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Two-color vector-soliton interactions in nematic liquid crystals in the local response regime

Benjamin D. Skuse™ and Noel F. Smyth"

School of Mathematics and Maxwell Institute for Mathematical Sciences, The King’s Buildings, University of Edinburgh,

Edinburgh, Scotland EH9 3JZ, United Kingdom
(Received 27 September 2007; published 18 January 2008)

The propagation and interaction of two bulk solitary waves, termed nematicons, in a nematic liquid crystal
are studied in the local limit. These two nematicons are based on light of two different wavelengths, and so are
referred to as two color nematicons. Under suitable boundary conditions the two nematicon beams of different
wavelengths can couple, creating a self-localized vector solitary wave. Due to the different diffraction coeffi-
cients and indices of refraction for each wavelength, the vector solitary wave shows walk-off. Using a suitable
trial function in an averaged Lagrangian formulation of the two color nematicon equations, approximate
equations governing the evolution of the two color nematicons are derived. These approximate equations are
extended to include the diffractive radiation shed as the nematicons evolve. Excellent agreement is found for
the walk-off as given by these approximate equations and by full numerical solutions of the nematicon
equations. It is shown that the inclusion of the effect of the shed diffractive radiation is vital in order to obtain

this excellent agreement.

DOLI: 10.1103/PhysRevA.77.013817

I. INTRODUCTION

The study of the propagation of guiding, self-supporting,
coherent, two dimensional nonlinear beams (spatial solitary
waves) in nematic liquid crystals has become an active area
of experimental and theoretical research within the last few
years. The experimental existence of these nonlinear beams
was first demonstrated by Assanto and co-workers [1-4],
who named them nematicons. 2+1 dimensional solitary
wave solutions of the nonlinear Schrédinger (NLS) equation
are unstable, with the solitary wave’s amplitude becoming
infinite in finite time above an amplitude threshold and the
amplitude decaying to zero below the threshold [5]. Theoret-
ical work by Conti ef al. [2] showed that a nematicon is
stable due to the nonlocal nature of its interaction with the
nematic, whereby the director profile is much wider than the
waist of the beam in the light. Moreover, as the nematicon
equations are the same as those for a thermoelastic wave-
guide, the work of Kuznetsov and Rubenchik [6] shows that
a nematicon is stable.

While guided wave propagation in nematic liquid crystals
is usually considered in the nonlocal limit, adjusting the ex-
perimental conditions, such as temperature and applied static
electric fields, can result in local interaction between light
and the nematic [7], in which case the director profile has a
width of the same order as the beam [8,9]. In this local case
the nematicon is stable since the nematicon equations reduce
to a saturating NLS equation [5,8,9].

The first work on nematicon propagation in nematic liquid
crystals considered the propagation of a beam or beams of
the same wavelength [1-4,10-12]. Recent work by Alberucci
et al. [13] studied the propagation and interaction of nemati-
cons of two colors (wavelengths). This work derived the
governing equations for the propagation of two beams of
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different wavelengths through a nematic liquid crystal and
then compared numerical solutions of these equations with
experimental results. Excellent agreement was obtained.

In the present work the dynamics of interacting two color
nematicons in the local limit will be studied using a varia-
tional method based on that of Garcia-Reimbert et al. [8] for
a single nematicon. The main propagation mode in which we
shall be interested is that for which the two nematicons form
a bound vector nematicon. One of the important advantages
of the variational method of Garcia-Riembert et al. [8,9] is
that it provides a method for the inclusion of the effect of the
diffractive radiation shed as a nematicon evolves. The effect
of this shed radiation will be included in the modulation
equations derived here from the two color nematicon equa-
tions in the local limit. The inclusion of this shed diffractive
radiation is found to be vital to obtain good agreement with
full numerical solutions of the two color nematicon equa-
tions. Due to the nonsymmetric optical parameters for the
two colors, momentum conservation gives that the vector
nematicon experiences walk-off, as found in Alberucci et al.
[13]. Without the inclusion of diffractive radiation loss the
walk-off predicted by the modulation equations differs from
the numerical walk-off by up to 30%, while when diffractive
radiation loss is included the modulation equations give a
walk-off within 1% of the numerical value.

