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The Use of Proof Plans in Formal Methods 

Alan Bundy 
Department of Artificial Intelligence, 

University of Edimburg, Scotland 

1. Introduction 

Proof plans is a new AI technique for controlling the search that arises in automatic 
theorem proving. We have applied it to the satisfaction of the proof obligations 
arising from the use of formal methods in software engineering. We first describe 
the particular formal methods technique we have adopted as a vehicle and then 
describe how proof plans are used within this techniqtle. 

2. Program Synthesis using Theorem Proving 

We are concerned with the synthesis of logic/functional programs in the Nuprl style, 
[Constable et al 86]. The basic idea is to start with a logical specification, 
spec(Inputs, Output) between the inputs to and outputs from a program, and then 
prove a conjecture of the form: 

V Inputs, 30utput.spec(Input, Output) 

in a constructive logic. Because a constructive logic is used, any proof of this 
conjecture must implicity encode a program, prog(Inputs), which obeys the 
specifications, i.e. for which: 

V Inputs.spec(Input~rog(lnput)) 

Nuprl uses a logic based on Martin Lof Intuitionist Type Theory, [Martin-Lof 79]. 
This makes trivial the extraction of prog from the proof, since each rule of 
inference of the logic has an associated program construction step. The program is, 
thus, built as a side effect of constructing the proof. There is a direct relation 
between each proof step and the corresponding part of the program, for instance, 
proofs by mathematical induction create recursive programs. We are, therefore, 
particularly interested in inductive proofs. The program is a logic/functional 
program in the Type Theory logic. As a programming language, this logic is higher 
order with very flexible types. Type checking is done at synthesis time. 
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Naturally the theorem proving required to do this synthesis is combinatorially 
explosive - in fact, the Type Theory is more badly behaved in this respect than 
resolution theorem provers. For instance, it has a potentially infinite set of rules of 
inference, some of which have infinite branching rates. It is an open question as to 
whether this bad behaviour can be tamed with throwing away the benefits of the 
logic from a program synthesis point of view. The Nuprl solution to this problem is 
to control the search by a combination of user interaction and built-in simplification 
routines. The latter are implemented as tactics: ML programs which call various 
rules of inference when executed, cf. LCF. The user can also use custom built tactics 
to encode a sequence of rule applications. 

We have built our own version of Nuprl, which we call Oyster, [Horn 88]. It 
differs from Nuprl in being implemented in Prolog rather than Lisp, being 
considerably smaller and cheaper to run, and using Prolog rather than ML as the 
tactic language. We have found that the pattern directed invocation of Prolog makes 
the writing of tactics much simpler and clearer than with ML. 

3.  Proof Plans to Control Search 

Our work has been to try to automate the search process to a much greater extent 
than in Nuprl or similar systems. We have adapted the inductive proof heuristics of 
Boyer and Moore, [Boyer & Moore 79], to the Oyster system, and implemented 
them as tactics. These tactics have been successfully tested on a number of standard 
theorems from the literature, [Bundy et al 89a]. 

In Boyer and Moore's system, their heuristics are applied in a fixed order. 
This makes their system brittle. We have been developing a technique, called proof 
plans, for applying the tactics in a more flexible manner. Each tactic is partially 
specified in a method. Our Clam plan formation program, [van Harmelen 89], is 
then used to build a proof plan especially adapted to the current conjecture. This has 
give our system improved performance over the Boyer-Moore system. 

We have also analysed the Boyer-Moore heuristics and rationally 
reconstructed the reasoning behind their design and order. This analysis has been 
captured in a tactic, the induction strategy, which is at a higher level of abstraction 
than any of their heurisitcs, and is extremely successful in proving theorems, the 
analysis has also enabled us to generalise some of the heuristics and add new ones, 
extending the power of the system. For instance we can now prove existential 
theorems (Boyer and Moore are restricted to universal quantification) and use 
inductive schenmnata that are not suggested by recursions in the original conjecture, 
[Bundy et a189b]. 
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