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ARTICLE

Evolutionary conserved longevity genes and human
cognitive abilities in elderly cohorts

Lorna M Lopez*,1,2,14, Sarah E Harris2,3, Michelle Luciano1,2, Dave Liewald2, Gail Davies1, Alan J Gow1,2,
Albert Tenesa4,5, Antony Payton6, Xiayi Ke6,7, Lawrence J Whalley8, Helen Fox9, Paul Haggerty10,
William Ollier6, Andrew Pickles11, David J Porteous2,3, Michael A Horan12, Neil Pendleton12, John M Starr1,13

and Ian J Deary1,2

Genetic influences have an important role in the ageing process. The genetic factors that influence success in bodily ageing

may also contribute to the successful ageing of cognitive abilities. A comparative genomics approach found longevity genes

conserved between yeast Saccharomyces cerevisiae and nematode Caenorhabditis elegans. We hypothesised that these longevity

genes influence variance in cognitive ability and age-related cognitive decline in humans. Here, we investigated six of these

genes that have human orthologs and show expression in the brain. We tested AFG3L2 (MIM: 604581, AFG3 ATPase family

gene 3-like 2 (yeast)), FRAP1 (MIM: 601231, a FK506 binding protein 12-rapamycin associated protein), MAT1A, MAT2A

(MIM: 610550 and 601468, methionine adenosyltransferases I alpha and II alpha, respectively), SYNJ1 and SYNJ2

(MIM: 604297 and 609410, synaptojanin-1 and synaptojanin-2, respectively) in approximately 1000 healthy older Scots: the

Lothian Birth Cohort 1936 (LBC1936). They were tested on general cognitive ability at age 11 years. At a mean age of 70

years, they re-sat the same general cognitive ability test and underwent an additional battery of diverse cognitive tests. In all,

70 tag and functional SNPs in the six longevity genes were genotyped and tested for association with cognition and cognitive

ageing in LBC1936. Suggestive associations were detected between SNPs in SYNJ2, MAT1A, AFG3L2 and SYNJ1 and a general

memory factor and general cognitive ability at age 11 and 70 years. Replication studies for cognitive ability associations were

performed in 2506 samples from the Cognitive Ageing Genetics in England and Scotland consortium. A meta-analysis replicated

the SYNJ2 association with cognitive abilities (lowest P¼0.00077). SYNJ2 is a novel gene in which variation is potentially

associated with cognitive abilities.

European Journal of Human Genetics (2012) 20, 341–347; doi:10.1038/ejhg.2011.201; published online 2 November 2011
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INTRODUCTION

With the growing absolute numbers and proportions of older people
in societies, the changes wrought by ageing have become a research
priority.1 Very high on this list is the problem of cognitive ageing.
Cognitive ageing is a much-feared aspect of growing old and is the
major cause of older people’s losing independence and lowering
their quality of life.2 There are marked individual differences in age-
related cognitive changes,3,4 and among the causes of this variation
are genetic, medical, psychological, and social and lifestyle factors.5,6

Beyond APOE, and excluding the dementias, there are no solid
associations between genetic variants and cognitive functions in old
age, despite many suggestions and replication attempts.7

There are well-established phenotypic associations between cognition,
health and longevity.8,9 The ‘common-cause’ hypothesis of cognitive
ageing states that there are general bodily factors that affect both physical

and mental changes with age.10 Human longevity has been associated
with higher cognitive abilities,11 even when intelligence is measured in
childhood or early adulthood and the assessment of survival has been
conducted several decades later.12,13 Behavioural genetic studies have
shown that genetic factors influence both longevity14 and cognitive
traits,7 alongside other stochastic variation.15 Given the well-replicated
phenotypic association between cognitive abilities and longevity, it is
plausible that part of this is explained by shared genetic factors (genetic
correlation); therefore, to explore this, it is useful to examine genes
involved in longevity for their association with cognitive abilities and
cognitive ageing. We can study this cognitive function and lifetime
cognitive change in older people as we have the advantage of having an
ageing sample with a measure of cognitive ability from youth.

