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The propagation of solitary waves in nematic liquid crystals in the presence of localized nonuniformities
is studied. These nonuniformities can be caused by external electric fields, other light beams, or any other
mechanism which results in a modified director orientation in a localized region of the liquid-crystal cell. The net
effect is that the solitary wave undergoes refraction and trajectory bending. A general modulation theory for this
refraction is developed, and particular cases of circular, elliptical, and rectangular perturbations are considered.
The results are found to be in excellent agreement with numerical solutions.
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I. INTRODUCTION

The contemporary interest in optical spatial solitons in
nonlocal, nonlinear media is witnessed by the number of exper-
iments and numerical studies concerning the generation and
control of such self-confined wave packets in various materials,
geometries, and regimes. In particular, thermal and reorienta-
tional dielectrics have hosted a variety of novel soliton-related
phenomena, several of them dealing with the all-optical control
of the trajectory of self-trapped beams [1–3]. Specifically,
optical spatial solitons in nematic liquid crystals, also known
as “nematicons” [4], have been demonstrated to undergo path
bending and readdressing under the external action of applied
voltages or external illumination, both of them distorting the
refractive or uniaxial environment in which the self-confined
beam propagates [2,3,5–11]. Nematic liquid crystals, in fact,
are liquid uniaxial dielectrics in which the optic axis (or direc-
tor) corresponds to the main axis of the elongated constituent
molecules [12]. The resulting polarization- and propagation-
dependent refractive index and birefringent walk-off can
therefore be modified via electric-field-driven reorientation or
distortion of the director distribution in which the self-trapped
wave packet propagates. This very same reorientational mech-
anism is the basis for efficient self-focusing and generation of
nematicons at milli-Watt powers or less [6,13,14].

In the present work, the refraction of the trajectory of a
nematicon due to variations in the director orientation caused
by localized external electric-field variations will be studied,
as, for example, in the experiments reported in [10,11]. An
analogous study in which the nematicon trajectory changes due
to the effect of an air inclusion in the liquid-crystal cell has been
reported [15]. A modulation theory for the nematicon evolution
based on suitable trial functions in a Lagrangian formulation of
the nematicon equations will be developed to derive equations
which explain, in simple terms, the nematicon’s trajectory.
The specific cases of circular and elliptical external fields,
as in Refs. [10,11], and rectangular external fields will be
considered. It will be shown that the trajectories as given by
the modulation theory are in excellent agreement with full
numerical solutions of the nematicon equations. In addition,
it will be shown that the nematicon trajectory is largely

independent of the beam shape. A major conclusion then is
that the beam behavior can be described accurately by an
equivalent particle moving in a self-consistent potential. This
simple description of a beam’s trajectory should be applicable
to a wide range of nonlinear guided-beam problems, as has
been found for dye-doped liquid crystals [16].

II. BACKGROUND DIRECTOR FIELD

Let us consider a planar cell filled with a nematic liquid
crystal [13]. The coordinate z will be taken down the axis of
the cell and the (x,y) coordinates will be orthogonal to this
direction. A uniform external electric field Ep is applied in the
x direction to pretilt the molecular director or optic axis of the
effective uniaxial at an angle θ0 to the z direction in order to
overcome the Freédericksz threshold and ease the all-optical
reorientation [12,13], that is, the nonlinear response due to the
rotation of the director when forced by the coplanar electric
field in a light beam. The refractive index in the cell is then
made nonuniform by applying an additional external electric
field Eb which is nonzero in some domain � of the (x,z) plane
and uniform in the y direction. For simplicity, Eb will be taken
to have the constant value E0 in �. This additional electric
field may be due to an applied voltage [2,3,8,9] or another light
beam [5–7,10,11]. Its effect is to change the director angle by
an amount θb from the uniform pretilt θ0. For the particular case
of a light valve [9–11], the nonuniformity was produced by
applying an electric field localized in z in the y direction,
resulting in a nonuniform refractive index in a corresponding
region � of the (x,z) plane. It was shown that this localized
region � can be considered to have been produced by an
equivalent external electric field in the x direction, localized
in the (x,z) plane. Essentially this equivalent electric field can
be thought of as an inverse problem for the refractive index
change in the region �.

