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Abstract. Schematic proofs are functions which can produce a proof of
a proposition for each value of their parameters. A schematic proof can
be constructed by abstracting a general pattern of proof from several ex-
amples of a family of proofs. In this paper we examine several interesting
aspects of the use of schematic proofs in mathematics. Furthermore, we
pose several conjectures about the psychological validity of the use of
schematic proofs in mathematics. These conjectures need testing, hence
we propose an empirical study which would either support or refute our
conjectures. Ultimately, we suggest that schematic proofs are worthy of
a closer and more detailed study and investigation.

1 Introduction

In this paper we study and address several questions about the nature of math-
ematical proofs. How can a well chosen example often convey the idea of a proof
better than the proof itself? How is it possible for proofs to be erroneous, and for
such faulty “proofs” to persist for decades? Why are the proofs of some interme-
diate results less intuitive than the original theorem? We suggest that studying
schematic proofs might provide some answers to such questions.

Schematic proofs have been used and studied in various branches of mathe-
matics. Their use has been successfully mechanised in automated mathematical
reasoning [1,2]. We hypothesise that humans often use procedures similar to the
construction of schematic proofs. The aim of this paper is to motivate cognitive
scientists and cognitive psychologists that schematic proofs are an interesting
concept in mathematics and that they are worthy of a closer investigation from
a psychological point of view. Such an investigation would shed some light on the
nature of human mathematical thought. We examine some interesting aspects
of schematic proofs and postulate a number of conjectures about the psycho-
logical validity of schematic proofs. We have anecdotal evidence to support our
intuitions, however, we have not conducted any systematic experiments. Hence,
in §7, we propose an experimental investigation and we suggest some of the
questions that such an investigation could attempt to answer.



Schematic proofs are functions, i.e., programs, which output a proof for each
value of their parameters, i.e., inputs. That is, they are a way of capturing a
family of proofs.! For example, consider a trivial theorem, let us call it multiple
addition, which says that to get a value of an z in (... ((z+a1)+as)+--+a,) =y
one has to subtract all the a; from y. So, more formally, the theorem can be
expressed as ((... ((x+a1)taz)+ - +an) =y) = (x=(...((y—an) —an-1) —
<+« —az) — ar). The schematic proof for this theorem is the following informal
program (where we assume that we have definitions of proof, apply, etc.):

proof(n) = apply (U+V =W =U =W —V) n times

which rewrites n times, terms in the theorem of the form U +V = W to terms
of the form U = W — V. A schematic output of this program gives a proof of
the multiple addition theorem (bold blocks represent program execution steps,
i.e., applications of rewrite rules on the theorem):

(((...(z+a1)+a)+)+an—2)+an_1) +a, =y

ﬂapply U+V=W=U=W-V)
((..((z+a)+a)+-)+ans)+an1=y—ay

ﬂapply U+V=W=U=W-V)
(- ((z+a)+a)+-)+an—2=(y—an) — an—

z=(..((y—an) —an_1) — - —as) —ay

A procedure that can be used to construct schematic proofs is to prove some
special cases of a proposition, extract a pattern from these proofs, and abstract
this pattern into a general schematic proof. We give examples of proofs for special
cases for the above theorem where n = 2 and n = 3. When the schematic proof is
given an input 2, then the program is instantiated to proof (2) = apply (U+V =
W =U=W —V) 2 times. The output of this program is:

(x+ar1)+ar=b
ﬂapply U+V=W=U=W-V)
z+a =b—as
ﬂapply U+V=W=U=W—V)

r=((b—-a) —a

Similarly, when the schematic proof is given an input 3, then the program is
instantiated to proof (3) = apply (U+V =W = U =W —V) 3 times. The

! Schematic proofs are often used as an alternative to mathematical induction (see §2).



output of this program is:

((x+a1)+az)+az=>b
Happly U+V=W=U=W-V)
(x+a1)+as=b—as
ﬂapply U+V=W=U=W—-V)
z+a; = (b—a3)—as
Happly U+V=W=U=W-V)

z=((b—a3z) —a2) —ay

Finally, the schematic proof needs to be shown to be correct, i.e., that proof (n)
outputs a proof of the theorem for case n. This is discussed in §2. In §3 we give
more examples of the use of schematic proofs in mathematics.

There are three particular aspects of schematic proofs that we investigate in
some detail. First, we examine how schematic proofs can be constructed from ex-
amples of proofs. The mathematical foundation for the construction of schematic
proofs provides a justification for the step from examples to general proofs to
theorem-hood. So, in §4, our first conjecture is that:

Schematic proofs explain how examples can be used for constructing gen-
eral proofs.

Second, we examine how schematic proofs have been used in the past to rep-
resent claimed proofs of theorems. However, upon closer examination, it turned
out in some cases that what was thought to be a proof, was actually faulty
and not a proof at all. We argue that this may be due to the omission of the
verification of the schematic proof. Hence, in §5, our second conjecture is that:

Schematic proofs account for some erroneous proofs in mathematics.

We give some historical examples which support our conjecture.

Finally, schematic proofs of some theorems can be very different from their
standard non-schematic inductive counterparts. They often seem to be more
easily understood than inductive proofs. A number of examples are given to
support our claim. Therefore, in §6, our third and final conjecture is that:

Schematic proofs are more intuitive than inductive proofs.