In an effort to harness the ‘new biology of ageing research’,16

we chose evolutionary-conserved, longevity genes uncovered by a
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comparative functional genomics investigation on ageing between two
divergent eukaryotic species, the yeast Saccharomyces cerevisiae and
the nematode Caenorhabditis elegans.17 The investigators had reported
the replicative lifespan phenotypes (the number of times that a mother
cell can bud to form a daughter) for single-gene deletions of the
yeast orthologs of worm ageing genes. They identified 25 genes that
modulate yeast replicative lifespan and suggested that ‘many of these
genes, and the pathways within which they function, are likely to
modulate ageing in mammals, and that mammalian orthologs of these
gene pairs are reasonable candidates as potential therapeutic targets
for age-associated diseases’ (Smith et al,17 568). From this list of 25
genes, we narrowed our focus to brain-expressed18 genes in humans,
resulting in six genes – AFG3L2 (MIM: 604581, AFG3 ATPase family
gene 3-like 2 (yeast)), FRAP1 (MIM: 601231, a FK506 binding protein
12-rapamycin-associated protein), MAT1A, MAT2A (MIM: 610550 and
601468, methionine adenosyltransferases I alpha and II alpha, respec-
tively), SYNJ1 and SYNJ2 (MIM: 604297 and 609410, synaptojanin-1
and synaptojanin-2, respectively). These genes are novel candidate genes
for cognition and do not fall in any of the linkage regions for cognitive
traits.7 We proposed that variation in these evolutionary conserved
genes for longevity may be associated with individual differences in
human cognitive ageing. We tested this hypothesis in a Scottish cohort,
assessed for cognitive ability at age 11 and 70 years, by genotyping
haplotype-tagging genetic variants in the six genes. We sought replica-
tion in newly available genome-wide association genotype data from
cohorts of older individuals from England and Scotland in the
Cognitive Ageing Genetics in England and Scotland (CAGES) con-
sortium: the Lothian Birth Cohort of 1921 (LBC1921),19 the Aberdeen
Birth Cohort of 1936 (ABC1936)19,20 and the Manchester and New-
castle Longitudinal Studies of Cognitive Ageing.21

MATERIALS AND METHODS

Subjects
There are 1091 individuals (543 females) in the LBC1936. All were born in 1936

and attended school in Scotland in 1947. At an average age of 11 years, they

took a valid IQ-type test – a version of the Moray House Test No. 12 (MHT) –

in the nationwide Scottish Mental Survey 1947 (SMS1947; N¼70 805).22 At age

B70 years, the LBC1936 were recruited as surviving and still relatively healthy

participants of the SMS1947 who were living in Edinburgh and the surround-

ing areas (Lothians) of Scotland. They re-sat the same mental test and other

cognitive and medical tests, as described elsewhere in detail.23 All participants

in the study lived independently in the community and travelled to the

Wellcome Trust Clinical Research Facility (WTCRF) at the Western General

Hospital, Edinburgh, UK for testing. DNA samples were available for 1078

participants. In all, 12 participants were excluded owing to possible dementia:

11 scored o24 on the Mini-Mental State Examination (MMSE)24,25 and one

had an incomplete MMSE test. The final sample with phenotype data used in

the analyses was 1038 individuals (521 females), with a mean age of 69.5 years

(range 67.6–71.3). They had a mean age of 10.9 years (range 10.4–11.4) when

tested in the SMS1947.

The replication cohorts were from the CAGES project: the LBC1921 (N¼517

(303 females), mean age 79.1 years (SD¼0.6)),19 the ABC1936 (N¼426, (208

females), mean age 64.4 years (SD¼0.9))19,20 and the Manchester and

Newcastle Longitudinal Studies of Cognitive Ageing (Manchester N¼805

(572 females), Newcastle N¼758 (536 females), median age of 65 years, range

44–93 years),21 as described previously.26 All four cohorts comprised non-

clinical samples of relatively healthy people from middle to older adulthood.

Cognitive tests
A full description of the cognitive tests applied to LBC1936 is available

elsewhere.23 The tests pertinent to this study are described in brief below. A

general measure of cognitive ability with an emphasis on verbal reasoning

(MHT) was administered when participants were a mean age of 11 years in the

SMS1947 (Scottish Council for Research in Education).22 The MHT was

re-administered at a mean age of almost 70 years for LBC1936, using the same

instructions and 45 minute time limit that were applied at age 11 years.