The nondimensional equation governing the resulting
director angle perturbation θb is then [17,18]

ν
∂2θb

∂x2
+ ν

∂2θb

∂z2
− 2qθb = −2|Eb|2. (1)
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The appropriate boundary condition is that θb is zero at ∞ with
θb and its first derivatives being continuous on the boundary of
�. The parameter q is related to the square of the external
uniform pretilting field Ep [17–19], and the parameter ν

measures the response of the liquid crystal to the light.
The director equation (1) is a standard elliptic partial

differential equation and, in principle, can be solved exactly for
a number of separable coordinate systems. However, except
for standard, simple coordinates, such as rectangular and polar,
these exact solutions will not yield a modulation theory in a
simple enough form to be useful. In general, they will be
infinite-series solutions and a large number of terms in the
series will be required to obtain a faithful representation of
the physics. In the present work, we will then use variational
approximations in the cases for which there are not simple
exact solutions of (1).

Let us consider the exact solution of (1) for an infinite stripe
domain �. We then consider the electric field Eb to be nonzero
in the region z1 � z � z2, taking the constant value E0 there,
so that

Eb =
{

E0, z1 � z � z2,

0, z < z1 or z > z2.
(2)

Poisson’s equation (1) then has the solution

θb =

⎧⎪⎨
⎪⎩

A1e
κz, z < z1,

E2
0

q
− A2e

−κz − A3e
κz, z1 � z � z2,

A4e
−κz, z > z2,

(3)

where κ = √
2q/ν and the constants are

A1 = E2
0

2q
(e−κz1 − e−κz2 ), A2 = E2

0

2q
eκz1 ,

(4)

A3 = E2
0

2q
e−κz2 , A4 = E2

0

2q
(eκz2 − eκz1 ),

as found in [16,20].
Poisson’s equation (1) also has a simple exact solution for

a circular region. For a circular region �, let us take � to be a
circle of radius R centered at (X,Z) in the (x,z) plane and the
electric field to be a constant E0 inside this circle, so that

Eb =
{

E0, (x − X)2 + (z − Z)2 � R2,

0 otherwise.
(5)

Poisson’s equation (1) then has the solution

θb =
⎧⎨
⎩

E2
0

q
[1 − κRK1(κR)I0(κr)], r � R,

E2
0

q
κRI1(κR)K0(κr), r > R.

(6)

Here

r2 = (x − X)2 + (z − Z)2 (7)

and κ is as described previously. I0, K0 and I1, K1 are the
modified Bessel functions of order 0 and 1, respectively.

Laplace’s equation ∇2ϕ = 0 is separable in elliptical co-
ordinates [21]. Unfortunately, for the inhomogeneous elliptic
problem (1), the conformal factor generated by the change
to elliptical coordinates prevents a useful closed-form solution
[21]. However, the separability of the Laplacian shows that the
contour lines of the solution are ellipses confocal to the defect

� with a modulated exponential decay along the direction
normal to the level lines. With this observation, a variational
solution of the director equation (1) can be found for an electric
field Eb of the form

Eb =
{

E0,
(x−X)2

R2
a

+ (z−Z)2

R2
b

� 1,

0 otherwise,
(8)

where, as before, E0 is a constant.
The equation for the director perturbation θb is the Euler-

Lagrange equation for the Lagrangian,

L =
∫ ∞

−∞

∫ ∞

−∞

( − ν|∇θb|2 − 2qθ2
b + 4θb|Eb|2

)
dxdz. (9)

To construct an appropriate trial function, we observe from
the solution (6) for a circular defect that the expansion of I0

for large nonlocality ν gives a practically constant distribution
of θb in �. We shall assume that the same result holds for an
elliptical �. As the solution for θb in elliptical coordinates
has elliptical level lines modulated by exponential decay
orthogonal to these lines, we take a trial function of the form

θb =
{

C, � � 1,

C�−1/4e−λ(�1/2−1), � large
(10)

for the variational solution for θb, where

� = (x − X)2

R2
a

+ (z − Z)2

R2
b

. (11)

