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We study the interaction of two optical beams of different wavelengths �colors� in a nematic liquid crystal.
We consider the case for which one component carries an optical vortex and the other component describes a
localized beam. It is shown that a beam in one color can stabilize a vortex in the other color, the vortex being
unstable in the absence of the second beam. We also show that the bright vortex can guide the beam in a stable
manner, provided that the nonlocality is large enough. In this context we find that a different type of solitary
wave �nematicon� instability can arise, one for which a ring structure develops at its peak. The results of
approximate modulation solutions for the interaction between the vortex and the beam are found to be in good
quantitative agreement with direct numerical simulations.

DOI: 10.1103/PhysRevA.79.063808 PACS number�s�: 42.65.Tg, 42.70.Df, 05.45.Yv

I. INTRODUCTION

Optical vortices can be generated in both linear and non-
linear media as singularities of the phase front of the elec-
tromagnetic field �1�. However, in nonlinear media with a
local response optical vortices usually become unstable and
break up into filaments due to a symmetry-breaking azi-
muthal instability �2�. However when higher order nonlin-
earities, such as quintic, dominate over the usual cubic non-
linearity vortices in local media can be stabilized �3�.
Furthermore vector vortices in off-resonant saturable Raman
media have been shown to be stable �4�. In contrast, in non-
local nonlinear media such as liquid crystals, vortex solitary
waves can become stable if the nonlocality parameter ex-
ceeds some critical value �5–9�. This stabilizing effect of a
nonlocal medium response was subsequently explained using
modulation theory based on an averaged Lagrangian ap-
proach �10�.

In addition to scalar solitary waves, vector solitary waves
can form when multiple fields interact parametrically or
through cross-phase modulation �11�, and their dynamics is
governed by coupled systems of equations describing each
field. An example of such a vector solitary wave is the two-
color solitary waves �vector nematicons� which form when
two beams of different colors �wavelengths� propagate
through a nematic liquid crystal and couple due to the inter-
mediary effect of the �nonlocal� nematic. These two-color
vector nematicons were observed by Alberucci et al. �12�
and subsequently given a theoretical explanation �13,14�.

This multicomponent generalization of solitary wave dy-
namics is very natural in the context of atomic Bose-Einstein
condensates �BECs� because of the several ways in which
such systems can be created, for example, as mixtures with
two different atomic species or hyperfine states �15� and as
internal degrees of freedom liberated under an optical trap
and atom-molecule BECs �16�. These multicomponent con-
densates present novel and fundamentally different scenarios
for their ground states and excitations.

In this paper, we study the propagation of two light beams
of different wavelengths �colors� in a nematic liquid crystal
and consider the case for which one beam carries a bright
vortex and the other beam describes a localized mode, which
is here termed “nematicon.” We discuss two regimes. In the
first regime we study the stabilization of a vortex beam in
one color by a nematicon in the other, the vortex being un-
stable in the absence of the nematicon. The developed modu-
lation theory explains this stabilization in terms of the reduc-
tion in the vortex width. In the second regime we study the
guiding of a nematicon in one color by a vortex in the other
color. A corresponding situation for a dark vortex guiding a
bright solitary wave in a saturable local medium has been
previously considered �2,11�. In this case one beam under-
goes defocusing to form the dark vortex, while the focusing
solitary wave is supported as a mode of the resulting wave-
guide. In the present work we consider a different scenario
since a nematic liquid crystal is nonlocal �17� and can sup-
port stable pulse and bright vortex structures separately in
each color. The interaction between a bright localized vortex
in one color and a solitary wave in the other, with the nem-
aticon localized inside the vortex, is studied. It is shown that
a different type of instability develops on the nematicon. For
sufficiently small amplitude relative to the vortex, the nem-
aticon develops a ringlike instability at its peak. On the other
hand, as the nematicon becomes relatively large, this insta-
bility disappears.

We analyze both regimes analytically using a modulation
theory developed from an averaged Lagrangian based on
suitable trial functions. As found earlier for a single nonlocal
vortex �5,10�, the modulation theory gives an explanation in
simple terms of all the major effects observed in numerical
solutions, with good agreement being obtained.

