using similar arguments, it follows that all of the
elements of the matrix (λij) lying below and on the anti-diagonal are zero; that is,

λi,j = 0, i + j ≥ n + 1. (35)

By passing from u to a suitable linear combination of the form u +
∑m′

i=1 αiui, where m′ =
[(n− 1)/2] and αi ∈ K, we may assume that

λ1 = · · · = λm′ = 0. (36)

In more detail, we will solve the system assuming that the conditions above hold, as a result we
will have the polynomials ui, and this justifies our assumption. By (32), we have

λj,j+1 = 0, j = 1, . . . ,m′ − 1,

and
λj,j+2 = 0, j = 1 . . . , m′ − 2,

by (31) and (34). Now, by (33), we obtain

λi,j = 0, i, j = 1, . . . ,m′. (37)

In the case that n is even, it is enough to prove that the element um is the unique solution (up
to a nonzero scalar multiple) satisfying (36), and in the case that n is odd, that the only solution
satisfying (36) is 0.

Suppose first that n is even, with n = 2m, and m ≥ 2 (the cases where n = 2, 3 have been
considered earlier). Suppose that n = 4. By (32), we see that λ1,2 = −λ2, and by (31), we
obtain λ1,3 = −2λ2; and so, u = λ2u2, by (30).

Suppose now that n = 6. By (32), we see that λ2,3 = −λ3, and by (31), we obtain λ1,3 = λ3.
Now, λ2,4 = −2λ3, by (34). By (33), λ1,4 = 3λ3 and λ1,5 = 2λ3, hence u = λ3u3, by (30).
Finally (for the even case), suppose that n = 2m, with m ≥ 4. In this case, m′ = m− 1, so all
of the diagonal elements of the matrix (λij), are zero, except for λm = λmm. By (32), we obtain
λm−1,m = −λm, and, by using (34), we get λm−2,m = λm; then, by (32),

λi,m = (−1)m−iλm, i = 1, . . . ,m. (38)

By (34), λm−1,m+1 = −2λm, and then, by (33),

λm−i,m+i = (−1)i2λm, i = 1, . . . ,m− 1. (39)
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Now, all of the entries of the first m−1 rows satisfy (33), and λm−1,m = −λm, λm−1,m+1 = −2λm;
also, all of the other entries of the (m− 1)-st row are zero. If we apply Lemma 3.2 to the entries
of the first m− 1 rows, and put δ = −1, we obtain

λij = (−1)m−1−i
m−1−i∑

k=0

(
m− 1− i

k

)
λm−1,j−k

= (−1)m−1−iλm

{
−
(

m− 1− i

j −m

)
− 2
(

m− 1− i

j −m− 1

)}
= (−1)m−iλm

{(
m− i

j −m

)
+
(

m− 1− i

j −m− 1

)}
,

(40)

for i = 1, . . . ,m− 1, j = m, . . . , 2m− i.

Thus,

µj = (−1)m−1λm

{(
m− 1

j −m− 1

)
+
(

m− 2
j −m− 2

)
+
(

m− 1
j −m

)
+
(

m− 2
j −m− 1

)}
= (−1)m−1λm

{(
m

j −m

)
+
(

m− 1
j −m− 1

)}
,

(41)

by (30) and (40). This finishes the even case.

Now, suppose that n is odd, with n = 2m + 1, for some m ≥ 2. In this case, m′ = m, and so
λm+1 = 0, by (35); and λm,m+1 = 0, by (32). If m = 2, then λ1,3 = 0, by (31), and λ1,4 = 0, by
(33); so that λij = 0, for all i, j. If m ≥ 3, then λm−1,m+1 = 0, by (34). It then follows that all
λij are zero, by using (35), (36) and (33).

Theorem 1.3, which presents the cubic invariants, can now be proved.

Proof of Theorem 1.3. The element uk of Theorem 1.2 can be written as the sum, uk = u′k+u′′k,
of the quadratic terms u′k and the linear terms u′′k. The element vk = x1uk + v′k + v′′k , where

v′k = axkxk+1 +
k−1∑
i=1

2k−i+1∑
j=k+1

αk
i,jxixj and v′′k =

2k+1∑
i=k+1

βk
i xi.