The factor �−1/4 has been added to mimic the asymptotic
decay of K0 for large argument, so that the trial function (10)
matches the solution (6) when the ellipse � becomes the limit
of a circle. Substituting this assumed form for θb into the
Lagrangian (9) and integrating in x and z from −∞ to ∞
gives the averaged Lagrangian. While this is straightforward
in principle, one integral cannot be evaluated exactly as a
function of λ. This integral is

I =
∫ ∞

−∞

∫ ∞

−∞
θ2
b dxdz. (12)

In polar coordinates, the equation for the ellipse bounding �

is

r(θ ) = RaRb√
R2

b cos2 θ + R2
a sin2 θ

. (13)

In polar coordinates in (x,z), the integral (12) is

I =
∫ 2π

0

∫ r(θ)

0
C2ρ dρdθ +

∫ 2π

0

∫ ∞

r(θ)
θ2
b ρ dρdθ

= πRaRbC
2 +

∫ 2π

0

∫ ∞

r(θ)
θ2
b ρ dρdθ. (14)

We need to assume an appropriate form for θb in the transition
region between the defect and the region in which the Bessel-
function-type solution (10) for large � applies. This transition
region extends between r(θ ) and ρ � √

ν. In this range, the
decay factor �−1/4 in (10) is close to a constant. We may
therefore neglect this decay factor and assume that the trial
function (10) behaves exponentially (i.e., with no �−1/4 decay
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factor). With these approximations, the second integral in (14)
becomes∫ 2π

0

∫ ∞

r(θ)
θ2
b ρ dρdθ =

∫ 2π

0
r2(θ )

∫ √
ν

0
e−2λ(η−1)η dηdθ

+
∫ 2π

0
r3/2(θ )

∫ ∞
√

ν

e−2η√η e2λ dηdθ.

(15)

Thus for large ν, the second integral in (15) is negligible and
the first can be extended to infinity. The angular integral can
be evaluated exactly when Ra = Rb in terms of the area of the
circle. A sufficient approximation is to replace the area of the
circle by the area of the ellipse when Ra �= Rb.

We then obtain the averaged Lagrangian from (9) and the
trial function (10),

L(C,λ) = πC2ν

(
1

4
+ λ

2

) (
1 + 3

8

(
R2

a − R2
b

)2

(RaRb)3

)

+πqRaRbC
2 + πqRaRbC

2

(
1

4λ
+ 1

2

)
− 2π |E0|2RaRbC. (16)

The extremum of L is obtained by solving the equations LC =
Lλ = 0. In the limit of large ν, we obtain

λ =
√

2qRaRb

ν

(
1 + 3

8

(
R2

a − R2
b

)2

(RaRb)3

)−1/2

(17)

and

C = |E0|2RaRb

Q1 + Q2
, (18)

where

Q1 = ν

2

(
1

4
+ λ

2

)(
1 + 3

8

(
R2

a − R2
b

)2

(RaRb)3

)
,

(19)

Q2 = qRaRb + 2qRaRb

(
1

4λ2
+ 1

2λ

)
.

The expression (10) then gives the perturbation of the optic
axis due to the elliptical defect.

The final defect region � considered in the present work
is a rectangle of length 2La in the x direction and 2Lb in
the z direction, with the rectangle centered at (x,z) = (X,Z).
The solution of the director equation (1) is nontrivial for
such a region �. A resolution of this difficulty is shown
by numerical solutions of (1) for a rectangular �. As the
nonlocality ν is large [17,18], the solution of the elliptic
problem (1) is smoothed near the edges of the rectangle, so
that the solution for θb has level lines which are ellipses and
the resulting director perturbation θb closely resembles that
for an elliptical region �. It is then apparent that the director
distribution θb for a rectangular � can be approximated by
the elliptical variational solution (10). The corresponding axes
Ra and Rb of the equivalent ellipse need to be determined.
This is done by requiring that the area of the equivalent ellipse
and the rectangle are the same, so that Ra = 2La/

√
π and

Rb = 2Lb/
√

π .