Cognitive tests assessing reasoning and different aspects of memory were

administered to the LBC1936 at age 70 years. These include: logical memory,

backward digit span, spatial span and verbal paired associates from the

Wechsler Memory Scale-IIIUK;27 letter-number sequencing, matrix reasoning

and block design from the WAIS-IIIUK;27 The information processing speed

battery comprised two psychometric tests from the WAIS-IIIUK (digit symbol

and symbol search) and two elementary cognitive tasks: simple and four choice

reaction time (RT), and inspection time, which is a psychophysical assessment

of the efficiency of the early stages of visual decision-making.19,28

The replication was performed in four cohorts from the CAGES study:

LBC1921,19 ABC193619,20 and the Manchester and Newcastle Longitudinal

Studies of Cognitive Ageing,21 previously described in detail. Individuals

with MMSE o24 were removed from LBC1921 and ABC1936. In LBC1921,

scores for the MHT taken at age 11 and 79 years, logical memory, Raven’s

Progressive Matrices and verbal fluency, all taken at age 79 years were available.

In ABC1936, scores for the MHT taken at age 11 years, block design, auditory

verbal learning test (AVLT), and Raven’s Progressive Matrices, digit symbol and

Uses of Common Objects taken at age 64 years were used. For Manchester and

Newcastle, the cognitive tests applied were described previously.21,26

SNP selection
Tagging SNPs were selected to tag haplotypes from the specific gene regions

and 5 kb either side of the gene. Genotype data were downloaded from the

HapMap CEPH population (Release 22). The tagging SNPs were chosen by

Tagger29 in Haploview v. 4.130 using the pairwise tagging method with the

default settings (r2¼0.8), with one exception (minimum minor allele frequency

(MAF) 0.05). In all, 70 tag SNPs act as direct proxies to all other SNPs in the six

genes because they are highly correlated with one another (r2
Z0.8). Coding

non-synonymous SNPs were also chosen (rs2502601 in SYNJ2 and rs2254562

in SYNJ1) as the allele changes (A-G) in both SNPs cause missense mutations

and residue changes (Glu-Gly, Lys-Arg, respectively). These two SNPs

predict important functionality of the SYNJ2 and SYNJ1 genes, and conse-

quently are informative as potential causative variants. In total, 70 SNPs were

genotyped. This SNP selection was carried out before genome-wide SNP data

becoming available on the LBC1936 sample.

Conventionally significantly associated SNPs (Po0.05) were chosen for

replication for cognitive abilities in the CAGES cohort: N¼21 SNPs. The SNPs

were extracted from genome-wide data as described previously26 and genotype

data were imputed to HapMap phase II CEU data as the reference sample,

using NCBI build 36 (UCSC hg18) in the MACH software.31 Before imputa-

tion, SNPs were removed that diverged from Hardy–Weinberg equilibrium

(HWE) with a significance Po1�10�3 and SNPs with an MAF o0.01.32

Genotyping
Genomic DNA was isolated from whole blood by standard procedure at the

WTCRF Genetics Core, Western General Hospital, Edinburgh. In total, 49

markers were genotyped using a competitive allele-specific PCR system

(KASPar) by KBiosciences (Herts, UK). SYNJ2 was not fully covered in the

first SNP selection owing to a genome browser change and human error.

To rectify this, 21 SNPs in SYNJ2 (rs1750043–rs13217929) were extracted from

a whole genome scan on LBC1936 as described previously.33 The ‘force-include’

option in Tagger was used to force the inclusion of the SNPs genotyped in the

whole genome scan as tagging SNPs, and the same level of tagging coverage for

SYNJ2 (r2
Z0.8) was achieved.

Statistical analyses
Cognitive phenotypes. The cognition data were prepared by removing out-

liers in the cognitive variable data with Z scores greater than ±3. A general

cognitive ability factor was derived from principal components analysis of one

WMS-III subtest (digit-span backwards) and five WAIS-III subtests (matrix

reasoning, letter-number sequencing, block design, symbol search and digit

symbol), as described previously.34 A general speed factor was separately

derived from principal components analysis of speed measures (choice RT
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mean, simple RT mean (log-transformed), digit symbol, inspection time and

symbol search).34 A general memory factor was derived from principal

components analysis of WMS III logical memory I total recall score (A+B+B2),

WMS III logical memory II delayed recall total score (A+B), WMS III spatial

span forward, WMS III spatial span backward, WMS III verbal paired associates

I (List A+B+C+D), WMS III verbal paired associates II recall total score,

WAIS III letter-number sequencing and WAIS III digit-span backwards.35

Outliers were removed before principal components analysis. The MHT1947

score at age 11 years was residualised for age. The sample size, the mean values

and standard deviations of the cognitive variables have been published

previously.36 This preparation was performed using SPSS version 14.0.