1.1 Technical Terminology

Here we give some definitions of technical terms used in this paper that might
prove useful. Notice that in the literature, the terms induction, abstraction and
generalisation are often used interchangeably for the same concept. We have
three different notions for these terms, and hence define them here precisely.



A Recursive function is a function whose definition appeals to itself without
an infinite regression. For example, Hex is a recursive function which for
each input natural number n gives the n'” hexagonal number:

Hez(0)

Hez(1)
Hez(n+1) = Hex(n) +6 xn

0
1

The Successor function is a function that adds one to its argument. For ex-
ample, s(s(0)) = s(1) = 2.

Instantiation is a process of replacing a variable with some value. Instantiation
of a function is a process of assigning values to the arguments of the function
and evaluating the function for these values. For example, instantiating the
above function Hez for 3 gives Hex(3) = Hex(2+ 1) = Hex(2) + (6 x 2) =
(Hex(1) + (6 x 1)) +12=1+6+12=19.

Abstraction is a process of extracting a general argument from its examples.

In this paper it refers to constructing a schematic proof from example proofs.
For example, the process of constructing proof (n) for the multiple addition
theorem given above from the examples of its proof for n = 2 and n = 3 is
referred to as abstraction.
Another meaning of abstraction in this paper is to refer to an abstraction de-
vice, such as ellipsis (i.e., the “...” notation), to represent general diagrams.
Abstraction is sometimes referred to as inductive inference, or “philosophical
induction”, or generalisation.

Generalisation replaces a formula by a more general one. For example, con-
stants, functions or predicates can be replaced by variables (e.g., z +3 =y
is generalised to 2+ a = y where a constant 3 is replaced by a variable a), or
universally quantified variables are decoupled (e.g., Vz.(z+2)+2 = x+(z+x)
is generalised to VaVyVz.(z +y) + z =z + (y + 2)).

Object-level statement is a well-formed term, proof or inference step of the
logic in use (cf. meta-level statement). For example, the proof of multiple
addition theorem given above in §1 is an object-level statement.

Meta-level statement is a statement about an object-level statement, in some
logical theory (cf. object-level statement). For example, a claim that the
proof of multiple addition theorem given above in §1, is a correct proof of this
theorem, is a meta-level statement about the proof of the multiple addition
theorem.

Mathematical induction or standard induction is a rule of inference in some
logical theory which is used to prove the statement that some proposition
P(n) is true for all values of n > ng, where ng is some base value. This
rule of inference makes an assertion about object-level statements (cf. meta-
induction). For example, in Peano arthmetic, the rule of induction is:

P(0) P(n) = P(s(n))
Vn.P(n)




Meta-induction is a rule of inference in some logical theory which is used to
prove the meta-statement that some proposition M P(n) about the object-
level statement P(m) is true for all values of n > ng, where ng is some base
value. This rule of inference makes an assertion about proofs rather than
object-level statements (cf. mathematical induction). For example, in Peano
arithmetic, the rule of meta-induction is (where proof is a recursive function,
and “:” stands for “is a proof of”):

proof (0) : P(0) proof (n) : P(n) — proof (s(n)) : P(s(n))
Vn.proof (n) : P(n)

Schematic is an adjective that refers to some general way of describing a class
of objects. We use this adjective when describing a program that generates
a proof for all instances of some corresponding theorem. We refer to these
programs as schematic proofs. A formal definition of a schematic proof is
given in §2 in Definition 3.

2 Schematic proofs

Our interest in schematic proofs comes from the perspective of automated rea-
soning, where the aim is to implement a system which constructs schematic
proofs. The automation of proof extraction requires some suitable mechanism to
capture a general proof. Schematic proofs provide such a mechanism. General
schematic proofs can be constructed from a sequence of instances. A mathemat-
ical basis which justifies the step from specific examples to a general schematic
proof is the constructive w-rule [1]. w is the name given to the infinite set
{0,1,2,3,...}, or equivalently, using the successor function s (see §1.1), the
set {0, s(0), s(s(0)), s(s(s(0))),...}. Typically, a schematic proof is formalised
as a recursive program. This recursive program allows us to conclude a general
schematic proof for the universally quantified theorem. In this section, we for-
mally define what a schematic proof is, and what is the mathematical basis for
its formalisation.

The mathematical basis for extraction of schematic proofs is the constructive
w-rule. This rule is a version of the w-rule [3]:

Definition 1 (w-Rule).
The w-rule allows inference of the sentence Vzx. P(z) from an infinite sequence
P(n) for n € w of sentences

P(0), P(1), P(2), . ..
Vn.P(n)

Using the w-rule, an infinite number of premisses needs to be proved in order to
conclude a universal statement. This makes the w-rule unusable for automation.
Hence, we consider the constructive version of this rule [1]:



Definition 2 (Constructive w-Rule).
The constructive w-rule allows inference of the sentence V. P(x) from an infinite
sequence P(n) for n € w of sentences

P(0), P(1), P(2), ...
Vn.P(n)

such that each premiss P(n) is proved uniformly (from parameter n).

Note that the w-rule and the constructive w-rule are stronger alternatives for
mathematical induction.

The uniformity criterion is taken to be the provision of a computable pro-
cedure describing the proof of P(n), e.g., proof (n). The requirement for a com-
putable procedure is equivalent to the notion that the proofs for all premisses
are captured in a recursive function. We refer to such a recursive function as a
schematic proof.