III. MODULATION EQUATIONS

In nondimensional form, the equations governing the
propagation of the nematicon through the liquid crystal with
the background director angle variation θb and resulting
refractive index variation are [17,18,23–25]

i
∂En

∂z
+ i�θb

∂En

∂x
+ 1

2
∇2En + En sin 2 (θn + θb) = 0,

(20)

ν∇2θn − q sin 2θn = −2 cos 2θn |En|2, (21)

with the Laplacian ∇2 in the xy plane. Here En is the envelope
of the electric field of the nematicon and θn is the optic axis
perturbation due to the nematicon. The parameter �θb is the
walk-off, with � depending on the pretilt angle. In most
experimental situations ν is large, O(10)–O(100) [2,17,19],
and the nematicon is said to be propagating in the nonlocal
[17,18,22]. In this nonlocal regime, the optic axis perturbation
due to the nematicon extends far beyond the nematicon waist.
In Eqs. (20) and (21), the nonlinear correction to the walk-off,
i�θnEnx , has been neglected as this term is O(V θn), where
both V and θn are O(0.1). The major nonlinear contribution
comes from the last term in (20). It is extremely difficult
to perform any analytical analysis of the full nematicon
equations (20) and (21). To enable such analysis, a small-angle
assumption is made so that it is assumed that the perturbation θn

of the director angle from the background value is small. With
this assumption, the full nematicon equations (20) and (21)
become

i
∂En

∂z
+ i�θb

∂En

∂x
+ 1

2
∇2En + 2En (θn + θb) = 0,

(22)

ν∇2θn − 2qθn = −2|En|2, (23)

on expanding the trigonometric functions to first order in their
Taylor series. This small-angle assumption is justified for the
low, milli-Watt power levels employed in experiments [2,13].
For the examples considered in this work, the angle θn is
O(0.1) and is usually in the range 0.05–0.2. The nematicon
equations (22) and (23) have the Lagrangian

L = i(E∗Ez − EE∗
z ) + i�θb(E∗Ex − EE∗

x ) − |∇E|2
+ 4(θn + θb)|E|2 − ν|∇θn|2 − 2qθ2

n . (24)

Here the asterisk superscript denotes the complex
conjugate.

To calculate the modulation equations for an evolving
nematicon, a functional form for the nematicon usually needs
to be taken, common forms being a sech and a Gaussian
[26,27]. However, we shall leave the functional form of the
nematicon free at this stage and take

E = af (ρe)eiσ+iV (x−ξ ) + igeiσ+iV (x−ξ ),
(25)

θn = αf 2(ρn),

where

ρe =
√

(x − ξ )2 + y2

w
, ρn =

√
(x − ξ )2 + y2

β
. (26)
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The amplitudes a, α, widths w, β, position ξ , velocity V ,
phase σ , and g are all functions of z. The only assumption
on the profile f is that it decays fast enough as ρe and ρn

approach ∞ so that any integrals involved in the calculation of
the averaged Lagrangian converge. The first term in the trial
function for E is a slowly varying nematicon. The second term
represents the low wave-number diffractive radiation which
accumulates under the nematicon as it evolves. The existence
of this radiation shelf in the case of the nonlinear Schrödinger
(NLS) equation has been shown from its inverse-scattering
solution [26] and in the case of coupled NLS equations from
soliton perturbation theory [28,29]. The physical reason for
the existence of this shelf of radiation can be simply deduced
from the dispersion relation for the linearized electric-field
equation (22). This is ω = k2/2, giving the group velocity
cg = k. Hence low wave-number radiation has low group
velocity and so accumulates under the evolving nematicon.
This radiation is π/2 out of phase with the nematicon, the
in-phase component resulting in changes in the nematicon
amplitude, width, and position [26]. The shelf term g allows
mass (optical power) to cycle out of and into the nematicon, so
that the nematicon’s amplitude oscillates as it evolves [26]. The
director response in the trial functions (25) has been assumed
to have the profile of |E|2. The reason for this is that it is
this term which occurs in a Green’s-function solution of the
director equation (23). Furthermore, such an assumption has
been found to give solutions in excellent agreement with full
numerical solutions and experimental results [16,19,20,27].