The paper is organized as follows. In Sec. II we formulate
our problem and introduce the system of equations for de-
scribing the vector solitons in nematic liquid crystals. As a
matter of fact, this is the same system as was studied earlier
in Refs. �12–14�, but here it is analyzed for a different type
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of nonlinear two-color localized mode for which one field
carries an optical vortex and the other field describes a local-
ized beam. Section III then studies vortex stabilization by a
bright beam based on appropriate trial functions. In Sec. IV
the second regime of beam evolution is studied, for which
the bright beam is guided by a vortex, and the stability
boundary for stabilization is derived. Finally, Sec. V con-
cludes the paper.

II. FORMULATION

We consider two coherent polarized light beams of differ-
ent wavelengths propagating through a cell filled with a nem-
atic liquid crystal. The light propagates in the z direction
with the �x ,y� plane orthogonal to this. The director of the
nematic makes an angle � with the z direction. In order to
overcome the Freédericz threshold, a static electric field is

applied in the x direction to pretilt the nematic at �̂ to the z
direction. Let us set � to be the perturbation of the director

angle from this pretilt so that �= �̂+�. The electric fields of
the light beams are assumed to be polarized in the x direc-
tion. The equations for the envelopes u and v of the light
beams are, in dimensionless form,

i
�u

�z
+

1

2
Du�

2u + Auu sin 2� = 0, �1�

i
�v
�z

+
1

2
Dv�

2v + Avv sin 2� = 0, �2�

��2� − q sin 2� = − 2�Au�u�2 + Av�v�2�cos 2� �3�

�12,18–20�. Here q measures the strength of the static elec-
tric field and � measures the elasticity of the nematic. The
parameters Du and Dv are the diffraction coefficients for the
two wavelengths and Au and Av are the coupling coefficients
between the electric fields of the light and the nematic direc-
tor for the two, generally different, wavelengths.

The usual experimental regime is the so-called nonlocal
regime in which � is large �17,20�. In this regime the reori-
entation of the nematic extends far beyond the waist of the
electric field�s�. It can be seen from the director �Eq. �3�� that
for large �, � is small, so that in the highly nonlocal limit the
nematicon equations can be approximated by

i
�u

�z
+

1

2
Du�

2u + 2Auu� = 0, �4�

i
�v
�z

+
1

2
Dv�

2v + 2Avv� = 0, �5�

��2� − 2q� = − 2Au�u�2 − 2Av�v�2. �6�

These nonlocal two-color nematicon equations have the La-
grangian

L = i�u�uz − uuz
�� − Du��u�2 + 4Au��u�2 − �����2 − 2q�2

+ i�v�vz − vvz
�� − Dv��v�2 + 4Av��v�2, �7�

where the superscript � denotes the complex conjugate.

In order to study the vortex stabilization and a bright
beam guided by a vortex, Lagrangian �7� will be averaged
using trial functions suitable for each regime. This analysis
will be based on previous work �10�, so that only the relevant
modifications will be reported here. The first regime consid-
ered is that of the stabilization of a vortex by a localized
bright beam.

III. VORTEX STABILIZATION

Let us begin by considering the effect of a nematicon
�bright beam� on a larger vortex. It is found from numerical
solutions, as shown in Fig. 1, that in the weakly nonlocal
limit �=O�1� the addition of a nematicon in one color elimi-
nates the strong n=2 azimuthal instability mode of a vortex
in the other color, leading to a stable configuration.

To investigate this stabilization of a vortex by a nematicon
in the other color we shall use modulation theory, as in �10�.
Since numerical solutions show no instability in the nemati-
con, we proceed as in �10� with a trial function of a perturbed
vortex in one color and a nematicon in the second color. The
trial function for the vortex is then

v = avre−r/wvei�+i�vz + igei�+i�vz, �8�

while the nematicon trial function is

u = au sech�r/wu� ei�uz and �u = �u sech2�r/�u� , �9�

as in previous studies �10,21�. The director perturbation is
then �=�u+�v, with �v to be calculated later. Here r and �
are the polar coordinates corresponding to the Cartesian co-
ordinates �x ,y�. It should be noted that for reasonable
choices of trial function, the results of the variational analy-
sis are largely independent of this choice �13�.