II. APPROXIMATE EQUATIONS

Let us consider two polarized, coherent light beams of
two different wavelengths propagating through a cell filled
with a nematic liquid crystal, as illustrated in Fig. 1. The
light initially propagates in the z direction, with the (x,y)
plane orthogonal to this. A static electric field is applied in
the x direction so that in the absence of light the optical
director is pretilted at an angle 6 to the z direction. Both
input light beams are polarized with their electric fields in
the x direction. Then let u and v be the electric field enve-
lopes of the two light beams and 6 be the perturbation of the
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FIG. 1. (Color online) Schematic diagram of a liquid crystal cell
with two polarized light beams of different colors.

optical director angle from its static value due to the light
beams. The two color nematicon equations governing this
were derived in Alberucci et al. [13]. In nondimensional
form these equations are

J 1

i—u+—DMV2u+Auu sin 26=0, (1)
dz 2

J 1
iZ —D,V? +A,v sin20=0, (2
dz 2

vV20 - g sin 20=—2A,|u|* cos 26— 2A,|v|* cos 26. (3)

The Laplacian V? is in the (x,y) plane. The coefficients D,
and D, are the diffraction coefficients for the two colors and
A, and A, are the coupling coefficients between the light and
the nematic for the two colors. The parameter v measures the
elasticity of the nematic and ¢ is related to the energy of the
static electric field which pretilts the nematic [14].

The usual operating regime for beam propagation in nem-
atics has v large, the so-called nonlocal regime. However, by
varying the operating temperature and the strength of the
pretilt field (g), v can be made to take a range of values from
small (the local regime) to large (the nonlocal regime) [7]. In
the present work two color nematicon evolution will be con-
sidered in the local regime with v small. For small v the
director Eq. (3) reduces to

2
tan 260=—(A,|ul* + A v]?). (4)
q

With this expression for the director angle, the electric field
Egs. (1) and (2) become

du 1 24 (A |ul*+ A |v]?

i_u+_DuV2 zu( u|u| : v|v| )l:z= i

9z 2 VP + (A, Jul + A v )

dv 1 24 (A Jul* + A v
i_v+_DvV2U+ /21}( u| | = U| |)22= . (5)
oz 2 VP + 4(A JuP + A, o)

So in the local regime the propagation of the two color nem-
aticons is governed by a system of vector saturating nonlin-
ear Schrodinger equations.
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The vector system (5) has the Lagrangian
L=i(u"u, - uu) = D,|Vul* +i(v*v, - vv]) = D,|Vv|*

+ \/q2+4(Au|u|2+Av|v|2)2—q, (6)

where the superscript * denotes the complex conjugate. As
in [8,9] approximate solutions will now be sought using ap-
propriate trial functions in the averaged Lagrangian

L= J‘“ f” Ldxdy. (7)

The first trial function to be used in the present work is that
of Garcia-Reimbert ef al. [8,9], so that the trial functions for
the electric field envelopes u and v are taken in the form

Xu ; .
u=a, sech=eu 1 ig e'u,
WM

v=a, sechX it 4 ig e, (8)
v

where

I
Xe= V(=& 4% x, == &) +)y%,

(/lu = O-M + Vu(x - gu)’ l?bl) = O-U + Vl}('x - gU)' (9)

The electric field amplitudes a,, a,, widths w,, w,, nemati-
con positions §,, &,, velocities V,, V,, phases o,, o,, and
shelf heights g,, g, are functions of z. The first terms in the
trial functions (8) are varying solitary waves. The second
terms represent the effect of the shed diffractive radiation of
low wave number which accumulates under the evolving
nematicons [8,9,15]. This shed radiation cannot remain flat,
so it is assumed that g, (g,) is nonzero in the disk 0
=\V(x=-£)+y*=R, (0=\(x=§)*+y*=R,) [8,9,15]. In the
case of the 1+1 dimensional NLS equation the existence of
this shelf of low wave-number radiation under the pulse can
be shown using inverse scattering [15].