Substituting the trial functions (25) into the Lagrangian (24)
and averaging by integrating in x and y from −∞ to ∞ gives
the averaged Lagrangian,

L = −2(S2a
2w2 + �g2)

(
σ ′ − V ξ ′ + 1

2
V 2

)
− 2S1aw2g′ + 2S1gw2a′ + 4S1awgw′ − S22a

2

− 4νS42α
2 − 2qS4α

2β2 + 2A2B2αa2β2w2

A2β2 + B2w2

+ 2S2a
2w2 (2 − �V ) F. (27)

The various integrals Si and Sij are listed in the Appendix.
Taking variations of this averaged Lagrangian with respect to
the nematicon parameters gives the modulation (variational)
equations,

d

dz
(S2a

2w2 + �g2) = 0, (28)

S1
d

dz
aw2 = �g

(
σ ′ − V ξ ′ + 1

2
V 2

)
, (29)

S1
dg

dz
= S22a

2w2
− A2B4αaβ2w2

(A2β2 + B2w2)2
+ 1

2
S2aw(2 − �V )Fw,

(30)

S2

(
dσ

dz
− V

dξ

dz
+ 1

2
V 2

)

= −S22

w2
+ A2B2αβ2(A2β2 + 2B2w2)

(A2β2 + B2w2)2

+ S2(2 − �V )

(
F − 1

2
wFw

)
, (31)

d

dz
(S2a

2w2 + �g2)V = S2a
2w2(2 − �V )Fξ , (32)

dξ

dz
= V + �F, (33)

plus the algebraic equations,

α = A2B2β2a2w2

2(A2β2 + B2w2)(2νS42 + qS4β2)
, (34)

α = A2B4a2w4

qS4(A2β2 + B2w2)2
. (35)

These equations govern the evolution of the nematicon in the
presence of the refractive index inhomogeneity. The effect
of the inhomogeneity on the nematicon, the bending of its
trajectory, is encompassed in the term

F =
∫ ∞
−∞

∫ ∞
−∞ θb(x,z)f 2(x,y) dxdy∫ ∞

−∞
∫ ∞
−∞ f 2(x,y) dxdy

. (36)

It is not possible to evaluate the integral in the numerator
of F given by (36) exactly. However, since the width of the
nematicon beam is much smaller than the scale of the variation
of θb, which is O(ν1/2), θb in the integral in the numerator
of (36) can be taken to have its value at the center of the
nematicon x = ξ . With this approximation,

F (ξ,z) = θb(ξ,z). (37)

This approximation is exact in the case of a stripe defect �,
for which θb is given by (3), as θb is independent of x and F =
θb(z). In general, the approximation is valid if the trajectory of
the nematicon does not overlap the defect region �, which is
the case in experiments for finite regions [7,10,11].

As the nematicon evolves, it sheds diffractive radiation in
order to evolve to a steady state. The damping effect of this
shed radiation on the nematicon equations (28)–(35) will not be
included since the amount of radiation shed is negligible over
the z distances used in the present work, which are O(10).
Radiation loss only becomes significant over z distances of
O(100) [27]. Furthermore, the velocity and position evolution
are essentially decoupled from the amplitude and width
oscillation of the nematicon, with the radiation loss having
a much greater effect on the latter and a small effect on the
former over medium distances [16,20,30–32].

In addition, the nematicon trajectory is largely independent
of the functional form of its profile, as can be seen by
examining the modulation equations (28)–(35). The shelf of
radiation under the evolving nematicon has small amplitude
relative to the beam, so that |g| � a. Then, on using the
mass conservation equation (28), the momentum conservation
equation (32) can be approximated by

dV

dz
= (2 − �V )Fξ . (38)