For the replication cohorts, similar preparation of the cognitive pheno-

types was performed. Outliers with Z scores greater than ±3 were removed.

Phenotypes were standardised to enable comparison. In LBC1921, a general

cognitive ability factor was derived from principal components analysis of

Raven’s Progressive Matrices, verbal fluency and logical memory as described

previously.35 In ABC1936, a general cognitive ability factor was derived from

principal components analysis of Raven’s Progressive Matrices, Digit Symbol,

AVLT, Uses of Common Objects as described previously as gf.
26 In LBC1921

and ABC1936, the MHT score at age 11 years was residualised for age in

days at age 11 years. The phenotypes in LBC1921 and ABC1936 were corrected

for age and gender and the standardised scores were used for all subsequent

analyses.

In Manchester and Newcastle samples, the individual cognitive tests have

been described previously,22 and the phenotypes for this study of cognition in

old age were prepared together as follows. For a general cognitive ability factor,

empirical Bayes’ (EB) estimates for each individual were obtained from a

random effects model fitted by maximum likelihood (ML) to the standardised

age regressed residuals obtained for each sex from the Alice Heim 4 test (1970)

and the Cattell (1960) ‘Culture Fair’ test scores.26 A similar approach was taken

for a speed factor based on the Visual Search for letters and Savage (1984)

Alphabet Coding Task tests. With up to seven measures (Verbal Free Recall for

30 words, Verbal Free Recall for 10 words, Cumulative Verbal Learning,

Pictorial Recognition Memory test, Memory for Shapes and Location, Proposi-

tions about people, Memory Circle) available to form a general memory factor,

individual EB estimates were obtained from the standardised age regressed

residuals from each test using a one-factor model fitted by ML.

Although different sets of tests were used to construct the general cognitive

ability factor, it is well established that the general factors derived from different

mental test batteries tend to rank people almost identically.37

Genotype data. All SNPs were in HWE as judged by the HW exact SNP tests

(all P-values 40.001 (Haploview default) and are reported in Supplementary

Table 1). The genotyping data were of good quality, as the mean genotyping

rate in LBC1936 was 99% (range 92–100%) in 1038 samples. The MAF of all

markers were 40.044. The genotype frequencies were similar to the HapMap

CEPH population (mean difference in genotype frequencies¼0.03, minimum

0.002, maximum 0.08). Further characteristics of the SNPs investigated are

listed in Supplementary Table 1. SNPs in each replication sample were checked

for MAF (all markers MAF 40.08), HWE (all P-values 40.001) and imputa-

tion quality (mean r2¼0.97 (0.053)).

Association analysis. In the discovery sample, LBC1936, genotype–pheno-

type analyses were performed using PLINK version 1.07.38 Linear regression

analysis under an additive genetic model was performed, including gender and

age in days at testing at age 70 years as covariates. In a separate analysis, MHT

score at age 11 years (age residualised) was included as a covariate to adjust for

previous cognitive ability, thus allowing us to specifically identify associations

with cognitive functions in old age, while adjusting for cognitive differences in

youth (ie, cognitive ageing). This inclusion of a previous measurement as a

covariate is a widely used ‘measure’ of change. Standardised b scores, the

standard error (SE) and their corresponding P-values are reported.

In the replication sample, linear regression analysis for an additive genetic

model was performed using MACH2QTL,39 incorporating dosage information.

For ABC1936, age and sex were included as covariates in the model.

For Manchester and Newcastle replication cohorts, the analysis was per-

formed separately by gender owing to the preparation of the phenotypes in a

sex-specific manner. b Scores, the SE and the corresponding P-values are

reported. Meta-analyses were performed in Manchester and Newcastle cohorts

to combine results for men and women, and in all the cohorts on overlapping

phenotypes (General Cognition Factor and Memory tests) in the replication

samples using an inverse variance weighted model.40

Statistical significance and power. In the first instance, the significance

threshold was determined by the Bonferroni method, which corrects the critical

significance level by the number of tests (n) performed (a¼0.05/n), and is

commonly used in candidate gene studies.41 It is recognized that the Bonferroni

correction can be overly conservative for non-independent tests.42 Therefore,

we calculated the number of independent tests performed. Based on matrix

spectral decomposition,43 the 70 SNPs represent 46 independent variables.