Using trial functions �8� and �9� and the results of Min-
zoni et al. �10,21� we can obtain an averaged Lagrangian for
the two-color nematicon vortex of the form
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FIG. 1. ��a� and �b�� Input and output intensities for an unstable
vortex in color v with no beam in color u. ��c� and �d�� Vortex in
color v �c� stabilized by nematicon in color u. �d� Here �=4 and
au

T=0.9.
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L = Lu + Lv + Luv �10�

on taking Du=Dv=1 and Au=Av=1 to leading order. In this
regard it is reported by Alberucci et al. �12� that the diffrac-
tion coefficients in the liquid crystal E6 are 0.805 for red
light and 0.823 for near-infrared light. Here

Lu = − 4�I22au
2 − 16�I42�au

2 − 8�qI4�u
2�u

2 +
8�R2S2�u

2wu
2�u

2

R2�u
2 + S2wu

2

�11�

and

Lv = − �3

4
av

2wv
4 + 2	1g2��vz − 4avwv

3gz −
3

8
av

2wv
2 −

3

8
av

2wv�
2

+ 2avgwv� − 2avwvg� − 	2�g�
2 + g2� +

av
4wv

6

32��

+
2av

2wv
4

�
	

0

2� 	
0

2�



l�0



405e−2wv

3

256�l�
eil��−���

� g2�r,��,z�d��d� �12�

on using the results of Minzoni et al. �10�. Here

R =
�2I2

�Ix32

, S = �2I2, 	1 = wvR, and 	2 = ln� rmax

rmin
� .

�13�

The terms 	1 and 	2 in Eq. �13� describe the effect of the
shelf of radiation under the vortex �22�. This radiation is
assumed to be radially symmetric in space, centered about
the vortex peak at r=wv, as follows from numerical solu-
tions. Hence g is only nonzero in the region rmin�r�rmax,
where rmin,max=wv
R /2. The integrals Ii and Iij are

I22 = 	
0




x sech2 x tanh2 x dx =
1

3
ln 2 +

1

6
,

I42 =
1

4
	

0




x� d

dx
sech2 x�2

dx =
2

15
ln 2 +

1

60
,

I4 = 	
0




x sech4 x dx =
2

3
ln 2 −

1

6
,

Ix32 = 	
0




x3 sech2 x dx = 1.352 301 002 ¯ . �14�

To calculate the averaged Lagrangian for the interaction
between the vortex and the nematicon Luv we denote by �u
and �v the director distributions in the u and v colors, which
are determined by

��2�u − 2q�u = − 2�u�2 and ��2�v − 2q�v = − 2�v�2.

�15�

These can be solved, due to reciprocity, in terms of a sym-
metric Green’s function G�x ,x�� in the form

�u = − 2	
−



 	
−





G�x,x���u�x�,z��2 dx�dy�,

�v = − 2	
−



 	
−





G�x,x���v�x�,z��2 dx�dy� �16�

�21�. We then find that

Luv = 	
−



 	
−





�4�u�v�2 + 4�v�u�2� dxdy . �17�

Due to the symmetry of the Green’s function this can be
re-expressed, on rearranging the integration, as

Luv = 16	
−



 	
−





�v�u�x,z��2 dx �18�

to eliminate the dependence on �u.
To calculate �v, we use the same approximation as in �10�

and solve

�
d2�v

dr2 − 2q�v = − 2av
2r2e−2r/wv �19�

with �v��0�=0 and �v→0 as r→
. Since in the nonlocal
limit wv��, the right-hand side of this equation can be ap-
proximated by a � function at r=wv. Then, as in �10�, we
obtain