Definition 3 (Schematic Proof).
A schematic proof is a recursive function,® e.g., proofp(n),®> which outputs a
proof of some proposition P(n) given some n as input.

2

Suppose the recursive function, proof, is a schematic proof. The function
proof takes one argument, namely a parameter n. In general, this function can
be defined to take any number of arguments. By instantiation, i.e., by assigning
a particular value to n and passing it as an argument to the function proof, and
by application of this instantiated function to the theorem, proof p(n) gener-
ates a proof for a particular premiss P(n). More precisely, proof p(n) describes
the inference steps (i.e., rules) made in proofs for each P(n). Now, proof(n) is
schematic in n, because we may apply some rule R a function of n (or a constant)
number of times. That is, the number of times that a rule R is applied in the
proof might depend on the parameter n. This recursive definition of a proof is
used as a basis for implementation of the schematic proofs [2,1].

From a practical point of view, the constructive w-rule and schematic proofs
eliminate the need for an infinite number of proofs, or in other words, they enable
us to specify an infinite number of proofs in a finite way. Moreover, they provide
a technique which enables an automation of search for proofs of universally
quantified theorems from instances of proofs.

We now show how schematic proofs of universally quantified theorems can
be found using several heuristics.

2.1 Finding a Schematic Proof

A schematic proof can be constructed by considering individual examples of
proofs for instances of a theorem, and then extracting a general pattern from

2 Technical terminology is explained in §1.1
# Note that we omit the use of subscript P in proof »(n) where it is clear which theorem
proof proves.



these instances. The idea is that in order to extract a general structure common
to all instances of a proof, the particular examples of proofs of a theorem which
are considered, need to be general representatives of all instances, and not special
cases. These are normally taken to be some intermediate values, e.g., 5 and 6,
or 7 and 9, rather than the initial values, e.g., 0 and 1, since the proofs for
initial values of a parameter n are almost always special cases. Therefore, we
use such intermediate values, e.g., P(7) and P(9) and correspondingly proof (7)
and proof (9), to extract the pattern, which we hope is general. A structure
which is common to the considered examples is extracted by an abstraction.
The result is the construction of a general schematic proof. If the instances
for the intermediate values that were considered are not representative of all
instances, so that the abstraction was carried out on incomplete information,
then the constructed recursive function proof could be wrong. Therefore, the
function proof needs to be verified as correct. This involves reasoning about the
proof (using meta-level reasoning), and showing that proof indeed generates a
correct proof of each P(n).

The following procedure summarises the essence of using the constructive
w-rule in schematic proofs:

1. Prove a few particular cases (e.g., P(7), P(9), ... and thereby discover proof (7),
proof (9), ...).

2. Abstract proof (n) from these proofs (e.g., from proof (7), proof (9), ...).

3. Verify that proof (n) proves P(n) by meta-induction* on n.

The general pattern is abstracted from the individual proof instances by
learning induction or abstraction. By meta-induction we mean that we introduce
a theory META such that for all n the base case of the meta-induction is:

META F proof (0) : P(0)
and the step case is:
META F  proof(n) : P(n) — proof(n+ 1) : P(n + 1)

By meta-induction we need to show in the meta-theory that given a proposition
P(n), proof(n) indeed proves it, i.e., it gives a correct proof with P(n) as its
conclusion, and axioms of some object logic as its premisses. This ensures that
the constructed general schematic proof is indeed a correct proof for all instances
of a proposition.

4 The meta-induction is often much simpler than the mathematical induction that is
alternative to the schematic proof. For example, whereas generalisation is required
in some object-level inductive proofs, no generalisation is required in the meta-
induction at the verification stage of the corresponding schematic proof. See §4 and §6
for more discussion and some examples.



3 Application of schematic proofs

To illustrate the use of the constructive w-rule in schematic proofs, we give
here five examples of schematic proofs for the following theorems: an arith-
metic schematic proof of associativity of addition implemented by Baker [1], a
schematic proof of rotate-length theorem, two diagrammatic schematic proofs,
the first of the theorem regarding the sum of odd naturals implemented by Jam-
nik et al [2], and the second regarding the sum of hezagonal numbers presented
by Penrose [4], and a faulty schematic proof of Fuler’s theorem presented by
Lakatos in [5].

3.1 Associativity of Addition

Consider a theorem about the associativity of addition, stated as
(Z+y+z=2+(y+2)

Baker studied schematic proofs of such theorems in [1]. The recursive definition
of “+” is given as follows:

0+Y =Y (1)
sS(X)+Y = s(X +7) (2)

We also need a reflexive law Vn. n = n.