A principal component analysis of the specific cognitive test components of

the five cognitive measures in the discovery sample of LBC1936 was performed.

These are the Moray House test at age 11 years, Moray House test at age 70

years, logical memory I total recall score, logical memory II delayed recall total

score, spatial span forward, spatial span backward, verbal paired associates I

and verbal paired associates II, symbol search, digit symbol, simple RT mean

(log-transformed), choice RT mean, inspection time, matrix reasoning, letter-

number sequencing, digit-span backwards and block design. This resulted in

three components with eigenvalues 41 (5.04, 1.47, 1.15). It should be noted,

however, that the scree plot (available from the first author upon request)

confirms the presence of one general factor of cognition, accounting for 36% of

the total variance. The mean of the absolute factor loadings on the first

unrotated component was 0.59 (range from 0.37 for simple RT mean to 0.80 for

the Moray House Test at age 70 years). The adjusted Bonferroni significance

threshold thus applied was Po0.0004 (0.05/(3 cognitive components�46

independent SNPs)). Replication was sought for nominal significant associa-

tions (Po0.05). For evidence of replication, Po0.05 was taken as significant

evidence.

The power to detect an additive effect of a causal variant, in linkage

disequilibrium D¢¼1, of a marker with an allele frequency of 0.2, accounting

for 1–2% of the variance, at type-1 error rate adjusted for multiple testing

(P-value r0.0004) was 28–77% in LBC1936 (N¼1038). This was estimated

using the variance component quantitative trait loci association module in the

genetic power calculator.44

RESULTS

In all, 70 haplotype-tagging SNPs in six genes (AFG3L2, FRAP1,
MAT1A, MAT2A, SYNJ1 and SYNJ2) were tested for association
with cognitive abilities, including age and gender as covariates. The
cognitive abilities tested were a verbal reasoning test at age 11 years
(a version of the MHT), the same test again at age 70 years, a general
cognitive ability factor, a general memory factor and a general mental
speed factor, also at age 70 years. No SNP associations surpassed the
Bonferroni level of correction for multiple testing (Po0.0004).
Suggestive single SNP associations (unadjusted P-values o0.05)
were detected in variants of four of these genes with cognitive abilities:
SYNJ2, MAT1A, AFG3L2 and SYNJ1 (Table 1). No associations with
cognition were detected in FRAP1 and MAT2A (all P-values 40.1)
(Table 1). Supplementary Figure 1 shows that 14 of the 44 SNPs
tagging SYNJ2 were suggestively associated with cognitive abilities.
The strongest association was an intronic SYNJ2 SNP rs10945973 with
the general memory factor (P¼0.004).

Variants in these six genes (AFG3L2, FRAP1, MAT1A, MAT2A,
SYNJ1 and SYNJ2) were further tested for association with cognitive
ageing by including age 11 years cognitive ability (based on MHT
scores), in addition to sex and age, as a covariate. Significant SNP
associations were detected in four of the genes (13 SNPs): SYNJ2,
MAT1A, AFG3L2 and SYNJ1. No associations with cognitive ageing
were detected in FRAP1 and MAT2A (all P-values 40.1) (Supple-
mentary Table 2).
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Overall, 21 SNPs in four genes (SYNJ2, MAT1A, AFG3L2 and
SYNJ1) were suggestively associated (unadjusted P o0.05) with
cognitive abilities in old age (not cognitive ageing) in our discovery
cohort, LBC1936, shown in Table 1 and Supplementary Table 2.
These 21 SNPs explain 0.36–0.8% (by squaring the standardised
b values in Table 1) of the variance in the cognitive phenotypes
investigated. Replication of the 21 SNPs associated with cognitive
abilities was sought in four elderly independent cohorts from the
CAGES consortium with relevant cognitive phenotypes and genotype
data imputed from a genome-wide association study. Independent
association analysis was performed in each replication cohort.
In ABC1936, MHT at age 11 years, block design (to replicate MHT
at age 70 years), general cognitive factor and AVLT (to replicate
memory) were tested for association. In LBC1921, MHT at age
11 years, MHT at age 79 years, general cognitive factor and logical
memory (to replicate memory) were tested for association. In
Manchester and Newcastle, general cognitive, speed and memory
factors were tested for association.