In this approximation, the trajectory of the nematicon is given
solely by (38) and (33). The momentum equation (38) can also
be derived by averaging the momentum equation derived using
Nöther’s theorem based on invariances of the Lagrangian (24)
to shifts in x [33,34]. As previously mentioned, losses to
shed diffractive radiation can be neglected for propagation
distances which are not too long. In the nonlocal limit with
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large ν, these losses can be neglected for distances less than
z = O(100) in the present nondimensional variables [27]. For
large propagation distances, a loss term needs to be added to
the mass equation (28) [27], so that the approximation leading
to (38) from (32) is then not valid. As shown previously, in the
nonlocal limit in which ν is large [17,18], F is independent of a

and w and the functional form of the beam f (ρ). The position
of the beam thus decouples from the oscillation in its amplitude
and width, given by (29) and (30). In this approximation, the
trajectory of the beam is given solely by the simple system (33)
and (38) in which f (ρ) does not appear. A similar decoupling
of the amplitude and position evolutions and the independence
of the nematicon trajectory from its profile has been found in
previous work on the interaction of nematicons with localized
refractive index changes [16].

IV. COMPARISON WITH NUMERICAL SOLUTIONS

The full nematicon equations (20) and (21) were solved
numerically using the pseudospectral method of Fornberg and
Whitham [35], while the modulation equations (28)–(35) were
solved using the standard fourth-order Runge-Kutta scheme.
The trajectories of the nematicon as given by the numerical
and modulation solutions will now be compared.

Let us first consider the case of a nematicon being refracted
by a circular region �. A comparison between the trajectories
as given by the full numerical solution and the solution of the
modulation equations is shown in Fig. 1. To within graphical
accuracy, there is no difference between the trajectory as given
by the full modulation equations (28)–(35) and the momentum
approximations (33) and (38). The comparison is excellent
with near perfect agreement. It can be seen that the numerical
trajectory shows some oscillation after its turning point, while
the modulation trajectory does not. The averaging process of
modulation theory treats the nematicon as a point particle.
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FIG. 1. (Color online) Comparison of nematicon trajectories
for a circular region �. Numerical solution, — (red); solution
of modulation equations, – – – (green). The initial condition is
f (ρ) = sech ρ, a = 2.5, w = 2.0, V = −0.1, and ξ = −7.0 with
ν = 200, q = 2, and � = 1.0. The defect parameters are E0 = 1,
X = 0, Z = 20, and R = 5. The boundary of � is given by the
dotted (pink) line.
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FIG. 2. (Color online) Comparison of nematicon trajectories
for an elliptical region �. Numerical solution, — (red); solution
of modulation equations, – – – (green). The initial condition is
f (ρ) = sech ρ, a = 2.5, w = 2.0, V = −0.1, and ξ = −10.0 with
ν = 200, q = 2, and � = 1.0. The defect parameters are E0 = 1,
X = 0, Z = 20, and Ra = 5, Rb = 9. The boundary of � is given by
the dotted (pink) line.

However, a nematicon has a finite width, so that its tail overlaps
the defect �. This overlap causes an asymmetry in the nemati-
con, so that its peak starts to oscillate in position, transverse to
its trajectory. The numerical scheme determines the position of
the nematicon by the position of its peak. As the nematicon is
launched closer to the defect �, the oscillation in its trajectory
grows due to the increased portion of it in �. These oscillations
die as the nematicon propagates away from �.

Figure 2 shows a similar comparison for an elliptical defect
region �. The comparison between the trajectories as given by
the numerical and modulation solutions is not as close as for
the circular �, but it is still good. Again, the full modulation
equations (28)–(35) and the momentum approximations (33)
and (38) give the same trajectories to graphical accuracy. The
reason the comparison is not as good as for a circular � is
that the solution for the director distribution θb is not an exact
solution as it is for the circular �, and this introduces errors
in the modulation equations. The numerical trajectory again
shows an oscillation due to the overlap of the nematicon with
the region �.