The constructive w-rule is used on x in the statement of the associativity
of addition. We write any instance of z as s"(0). By s™(0) is meant the n-th
numeral, i.e., the term formed by applying the successor function to 0 n times.
Next, the axioms are used as rewrite rules from left to right, and substitution
is carried out in the w-proof, under the appropriate instantiation of variables.
Hence, the following encoding:

Vn.(s"(0) +y) + 2 = s™(0) + (y + 2)
Ve, (z+y)+z=z+(y+2)

where n is the parameter, represents any instance of the constructive w-rule in
our example (note the use of ellipsis):

(8(#(9)) a0 2=ysis@)) ¢s(@)+H2) + 2.=5(0) + (y + 2),
Ve. (z+y)+z=z+(y+2)
We construct a schematic proof in terms of this parameter, where n in the
antecedent captures the infinity of premisses actually present, one for each value
of n. This removes the need to present an infinite number of proofs. The aim is
to reduce both sides of the equation to the same term. The schematic proof of
this theorem is the following program:

proof(n) = Apply rule (2) n times on each side of equality,
Apply rule (1) once on each side of equality,
Apply rule (2) n times on left side of equality,
Apply Reflexive Law



Running this program on the associativity theorem proves it. For example:

(s"(0)+y)+2z = s"(0)+(y+2)
Apply rule (2) n times on each side

&

s"0+y)+z = s"(0+(y+2)
ﬂ Apply rule (1) on each side
s"(y)+2z = s"(y+2)

Apply rule (2) n times on left

s"(y+2) = s"(y+2)
ﬂ Apply Reflexive Law

true

Note that the number of proof steps depends on n, which is the instance of x
we are considering. We see that the proof is schematic in n — certain steps are
carried out a number of times depending on n.

3.2 Rotate-Length Theorem

The rotate-length theorem is about rotating a list its length number of times,
and can be stated as:

rotate(length(l),1) =1

where length(l) gives the length of a list I, and rotate(z,l) takes the first x
elements of a list [ and puts them at its end (e.g., rotate(3,[a,b,c,d,e]) =
[d,e,a,b,c]), and can be defined as:

rotate(0,1) =1
rotate(z,[]) =[]
rotate(n + 1,1 :: Is) = rotate(n, sQ[l])

Note that :: is infix cons (it takes an element and a list and puts the element
at the front of the list, e.g., 1 :: [2,3,4] = [1,2,3,4]) and @ is infix append
(it takes two lists and puts them together, e.g., [1,2,3]Q[4,5] = [1,2,3,4,5]).
Consider a schematic proof of this theorem. First we give an example proof for
some instance of a theorem. An example proof for the instance of a list of any
five elements I = [a,b,c,d, ], i.e., length(l) = 5 goes as follows. Let the list [
consist of five elements. We take the first element of the list and put it to the
back of the list. Now, we do the same for the remaining four elements.
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rotate(length([a, b, c,d, €]),[a,b,c,d,e

)=
rotate(5,[a, b, c,d, e]) =
rotate(4,[b, c,d, e, a]) =
rotate(3,[c,d, e, a,b]) =
rotate(2,[d, e, a,b, c]) =
rotate(1,[e,a,b,c,d]) = [a, b, c,d, €]

It is very easy to see that this process gives us back the original list. Moreover,
it is clear that if we follow the same procedure, i.e., schematic proof, for a list of
any length, we always get back the original list. Hence, the number of inference
steps in the proof depends on n, so a proof is schematic in n:

rotate(length([ay, a2, a3, ..., a,)),a1,a2,a3,...,a,]) =
rotate(n, [a1, a2, a3, . .. ,ap])

rotate(n — 1,[as,as,. .., ap,a1]) =
rotate(n — 2,[as, ..., an,a1,as))

rotate(1,[an, a1, a9, a3,...]) =[a1,a2,as3,...,ay]

3.3 Sum of odd natural numbers

We now consider a theorem about the sum of odd naturals and its schematic
proof as studied by Jamnik et al in [2] and [6]. Jamnik et ol studied the no-
tion of diagrammatic proofs and formalisation of diagrammatic reasoning. A
diagrammatic proof is captured by a schematic proof that is constructed from
examples of graphical manipulations of instances of a theorem. This diagram-
matic schematic proof has to be checked for correctness. A diagrammatic proof
consists of diagrammatic inference steps, rather than logical inference rules. Di-
agrammatic inference steps are the geometric operations applied to a diagram.
The operations on diagrams produce new diagrams. Chains of diagrammatic in-
ference rules, specified by the schematic proof, form the diagrammatic proof of
a theorem. In Jamnik et al's formalisation of diagrammatic reasoning, diagrams
are used as an abstract representation of natural numbers, and are represented
as collections of dots. Some examples of diagrams are a square, a triangle, an
ell (two adjacent sides of a square). Some examples of geometric operations are
leut (split an ell from a square), remove_row, remove_column.

We demonstrate here a diagrammatic proof of the theorem about the sum of
odd natural numbers. The theorem can be stated as

n*=1+3+5+ -+ (2n—1)

We consider an instance of the theorem 42 = 1+ 3+ 5+ 7 and its diagrammatic
proof where n = 4. Let us choose that n? is represented by a square of magnitude
n, (2n — 1) is represented as an ell whose two sides are both n long, i.e., odd
natural numbers are represented by ells, and a natural number 1 is represented
as a dot. The proof of this instance of the theorem consists of cutting a square
4 times into ells.
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o
4 X LCUT. ®
o o o

Notice, that a similar procedure holds for a square of any size, i.e., for any
instance of the theorem. Therefore, these steps are sufficient to transform a
square of magnitude n representing the LHS of the theorem to n ells of increasing
magnitudes representing the RHS of the theorem.