Clearly,
∂(vk) = uk + ∂(v′k) + ∂(v′′k) = (u′k + ∂(v′k)) + (u′′k + ∂(v′′k)).
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Thus, by using (29), we see that ∂(vk) = 0 if and only if the coefficient a and the αk
i,j , β

k
i satisfy

the following system of linear equations:

−a + 1 = 0

−a− αk
k−1,k+1 − 1 = 0

−a− αk
k−1,k+2 − 2 = 0

−(αk
i+1,j + αk

i,j+1 + αk
i+1,j+1) + λk

i,j = 0,

for i = 1, . . . , k − 1 and j = k, . . . , 2k − i; and

βk
j = αk

1,j−1 + αk
1,j + µk

j−1,

for j = k + 1, . . . , 2k + 1 (note that we set αk
1,2k+1 = 0).

Equivalently,
a = 1, αk

k−1,k+1 = −2, αk
k−1,k+2 = −3

and
αk

i,j = δ(αk
i+1,j−1 + αk

i+1,j) + λk
i,j−1,

for i = 1, . . . , k − 1 and j = k + 1, . . . , 2k − i + 1, where δ = −1.

We know, from the proof of Theorem 1.2, that λk
i,j = δ(λk

i+1,j−1 + λk
i+1,j), for i = 1, . . . , k − 1

and j = k, . . . , 2k − 1. Thus, by using Lemma 3.2.(2), we have

αk
i,j = (−1)k−i−1

{(
k − i− 1
j − k − 1

)
αk

k−1,k+1 +
(

k − i− 1
j − k − 2

)
αk

k−1,k+2

}
+ (k − i− 1)λk

i,j−1

= (−1)k−i

{
2
(

k − i− 1
j − k − 1

)
+ 3
(

k − i− 1
j − k − 2

)
+ (k − i− 1)

[(
k − i

j − k − 1

)
+
(

k − i− 1
j − k − 2

)]}
.

4 F-direct sums

Let Q = ∪i∈Z Qi be a Z-filtered algebra with a filtration F = {Qi}. We will always assume that
the filtration is separated; that is, ∩i∈Z Qi = 0. Any subspace U of Q has an induced filtration
U = ∪i∈Z Ui, where Ui := U∩Qi. In this case, the associated graded space grFU = ⊕i∈Z Ui/Ui−1

is a subspace of the associated graded algebra grFQ = ⊕i∈Z Qi/Qi−1 in a natural manner.

Given a separated filtration F = {Qi} of Q, then, for any nonzero element u ∈ Q, there exists a
unique i ∈ Z such that u ∈ Qi\Qi−1. The integer i is called the F-degree of u, and is denoted
by fdeg(u).
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Definition 4.1 Let {Uj , j ∈ J } be a set of subspaces of the F-filtered algebra Q. We say that
the sum

∑
j∈J Uj is F-direct if

∑
j∈J grFUj =

⊕
j∈J grFUj in grFQ.

The concept of F-directness is extremely useful in finding a K-basis of a ring of invariants and
in proving that relations for a ring of invariants are defining relations. For a separated filtration
F it follows easily that any F-direct sum

∑
j∈J Uj is the direct sum, ⊕j∈J Uj , of the subspaces

Uj .

Lemma 4.2 Let Q = ∪i∈Z Qi be a filtered algebra with separated filtration F = {Qi} and∑
j∈J Uj be an F-direct sum of subspaces {Uj}. Then

1. if uj ∈ Uj, then fdeg(
∑

uj) = max{fdeg(uj)}.

2. (
∑

j∈J Uj) ∩Qi =
∑

j∈J Uj ∩Qi.

Proof. 1. This is evident.

2. Denote by L and R the left and right hand side vector spaces in the equality that we are
trying to establish. Clearly, L ⊇ R. If u =

∑
uj ∈ (

∑
Uj) ∩ Qi, for some uj ∈ Uj , then each

uj ∈ Uj ∩Qi, by statement 1, so R ⊆ L.