The trial functions (8) are now substituted into the aver-
aged Lagrangian (7), from which variational equations are
obtained for the nematicon parameters. However, the inte-
grals involving the nonlinear term (last term) in the Lagrang-
ian (6) cannot be evaluated in closed form. To overcome this,
it is assumed, as in Garcia-Reimbert et al. [8], that the am-
plitudes of the two nematicons are small (or that ¢ is large),
so that the square root can be expanded in a Taylor series.
While this then allows most of the integrals to be evaluated,
a few integrals involving products of # and v still cannot be
evaluated. To evaluate these cross integrals, such as

J J |ul*|v|?dxdy, (10)

the idea of an “equivalent” Gaussian is used [9,16]. For these
cross integrals only the trial functions are replaced by the
“equivalent” Gaussians,
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sechﬁ — ae_Xf/ (ﬁzwﬁ), sechﬁ — ae"(g/ (B2W3), (11)
wy, Wy

so that these cross integrals can be evaluated in closed form.
The scaling parameters « and B will be determined by
matching the resulting averaged Lagrangian with the known
averaged Lagrangian in the symmetric limit A,=A, and D,
=D, with §,=¢,, for which the averaged Lagrangian is that
of Garcia-Reimbert et al. [8]. Later in this section, Gaussian
trail functions will also be considered, for which this
“equivalent” Gaussian substitution is obviously not needed.

Using this small amplitude expansion and the “equiva-
lent” Gaussian the averaged Lagrangian (7) is

E -= 2(12auwu + Augu)(o- Vug;) - 2Ila Wigl,,t + 211W5gua;
+4La,w,g,w, —ID a Du(lzai ugu) V2
- 2(12a w + Augi)(a -V,&) - ZIlanUgv + ZIlwigva;
+4La,w,g,w! — IDa: — Dy(Laiw: + A,g2) V2
2
+—Q1——3Q2, (12)
q q
where

Ql= I4au u+A 14(1

2,032
. > MAU o Balaiwiwle b= &IIBS)
QZ—A Igau M+A Iga
LAU 8 02 —6 2/ ZS
Ba a WuWUe (gu §y) (B 2)
2
+ = uAv 8 2 4614W2W2€_4(§u_fu)z/(ﬁzsl)
4 Sl u-v
AA] .
Auly 80 2 6 2 2 _6(&, - £)(BS
+ o’ Bra,a,w,w,e (&, — &)7/(BS3) (13)

3
with

Sy=3wl+wl. (14)

22 — 2 2
Si=w,+w,, S;=w,+3wy, )

Also A, and A, are related to the shelf radii by
L. [
Au:ERu and AU=ERU. (15)

The nonlinear terms Q; and Q, result from the expansion
of the nonlinear term in the Lagrangian (6). The various
integrals I and I; resulting from the calculation of this aver-
aged Lagrangian are

* ) N 1 1
1= xsech”xtanh“ x dx=—-In2+ —,

Il:f xsechx dx=2C,
0
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Izzf xsech?x dx=In2,
0

* 4 2 1
I;=| xsech”x dxr=—-In2-—,
0 3 6

* g 16 19
Ig= xsech®x dx=—In2-—, (16)
0 35 105

where C is the Catalan constant C=0.915 965 594... [17].
The scaling parameters a and B for the “equivalent”
Gaussian (11) can now be determined by matching the aver-
aged Lagrangian (12) with the averaged Lagrangian of
Garcia-Reimbert et al. [8] in the symmetric limit A,=A,,
DM=DU’ auzav’ Wu:Wv’ guzgv’ VM=VU:O’ gbl: 124 (Tuz(TU'
This gives
2
at = ] and B°= ﬂ (17)
Iy Iy
The scaling parameters are then «=0.9794... and B
=1.6027..., so that the “equivalent” Gaussian has nearly the
same amplitude as the original trial function with the major
change being a different width.
Taking variations of the averaged Lagrangian (12) with
respect to the nematicon parameters, and after some algebra,
finally results in the modulation equations

w2+ A,g2) =0, (18)

u - u

—(12a

_(Ila Wu) Augu( -V g + lD Vz)a (19)

S\ ay -w,

da, aw,

1 a a
3 2( o u&), 20)
2q°a,w,\ "~ da, aw,
d d
12( Tu _ V—§> = IDw.2— =D,
dz dz
;< 901 _ Q)
2qau . “da, “ow,
! ( 90 2)
2q3 202\ Ga, ow, )’
1)
19 14
_[(IzaW PAV = LA o)
q 9, ¢ 9%,
d
ﬁ:Duvu, (23)
dz

plus symmetric equations for a,, w,, 0,, g,, V,, and &, The
modulation Eq. (18) is the equation for conservation of mass

013817-3



BENJAMIN D. SKUSE AND NOEL F. SMYTH

and Eq. (22), when added to the symmetric equation in the v
color, is the equation for the conservation of momentum, in
the sense of invariances of the Lagrangian (6) [18]. However,
in the current context of optics, these conserved quantities do
not physically correspond to mass and momentum. For in-
stance, the conserved quantity of Eq. (18) is actually the
optical power.