�v = 
A , r � wv

Ae−�2q/� �r−wv�, r � wv,
� �20�

where

A =
av

2wv
3

32�2q�
. �21�

This gives finally

Luv = 16Aau
2wu

2. �22�

Since the vortex and the nematicon are assumed to have
comparable amplitudes �powers� Luv=O��−1/2� on using Eq.
�21�. The influence of the vortex on the nematicon is then
small and from �21� and expression �22� it follows that the
amplitude-width relation for the nematicon is the same as
that in �21�, so that

au
2 =

2�I22I42

R4S6wu
6�u

2 �23�

in the limit of large �. On the other hand since the term in Lv
responsible for the amplitude-width relation for the vortex is
also O��−1/2�, the Luv contribution in averaged Lagrangian
�10� will change the width of the vortex due to the presence
of the nematicon. This has been shown, in fact, to be due to
the amplitude-width relation for the vortex being sensitive to
the size of the tilt of the optical axis in the region where the
vortex is small �10�. In the present scenario, it is in this
region that the nematicon in the second color is large. The
amplitude-width relation for the vortex is then modified.
Variations in averaged Lagrangian �10� with respect to the
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parameters av and wv give the amplitude-width relation for
the vortex in the presence of the nematicon as the solution of
the quadratic equation

e2Hv
2

8��
wv

2 + �auwu�2wv −
3

2
= 0. �24�

In this equation the amplitude Hv of the vortex at its maxi-
mum is given by

Hv = avwve−1. �25�

The equations for the azimuthal perturbations of the vortex
are the same as in �10�, where now wv satisfies Eq. �24�. In
the limit au=0 we recover the results of Minzoni et al. �10�
for a vortex. The results of this work give that the vortex is
destabilized when

D2 =
405

128�
Hv

2wv
4 �26�

reaches the threshold value D2=14.42. It is clear from sta-
bility relation �26� that as wv decreases the vortex is stabi-
lized. This vortex width contraction is displayed in Fig. 1.
The remarkable result is that the threshold value for vortex
stability has been decreased by a factor of order 25 due to the
presence of the nematicon over that when there is no nem-
aticon �10�. Moreover it follows from amplitude-width rela-
tion �24� that as au

2wu
2 increases the vortex will stabilize for

smaller values of �. This stability analysis then gives a quali-
tative explanation of the numerical results showing vortex
stabilization due to the presence of a nematicon in the other
color.

At a physical level the vortex is stabilized by the beam as
the beam tilts the nematic in the center of the vortex, result-
ing in stability for sufficiently large added tilt. In this regard
the incoherent nature of the two-color interaction is vital as it
allows the vortex and beam to rotate the nematic indepen-
dently. Finally the stabilization mechanism is extremely ef-
fective as it results in a drastic reduction in the stability
threshold for the vortex, independent of the actual param-
eters involved. Now that the mechanism for stabilizing a
vortex by a beam has been determined, it is clear that any
mechanism, such as other beams or a collection of beams,
which tilts the nematic in the center of the vortex will stabi-
lize it in a manner similar to that determined here for a beam
of another color.

Let us now consider quantitative comparisons between
the modulation theory and numerical results. The numerical
results were obtained by solving two-color nematicon Eqs.
�1�–�3�. While approximations �4�–�6� to full nematicon Eqs.
�1�–�3� in the limit of small director deviation � have been
the basis of the modulation theory, these limiting equations
are known to give an excellent approximation to the full
equations in the nonlocal regime for which ��� is small �21�.
A stationary vortex was used as an initial condition. This
stationary solution was obtained by numerically solving
nematicon Eqs. �1�–�3� for an isolated vortex in the color v,
v= f�r�exp�i�z+ i�� with u=0, which results in an eigen-
value problem for � for a vortex of a given amplitude �5,23�.
For sufficiently small nematicon amplitude au the vortex was

unstable to the n=2 azimuthal mode and split. As the ampli-
tude of the nematicon increased the vortex was stabilized,
giving a numerical threshold amplitude au

T for stability. The
corresponding threshold amplitudes au

� and widths wu
� as

given by modulation theory were calculated using the theo-
retical threshold D2 �Eq. �26��, based on Eq. �24�. The com-
parison is given in Table I. It can be seen that there is excel-
lent agreement between the present stability thresholds and
the numerically determined thresholds of Xu et al. �23�. This
is especially so as the modulation theory analysis was based
on the assumption that � is large, while for reasonable am-
plitudes the values of the nonlocality used were �=O�1�
−O�10�.