A K-basis {Ui, i ∈ J} of the filtered algebra Q = ∪i∈ZQi is called an F-basis if the sum
of 1-dimensional subspaces

∑
j∈J Kuj is F-direct. In this case, {gruj , j ∈ J} is a K-basis for

the associated graded algebra gr Q := ⊕i∈ZQi/Qi+1. If, in addition, the algebra Q = ∪i≥0Qi is
positively graded then the converse is true: a basis {uj , j ∈ J} of Q is an F-basis of Q if and
only if {gruj , j ∈ J} is a basis for grQ; and a basis {uj , j ∈ Ji} of Qi is an F-basis of Q if and
only if {gruj , j ∈ Ji} is a basis for ⊕i

ν=0Qν/Qν−1.

Similarly, elements {uj , j ∈ J} of Q are F-independent if the sum of 1-dimensional subspaces∑
j∈J Kuj is F-direct. In this case, elements {gruj , j ∈ J} are linearly independent elements of

grQ. The converse is obviously true; so, the elements {ui, i ∈ J} of Q are F-independent if and
only if the elements {gruj , j ∈ J} are linearly independent in grQ.

5 Number of variables ≤ 5

Let K be a field of characteristic zero. The polynomial ring, P ≡ P [n+1] ≡ K[x] ≡ K[x1, . . . , xn+1],
in n + 1 variables, is a positively graded K-algebra P = ⊕i≥0 Pi, where Pi ≡ K[x]i consists of
the homogeneous polynomials of degree i, together with zero.
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Consider the graded automorphism σ ∈ Autgr(P ) defined by σ(x) = Jn+1(1)x, where Jn+1(1)
is the (n + 1)× (n + 1) lower triangular Jordan matrix with 1 in each diagonal entry; that is,

σ(x1) = x1, σ(x2) = x2 + x1, . . . , σ(xn+1) = xn+1 + xn.

We use the results in the earlier sections of the paper to give explicit generators and defining
relations for P σ for some small values of n.

The algebra F = P σ of invariants is a positively graded algebra F = ⊕i≥0 Fi, where Fi = Pi∩F .
In the case that n = 0 we have that σ is the identity map, so that F = K[x1]. Thus, we assume
that n ≥ 1. The element x1 is σ-invariant. Denote by Px1 the localization of P at the powers of
x1, that is,

Px1 = S−1K[x] = K[x1, x
−1
1 , x2, . . . , xn−1, xn, xn+1],

where S = {xi
1 | i ≥ 0}. Set zi := −xi+1

x1
, for i = 1, . . . , n, so that

Px1 = K[z, x±1
1 ] = K[z1, . . . , zn, x±1

1 ] = Q[x±1
1 ], (42)

where Q = Q[n] = K[z] = K[z1, . . . , zn] is the polynomial ring in n variables. The algebra
Q = ⊕i≥0 Qi is a positively graded K-algebra, using the degree of the polynomials. The filtration
F = {Q≤i := ⊕j≤i Qj}, for i ≥ 0, associated with this grading, satisfies Q≤i = Pix

−i
1 , for i ≥ 0,

and so Q =
∑

i≥0 Pix
−i
1 .

Let p(x1, . . . , xn+1) ∈ P be a homogeneous polynomial. Then

p(x1, . . . , xn+1) = (−x1)deg(p)p(−1,−x2

x1
, . . . ,−xn+1

x1
) = (−x1)deg(p)p(−1, z1, . . . , zn), (43)

where p(−1, z1, . . . , zn) ∈ Q≤deg(p).

Denote by the same letter σ the unique extension of the automorphism σ to the localized algebra
Px1 . Then σ(Q) = Q, and σ(z) = Jn(1)z − e1; that is,

σ(z1) = z1 − 1, σ(z2) = z2 + z1, . . . , σ(zn) = zn + zn−1.

Theorem 1.1 (or Proposition 3.1) now becomes available for use.

The case n = 1

Clearly,
(K[x1, x2]x1)

σ = K[z1, x
±1
1 ]σ = K[x±1

1 ],
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since σ(z1) = z1 − 1 and the characteristic of K is zero. Hence,

K[x1, x2]σ = (K[x1, x2]x1)
σ ∩K[x1, x2] = K[x1]. (44)

Thus, we may assume that n ≥ 2. The first part of the next corollary follows immediately from
Proposition 3.1 (statement 3 follows from (43); statements 4 and 5 follow from the definition of
F-basis).

