
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the coral System to Discover Attacks on Security
Protocols

Citation for published version:
Bundy, A 2004, 'Using the coral System to Discover Attacks on Security Protocols'. in A Herbert & K
Sp¨arck Jones (eds), Computer Systems: Theory, Technology and Applications. Springer-Verlag London
LTD.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Computer Systems: Theory, Technology and Applications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961500?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/using-the-coral-system-to-discover-attacks-on-security-protocols(851842c5-c583-4e0a-81d4-bb52e4d664f4).html


41
Using the CORAL System to Discover
Attacks on Security Protocols

Graham Steel, Alan Bundy, Ewen Denney

Introduction

Inductive theorem provers are frequently employed in the verification of pro-
grams, algorithms, and protocols. Programs and algorithms often contain bugs,
and protocols may be flawed, causing the proof attempt to fail. However, it can
be hard to interpret a failed proof attempt: it may be that some additional lemmas
need to be proved or a generalisation made. In this situation, a tool which can
not only detect an incorrect conjecture, but also supply a counterexample in or-
der to allow the user to identify the bug or flaw, is potentially very valuable.
Here we describe such a tool, CORAL, based on a previously under-exploited
feature of proof by consistency. Proof by consistency is a technique for automat-
ing inductive proofs in first-order logic. Originally developed to prove correct
theorems, this technique has the property of being refutation complete, i.e., it is
able to refute in finite time conjectures which are inconsistent with the set of
hypotheses. Recently, Comon and Nieuwenhuis have drawn together and ex-
tended previous research to show how it may be more generally applied [4].
CORAL is the first full implementation of this method.

We have applied CORAL to the analysis of cryptographic security protocols.
Paulson has shown how these can be modelled inductively in higher-order logic
[16]. By devising a suitable first-order version of Paulson’s formalism, we are
able to automatically refute incorrect security conjectures and exhibit the corre-
sponding attacks. The flexibility of the inductive formalism allows us to analyse
group protocols, and we have discovered new attacks on such a protocol (the
Asokan-Ginzboorg protocol for ad-hoc Bluetooth networks [2]) using CORAL.

In the rest of the paper, we first briefly look at the background to the problem
of refuting incorrect conjectures and the formal analysis of security protocols.
Then we outline the Comon-Nieuwenhuis method. We describe the operation of
CORAL and then show how it can be applied to the problem of protocol analy-
sis. Finally, we describe some possible further work, including some other possi-
ble applications for CORAL, and draw some conclusions.



280 Steel, Bundy, Denney

Background

The refutation of incorrect inductive conjectures has been studied before, e.g., by
Protzen [17], Reif [18], and Ahrendt [1]. Ahrendt’s method works by construct-
ing a set of clauses to send to a model generation prover and is restricted to free
datatypes. Protzen’s technique progressively instantiates terms in the formula to
be checked, using the recursive definitions of the function symbols involved. It
finds many small counterexamples. Rief’s method instantiates the formula with
constructor terms and uses simplifier rules in the prover KIV to evaluate truth or
falsehood. His method is a marked improvement on Protzen’s, but is too naïve
for a situation like protocol checking, where it is not obvious what combination
of constructor terms constitutes a possible exchange of messages.

Proof by consistency

Proof by consistency was originally conceived by Musser [14] as a method for
proving inductive theorems by using a modified Knuth-Bendix completion pro-
cedure. It was developed by various authors, [8, 10, 6], for the next fifteen years
(see [20] for the story), but interest waned, as it seemed too hard to scale the
technique up to proving larger conjectures. However, later versions of the tech-
nique did have the property of being refutation complete, that is, able to spot
false conjectures in finite time.

The Comon-Nieuwenhuis method

Comon and Nieuwenhuis [4] have shown that the previous techniques for proof
by consistency can be generalised to the production of a first-order axiomatisa-
tion A of the minimal Herbrand model such that A � E � C is consistent if and
only if C is an inductive consequence of E. With A satisfying the properties they
define as a Normal I-Axiomatisation, inductive proofs can be reduced to first-
order consistency problems and so can be solved by any saturation based theo-
rem prover. There is not room here to give a full formal account of the theory,
but informally, a proof attempt involves two parts: in one, we pursue a fair in-
duction derivation. This is a restricted kind of saturation, where we need only
consider overlaps between axioms and conjectures. In the second part, every
clause in the induction derivation is checked for consistency against the I-
Axiomatisation. If any consistency check fails, then the conjecture is incorrect. If
they all succeed, and the induction derivation procedure terminates, the theorem
is proved. Comon and Nieuwenhuis have shown refutation completeness for this
system, i.e., any incorrect conjecture will be refuted in finite time, even if the
search for an induction derivation is non-terminating.