The final defect geometry considered is a rectangular region
�. A limiting case of a rectangle is an infinite stripe in the x

direction. A trajectory comparison for this limiting case is
shown in Fig. 3, for which there is perfect agreement between
the numerical and modulation solutions, with the momentum
approximations (33) and (38) giving identical results to the full
modulation equations to graphical accuracy. As for the circle,
this perfect agreement is due to there being an exact solution
for the director perturbation θb. In the case of an infinite stripe,
F = θb(z) and so it does not depend on the nematicon position
ξ . It can then be seen from the momentum equations (32)
and (38) that momentum is conserved, so that the nematicon
trajectory returns to its initial direction after leaving the stripe,
as seen in the figure. The numerical nematicon trajectory does
not show the same oscillations as for the finite defects as
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FIG. 3. (Color online) Comparison of nematicon trajectories for a
stripe region �. Numerical solution, — (red); solution of modulation
equations, – – – (green). The initial condition is f (ρ) = sech ρ, a =
1.5, w = 3.5, V = 0.02, and ξ = 0.0 with ν = 200, q = 2, and � =
0.5. The defect parameters are E0 = 0.5, z1 = 30, and z2 = 60. The
boundary of � is given by the dotted (pink) lines.

the entire nematicon enters the defect region �. This case of
an infinite stripe generating a director angle perturbation is
essentially the same case as considered in [16,20], for which
the director perturbation was generated by an illumination
beam in the x direction. The main difference is that this
work took into account the decay of the illumination beam
due to scattering losses, which meant that momentum was
not conserved and the nematicon did not return to its initial
propagation direction on exiting the illumination region.

Let us now consider the effect on the trajectory of a
nematicon of a finite rectangular region �. A comparison is
shown in Fig. 4. The agreement of the trajectory as predicted
by the modulation equations with the numerical trajectory is
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FIG. 4. (Color online) Comparison of nematicon trajectories for
a rectangular region �. Numerical solution, — (red); solution of
modulation equations, – – – (green). The initial condition is f (ρ) =
sech ρ, a = 2.5, w = 2.0, V = −0.2, and ξ = −10.0 with ν = 200,
q = 2, and � = 1.0. The defect parameters are E0 = 1, X = 0, Z =
20, Ra = 5, and Rb = 8. The boundary of � is given by the dotted
(pink) line.

very good, with the level of agreement similar to that for
the elliptical region shown in Fig. 2. Again the momentum
approximation and the full modulation equations give the same
result to graphical accuracy. This level of agreement between
the modulation and numerical solutions is expected as the
director perturbation angle θb is again found as an approximate
solution, not an exact solution, of the director equation (1), as
is the case for the elliptical region �. The numerical trajectory
again shows a slight oscillation, for the same reason as for the
circular and elliptical defects �.

Previous work on the propagation of a nematicon through
an infinite stripe defect, as in Fig. 3, found that the trajectory
of the nematicon is independent of the functional form of its
profile [16], as discussed in the previous section. As there is
no known exact solution for the steady nematicon, this greatly
adds to the modulation theory approach used here as it is
based on using a reasonable approximation for this nematicon
profile, as in (25). The discussion leading to the momentum
equation (38) would suggest that the nematicon trajectory is
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FIG. 5. (Color online) Comparison of nematicon trajectories for
a circular region �. Numerical solution for a sech input beam f (ρ) =
sech ρ, — (red); numerical solution for a Gaussian input beam f (ρ) =
exp(−ρ2), – – – (green). The initial condition is a = 2.5, w = 2.0
for the sech and a = 2.5, w = 3.0 for the Gaussian with V = −0.1,
ξ = −7.0, ν = 200, q = 2, and � = 1.0. The defect parameters are
E0 = 1, X = 0, Z = 20, and R = 5. The boundary of � is given by
the dotted (pink) line. Part (a) trajectory and part (b) amplitude.

053843-6



REFRACTION OF NONLINEAR BEAMS BY LOCALIZED . . . PHYSICAL REVIEW A 82, 053843 (2010)