Corollary 5.1 Let n ≥ 2. Then
1. Qσ = K[y2, . . . , yn] is a polynomial ring in the n− 1 variables yi given by

yi+1 = yi+1(z) =
i∑

j=1

φ−i+j(z1)zj+1 + iσ−1(φ−i−1(z1)),

for i = 1, . . . , n− 1, where the φl are defined in (10) and Q = K[z1]⊗Qσ.

2. yi ≡ zi (mod z1), for i = 2, . . . , n.

3. F = ⊕i≥0 Fi, with Fi = xi
1Q

σ
≤i, where Qσ

≤i = Qσ ∩Q≤i, for i ≥ 0.

4. If {bj , j ∈ Ji} is an F-basis for the vector space Qσ
≤i then {xi−degz(bj)

1 (xdegz(bj)
1 bj), j ∈ Ji} is a

K-basis for Fi. If {bj , j ∈ J} is an F-basis for the vector space Qσ then {xi−degz(bj)
1 (xdegz(bj)

1 bj), j ∈
J} is a K-basis for Fi.

5. Given g1, . . . , gm ∈ Qσ such that, for each i ≥ 0, {gα := gα1
1 · · · gαm

m |α = (α1, . . . , αm) ∈ Ji ⊆
Nm} is an F-basis for Qσ

≤i then {xi−
∑m

j=1 αj degz(gj)

1

∏m
j=1(x

degz(gj)
1 gj)αj , j ∈ Ji} is a K-basis for

Fi; and if J1 ⊆ J2 ⊆ · · · then

{xi−
∑m

j=1 αj degz(gj)

1

m∏
j=1

(xdegz(gj)
1 gj)αj | j ∈ ∪i≥1Ji, i−

m∑
j=1

αj degz(gj) ≥ 0}

is a K-basis for F .

Corollary 5.2 1. Let u = u(z1, . . . , zn) ∈ Qσ. Then

u(z1, . . . , zn) = u(0, y2, . . . , yn).

2. In particular, for the elements uk and vk in Theorems 1.2 and 1.3,

uk = y2
k +

k−1∑
i=2

2k−i∑
j=k

λk
i,jyiyj +

2k∑
i=k

µk
i yi,

vk = ykyk+1 +
k−1∑
i=2

2k−i+1∑
j=k+1

αk
i,jyiyj +

2k+1∑
i=k+1

βk
i yi.
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Proof. Note that Q = Qσ ⊕ Qz1, Qσ = K[y2, . . . , yn] and yi ≡ zi (mod z1), for i = 2, . . . , n,
by Corollary 5.1. Thus, for any u(z1, . . . , zn) ∈ Qσ, we have

u(z1, z2, . . . , zn) = u(0, y2, . . . , yn) + z1v,

fore some polynomial v ∈ Q. However,

u(z1, . . . , zn)− u(0, y2, . . . , yn) = vz1 ∈ Qσ ∩Qz1 = 0,

since Q = Qσ ⊕Qz1. Hence, u(z1, . . . , zn) = u(0, y2, . . . , yn).

2. Evident.

The polynomials
fi+1 := x

deg(yi+1)
1 yi+1 = xi+1

1 yi+1,

for i = 1, . . . , n− 1, belong to the algebra F of invariants. Note that

fi+1 =
i∑

j=1

(−1)i−j+1xj
1

x2(x2 + x1) . . . (x2 + (i− j − 1)x1)
(i− j)!

xj+2

+ (−1)i+1i
(x2 − x1)x2(x2 + x1) . . . (x2 + (i− 1)x1)

(i + 1)!
.

Corollary 5.3 For each homogeneous polynomial f(x1, . . . , xn+1) ∈ F = K[x1, . . . , xn+1]σ,
where σ(x) = Jn+1(1)x:

f(x1, . . . , xn+1) = (−x1)deg(f)f(−1, 0, f2/x2
1, . . . , fn/xn

1 ).