Nother’s theorem applied to the Lagrangian (6) shows
that the local nematicon Egs. (5) possess the energy conser-
vation equation

dH o0 o0
=J J [DM|VM|2+DU|VU|2
dz o d

NG+ (A Jul + A o[} + qldxdy =0.  (24)

Using the trial functions (8) then gives the energy conserva-
tion equation for the two color nematicons,

aH d[lDle22 2 0, (25
dZ - dZ uau+ vy qQ1+ q3Q2 =YY ( )
on using the mass and momentum Egs. (18) and (22) and
their v color counterparts.

The final quantities to determine are the shelf radii R, and
R,. In previous work involving the NLS equation [15] and
the single color nematicon equations [8,9,16], the shelf ra-
dius was determined by linearizing the modulation equations
about their fixed point, which resulted in a simple harmonic
oscillator equation. The frequency of this oscillator equation,
which depends on the shelf width, was then matched to the
soliton oscillation frequency, resulting in an expression for
the shelf width. The same analysis could be performed for
the present modulation equations. However, this results in
complicated expressions for R, and R,. Much simplified ex-
pressions for the shelf radii can be obtained on noting that in
dimensional variables the diffraction coefficients and the
coupling coefficients for the two colors have similar values.
For instance, for the experiments of Alberucci et al. [13] the
diffraction coefficients were 0.805 for red light and 0.823 for
near-infrared light. It is then reasonable to take values of D,
D, and A,, A, which are close to each other. In the symmet-
ric limit D,=D, and A,=A,, the local nematicon Egs. (5)
become a coupled pair of the local nematicon equation con-
sidered by Garcia-Reimbert et al. [8]. On rescaling their
shelf radius, as Garcia-Reimbert et al. [8] had D,=1 and
A,=1, we have

IED,¢° IED,¢°
Ay=—""— and A,=——"—.  (26)
3841218Auau 3841218AUaU

From Garcia-Reimbert et al. [8] the fixed point amplitudes a,,
and a, are given by
1,q’H L,g’H
L L S )
16113D,A 16113D,A*

where H is the energy given by Eq. (25). In these expressions
to determine the shelf radii the appropriate values of the
diffraction and coupling coefficients for the two colors have
been used to preserve symmetry.

PHYSICAL REVIEW A 77, 013817 (2008)

The trial functions (8) were assumed to have the same
sech profile as the soliton solution of the NLS equation. An-
other possible choice for the trial functions is a Gaussian,
particularly as this choice obviates the need for an “equiva-
lent” function in order to explicitly calculate various cross
integrals in the averaged Lagrangian. In this regard it was
shown by Conti er al. [2] that a nematicon has a Gaussian
profile near its peak and that its tail decays as the modified
Bessel function of order zero K|;, due to the circular symme-
try. A Gaussian trial function then gives a better representa-
tion of the nematicon near its peak, while the sech profile
gives a better representation of its decay away from its peak.
To further understand the effect of the choice of trial func-
tion, modulation equations will also be derived for the
Gaussian trial functions,

- )2 . i
u= aue (Xu/wu) elwu + lgue”//u’

2 . .
v = a,e” M) e 4 g et (28)

No new calculations are required for these new trial func-
tions. All that is required is to replace the integrals (16) by

* 1
1= f x(= 2xe"‘2)2dx =—,
0 2

* 2 1
Ilzf xe “dx=—,
0 2

* 1
I, = J xe‘z"zdx =-—,
0 4
* 1
I,= f xe‘4"2dx =—,
0 8
” 2 1
I3= J xe 3 dx=—. (29)

The averaged Lagrangian is then Eq. (12) and the modula-
tion equations are Eqgs. (18)—(23) with these replacements for
the integrals / and /;. Obviously in this Gaussian case «
=1.0 and B=1.0, which can also be derived from Egs. (17)
and (29). It should be noted that the averaged Lagrangian
(12) and the modulation Egs. (18)—(23) hold for any self-
similar trial function for u# and v. All that is needed is that the
integrals I and I; of Eq. (16) are replaced by the equivalent
first moments of powers of this trial function and its first
derivative.