Using the CORAL System 281

Cryptographic security protocols

Cryptographic protocols are used in distributed systems to allow agents to com-
municate securely. They were first proposed by Needham and Schroeder [15].
Assumed to be present in the system is a spy, who can see all the traffic in the
network and may send malicious messages in order to try to impersonate users
and gain access to secrets.

Although security protocols are usually quite short, typically 2–5 messages,
they often have subtle flaws in them that may not be discovered for many years.
Researchers have applied various formal techniques to the problem to try to find
attacks on faulty protocols and to prove correct protocols secure. These ap-
proaches include belief logics such as the so-called BAN logic [3], state ma-
chines [5, 11], model checking [12], and inductive theorem proving [16]. Each
approach has its advantages and disadvantages. For example, the BAN logic is
attractively simple and has found some protocol flaws, though in other cases
found flawed protocols correct. The model-checking approach can find flaws
very quickly, but can only be applied to finite (and typically very small) in-
stances of the protocol. This means that if no attack is found, there may still be
an attack upon a larger instance. Modern state-machine approaches [13, 19] can
also find and exhibit attacks quickly, but require the user to choose and prove
lemmas in order to reduce the problem to a tractable finite search space. The
inductive method deals directly with the infinite-state problem and assumes an
arbitrary number of protocol participants, but proofs are tricky and require days
or weeks of expert effort. If a proof breaks down, there have previously been no
automated facilities for the detection of an attack.

Implementation

Figure 1 illustrates the operation of CORAL, built on the SPASS theorem prover
[23]. The induction derivation, using the Comon-Nieuwenhuis method as de-
scribed above, is pursued by the modified SPASS prover on the right of the dia-
gram. As each clause is derived, it is passed to the refutation control script on the
left, which launches a standard SPASS prover to do the check against the I-
Axiomatisation. The parallel architecture allows us to obtain a refutation in cases
where the induction derivation does not terminate, as well as allowing us to split
the process across multiple machines in the case of a large problem. Experiments
with the system show good performance on a variety of incorrect conjectures
from the literature and our on own examples [21].



282 Steel, Bundy, Denney

All generated clauses
(via sockets)

Problem fileI-Axiomatization file

Inputs:
I-Axiomatization file

Problem File

Standard
SPASS

Induction derivation
SPASS

(Possibly several)

Refutation control
client

File for each
Spawned SPASS

Figure 1: CORAL system operation

Application to cryptographic security protocols

Paulson’s inductive approach has been used to verify properties of several proto-
cols [16]. Protocols are formalised in typed higher-order logic as the set of all
possible traces. Properties of the security protocol can be proved by induction on
traces. However, as Paulson observed, a failed proof state can be difficult to in-
terpret. Even an expert user will be unsure as to whether it is the proof attempt or
the conjecture that is at fault. By applying our counterexample finder to these
problems, we can automatically detect and present attacks when they exist. The
use of an inductive model also allows us to consider protocols involving an arbi-
trary number of participants in a single round, e.g., conference-key protocols.
Paulson’s formalism is in higher-order logic. However, no ‘fundamentally’
higher-order concepts are used—in particular, there is no unification of func-
tional objects. Objects have types, and sets and lists are used. All this can be
modelled in first-order logic. The security protocol problem has been modelled
in first-order logic before, e.g., by Weidenbach [24]. He used a two-agent model,



Using the CORAL System 283

with fixed roles for participants, and just one available session key and nonce (a
nonce is a unique identifying number), and so could not detect certain kinds of
parallel session attacks described above. Like Paulson’s, our model allows an
indeterminate and unbounded number of agents to participate, playing either role
and using an arbitrary number of fresh nonces and keys. Details of the model are
in our earlier paper [21], but we will highlight now some recent developments.

