

Edinburgh Research Explorer

The use of proof plans in formal methods

Citation for published version:
Bundy, A 1990, The use of proof plans in formal methods. in A Miola (ed.), Design and implementation of
symbolic computation systems: International Symposium DISCO '90 Capri, Italy, April 10–12, 1990
Proceedings. Lecture Notes in Computer Science, vol. 429, Springer-Verlag GmbH, pp. 151-153. DOI:
10.1007/3-540-52531-9_134

Digital Object Identifier (DOI):
10.1007/3-540-52531-9_134

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Design and implementation of symbolic computation systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/3-540-52531-9_134
https://www.research.ed.ac.uk/portal/en/publications/the-use-of-proof-plans-in-formal-methods(6c567240-e117-4268-aa0b-fc710e468202).html

The Use of Proof Plans in Formal Methods

Alan Bundy
Department of Artificial Intelligence,

University of Edimburg, Scotland

1. Introduction

Proof plans is a new AI technique for controlling the search that arises in automatic
theorem proving. We have applied it to the satisfaction of the proof obligations
arising from the use of formal methods in software engineering. We first describe
the particular formal methods technique we have adopted as a vehicle and then
describe how proof plans are used within this techniqtle.

2. Program Synthesis using Theorem Proving

We are concerned with the synthesis of logic/functional programs in the Nuprl style,
[Constable et al 86]. The basic idea is to start with a logical specification,
spec(Inputs, Output) between the inputs to and outputs from a program, and then
prove a conjecture of the form:

V Inputs, 30utput.spec(Input, Output)

in a constructive logic. Because a constructive logic is used, any proof of this
conjecture must implicity encode a program, prog(Inputs), which obeys the
specifications, i.e. for which:

V Inputs.spec(Input~rog(lnput))

Nuprl uses a logic based on Martin Lof Intuitionist Type Theory, [Martin-Lof 79].
This makes trivial the extraction of prog from the proof, since each rule of
inference of the logic has an associated program construction step. The program is,
thus, built as a side effect of constructing the proof. There is a direct relation
between each proof step and the corresponding part of the program, for instance,
proofs by mathematical induction create recursive programs. We are, therefore,
particularly interested in inductive proofs. The program is a logic/functional
program in the Type Theory logic. As a programming language, this logic is higher
order with very flexible types. Type checking is done at synthesis time.

152

Naturally the theorem proving required to do this synthesis is combinatorially
explosive - in fact, the Type Theory is more badly behaved in this respect than
resolution theorem provers. For instance, it has a potentially infinite set of rules of
inference, some of which have infinite branching rates. It is an open question as to
whether this bad behaviour can be tamed with throwing away the benefits of the
logic from a program synthesis point of view. The Nuprl solution to this problem is
to control the search by a combination of user interaction and built-in simplification
routines. The latter are implemented as tactics: ML programs which call various
rules of inference when executed, cf. LCF. The user can also use custom built tactics
to encode a sequence of rule applications.

We have built our own version of Nuprl, which we call Oyster, [Horn 88]. It
differs from Nuprl in being implemented in Prolog rather than Lisp, being
considerably smaller and cheaper to run, and using Prolog rather than ML as the
tactic language. We have found that the pattern directed invocation of Prolog makes
the writing of tactics much simpler and clearer than with ML.

3. Proof Plans to Control Search

Our work has been to try to automate the search process to a much greater extent
than in Nuprl or similar systems. We have adapted the inductive proof heuristics of
Boyer and Moore, [Boyer & Moore 79], to the Oyster system, and implemented
them as tactics. These tactics have been successfully tested on a number of standard
theorems from the literature, [Bundy et al 89a].

In Boyer and Moore's system, their heuristics are applied in a fixed order.
This makes their system brittle. We have been developing a technique, called proof
plans, for applying the tactics in a more flexible manner. Each tactic is partially
specified in a method. Our Clam plan formation program, [van Harmelen 89], is
then used to build a proof plan especially adapted to the current conjecture. This has
give our system improved performance over the Boyer-Moore system.

We have also analysed the Boyer-Moore heuristics and rationally
reconstructed the reasoning behind their design and order. This analysis has been
captured in a tactic, the induction strategy, which is at a higher level of abstraction
than any of their heurisitcs, and is extremely successful in proving theorems, the
analysis has also enabled us to generalise some of the heuristics and add new ones,
extending the power of the system. For instance we can now prove existential
theorems (Boyer and Moore are restricted to universal quantification) and use
inductive schenmnata that are not suggested by recursions in the original conjecture,
[Bundy et a189b].

153

References

[Boyer & Moore 79]

[Bundy et al 89a]

[Bundy et al 89b]

the Eleventh

[Constable et al 86]

[Hom 88]

[Martin-Lof 79]

[van Harmelen 89]

R.S. Boyer and J.S. Moore. A Computational Logic.
Academic Press, 1979.ACM monograph series.

A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill.
Experiments with proof plans for induction. Journal of
Automated Reasoning, 1989. In press. Earlier version
available from Edinburgh as Research Paper No 413.

A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill, and A.
Stevens. A rational reconstruction and extension of
recursion analysis. In N.S. Sridharan, editor, Proceedings of
International Joint Conference on Artificial Intelligence,
pages 359-365, Morgan Kaufmann, 1989. Available from
Edinburgh as Research Paper 419.

R.L. Constable, S.F. Allen, H.M. Bromley, et al.
Implementing Mathematics with the Nupfl Proof
Development System., Prentice Hall, 1986.

C.Hom. The Nuprl Proof Development System. Working
Edinburgh version of Nuprl has been renamed Oyster.

Per Martin-Lof. Constructive mathematics and computer
programming. In 6th International Congress for Logic,
Methodology and Philosophy of Science, pages 153-175,
Hanover, August 1979. Published by North Holland,
Amsterdam. 1982.

F. van Harmelen. The CLAM Proof Planner, User Manual
and Programmer Manual. Technical Paper TP-4, Dept. of
Artificial Intelligence, Edinburgh, 1989.