Note that the number of proof steps (i.e., diagrammatic inference steps)
depends on n — for a square of size n the proof consists of n lcuts. Hence the
proof is schematic in n. Here is a definition of this schematic proof:

proof (n + 1) = apply lcut, then proof(n)
proof (0) = empty

3.4 Sum of hexagonal numbers

Let us now examine a theorem about the sum of hezxagonal numbers and its
(diagrammatic) schematic proof as presented by Penrose in [4]. We repeat here
the formal recursive definition of hexagonal numbers from §1.1:

Hex(0)
Hezx(1)
Hex(n+1) = Hex(n) +6 xn

0
1

Informally, hexagonal numbers could be presented as hexagons where the hexag-
onal number is the number of dots in a hexagon:

o 06 o0

o 060 O

[ I e 6 ® 0 O

® o e 6 0 O

o [ N J " B )
1 7 19

The theorem is stated as follows:
n® = Hex(1) + Hex(2) + - -- + Hex(n)

Let n? be represented by a cube of magnitude n and Hez(n) by an n*? hexagon.
The instance of the proof that we consider here is for n = 3. The diagrammatic
proof of the sum of hexagonal numbers consists of breaking a cube into a series
of half-shells. A half-shell consists of three adjacent faces of a cube.
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If each half-shell is projected onto a plane, that is, if we look at the top-right-back
corner of each half-shell down the main diagonal of the cube from far enough,
then a hexagon can be seen. So the cube is then presented as the sum of all
half-shells, i.e., hexagonal numbers.

5 o o o
o o o e o o0 o

Again, notice that the general proof holds for any instance n. That is, these steps
are sufficient to transform a cube of magnitude n representing the LHS of the
theorem to n increasing hexagons representing the RHS of the theorem. Note
that the number of diagrammatic inference steps depends on the value of n, so
the proof is schematic in n.

3.5 Euler’s Theorem

Let us consider a famous example of an erroneous schematic “proof”, namely,
the history of Euler’s theorem [5]. Euler’s theorem states that for any polyhedron
V — E+ F = 2 holds, where V is the number of vertices, E is the number of
edges, and F is the number of faces. Lakatos® initially gives a proof, historically
due to Cauchy, of the theorem, which is a uniform method for proving instances
of Euler’s theorem. Thus, the method is a schematic proof. However parts of
the method are not explicitly stated, but seem very convincing when applied

® The proof of Euler’s theorem is also discussed in [7, pages 47-48].
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to simple polyhedra. Here is a summary of the proof method taken from [5,
pages 7-8].°

T Ll
L N
®) ©

@

_>_>

(d) © ()

Take any polyhedron (note that in our case, we take a cube, but the result is
the same for any polyhedron). Imagine that it is hollow, and that its faces are
made out of rubber (see (a) of the diagram above). Now, remove one face from
the polyhedron, and stretch the rest of the polyhedron onto the plane (see (b)
of the diagram). Note that since we have taken one face off, our formula should
be V — E+ F = 1. Note also that the relations between the vertices, edges and
faces are preserved in this way. Triangulate all of the faces of this plane network
(i.e., we are adding the same number of edges and faces to the network, so the
formula remains the same — see (c) of the diagram). Now, start removing the
boundary edges (see (d) of the diagram). This will have the effect of removing
an edge and a face from the network at the same time, or two edges, one vertex
and one face, so our formula is still preserved. We continue removing edges in
appropriate order (see (e)), thus preserving the formula, until we are left with
one triangle only. Clearly, for this triangle V. — E + F = 1 holds, since there
are three vertices, three edges and one face. Here is an informal diagrammatic
schematic proof:

. remove one face from any given polyhedron,
. stretch the rest of the polyhedron onto the plane,
. triangulate all of the faces that are not triangles already,

. remove the boundary edges one after another, until you are left with a single
triangle.

= W N =

However, this schematic “proof” is faulty, and we will discuss the reasons for
this in §5.

 The diagram demonstrating the proof of Euler’s theorem is also taken from [5,
page 8].
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4 Learning from examples

Schematic proofs and the constructive w-rule explain why one or more examples
can represent a general proof. Therefore, our first conjecture is that schematic
proofs explain the use of examples for construction of proofs. Furthermore, we
propose that reasoning with concrete cases, i.e., instances or examples, is often
more easily understood than reasoning with abstract notions.

As described in §2, the constructive w-rule enables us to capture infinitary
concepts in a finite way. It enables us to use schematic proofs in order to prove
universal statements. The constructive w-rule gives us a mathematical basis
which justifies how and why the examples or instances of problems can be used
in order to conclude a general statement, in our case a general proof of a univer-
sally quantified theorem. We describe two systems which use schematic proofs,
and hence reason with instances of theorems in order to prove universally quan-
tified theorems, namely Baker’s system CORE which reasons about theorems of
arithmetic [1], and Jamnik’s system DIAMOND which formalises diagrammatic
reasoning [2].

Baker used schematic proofs in order to prove theorems of arithmetic, espe-
cially the ones which could not be proved by automated systems without the use
of generalisation (for definition, see §1.1). One of Baker’s example theorems is
a special version of the theorem about associativity of addition. In §3.1 we gave
a general version of this theorem. Baker’s special version of the theorem can be
stated as:

(z+z)+z=2+(z+z)

The CORE system automatically proves this theorem by enumerating instances
of a proof, then constructing a general schematic proof, and finally, verifying
that the schematic proof is correct. Instances of the theorem can be encoded as:

(s™(0) + s™(0)) + s™(0) = s™(0) + (s™(0) + s™(0))

for each parameter n. The schematic proof of this theorem is identical to the
one in §3.1. In a theorem prover that cannot construct schematic proofs, this
theorem would normally be proved by mathematical induction. But induction
in this case is blocked, as P(s(n)) cannot be given in terms of P(n) (for more
details see [1]). Hence, generalisation to full associativity (z+y)+z = 2+ (y+ 2)
is necessary. Rather than using generalisation, as in other automated reasoning
systems, CORE was able to prove this theorem using concrete instances of a
theorem and its proof.