Much information about the evolution of the two color
nematicons can be obtained by looking at the fixed point of
the modulation Egs. (18)—(23). These modulation equations
possess two types of fixed points: (i) a coupled vector nem-
aticon with &,=&,, and (ii) separate nematicons, which be-
come the one color nematicons of Garcia-Reimbert et al. [8]
as |€,— &,|— . In the present work we shall be interested in
the vector nematicon propagation mode. Let us denote fixed
point values of the nematicon parameters by ~ and boundary
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values at z=0 by a 0 subscript. Adding the momentum Eq.
(22) in the u color to its symmetric counterpart in the v color
gives the equation for total momentum conservation as

d
i[(zﬂﬁ MgV, + (Laiw:+A,gl)V,]1=0. (30)

As we are considering boundary conditions which lead to a

bound state of the two colors, §u= éu for these boundary con-
ditions. On noting that g,0=g,0=0 and g,=g,=0, the mass
and momentum conservation Egs. (18) and (30), plus the
position relation (23), therefore give

! ! DLlDUM
gu = gv = c 2 ] (31)

2 2 2
IZ(DUaMOWMO + DMQUOWUO)

where
2 2 2 2
MO = IzauOWMOVMO + IZau()Wu()VUO (32)

is the total initial momentum. The conservation expression
(31) then gives the walk-off of the vector nematicon in the
two colors.

II1. DIFFRACTIVE RADIATION LOSS

To complete the modulation Egs. (18)—(23), the effect of
the diffractive radiation shed by the nematicons as they
evolve must be included. Numerical solutions show that the
shed radiation has small amplitude relative to the nemati-
cons. Hence this radiation is governed by the Schrddinger

equations
(9u 1 1% (9u
+—D,— =0,
(91 2r “or (9r

dv 1 J [ dv
i—+_—D,—|r =0. (33)
dz  2r “oJr\ dr

This radiation problem has already been studied by Garcia-
Reimbert et al. [8] and so the details will not be repeated.
The final result is that the mass Eq. (18) and Eq. (20) for the
radiation shelf height g, are replaced by

—(12a w + Augu) =-2D,5,A R2 (34)
and
d 1 1 d d
I 2y = _Duauw;2 - 2<au 9 Wug>
dz 2 2ga,w da, aw,

1 Jd J
2( Q2 Wu&> _ZDu&ugu’ (35)

*t53
2¢%a,w2\ " da, aw,

respectively, where the loss coefficient &, is
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2wl (F |
5:——‘f R, (z)In[(z=2')/A (—1
=T 2R A 077 A2)n[(z-2") u]{|: 2n[(z
2 3772 2 -1 d ’
—z’)/Au]) +—] +7{In[(z - z")/A, ] Z,
4 (z=2")
(36)
and
1
R = —[Dhagw, - Lagv, + A,g:]. (37)

A

u

The variable R, measures the difference between the mass of
the u color at z and its mass at the fixed point. The mass
equation for the v color and the equation for g, are obtained
by the obvious symmetric substitutions.

With the inclusion of the diffractive radiation loss, the
modulation equations for the two color nematicons are com-
plete.

IV. RESULTS AND COMPARISONS WITH
NUMERICAL SOLUTIONS

In this section solutions of the modulation Egs. (19),
(21)—(23), (34), and (35) and their symmetric v counterparts
will be compared with full numerical solutions of the two
color nematicon Egs. (1)—(3). The modulation equations
were solved using the standard fourth order Runge-Kutta
scheme. The electric field Egs. (1) and (2) were solved using
a pseudospectral method based on that of Fornberg and
Whitham [19]. The main difference with the scheme of Forn-
berg and Whitham is that the stepping in the z direction was
performed in Fourier space using a fourth order Runge-Kutta
method, rather than in physical space using a second order
scheme. The director Eq. (3) was rewritten in the form

W20 -2¢0=q sin(26) — 2g0—2A,|u|* cos(26)
—24,[v]* cos(26). (38)

On taking fast Fourier transforms (FFT’s) in the x direction,
the resulting nonlinear two point boundary value problem in
y, with 6 vanishing at the edges of the computational do-
main, was solved using a Picard iteration with the Fourier
transform of the right hand side of Eq. (38) evaluated at the
previous iteration. The director equation was rewritten in the
form (38) as this form was found to have better convergence
properties.