We have modified our formalism slightly to make attacks easier to find. The
idea is to prune out branches of the search space that cannot lead to an attack, or
branches which represent a less succinct expression of a state already reached.
For example, we merged together the formulae allowing the spy to send a fake
message with those for the standard protocol, so that the spy can only send mes-
sages which look like a part of the real protocol. Sending anything else cannot
fool any honest participants, since they only respond to correctly formed mes-
sages. We also have a reduction rule which prunes out clauses which represent
states where the spy has sent two messages in a row. The spy can’t gain anything
from doing this, so by chopping off these branches we make the search problem
more tractable.

With these improvements CORAL has rediscovered a number of known at-
tacks, including the well known ones on the Needham-Schroeder public-key and
Neuman-Stubblebine shared-key protocols. It can also find the attack on the
simplified Otway-Rees protocol, an attack which requires an honest agent to
generate two fresh nonces and to play the role of both the initiator and the re-
sponder. Recently, CORAL found two new attacks on the Asokan-Ginzboorg
protocol for establishing a secure session key in an ad-hoc Bluetooth network
[2]. Details of the attacks and a description of how we modelled this group pro-
tocol in a general way without restricting to a small fixed instance are in a forth-
coming paper [22].

Further work

Future work will include testing the CORAL system on more group-key proto-
cols. As CORAL is built on SPASS, a theorem prover capable of equational rea-
soning, we should be able to reason about some simple algebraic properties of
the cryptosystems underlying protocols, such as Diffie-Helman type operations.
In particular, Asokan and Ginzboorg have proposed a second version of their
protocol that uses these kinds of operations, which would be an ideal candidate
for future investigation.

There has been a proliferation of protocol analysis tools in recent years, and
in the longer term we don’t intend to try and compete with others for speed of
attack finding or by analysing an enormous corpus of protocols. Rather, we in-
tend to try to exploit the flexibility of our system as a general tool for inductive
counterexample finding and apply it to some other security problems. One idea
is to use the system to model security problems at a higher level. We could



284 Steel, Bundy, Denney

model a company’s computer network as a system of local networks and servers,
firewalls, etc., all with formally defined behaviour, and examine how interactions
in the presence of intruders might lead to exploitable vulnerabilities. To deal
with larger problems like this, we might need to enhance SPASS to exploit do-
main knowledge a little more. Two possible ideas we intend to explore are a
user-defined strategy that can vary as the proof proceeds and a critics mechanism
[9] to suggest pruning lemmas. In theory, CORAL can also show security prop-
erties of protocols to be correct when there are no attacks to be found. However,
to make this work in practice would require some considerable work. The formu-
lae to be proved are significantly larger than the kinds of examples that have
been proved by proof by consistency in the past. The critics mechanism for sug-
gesting lemmas could help with this.

Conclusions

We have presented CORAL, our system for refuting incorrect inductive conjec-
tures, and have shown how it can be applied to the problem of finding attacks on
faulty security protocols. Our formalism is similar to Paulson’s, which allows us
to deal directly with protocols involving an arbitrary number of participants and
nonces, and with principals playing multiple roles. CORAL has discovered a
number of known attacks, and some new attacks on a group-key protocol. In the
longer term, we hope to apply the system to other, related security problems and
exploit its ability to do equational reasoning in order to analyse some crytpoana-
lytic properties of protocols. (This paper is a shortened and updated version of
[21]. )

References

1. AHRENDT, W., ‘Deductive search for errors in free data type specifications using
model generation,’ in CADE-18, 18th International Conference on Automated De-
duction, 2002.

2. ASOKAN, N., AND GINZBOORG, P., ‘Key agreement in ad-hoc networks,’ Computer
Communications, vol. 23, no. 17, 2000, pp. 1627–1637.

3. BURROWS, M., ABADI, M., AND NEEDHAM, R., ‘A logic of authentication,’ ACM
Trans. on Computer Systems, vol. 8, no. 1, February 1990, pp. 18–36.

4. COMON, H., AND NIEUWENHUIS, R., ‘Induction = I-Axiomatization + First-Order
Consistency,’ Information and Computation, vol. 159, no. 1–2, May/June 2000,
pp. 151–186.