Jamnik uses schematic proofs for diagrammatic proofs of theorems of natural
number arithmetic, like the theorem about the sum of odd natural numbers given
in §3.3. To devise a general diagrammatic proof of this theorem, one would need
to use abstract diagrams, i.e., diagrams of a general size. Therefore, diagrams
would have to be represented using abstraction devices, such as ellipsis. Ab-
straction devices in diagrams are problematic as they are inherently ambiguous.
The pattern on either end of the ellipsis needs to be induced by the system. For
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instance, it is ambiguous whether an abstract collection of rows or columns of
dots with ellipsis, like this:

00 - O
00 - O
.

.
00 - O

is a square or a rectangle, or if it is of odd or even magnitude. The problem
becomes more acute when dealing with more complex structures. To recognise
the pattern that the ellipsis represents, the system needs to carry out some
sort of pattern recognition technique which deduces the most likely pattern and
stores it in an exact internal representation. This guessed pattern might still
be wrong. Because of the ambiguity of ellipsis it is difficult to keep track of it
during manipulations of diagrams. Schematic proofs are a good way of avoiding
this problem, as they allow us to use concrete instances of a theorem and its
proof, and yet prove a general theorem. A procedure to construct a schematic
proof in DIAMOND and CORE is to first prove instances of a theorem, e.g., a
diagram, then construct a schematic proof, and finally prove that this schematic
proof is correct. Using instances of a theorem enables us to use concrete diagrams
in order to extract formal general proofs.

Besides the ability to extract general proofs from examples, it also appears
that reasoning with examples seems easier for humans to understand than rea-
soning with abstract notions. The usual way in logic to prove Baker’s theorem
by a mechanised provers is to use mathematical induction and a generalisation,
which is difficult to find for both, a human and an artificial mathematician —
a mechanised mathematical reasoning system. Furthermore, another way of di-
agrammatically proving Jamnik’s theorem is to reason with abstract diagrams
which contain problematic ellipses. Using schematic proofs and instances of the-
orems seems an easier way to prove these theorems, and seems to convey better
why the theorems hold.

5 Erroneous proofs

A generally accepted definition of a proof of a theorem in mathematical logic is
the one given by Hilbert. Here is a translation of a quote from Hilbert’s article [8].

“Let me still explain briefly just how a mathematical proof is formal-
ized. As I said, certain formulas, which serve as building blocks for the
formal edifice of mathematics, are called axioms. A mathematical proof
is an array that must be given as such to our perceptual intuition; it
consists of inferences according to the schema
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SST

7
where each of the premisses, that is, the formulas S and S — T in the
array, either is an axiom or results from an aziom by substitution, or else
coincides with the end formula of a previous inference or results from it
by substitution. A formula is said to be provable if it is the end formula
of a proof.” [9, pages 381-382]

What Hilbert is talking about is sometimes referred to as Hilbert’s Pro-
gramme and is about the axiomatisation of mathematical systems. The defini-
tion of a proof in such a system can be summarised as follows. A proof of a
theorem is a sequence of inference steps which are valid in some logical theory
that has a complete axiomatisation, and which reduces a theorem that also be-
longs to this logical theory to a set of axioms, i.e., known true facts of the same
logical theory.

However, this definition is questionable as it implies that the only explana-
tion for errors in proofs is that they must be syntactic ones. Namely, Hilbert’s
argument suggests that all proofs boil down to a mechanical exercise of decom-
posing a theorem into a set of axioms of the theory to which they all belong. We
suggest that syntactic errors could be automatically detected during this decom-
position, and so erroneous proofs would not survive for years. In mathematics,
people do not always formalise all axioms and inferences, yet their justifications
for the truthfulness of theorems are generally accepted as correct proofs of theo-
rems. For instance, consider Euclid’s proofs of theorems of geometry long before
a complete axiomatisation of geometry was given by Hilbert [10].

Mathematical proofs of theorems sometimes turn out to be faulty. The history
of mathematics has taught us that there are plenty of faulty proofs of theorems
which were for a long time considered to be correct, but later it turned out that
the “proofs” were not proofs at all, that is, they were incorrect. Amongst famous
examples is Cauchy’s proof of the conjecture which says that the limit of any
convergent series of continuous functions is itself continuous. Cauchy’s “proof”
persisted for almost forty years until the faulty conjecture was modified [5].
Another example is the 4-colour conjecture which had faulty proofs [11]. An
interesting discussion of this conjecture and its “proofs” is given in [12], and
a correct proof of this theorem can be found in [13]. If Hilbert’s definition of a
proof was an accurate description of mathematical practice, then these erroneous
“proofs” would not arise — any fault in the “proof” would be detected quickly
as syntactic error. So what is going on, why do erroneous “proofs” persist?