Proof. This follows immediately from the equality (43) and Corollary 5.2.(1):

f(x1, . . . , xn+1) = (−x1)deg(f)f(−1, z1, . . . , zn)

= (−x1)deg(f)f(−1, 0, y2, . . . , yn)

= (−x1)deg(f)f(−1, 0, f2/x2
1, . . . , fn/xn

1 ).

The case n = 2

By Corollary 5.1.(1), we know that Qσ = K[u1], where u1 := 2y2 = z2
1 + z1 + 2z2. Clearly,

{ui
1, i ≥ 0} is an F-basis for Qσ. By Corollary 5.1(5), the algebra

K[x1, x2, x3]σ = K[x1, p1], (45)

is the polynomial ring in the two variables x1 and p1 := x2
1u

2
1 = x2

2 − x1(x2 + 2x3).
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The case n = 3

Recall that

y2 = z2 +
(z1 + 1)z1

2
and y3 = z3 + z1z2 +

z3
1 − z1

3
.

Set

v1 := 3y3 = z3
1 + 3z1z2 − z1 + 3z3 = z3

1 + . . . , (46)

Clearly,

v1 = z1u1 − z2
1 + z1z2 − z1 + 3z2

= z1u1 − u1 + z1z2 + 5z2.

Consider the element

θ := v2
1 − u3

1 + 3v1u1 + 2u2
1. (47)

Direct computation gives

θ = −3z2
1{z2

2 − z1(z2 + 2z3)}+ 9z1(z1 + 2z2)z3 − 8z3
2 + z1z2(5z1 + 6z2)

+ 9z2
3 + 3(z1 + 6z2)z3 + 8z2

2 + 2z1z2

= −3z2
1{z2

2 − z1(z2 + 2z3)}+ · · · .

(48)

The leading terms of the elements u1 = z2
1 + · · · and θ are algebraically independent, so the

subalgebra U := K[u1, θ] of Qσ = K[u1, v1] is isomorphic to a polynomial ring in two variables,
and the elements {ui

1θ
j | i, j ≥ 0} are F-independent.

Lemma 5.4 The sum Qσ = U + Uv1 is an F-direct sum in the filtered algebra Q with the
filtration F = {Q≤i}. In particular, Qσ = U ⊕ Uv1.

Proof. It follows from (47) that Qσ = U + Uv1. Observe that the degree of the leading term
of any element from U is even, and the degree of the leading term of any element of Uv1 is odd.
The result then follows.

Corollary 5.5 For i ≥ 0, we have

Qσ
≤i = U≤i ⊕ U≤(i−3) v1,

where U≤i = U ∩Q≤i =
⊕
{Kui2

1 θi4 | i2, i4 ≥ 0, 2i2 + 4i4 ≤ i}, and {ui2
1 vi3

1 θi4 | 2i2 + 3i3 + 4i4 ≤
i; i3 = 0, 1; i2, i4 ≥ 0} is an F-basis for Qσ

≤i.
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Theorem 5.6 The fixed algebra F = K[x1, x2, x3, x4]σ is generated by the four elements

x1, p1 := x2
1u1 = x2

2 − x1(x2 + 2x3), q1 := x3
1v1 = −x3

2 + 3x1x2x3 + x2
1x2 − 3x2

1x4

and

s := x4
1θ = −3x2

2

{
x2

3 − x2(x3 + 2x4)
}
− 9x1x2(x2 + 2x3)x4 + 8x1x

3
3

− x1x2x3(5x2 + 6x3) + 9x2
1x

2
4 + 3x2

1(x2 + 6x3)x4 + 8x2
1x

2
3 + 2x2

1x2x3.

of degrees 1, 2, 3, 4, respectively, subject to the defining relation

x2
1s = q2

1 + 3x1p1q1 − p3
1 + 2x2

1p
2
1. (49)

For i ≥ 0, Fi = ⊕{Kxi1
1 pi2

1 qi3
1 si4 | i1 + 2i2 + 3i3 + 4i4 = i; i3 = 0, 1; i1, i2, i4 ≥ 0}.