IV. STABILITY OF A VECTOR NEMATICON

In contrast to Sec. III where the vortex and nematicon
have similar powers, let us consider the interaction of a nem-
aticon �solitary wave� in the u color and a relatively large
vortex in the v color, so that the power of the vortex is large
relative to that of the nematicon. As by Minzoni et al.
�10,21�, Skuse and Smyth �13�, and Assanto et al. �14�, this
interaction will be investigated using suitable trial functions
in Lagrangian �7�. In Fig. 2 numerical solutions are displayed
which show that the nematicon in the u color becomes un-
stable due to a vortex mode developing around its peak. Suit-
able trial functions which include this dominant instability
mode are then

u = ��au sech�r/wu� + B��2r2 − r4��ei�u

+ i�uei�u, r � �

au sech�r/wu�ei�u + iguei�u, r � �
� �27�

and

�u = �u sech2�r/�u� �28�

for the u color nematicon with the vortex instability mode
and

v = avre−r/wvei�v+i� + igvei�v+i� �29�

for the v color vortex �10�. The variables �r ,�� are polar
coordinates in the �x ,y� plane. The form of the director �v for
the v color will be calculated below. Also the instability am-
plitude B�� ,z� will be determined from the modulation equa-
tions. The parameters of the nematicon and the vortex are
functions of z and �. The first terms in these trial functions

TABLE I. Comparison between stability thresholds as given by
the present modulation theory and the numerical results for au

T in
�23�.

� Hv au
T au

� wu
� D2�au

T�

2 3.59 1.4 1.47 1.0 18.33

3 2.77 1.2 1.27 1.2 16.96

4 2.39 0.9 0.85 2.2 13.8

5 2.02 0.45 0.28 0.3 5.74

6 1.96 0 0 0
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are the varying nematicon and vortex, respectively. The u
color trial function in r�� is an approximation to the insta-
bility mode at an early stage of its development. Its ampli-
tude is assumed to be small, so that �B� is small. The second
terms represent the effect of the low wave-number diffractive
radiation which accumulates under the pulses as they evolve
�10,21,22�. An averaged Lagrangian

L = 	
−



 	
−





L dxdy �30�

is then calculated by substituting trial functions �27�–�29�
into Lagrangian �7�, from which modulation equations for
the parameters are derived as variational equations.

As it is observed from numerical solutions that the main
effect of the vortex on the nematicon is to produce a vortex-
like instability localized around r=0, we shall ignore the
effects of the shelves under the vortex in the v color and the
nematicon so that gu=gv=0. In addition, as we shall not be
interested in the effect of the shed diffractive radiation, these
can be ignored �21�. As in �10� it will be further assumed in
the present linear stability analysis that, to leading order, the
amplitude and width of the v color vortex and the u color
nematicon remain at their steady state values. It is observed
from numerical solutions that these parameters evolve over a
longer z scale than the vortexlike instability. Therefore, for
the present analysis, only the parameters B and �u will be
assumed to evolve, as these are the parameters which evolve
on the z scale of the instability and control the vortex-mode
instability of the u color nematicon. Under these assumptions
the contribution of the v color vortex to the averaged La-
grangian is as in �10�.