Replication of SNP associations with SYNJ2 was present in the four
cohorts: ABC1936, LBC1921, Manchester and Newcastle (Supplemen-
tary Tables 3–6). Some of the SNP associations were replicated
in the targeted phenotype from LBC1936 (LBC1921: rs6455937 and
rs9459093 for memory, and rs7772395 for MHT age 11 years;
Newcastle: rs6455937 and rs10455935 for memory). Across all the
replication samples, the effect was in the same direction for the
significant SNPs, and it was the same direction as the discovery
sample, LBC1936. A meta-analysis showed significant association of
six SYNJ2 SNPs (Table 2). Three SNPs were significant for both
general cognitive ability and memory (rs6455937, rs7772395 and
rs10455935). Three SNPs were significant for memory abilities only:

rs11961283, rs10945973 and rs9459093. These six SNPs explain
0.45–1.4% of the variance in the meta-analysed general cognitive
ability factor and memory ability.

DISCUSSION

This study proposed six novel candidate genes (AFG3L2, FRAP1,
MAT1A, MAT2A, SYNJ1 and SYNJ2) for cognition in old age and
cognitive ageing. The novelty of the choice was to select evolutionary
conserved genes for longevity, found through a comparative func-
tional genomics approach and to test for association with human
cognitive ageing. Initially, we investigated 70 haplotype-tagging SNPs
in six genes for association with cognitive ability at age 11 and 70
years. We tested for association with cognitive ageing by including
cognitive ability at age 11 years as a covariate. There were suggestive
associations in four genes with cognitive ability, SYNJ2, MAT1A,
AFG3L2 and SYNJ1. The association of 13 out of the 20 suggestive
SNPs for cognitive ability remained associated with cognitive ageing,
with the same direction of effect, but to a lesser degree of effect and
significance as shown in Table 1 and Supplementary Table 2. This
could possibly be explained by the phenotype as any change variable is
always less reliably measured than a trait, or that the genetic associa-
tions are not specific to cognitive ageing. SNP associations in SYNJ2
were replicated in a meta-analysis of general cognitive ability and
memory ability. Given the neuronal functionality of SYNJ2, this
gene may be one of the many genes with a small effect influential in
cognitive abilities.

SYNJ2 has biological plausibility to support its role in cognitive
processes. SYNJ2 is an ubiquitously expressed inositol polyphosphate
5-phosphatase, shown specifically to be expressed in nerve terminals45

and differentially expressed in hippocampal subregions of the

Table 1 Significant associations of longevity gene variants to cognitive abilities in LBC1936

MHT age 11 years MHT age 70 years G cognition G memory G speed

Gene CHR SNP MA b SE P b SE P b SE P b SE P b SE P

SYNJ2 6 rs11961283 C �0.064 0.032 0.043 �0.043 0.031 0.158 �0.022 0.030 0.467 �0.071 0.031 0.022 �0.023 0.032 0.472

6 rs6455937 C �0.043 0.032 0.177 �0.033 0.031 0.290 �0.037 0.031 0.223 �0.063 0.031 0.044 �0.031 0.032 0.332

6 rs7772395 C �0.068 0.032 0.035 �0.051 0.031 0.103 �0.041 0.031 0.190 �0.059 0.031 0.059 �0.053 0.032 0.104

6 rs10455935 A �0.037 0.032 0.251 �0.028 0.031 0.378 �0.017 0.031 0.582 �0.063 0.031 0.043 0.010 0.032 0.752

6 rs10945973 A 0.016 0.032 0.623 0.036 0.031 0.253 0.036 0.031 0.238 0.090 0.031 0.0037 0.000 0.032 0.998

6 rs6906464 T �0.060 0.032 0.062 �0.086 0.031 0.0057 �0.044 0.031 0.148 �0.067 0.031 0.029 �0.057 0.032 0.075

6 rs9356200 C 0.047 0.032 0.139 0.059 0.031 0.058 0.015 0.031 0.625 0.074 0.031 0.017 0.003 0.032 0.915

6 rs9456954 A �0.042 0.032 0.187 �0.070 0.031 0.024 0.010 0.031 0.734 �0.042 0.031 0.169 �0.026 0.032 0.416

6 rs7758206 C �0.050 0.032 0.117 �0.063 0.031 0.040 �0.008 0.030 0.784 �0.038 0.031 0.213 �0.047 0.032 0.139