Proof. By Corollary 5.1, F = ⊕i≥0 Fi, where Fi = xi
1Q

σ
≤i. By Corollary 5.1(5) and Corollary

5.5, (using F-directness) Fi =
⊕

Kxi1
1 pi2

1 qi3
1 si4 where all iν ≥ 0, and i3 = 0, 1 while i1 + 2i2 +

3i3 + 4i4 = i. We conclude that the fixed algebra F is generated by the four elements above,
subject to the relation (49). The relation is the defining relation for F (as the algebra that
satisfies this defining relation has the same basis {xi1

1 pi2
1 qi3

1 si4} as F ).

The case n = 4

Recall that (Corollary 5.1 and Theorem 1.2)

y4 = z4 + z1z3 +
z1(z1 − 1)

2!
z2 +

3(z1 + 1)z1(z1 − 1)(z1 − 2)
4!

,

and

u2 = z2
2 − z1(z2 + 2z3)− z2 − 3z3 − 2z4 = z2

2 − z1(z2 + 2z3) + · · · . (50)

By Corollary 5.2,

u2 := y2
2 − y2 − 3y3 − 2y4 =

1
4
u2

1 −
1
2
u1 − v1 − 2y4. (51)

Consider the element

θ̃ := θ + 3u1u2 = v2
1 − u3

1 + 3v1u1 + 2u2
1 + 3u1u2. (52)

Direct computation gives
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θ̃ = −6z2
1z4 + 6z1(z2 − z1)z3 − 2z3

2 + z1z2(3z2 − z1)

− 6(z1 + 2z2)z4 + 9z2
3 − 6z1z3 + 2z2

2 − z1z2

= −6z2
1z4 + 6z1(z2 − z1)z3 − 2z3

2 + z1z2(3z2 − z1) + · · · .

(53)

The leading terms of the elements u1 = z2
1+· · · , u2 = z2

2−z1(z2+2z3)+· · · , and θ̃ are algebraically
independent; so the algebra Qσ = K[y2, y3, y4] contains the subalgebra U := K[u1, u2, θ̃] which
is a polynomial ring in three variables.

For l ≥ 0, we set

U≤l := U ∩Q≤l =
⊕

i,j,k≥0

{Kui
1u

j
2θ̃

k | 2i + 2j + 3k ≤ l}.

The set {ui
1u

j
2θ̃

k | 2i + 2j + 3k ≤ l} is an F-basis for U≤l, and {ui
1u

j
2θ̃

k | i, j, k ≥ 0} is an F-basis
for U . Now,

Qσ = K[u1, u2, θ̃] + K[u1, u2, θ̃]y3 = U + Uv1. (54)

In more detail,

Qσ = K[y2, y3, y4] = K[u1, v1, y4] = K[u1, v1, u2] (by (51))

= K[u1, u2, θ̃] + K[u1, u2, θ̃]v1 (by (52)).

Lemma 5.7 The sum Qσ = U + Uv1 is an F-direct sum in the filtered algebra Q with the
filtration F = {Q≤i}. Hence, {um

1 uj
2θ̃

kvl
1 | 2m+2j +3k +3l ≤ i, l = 0, 1} is an F-basis for Qσ

≤i,
and {um

1 uj
2θ̃

kvl
1 |m, j, k ≥ 0, l = 0, 1} is an F-basis for Qσ.

Proof. This follows directly from the equality

Qσ = U + Uv1 =
⊕
i,j≥0

{K[u1] + K[u1]v1}ui
2θ̃

j

and the fact that the leading terms of the elements u2, θ̃ and z1 are algebraically independent,
and from the fact that v1 = z3

1 + · · · and u1 = z2
1 + · · · .

Theorem 5.8 The fixed algebra F = K[x1, x2, x3, x4, x5]σ is generated by the five elements

x1, p1, q1, p2 := x2
1u2 = x2

3 − x2(x3 + 2x4) + x1(x3 + 3x4 + 2x5)
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and

t := x3
1θ̃ = 6x2

2x5 − 6x2(x3 − x2)x4 + 2x3
3 − x2x3(3x3 − x2)

+ x1

{
−6(x2 + 2x3)x5 + 9x2

4 − 6x2x4 + 2x2
3 − x2x3

}
(55)

of degrees 1, 2, 3, 2, 3, respectively, subject to the defining relation

x3
1t = q2

1 − p3
1 + 3x1p1q1 + 2x2

1p
2
1 + 3x2

1p1p2. (56)

For i ≥ 0,

Fi = xi
1Q

σ
≤i =

⊕
{Kxa

1p
b
1p

c
2t

dqe
1 | a + 2b + 2c + 3t + 3e = i, e = 0, 1}

where a, b, c, d ≥ 0.