Clearly, in mathematics in general Hilbert’s definition of a proof holds only
for a small part of mathematics, namely conjectures in logical theories which
have complete axiomatisations. However, not all mathematical conjectures are
part of known axiomatised logical theories.

Let us consider the famous example of an erroneous proof of Fuler’s theorem,
given in §3.5. Analysing this proof, Lakatos [5] presents a number of counter
examples in which the method of proof, i.e., the schematic proof, fails. It turns
out that the initial theorem does not hold for all polyhedra. For example, it does
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not hold for hollow polyhedra, e.g., a solid cube with a cubical hole inside it,
since V — E + F = 4. Note that the schematic proof fails at step 2.

— —

The reader is referred to [5] for a number of counter examples of this theorem.
One of the problems with Cauchy’s schematic proof is that the definition of a
polyhedron is not clearly stated. Therefore, a refinement of a theorem is needed.
Lakatos’s suggestion for this is to define a polyhedron as a surface and not as a
solid. Lakatos proceeds to discuss other counter examples to Cauchy’s schematic
proof, and finally refines the definition of a polyhedron in a way that Euler’s the-
orem does hold. Tt turns out that the theorems holds for all simple” [5, page 34]
polyhedra whose faces are simply connected 8 [5, page 85].

Cauchy used a procedure for construction of schematic proofs in order to
convince us of his “proof” of Fuler’s theorem. However, he did not carry out the
last step of the procedure for extraction of schematic proofs, namely, he did not
verify that the schematic proof is indeed correct.” We argue that if he did use
the complete procedure, then the fallacy of the procedure would be detected at
the verification stage. Note that this would require a constructive definition of a
polyhedron.

It seems plausible that humans use some sort of schematic procedure to find
general proofs of theorems. In particular, humans often use examples of proofs
for certain instances and then abstract them into a general schematic proof. If
not all the cases are covered by the examples, then the schematic proof might
be incorrect, as in the case of the proof of Euler’s theorem mentioned above. If a

7 Simple polyhedra are ones which can be stretched onto the plane, i.e., those that are
topologically equivalent to a sphere.

A surface S is defined to be connected if any pair of its points can be joined by a
continuous curve lying entirely within the surface. Further, a surface is said to be
simply connected if any closed curve C on the surface divides the surface into two
distinct regions, each of which is internally connected in the sense just described,
and such that any continuous curve which joins a point in one of those regions to a
point in the other must cross the closed curve C.

A modern formal proof of Fuler’s theorem was devised only much later and is accord-
ing to Lakatos [5, page 118] due to Poincaré [14]. It works by representing polyhedra
as sets of vertices, edges and faces together with incidence matrices to say which
vertices are in each edge and which edges are in each face. A restricted class of
polyhedra is then turned into a formulae of vector algebra and a calculation in this
algebra gives the value 2 for V — E + F. The proof is not intuitively clear, and it is
not easy to see why the theorem holds and why this formal proof is correct.

8
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counter example is encountered, then the method needs to be revised to exclude
such cases. It seems that humans sometimes omit this step all together. Human
machinery for extracting a general schematic argument is usually convincing
enough to reassure them that the schematic argument is correct, e.g., consider
the “proof” of Fuler’s theorem. Humans are happy with intuitive understandings
of definitions and steps in the proof — as long as they do not encounter a counter
example, their general pattern of reasoning in the proof is acceptable. Lakatos
refers to such mathematical proofs as “thought experiments”. It is only recently,
in the 20th century, that thought experiments were replaced by logical proofs.

In an automated reasoning system, formality is of crucial importance. The
correctness of the induced schematic argument has to be formally shown. This
confirms that a schematic proof is indeed a correct formal proof of a theorem. If
all proofs of theorems that people find followed rules of some formal logic, then
there would be no explanation for how erroneous proofs could arise. The errors
would always be detected as syntactical errors, provided that the rules used to
prove the theorem are correct.

So, our second conjecture is that human mathematicians often use a proce-
dure similar to the construction of schematic proofs in order to find proofs of
theorems, but they often omit the verification step which ensures that the proof is
correct. We propose further, that omitting the verification step of such procedure
accounts for numerous examples of faulty “proofs”. For instance, if one has not
considered all the representative examples, then the schematic proof may not
prove all cases of the theorem. A counter example may be found.

6 Intuitiveness of schematic proofs

Here, we extend the point in §4 that reasoning with examples or instances
of a problem is easier than reasoning with abstract notions. We propose that
schematic proofs seem to correspond better to human intuitive proofs. It appears
easier to see why the theorem holds by looking at the instances of a theorem
and its proof and then constructing a schematic proof, than considering a logi-
cal proof. As evidence, we give four examples of theorems from §3, where their
schematic proofs are easier to understand than formal logical proofs: Baker’s
proof of associativity of addition from §3.1, Jamnik’s diagrammatic proof of the
sum of odd naturals from §3.3, Penrose’s sum of hexagonal numbers from §3.4,
and rotate-length theorem from §3.2.

We now consider further the rotate-length theorem. The informal schematic
proof of this theorem is very easy to understand and to generalise to all cases of
any list.

In contrast to a schematic proof of the rotate-length theorem, this theorem
is not easy to prove by a conventional (non-diagrammatic) theorem prover. The
inductive proof of the rotate-length theorem usually requires generalisation: e.g.,
rotate(length(l),l1Qk) = k@I, where @ is the list append function as defined
in §3.2. It is harder to see that this theorem is correct. Schematic proofs avoid
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such generalisations. Baker used schematic proofs to exploit this fact for theo-
rems of arithmetic [1].