6 rs9459093 C �0.034 0.032 0.283 �0.059 0.031 0.058 �0.043 0.031 0.161 �0.079 0.031 0.011 0.007 0.032 0.822

6 rs751873 T �0.030 0.033 0.366 �0.023 0.032 0.475 0.000 0.031 0.995 �0.067 0.032 0.033 0.033 0.033 0.310

6 rs3818457 A 0.067 0.033 0.043 0.034 0.032 0.288 0.041 0.031 0.193 0.063 0.032 0.047 0.024 0.033 0.460

6 rs1744169 T 0.082 0.033 0.012 0.059 0.032 0.065 0.054 0.031 0.084 0.051 0.032 0.105 0.040 0.033 0.225

6 rs2502601 T 0.067 0.032 0.036 0.051 0.031 0.099 0.046 0.031 0.129 0.078 0.031 0.011 0.031 0.032 0.331

MAT1A 10 rs3851059 A 0.008 0.032 0.809 0.027 0.031 0.387 �0.053 0.031 0.085 �0.076 0.031 0.014 �0.022 0.032 0.496

10 rs4933327 A �0.013 0.032 0.683 0.037 0.031 0.228 �0.058 0.030 0.057 �0.089 0.031 0.0039 �0.031 0.032 0.336

AFG3L2 18 rs9964979 T �0.048 0.032 0.136 �0.074 0.031 0.019 �0.062 0.031 0.047 �0.102 0.031 0.0011 �0.010 0.032 0.750

SYNJ1 21 rs845022 T �0.058 0.032 0.069 �0.036 0.031 0.250 �0.068 0.030 0.025 �0.033 0.031 0.285 �0.047 0.032 0.138

21 rs7279487 C 0.090 0.032 0.0050 0.064 0.031 0.039 0.060 0.031 0.051 0.059 0.031 0.055 0.064 0.032 0.045

21 rs844996 G 0.086 0.032 0.0076 0.047 0.031 0.135 0.067 0.031 0.031 0.063 0.031 0.046 0.059 0.032 0.067

Abbreviations: MHT, Moray House Test, which is a verbal reasoning test taken at age 11 and 70 years; G, general ability factors; CHR, chromosome; MA, minor allele; P, P-value; b, the standardised
regression coefficient, where a positive regression coefficient shows that the minor allele increases phenotype mean.
Associations that surpass the nominal significance level adjusted for the number of independent phenotypes tested are shown (Po0.05, in bold). The 50 SNPs that did not show association with
cognitive abilities are not shown; these latter results are available from the authors.
The P-values are represented in italics.
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non-human primate marmoset.46 SYNJ2 is differentially expressed in
major depressive disorder,47 and is part of the neuronal processes
implicated in cognitive function48 and cognitive deficits,49 is asso-
ciated with age-related spatial learning impairments in rats,50 and has
been hypothesised to be involved in normal development of the
brain.49 SYNJ2 is a target for the ‘Genes to Cognition’ project
(http://www.genes2cognition.org). Alternative splicing of SYNJ2
results in multiple transcript variants and is an important candidate
considering its role in ubiquitous signal-transduction pathways.51

Gene Ontology (GO) links five biological processes to SYNJ2 through
inferred electronic annotation (brain development (GO: 007420),
dephosphorylation (GO: 0016311), inositol phosphate dephosphor-
ylation (GO: 0046855), phosphoinositide dephosphorylation (GO:
0046856) and intracellular distribution of mitochondria (GO:
0048312)).

A limitation of our study is the lack of consistent association
between cohorts, both at the SNP level, despite using the same
SNPs, and at the phenotype level, despite each general factor and
intelligence test capturing overlapping cognitive abilities. There are
many reasons that may explain this common occurrence in replication
studies. First, and most likely, is that the original finding in LBC1936
may be a false positive as none of the associations reported here
surpassed the Bonferroni correction. Second, the result may be a true
positive with overestimated effect sizes, which would reduce the power