The averaged Lagrangian for the u color nematicon has
two contributions. The first comes from the nematicon itself
and is as in �21�. The contribution which comes from the
interaction of the term of amplitude B�� ,z� and the main
pulse is zero since B�� ,z� is taken to have zero angular
average. For linear stability, �B� is assumed to be small and
only quadratic terms in B in the averaged Lagrangian are
retained. The contribution of the shelf �u under the instability

vortex is confined to the region around its maximum at r
=� /2. Under these assumptions the contribution of the nem-
aticon to the averaged Lagrangian is

L = Lu + Lv + LvQ + Lv�, �31�

where

Lu = L̂u + �au
2wu

2 ln 2 +
�6

20
B2��uz +

�6

20
gBz −

�4

24
B�

2 −
	�

wu
�u�

2

−
3

35
�8B2. �32�

Here L̂u is Eq. �11� evaluated at the fixed point. The aver-
aged Lagrangian for the vortex in Lv is Eq. �12�. The aver-
aged Lagrangians LvQ and Lv� give the interaction of the
main vortex with the shelf of the small cap vortex on the
nematicon.

The averaged Lagrangian contribution due to the interac-
tion between the optical axis for the v color vortex and the
vortex perturbation Q is given by LvQ in the form

LvQ = 	
−



 	
−





4�Au + Av�B2�Q�x���2�v dx� =
1

60
AB2�10

�33�

on again using the symmetry of the Green’s function.
Finally we consider the interaction between the distor-

tions of the optical axis caused by the shelf �u under the
vortex instability in the u color and the v color vortex. The
corresponding term in the averaged Lagrangian is

Lv� = 	
−



 	
−





4�Au + Av��v��u�2 dx , �34�

where �v is the solution given in Eq. �20�. This gives

Lv� = 4�Au + Av�A	�, �35�

where 	� is the area of the annulus below the maximum of
the vortex perturbation in the u color.
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FIG. 2. Cross sections of numerical solutions of two-color nematicon Eqs. �4�–�6� for �u� and �v� at y=0 for boundary conditions au

=0.55, wu=3.1, av=0.55, and wv=4.0 for �=10, Au=1, Av=0.95, Du=1, and Dv=0.98. u color �—�; v color �– – –�. �a� z=10; �b� z=15.
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The modulation equations governing the evolution of the
two-color vortex nematicon are then derived from the full
averaged Lagrangian

L = 	
z0

z1 	
0

2�

�LvQ + Lv� + Lu + Lv + Luv� d�dz . �36�

Let us now examine averaged Lagrangian �36� to study
the stability of the vortex-nematicon system. To this end, it is
only necessary to study the associated Hamiltonian and show
that it is positive definite. Now since the nonlocality � is
assumed to be large, Luv can be neglected. In this case we
have that the quadratic form, which is the Hamiltonian of the
vortex perturbation, is positive definite. Examination of this
Hamiltonian shows that perturbations of the form e−in� will
be stable for n large, as in �10� for a single vortex, and that
the most unstable mode will be proportional to e−i�. For this
mode to be stable, we require

3

7
�8 −

A

12
�10 � 0 �37�

and

	�wu
−1 − 	�A � 0. �38�

From expression �21� for A it is clear that both of these
inequalities will be satisfied, provided that the nonlocality �
is sufficiently large. Moreover, the shelf area 	� plays no
role to this order and need not be determined. The two-color
vortex nematicon is then stable, provided that the nematic is
highly nonlocal. The parameter �, which gives the width of
the vortex perturbation on the nematicon, can be taken as
�=wu �10�.

To study the stability quantitatively, let us consider small
perturbations about the steady state for the vortex nematicon
which is determined from the variational equations for aver-
aged Lagrangian �36�, Lau

=0, Lav
=0, Lwu

=0, and Lwv
=0.

For ��1, these variational equations give the amplitude-
width relations for the vortex nematicon as

au
2 =

2�I22I42

R4S6wu
6�u

2 and av
2 = 48��wu

−4. �39�

These fixed point expressions are the same as for an un-
coupled vortex and nematicon �10,21� since LvQ is of smaller
order. Moreover, smaller nematicon widths correspond to
larger nematicon amplitudes. When steady states �Eq. �39��
are used in stability relations �37� and �38�, we find for a
given value of the nonlocality � that larger nematicons are
more stable than smaller ones. As the nematicon amplitude
decreases, the vortex nematicon destabilizes. The unusual as-
pect of the vortex destabilizing the beam is that an optical
vortex, which is usually unstable, has destabilized a solitary
wave, which is usually stable.