We propose that the schematic proof given in §3.2 is a common way that
people think about the proof of this theorem. Anecdotal evidence from humans
suggests that schematic proofs are psychologically plausible. This supports our
conjecture that schematic proofs correspond better to human intuitive proofs.

7 A proposed study

In this paper we proposed a number of conjectures about schematic proofs.

1. Schematic proofs explain the use of examples for inducing formal proofs.
2. Schematic proofs account for erroneous proofs.
3. Schematic proofs are more intuitive than standard inductive proofs.

These conjectures are not yet supported by an empirical study, but by our
intuition and some suggestive examples. Hence, we propose an experimental
study which could support or refute our intuitions. The study would look at
some or all of the aspects of schematic proofs addressed in the previous sections.
In particular, it would attempt to answer the following questions:

1. Do humans prefer to reason with concrete rather than general cases of a
problem? Do humans use a procedure similar to the construction of schematic
proofs when solving problems? If so, in what way do they use it and when?

2. Are there other examples which support the conjecture that incomplete
schematic proofs account for some erroneous proofs?

3. Is reasoning with examples easier than reasoning with abstract notions? Are
schematic proofs more easily understood than formal inductive proofs? If so,
why do they appeal to humans more than formal inductive proofs?

The study proposed here would explore human intuitive reasoning in a novel
way. We think that humans find schematic proofs easier to understand and more
compelling than their logical counterparts. This is also part of the reason why
humans might find diagrammatic proofs more intuitive than standard inductive
proofs. We have only anecdotal evidence to support our belief. However, a com-
parative psychological validity experimental study could be carried out to answer
some of the questions posed above and to provide some empirical evidence for
or against our claims.

The proposed study could take the following form. An experiment could be
carried out on a class of students with a certain level of mathematical knowledge
(probably final year of secondary school level — the students should be equipped
with the notion of mathematical induction). The class should be sufficiently
large that the results are statistically significant. The students would be given
examples of inductive theorems and non-theorems, and asked if they think the
theorem is true or not. If they think it is true, the students would be asked to
give an argument why they think it is true. Some of the non-theorems could be
those which hold for the majority of cases, but are not true for some special and
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non-obvious cases. The students would also be asked to provide details of their
problem solving process, i.e., the arguments that helped them reach a proof of
a theorem or a conclusion that the theorems does not hold.

The data collected from the students would be analysed. Here are a few
aspects that could be addressed in the analysis:

— classification of problem solving strategies using some existing techniques,
— analysis of whether the arguments used in the proof are inductive, schematic
(using something like the constructive w-rule), or some other type,
— analysis of the responses for non-theorems which are true for most cases, but
not true for some more obscure special cases:
e If the students realise that the conjecture is a non-theorem, how did they
discover this (especially in the case of a schematic argument)?
e If the students do not realise that the conjecture is a non-theorem, what
are the arguments that falsely reassure them that the conjecture is a
theorem and that it is true?

Another test that the students could be given consists of theorems and non-
theorems, and their proofs and faulty “proofs” respectively. Each (non-) theorem
could be accompanied with, say, three different (faulty) proofs each following a
different strategy, e.g., inductive, schematic or other. In the case of non-theorems,
the inductive argument would contain some syntactic errors and the schematic
argument would not be verified for correctness. The students would be asked to
choose the proof that is most convincing and that they think they understand
best, and to elaborate on the reasons for their choice.

The questions which should be studied in more detail before the experiment
is conducted include how much mathematical knowledge and knowledge of logic
should the students have. Should they be trained in mathematical induction,
constructive w-rule, and other problem solving techniques? The danger is that
people who have some training in mathematics, but not in logic would solve
problems differently from those trained in logic, or those with little knowledge
of mathematics and logic. Hence, the results would say less about the nature of
proofs than about the abilities of individual students. A possibility is to separate
subjects into two or more groups according to their level of training, and study
the data according to these groups.

Here, we gave some preliminary suggestions for the design of the proposed
experimental study. However, these ideas should be investigated in much greater
detail before an experiment is conducted.

8 Conclusion

In this paper we posed several conjectures about the use of schematic proofs in
mathematics. These conjectures make claims about the psychological validity of
schematic proofs. First, we suggested that humans often use examples in order
to conclude a general mathematical statement. Second, we conjectured that in-
complete schematic proofs account for some erroneous proofs. Qur suggestion
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is that looking at faulty proofs that have survived for years might give us use-
ful insights into human reasoning. Finally, we conjectured that often schematic
proofs are more intuitive than their inductive counterparts. These three con-
jectures are only supported by anecdotal evidence, so there is a clear need for
a scientific experimental study which would test them. The motivation for this
work is to investigate the nature of human mathematical thought and the notion
of mathematical proof. Schematic proofs provide a good case study for such an
investigation. Hence, our aim was to demonstrate that schematic proofs are wor-
thy of a further study by cognitive scientists, and to propose the sort of questions
that such an experiment could aim to answer. We hope that we provided enough
evidence and motivation that the study of psychological validity of schematic
proofs will be seen as a profitable scientific investigation, and will ultimately
lead to further research and useful results.
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