of detection in our replication cohorts.52 Third, the original finding
may be a true positive and the effect size unbiased, but sample size,
selection bias, presence of allelic heterogeneity or hidden population
sub-structure, and phenotypic heterogeneity might prevent replica-
tion. The cohorts differ in time of recruitment, age, location and
cognitive tests as detailed in the Materials and Methods section.
Generally, those samples that have a greater number of more varied
cognitive tests will have a more reliable general cognitive ability
phenotype, and the same principle applies within cognitive domains.
These differences may have limited the degree to which the attempted
replication was truly a replication. The lack of association in the
Manchester sample may be due to subtle population substructure
differences between North East and North West England; however,
there is no strong evidence of population stratification, as reported
previously.26 However, the lack of association in the Manchester
sample should not be due to phenotypic heterogeneity as the cognitive
tasks were performed by the same test co-ordinators and the collection
of tests were the same for both Newcastle and Manchester cohorts.
Furthermore, the non-replication of specific SNPs could be explained
by varying linkage disequilibrium in the different cohorts between the
causative variant (presumably not genotyped) and the tagging SNPs.
Another limitation of the study was that the SNP selection strategy
was based on tagging the genes with HapMap SNPs. The coverage of
two genes, FRAP1 and MAT2A, with HapMap SNPs was small.

Table 2 Meta-analysis of G factor (N¼2401) and memory (N¼2412) in the replication samples ABC1936, LBC1921, Manchester and

Newcastle

G cognition Memory

Gene EA OA MA Effect SE P Dir Effect SE P Dir

SYNJ2

rs11961283 T C C 0.067 0.035 0.056 +���++ 0.103 0.034 0.0025 ++++++

rs6455937 A C C 0.078 0.030 0.0090 ++++�+ 0.089 0.029 0.0023 +++�++

rs7772395 A C C 0.098 0.036 0.0066 +++�++ 0.116 0.035 0.0009 +++�++

rs10455935 A G A �0.065 0.029 0.028 ������ �0.085 0.029 0.0032 ���+��
rs10455936 T C T 0.001 0.034 0.977 +���++ �0.008 0.033 0.806 +��+�+

rs10945973 A G A 0.042 0.030 0.159 ++++++ 0.066 0.029 0.024 +++�++

rs6906464 A T T 0.042 0.034 0.220 +�+�++ 0.063 0.033 0.059 +++�++

rs9356200 T C C �0.027 0.029 0.364 ++��+� �0.051 0.029 0.078 ������
rs9456954 A T A �0.006 0.032 0.854 �+�+�� �0.054 0.032 0.093 ������
rs7758206 C G C 0.009 0.037 0.814 ++�+�� �0.051 0.036 0.158 +���++

rs9459093 T C C 0.028 0.029 0.332 +�++�+ 0.058 0.029 0.042 +�++�+

rs751873 T C T 0.052 0.031 0.087 �+�+�+ �0.002 0.030 0.951 +����+

rs3818457 T C A (T) 0.023 0.029 0.421 +�++�� 0.021 0.028 0.463 +�+�+�
rs1744169 A G T (A) 0.021 0.030 0.478 +�++�+ 0.013 0.029 0.648 +++�++

rs2502601 A G T (A) 0.009 0.029 0.768 +��++� 0.007 0.028 0.816 +�+�++

MAT1A A G A �0.025 0.031 0.430 ���+�+ �0.013 0.031 0.679 +�++��
rs3851059

rs4933327 A G A �0.023 0.035 0.511 ��++�� �0.030 0.034 0.380 +�++��

AFG3L2 T C T �0.019 0.040 0.635 ���+++ �0.032 0.039 0.407 +���+�
rs9964979

SYNJ1

rs845022 A T T �0.027 0.029 0.351 ++���� 0.008 0.028 0.771 +�+�+�
rs7279487 T C C 0.033 0.041 0.414 �+�+++ 0.008 0.040 0.848 +++���
rs844996 T C G (C) �0.001 0.049 0.977 +++�++ 0.063 0.048 0.188 +++�++

Abbreviations: EA, effect allele; OA, other allele; MA, minor allele from Table 1 to enable comparison (alleles within parentheses are to clarify strand differences); SE, standard error.
P-values o0.05 are highlighted in bold. Dir is the direction of effect of LBC1921, ABC1936, Manchester males, Manchester females, Newcastle males and Newcastle females.
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Therefore, these genes cannot be definitely excluded as associated with
cognitive abilities.

This is the first survey of longevity genes, unveiled by a comparative
genomics approach, for association with cognitive abilities across the
life course. We are the first to report SYNJ2, as a preliminary candidate
gene awaiting independent replication, influencing cognitive abilities.
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