Proof. By Corollary 5.1 and Lemma 5.7, F = ⊕i≥0 Fi, where

Fi = xi
1Q

σ
≤i =

⊕
{Kxa

1p
b
1p

c
2t

dqe
1 | a + 2b + 2c + 3t + 3e = i, e = 0, 1}.

By (52), the relation (56) holds. This relation is the defining relation for the algebra F since
the algebra that satisfies this defining relation has the same basis as F (see (56)).

Finally, we make a comment on the case where n ≥ 5. Assume that n ≥ 5. Set m :=
[

n
2

]
and µ :=

[
n−1

2

]
; then m = µ, when n = 2m + 1, and m = µ + 1, when n = 2m. The

elements uk = uk(z) and vk = vk(z) of Theorems 1.2, 1.3 can be written as sums uk = u′k + u′′k
and vk = z1uk + v′k + v′′k , where u′k, v

′
k and u′′k, v

′′
k are the quadratic terms and linear terms,

respectively. The elements

wk := v2
k − u1u

2
k = uk(2z1v

′
k − (z1 + 2z2)uk) + (v′k)

2 + 2z1ukv
′′
k + 2v′kv

′′
k + (v′′k)2, (57)

for k = 2, . . . , µ, have degree 5 and leading terms

l(wk) = u′k(2z1v
′
k − (z1 + 2z2)u′k), (58)

for k = 2, . . . , µ. Observe that u′k is the leading term of the polynomial uk.

The polynomials

uk = (−1)k−12z2k + . . . and vk = (−1)k−1(1 + 2k)z2k+1 + . . . , (59)

where by three dots we denote the terms from Q[2k−1] and Q[2k], respectively. Hence,

Q ≡ Q[n] = Q[4][v2, . . . , vµ, u3, . . . , um], (60)
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and

Qσ = (Q[4])σ[v2, . . . , vµ, u3, . . . , um] = (Q[4])σ ⊗ V, (61)

where V := K[v2, . . . , vµ, u3, . . . , um]. Note that

(Q[5])σ = (Q[4])σ[v2],

(Q[6])σ = (Q[4])σ[v2, u3],

(Q[7])σ = (Q[4])σ[v2, v3, u3],

(Q[8])σ = (Q[4])σ[v2, v3, u3, u4].

The polynomial ring V contains the polynomial subalgebra W := K[w2, . . . , wµ, u3, . . . , um] and

V =
⊕

I∈Zµ−1
2

WvI , (62)

is a free W -module of rank 2µ−1, where Zµ−1
2 = Z2 × · · · × Z2 is the product of µ− 1 copies of

Z2 = {0, 1}, and vI = vi2
2 . . . v

iµ
µ , for I = (i3, . . . , iµ) ∈ Zµ−1

2 .

The leading terms of the polynomials w2, u3, w3, u4, . . . , are algebraically independent, since

l(uk) = u′k = (−1)k−12z1z2k−1 + . . . and l(v′k) = (−1)k−1(2k − 1)z1z2k + . . . , (63)

where three dots denotes terms from Q[2k−2] and Q[2k−1], respectively. Thus, the sum

W =
∑

Kui3
3 . . . uim

m wj2
2 . . . w

jµ
µ , (64)

for i2, . . . , jµ ≥ 0, is an F-direct sum.

Lemma 5.9 The sum (62) is an F-direct sum in the filtered algebra Q with the filtration F =
{Q≤i}.

Proof. This is evident, since l(vk) = z1l(uk), l(uk) = u′k and l(wk) is as defined in (58).

This means that one cannot produce new invariants from the elements of V ; that is, in any new
invariants generators of Q[4] must necessarily occur.
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