Figure 2 shows a comparison of the values of the walk-off

§’ § § as given by the full numerical solution of the two
color nematicon Egs. (1)—(3), the solution of the modulation
equations, and the momentum conservation result (31) as a
function of V,, for sech initial conditions (8) which result in
the formation of a vector nematicon, where V, is the initial
value of V,. The numerical and modulation solutions do not
settle to the steady state until large values of z are reached.
This slow evolution to the steady state is typical of nemati-
con evolution [8,9,16]. To enable a large number of numeri-
cal runs to be made in a reasonable time, the numerical so-
Iutions were run until the oscillations of the positions of the
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0.15
0.1 |
0.05

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

FIG. 2. Steady value é’:é;:é; as a function of V,q for the
initial conditions «,=0.35, @,=0.35, w,=3.0, w,=3.0, V,=-0.1,
£,=1.0, and &=-1.0 with D,=1.0, D,=0.8, A,=1.0, and A,=0.9
for the sech initial condition (8). Full numerical solution (—), so-
lution of modulation Egs. (19), (21)—(23), (34), and (35) (- X — X
—), momentum conservation result (31) (- - -).

nematicons about the final state were small and then an av-

erage was taken of these oscillations to determine é’. It can
be seen that there is near perfect agreement between the nu-
merical and modulation solutions for the walk-off. The mo-
mentum conservation result (31) was derived on the assump-
tion that the nematicons do not shed mass and momentum. It
is therefore apparent that the inclusion of the mass and mo-
mentum shed by the nematicons as they evolve is vital in
order to obtain good agreement with numerical solutions.
Figure 3 shows a similar comparison to Fig. 2 for the
walk-off, except that the Gaussian profile (28) was used as
the initial condition. The results are similar to those for the
sech profile, with near perfect agreement between the nu-
merical and modulation solutions. Again the inclusion of
shed mass and momentum is vital in order to obtain good
agreement with full numerical solutions. Inspection of Figs.
2 and 3 shows that there is little difference in the agreement

0.15

0.1}t

0.05 |

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

FIG. 3. Steady value é’:é{t:é{) as a function of V, for the
initial conditions «,=0.35, ,=0.35, w,=5.0, w,=5.0, V,=-0.1,
£&,=1.0, and &,=-1.0 with D,=1.0, D,=0.8, A,=1.0, and A,=0.9
for the Gaussian initial condition (28). Full numerical solution (—),
solution of modulation Egs. (19), (21)—(23), (34), and (35) (- X -
X —); momentum conservation result (31) (- - -).
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-12

-16 . . .

a,,4dy

FIG. 4. Solution of two color nematicon equations for the sech
profile (8) for the initial conditions a,=0.35, a,=0.35, w,=3.0,
w,=3.0, V,=-0.1, V,=-0.05, £,=1.0, and §,=-1.0 with D,=1.0,
D,=0.8, A,=1.0, and A,=0.9. Full numerical solution for u (—),
full numerical solution for v (- X — X —), solution of modulation
Egs. (19), (21)—(23), (34), and (35) for u (- - -) and v (- - -). (a)
Positions &,, &,, (b) amplitudes a,, a,,.

with full numerical solutions between the results for the sech
and the Gaussian trial functions. From the discussion of the
use of a Gaussian trial function in Sec. II this may have been
expected as the sech and Gaussian profiles are good approxi-
mations to the actual nematicon solution in different regions.
The vital point with the use of various trial functions is that
as long as the equations for certain basic gross quantities,
such as mass, momentum, and energy, are satisfied, then
enough constraints are placed on the approximate equations
to give good agreement with numerical solutions.

Let us now compare the numerical and modulation results
for the evolution of the nematicons. Figure 4 shows a com-
parison between the full numerical and modulation solutions
for the sech trial function (8) for one of the cases leading to
a vector nematicon shown in Fig. 2. Figure 4(a) shows the
positions &, and &, and Fig. 4(b) shows the amplitudes a, and
a, as functions of z. As expected from Fig. 2 the agreement
for the positions of the two nematicons is excellent in the
mean (walk-off). However, the oscillation amplitude of the
modulation solution about this mean is greater than the nu-
merical amplitude. Before discussing the reasons for this, let
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FIG. 5. (Color online) Numerical solution of two color nemati-
con equations for the sech profile (8) for the initial conditions a,
=0.35, 4,=0.35, w,=3.0, w,=3.0, V,=-0.1, V,=-0.05, &,=1.0,
and ¢,=-1.0 with D,=1.0, D,=0.8, A,=1.0, and A,=0.9. (a) Con-
tour plot of numerical solution for |u| at z=10, (b) contour plot of
numerical solution for |v| at z=10.