5. DOLEV, D., AND YAO, A., ‘On the security of public key protocols,’ IEEE Trans. in
Information Theory, vol. 2, no. 29, March 1983, pp. 198–208.

6. GANZINGER, H., AND STUBER, J., ‘Inductive theorem proving by consistency for first-
order clauses,’ in Rusinowitch, M. and Rémy, J.J., (eds.), Proc. 3rd International



Using the CORAL System 285

Workshop on Conditional Term Rewriting Systems, Pont-à-Mousson, France,
Springer, LNCS vol. 656, pp. 226–241.

7. GANZINGER, H., (ED.), Automated deduction, CADE-16: 16th International Confer-
ence on Automated Deduction, Trento, Italy, July 1999, Lecture Notes in Artificial
Intelligence 1632, Springer-Verlag.

8. HUET, G., AND HULLOT, J., ‘Proofs by induction in equational theories with construc-
tors,’ J. of Computer Systems and System Sciences, vol. 25, no. 2, 1982, pp. 239–
266.

9. IRELAND, A., ‘Productive use of failure in inductive proof,’ J. of Automated Reason-
ing, vol. 16, no. 1–2, 1996, pp. 79–11.

10. JOUANNAUD, J.-P., AND KOUNALIS, E., ‘Proof by induction in equational theories
without constructors,’ Information and Computation, vol. 82, no. 1, 1989, pp. 1–33.

11. KEMMERER, R., MEADOWS, C., AND MILLEN, J., ‘Three systems for cryptographic
protocol analysis,’ J. of Cryptology, vol. 7, 1994, pp. 79–130.

12. LOWE, G., ‘Breaking and fixing the Needham Schroeder public-key protocol using
FDR,’ in Proc. TACAS, LNCS 1055, Springer Verlag, 1996, pp. 147–166.

13. MEADOWS, C., ‘The NRL protocol analyzer: An overview,’ J. of Logic Program-
ming, vol. 26, no. 2, pp. 113–131, 1996.

14. MUSSER, D., ‘On proving inductive properties of abstract data types,’ Proc. 7th
ACM Symp. on Principles of Programming Languages, 1980, pp. 154–162.

15. NEEDHAM, R.M., AND SCHROEDER, M.D., ‘Using encryption for authentication in
large networks of computers,’ Comm. ACM, vol. 21, no. 12, December 1978,
pp. 993–999.

16. PAULSON, L.C., ‘The inductive approach to verifying cryptographic protocols,’ J. of
Computer Security, vol. 6, 1998, pp. 85–128.

17. PROTZEN, M., ‘Disproving conjectures,’ in Kapur, D., ed., CADE-11: 11th Conf. on
Automated Deduction, Saratoga Springs, NY, June 1992. Springer, Lecture Notes in
Artificial Intelligence 607, pp. 340–354.

18. REIF, W., SCHELLHORN, G., AND THUMS, A., ‘Flaw detection in formal specifica-
tions,’ in IJCAR’01, 2001, pp. 642–657.

19. SONG, D., ‘Athena: A new efficient automatic checker for security protocol analy-
sis,’ Proc. 12th IEEE Computer Security Foundations Workshop, 1999.

20. STEEL, G., ‘Proof by consistency: A literature survey,’ March 1999.
http://homepages.inf.ed.ac.uk/s9808756/papers/lit-survey.ps.gz

21. STEEL, G., BUNDY, A., AND DENNEY, E., ‘Finding counterexamples to inductive con-
jectures and discovering security protocol attacks,’ Proc. of the Foundations of
Computer Security Workshop, 2002, pp. 49–58; also in Proc. of the Verify ’02
Workshop. Also available as Informatics Research Report EDI-INF-RR-0141.

22. STEEL, G., BUNDY, A., AND MAIDL, M., ‘Attacking the Asokan-Ginzboorg protocol
for key distribution in an ad-hoc Bluetooth network using CORAL,’ to appear in
Proceedings of FORTE 2003 (work in progress papers).

23. WEIDENBACH, C., ET AL., ‘System description: SPASS version 1.0.0,’ in Ganzinger
[7], pp. 378–382.

24. WEIDENBACH, C., ‘Towards an automatic analysis of security protocols in first-order
logic,’ in Ganzinger [7], pp. 314–328.