again independent of its profile for the localized refractive
index changes considered here. However, while this is true
for the modulation equations, the localized nature of � leads
to an effect not accounted for in the modulation theory. A
comparison between the nematicon trajectories for a sech and
a Gaussian input for a circular region � is shown in Fig. 5.
While the initial amplitudes are the same, the initial width of
the Gaussian beam was increased to 3 from the width 2 of
the sech beam as the faster decay rate of the Gaussian beam
means that it needs a larger width so that its mass is above the
threshold for a nematicon to form. However, for these initial
parameters, the half-widths of the two beams are nearly the
same. It can been seen that the trajectories are identical until the
turning point is reached. After this point, the Gaussian beam
shows more oscillation in its position than the sech beam. The
reason for this can be seen from the amplitude evolution shown
in Fig. 5(b). The Gaussian beam shows a greater decrease in
amplitude, and thus an increase in width, which means that
more of the beam intrudes into the defect region �, leading to
the greater oscillation in its trajectory. This reinforces the effect
of the finite size of a nematicon. The modulation theory of
Sec. III treats the nematicon as a point particle and so it cannot
account for its distortion due to its overlap with the region �.
This is especially the case as the interaction of the nematicon
with the defect region is contained in the interaction term F

given by (36). This interaction term has been approximated
to (37), which only accounts for the refractive index around
the peak of the nematicon.

V. CONCLUSIONS

The evolution of the trajectory of a nematicon in nematic
liquid crystals due to localized variations in the director
orientation (refractive index) caused by external effects, such
as other optical beams or a static electric field, has been
investigated. This study was carried out in the limit in which
the reorientation of the director due to the nematicon is
smaller than that due to the localized defect, so that the
director reorientation caused by the defect can be decoupled
from that caused by the nematicon. A modulation theory
based on using trial functions in an averaged Lagrangian
formulation was developed, and excellent agreement with full
numerical solutions was found for the nematicon trajectory
in a variety of defect configurations. It was found that the
nematicon trajectory was nearly independent of the profile of
the nematicon. In the limit of an infinite stripe defect, the
trajectory is fully independent of the profile, as has been found
previously [16]. For a finite defect, the beam trajectory is
affected by the overlap of the beam with the defect region,
with this overlap inducing an asymmetry in the nematicon
profile and a consequent oscillation in its trajectory. The closer
the nematicon is to the defect, the greater is this oscillation
and the more the trajectory depends on the beam profile. The
weak dependence of the beam trajectory on its profile is a
great advantage for modulation theories because these need to
assume a profile as there is no exact solution of the nematicon
equations for a steady nematicon.

We remark that similar results to those obtained here could
be found for the propagation of a vortex rather than the present

solitary wave beam, provided the electric-field-induced defect
does not destabilize the vortex. The analysis of Minzoni et al.
[36] for a vortex in a circular cell could be extended to study
the effect of localized defects as in the present work.

Finally, we remark on three-space-dimensional beam prop-
agation. In this three-dimensional case, the director distribu-
tion θb due to the defect field Eb will be computed numer-
ically by solving the equivalent of (1), with this numerical
solution used in the modulation equations for the nematicon
propagation. This will provide an efficient method for solving
high-dimensional beam propagation problems.
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APPENDIX: INTEGRALS

The integrals Si and Si,j in the modulation equations are

S1 =
∫ ∞

0
ρf (ρ) dρ, S2 =

∫ ∞

0
ρf 2(ρ) dρ,

S22 =
∫ ∞

0
ρ

(
df

dρ

)2

dρ, Sx32 =
∫ ∞

0
ρ3f 2(ρ) dρ, (A1)

S42 = 1

4

∫ ∞

0
ρ

(
d

dρ
f 2(ρ)

)2

dρ, S4 =
∫ ∞

0
ρf 4(ρ) dρ.

For f (ρ) = sech ρ,

S1 = 2C, S2 = ln 2, S22 = 1
3 ln 2 + 1

6 ,

Sx32 = 1.352 314 016 . . . , S42 = 2
15 ln 2 + 1

60 , (A2)

S4 = 2
3 ln 2 − 1

6 .

Here C is the Catalan constant C = 0.915 965 594 . . . [21].
For f (ρ) = exp(−ρ2)

S1 = 1
2 , S2 = 1

4 , S22 = 1
2 , Sx32 = 1

8 ,
(A3)

S42 = 1
8 , S4 = 1

8 .

The constants A and B arising in the modulation equations
are

A = S2

√
2√

Sx32
and B =

√
2S2. (A4)
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