us look at the amplitude comparison. As for the position
comparison, the means of the amplitude oscillations are in
good agreement. However, the peak amplitudes as given by
the modulation equations are about 7% higher than the nu-
merical peak amplitudes. As the evolution of the nematicons
is a nonlinear oscillator, this amplitude difference means that
there is also a period difference in the oscillations, which
accounts for the increasing difference in the peak amplitude
positions of the numerical and modulation solutions.

There are a number of reasons for these differences be-
tween the numerical and approximate solutions. The first can
be seen from the numerical solutions for |u| and |v| at z
=10 shown in Figs. 5(a) and 5(b). These solutions are at a
value of z just after the point at which the two colors first
cross position. It can be seen that the two nematicons have
become distorted by their collision. This distortion is, of
course, not accounted for in the variational approximation
since the symmetric shapes of the two nematicons are fixed
by the trial functions (8). This distortion will make a differ-
ence to the subsequent evolution of the nematicons. In par-
ticular, Fig. 4(a) shows that it results in a rapid decrease in
the amplitude of oscillation of the nematicon positions about
the mean. Furthermore, as discussed in Smyth and Kath [20],
the radiation calculation of Sec. III does not take into ac-
count the acceleration of the nematicons. The inclusion of
acceleration effects in the mass and momentum loss is a
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difficult calculation as it involves the solution of a moving
boundary value problem with an unknown boundary [20].
Similar amplitude and position comparisons are not shown
for the Gaussian trial function as there is little difference in
the comparison with numerical solutions, as for the walk-off
comparisons of Figs. 2 and 3.

As the initial velocity difference between the nematicons
increases, the nematicons become more distorted due to their
interaction. This results in the difference in the amplitudes of
the position oscillations about the mean (walk-off) as given
by the numerical and modulation solutions becoming greater.
Also for large velocity differences, the approximate ampli-
tude oscillations gain a second frequency due an interaction
with the large position oscillations which oscillate at a dif-
ferent frequency. The numerical solution does not have this
second frequency as the distortion of the nematicons due to
their interaction results in a rapid damping of their position
oscillations about the mean walk-off. However, this increas-
ing difference for the oscillations does not change the excel-
lent agreement for the walk-off, as shown in Figs. 2 and 3. In
the limit of large velocity differences, it was found that the
Gaussian trial function (28) gave somewhat better agreement
for the amplitude evolution, while there was little difference
between the Gaussian and sech trial functions for the posi-
tion evolution.

V. CONCLUSIONS

The interaction of two solitary waves (nematicons) of two
different wavelengths (colors) in a nematic liquid crystal in
the local limit has been studied using a variational approxi-
mation using two different trial functions, a sech and a
Gaussian. The variational equations derived were augmented
to include the effect of the diffractive radiation shed as the
nematicons evolve. Initial conditions for which the two nem-
aticons form a vector nematicon were considered. It was
found that the modulation equations gave near perfect agree-
ment with numerical solutions for the walk-off of the steady
vector nematicon. The inclusion of the effect of the shed
diffractive radiation was vital for this agreement, as it was
shown that there is up to a 30% difference in the walk-off if
radiation loss is not included, while there is 1% difference or
less if it is.

As the nematicons in the two colors interact they become
distorted, this distortion increasing as their initial velocity
difference increases. As the distortion of the nematicons in-
creases, they shed more radiation so that they can revert to a
symmetric profile. As the trial functions did not include
modes to account for distortion, increasing differences in the
oscillatory components of the nematicons’ evolution were
found. However, these increasing differences did not affect
the excellent agreement for the walk-off. The inclusion of
more modes and parameters to account for this distortion in
the trial functions is nontrivial as the distortion modes are
unknown. Furthermore, the inclusion of more parameters in
the trial function results in more complicated modulation
equations, which makes it increasingly difficult to obtain
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qualitative information from them and negates the point of
using simple trial functions to obtain the key features of the
evolution.

The extensions of the present work to two color nemati-
con evolution in a nematic liquid crystal in the nonlocal limit
and to the interaction of two color nematicons with angular
momentum are currently under investigation.
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