For values of � below a critical threshold, the two-color
vortex nematicon is unstable, with the nematicon peak devel-
oping a dip. This dip expands and increases in depth until the
nematicon evolves into a vortex. The early stage of this de-
velopment is governed by the ��u variational equation,
which gives mass conservation for the vortex-nematicon sys-

tem at the nematicon peak. Varying averaged Lagrangian
�36� with respect to �u gives this mass equation at the nem-
aticon peak as

d

dz
�au

2wu
2 ln 2 +

�6

20
B2� = 0. �40�

This mass equation shows the decay in the amplitude of the
nematicon as the vortex perturbation grows as a result of the
interaction with the optical axis of the main vortex in the v
color. Numerical solutions show that the center of the nem-
aticon then rebounds, reforming the original beam shape.
This rebound is, of course, not governed by the present lin-
earized stability equations. This process repeats itself until
ultimate collapse occurs due to the instability of the vortex
and nematicon for the low director deviation Eqs. �4�–�6� for
small values of the nonlocality �. For small values of � the
vortex itself is unstable �5,10�. Also, since there is no satu-
ration effect in the small director deviation nematicon Eqs.
�4�–�6�, as there is in full Eqs. �1�–�3�, the nematicon itself is
also unstable for small �, the local limit �19,24�. For values
of � above a critical, the vortex-nematicon bound state is
stable, with the nematicon sitting inside the vortex. In this
context it should be noted that for large enough �, so that the
nematic has a large enough nonlocal response, a vortex is
stable �5,10�. Figure 2 shows numerical solutions of nemati-
con Eqs. �4�–�6� for �=10, which is a nonlocality parameter
value well below the stability threshold for the nematicon to
be stable to vortex-type perturbations. The vortex-type insta-
bility can clearly be seen in Fig. 2�a�, which is at z=10. In
Fig. 2�b� the solution is shown at z=15, at which distance the
center of the nematicon has rebounded. For the low value of
� used the vortex and nematicon are unstable �5,10,19,24�, as
can be seen in this figure.

Let us now examine a quantitative comparison between
the modulation theory and numerical solutions of two-color
Eqs. �4�–�6�. For the steady state near au=0.5, wu=3.5, av
=1.0, and wv=4.5, numerical solutions of the nematicon
equations gave the change in stability threshold for the vor-
tex nematicon to be about �=171, while the zero of stability
criterion �37� gave about �=150, a 12% difference. It should
be noted that inequality �38� is also satisfied at �=150. Given
the number of approximations which were made to derive
stability criteria �37� and �38�, this agreement is quite good.

V. CONCLUSIONS

We have studied the interaction of two beams of different
colors �wavelengths�, one a vortex and the other a bright
beam, in a nematic liquid crystal. In particular, we have de-
veloped a modulation theory which gives analytical results
for this interaction, including the stability of the correspond-
ing two-color vector solitons. We have shown that a nemati-
con in one color can stabilize a vortex in the other color, the
isolated vortex being unstable, provided that the nematicon’s
amplitude is above a threshold which depends on the degree
of nonlocality and the vortex amplitude. Moreover, we have
shown that a bright vortex can guide a localized mode of a
different color in a nematic liquid crystal, provided that the
nonlocality of the liquid crystal is large enough. It has been
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further shown that a low amplitude guided mode will de-
velop a ringlike instability at its peak due to the interaction
between the peak and the flat optical axis produced by the
vortex at its core. This interaction decreases in strength as
the nonlocality increases, so stabilizing the vector soliton.

The simple modulation theory developed to describe the
two stability behaviors has been found to give predictions in
good quantitative agreement with numerical solutions for the
stability threshold and furthermore gives details of how the
stability boundary depends on the vortex and nematicon pa-
rameters. The results obtained here suggest a very rich fam-
ily of vector vortex solutions which exchange stability or

undergo bifurcations to periodic solutions. This could form
the basis for detailed further work.
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