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t. S
hemati
 proofs are fun
tions whi
h 
an produ
e a proof ofa proposition for ea
h value of their parameters. A s
hemati
 proof 
anbe 
onstru
ted by abstra
ting a general pattern of proof from several ex-amples of a family of proofs. In this paper we examine several interestingaspe
ts of the use of s
hemati
 proofs in mathemati
s. Furthermore, wepose several 
onje
tures about the psy
hologi
al validity of the use ofs
hemati
 proofs in mathemati
s. These 
onje
tures need testing, hen
ewe propose an empiri
al study whi
h would either support or refute our
onje
tures. Ultimately, we suggest that s
hemati
 proofs are worthy ofa 
loser and more detailed study and investigation.1 Introdu
tionIn this paper we study and address several questions about the nature of math-emati
al proofs. How 
an a well 
hosen example often 
onvey the idea of a proofbetter than the proof itself? How is it possible for proofs to be erroneous, and forsu
h faulty \proofs" to persist for de
ades? Why are the proofs of some interme-diate results less intuitive than the original theorem? We suggest that studyings
hemati
 proofs might provide some answers to su
h questions.S
hemati
 proofs have been used and studied in various bran
hes of mathe-mati
s. Their use has been su

essfully me
hanised in automated mathemati
alreasoning [1, 2℄. We hypothesise that humans often use pro
edures similar to the
onstru
tion of s
hemati
 proofs. The aim of this paper is to motivate 
ognitives
ientists and 
ognitive psy
hologists that s
hemati
 proofs are an interesting
on
ept in mathemati
s and that they are worthy of a 
loser investigation froma psy
hologi
al point of view. Su
h an investigation would shed some light on thenature of human mathemati
al thought. We examine some interesting aspe
tsof s
hemati
 proofs and postulate a number of 
onje
tures about the psy
ho-logi
al validity of s
hemati
 proofs. We have ane
dotal eviden
e to support ourintuitions, however, we have not 
ondu
ted any systemati
 experiments. Hen
e,in x7, we propose an experimental investigation and we suggest some of thequestions that su
h an investigation 
ould attempt to answer.



2 S
hemati
 proofs are fun
tions, i.e., programs, whi
h output a proof for ea
hvalue of their parameters, i.e., inputs. That is, they are a way of 
apturing afamily of proofs.1 For example, 
onsider a trivial theorem, let us 
all it multipleaddition, whi
h says that to get a value of an x in (: : : ((x+a1)+a2)+� � �+an) = yone has to subtra
t all the ai from y. So, more formally, the theorem 
an beexpressed as ((: : : ((x+a1)+a2)+ � � �+an) = y)) (x = (: : : ((y�an)�an�1)�� � � � a2) � a1). The s
hemati
 proof for this theorem is the following informalprogram (where we assume that we have de�nitions of proof, apply, et
.):proof (n) = apply (U + V =W ) U =W � V ) n timeswhi
h rewrites n times, terms in the theorem of the form U + V = W to termsof the form U = W � V . A s
hemati
 output of this program gives a proof ofthe multiple addition theorem (bold blo
ks represent program exe
ution steps,i.e., appli
ations of rewrite rules on the theorem):(((: : : ((x + a1) + a2) + � � � ) + an�2) + an�1) + an = yww�apply (U + V =W ) U =W � V )((: : : ((x + a1) + a2) + � � � ) + an�2) + an�1 = y � anww�apply (U + V =W ) U =W � V )(: : : ((x + a1) + a2) + � � � ) + an�2 = (y � an)� an�1...x = (: : : ((y � an)� an�1)� � � � � a2)� a1A pro
edure that 
an be used to 
onstru
t s
hemati
 proofs is to prove somespe
ial 
ases of a proposition, extra
t a pattern from these proofs, and abstra
tthis pattern into a general s
hemati
 proof. We give examples of proofs for spe
ial
ases for the above theorem where n = 2 and n = 3. When the s
hemati
 proof isgiven an input 2, then the program is instantiated to proof (2) = apply (U+V =W ) U =W � V ) 2 times . The output of this program is:(x+ a1) + a2 = bww� apply (U + V =W ) U =W � V )x+ a1 = b� a2ww� apply (U + V =W ) U =W � V )x = (b� a2)� a1Similarly, when the s
hemati
 proof is given an input 3, then the program isinstantiated to proof (3) = apply (U + V = W ) U = W � V ) 3 times . The1 S
hemati
 proofs are often used as an alternative to mathemati
al indu
tion (see x2).



3output of this program is:((x + a1) + a2) + a3 = bww� apply (U + V =W ) U =W � V )(x + a1) + a2 = b� a3ww� apply (U + V =W ) U =W � V )x+ a1 = (b� a3)� a2ww� apply (U + V =W ) U =W � V )x = ((b� a3)� a2)� a1Finally, the s
hemati
 proof needs to be shown to be 
orre
t, i.e., that proof (n)outputs a proof of the theorem for 
ase n. This is dis
ussed in x2. In x3 we givemore examples of the use of s
hemati
 proofs in mathemati
s.There are three parti
ular aspe
ts of s
hemati
 proofs that we investigate insome detail. First, we examine how s
hemati
 proofs 
an be 
onstru
ted from ex-amples of proofs. The mathemati
al foundation for the 
onstru
tion of s
hemati
proofs provides a justi�
ation for the step from examples to general proofs totheorem-hood. So, in x4, our �rst 
onje
ture is that:S
hemati
 proofs explain how examples 
an be used for 
onstru
ting gen-eral proofs.Se
ond, we examine how s
hemati
 proofs have been used in the past to rep-resent 
laimed proofs of theorems. However, upon 
loser examination, it turnedout in some 
ases that what was thought to be a proof, was a
tually faultyand not a proof at all. We argue that this may be due to the omission of theveri�
ation of the s
hemati
 proof. Hen
e, in x5, our se
ond 
onje
ture is that:S
hemati
 proofs a

ount for some erroneous proofs in mathemati
s.We give some histori
al examples whi
h support our 
onje
ture.Finally, s
hemati
 proofs of some theorems 
an be very di�erent from theirstandard non-s
hemati
 indu
tive 
ounterparts. They often seem to be moreeasily understood than indu
tive proofs. A number of examples are given tosupport our 
laim. Therefore, in x6, our third and �nal 
onje
ture is that:S
hemati
 proofs are more intuitive than indu
tive proofs.1.1 Te
hni
al TerminologyHere we give some de�nitions of te
hni
al terms used in this paper that mightprove useful. Noti
e that in the literature, the terms indu
tion, abstra
tion andgeneralisation are often used inter
hangeably for the same 
on
ept. We havethree di�erent notions for these terms, and hen
e de�ne them here pre
isely.



4A Re
ursive fun
tion is a fun
tion whose de�nition appeals to itself withoutan in�nite regression. For example, Hex is a re
ursive fun
tion whi
h forea
h input natural number n gives the nth hexagonal number:Hex(0) = 0Hex(1) = 1Hex(n+ 1) = Hex(n) + 6� nThe Su

essor fun
tion is a fun
tion that adds one to its argument. For ex-ample, s(s(0)) = s(1) = 2.Instantiation is a pro
ess of repla
ing a variable with some value. Instantiationof a fun
tion is a pro
ess of assigning values to the arguments of the fun
tionand evaluating the fun
tion for these values. For example, instantiating theabove fun
tion Hex for 3 gives Hex(3) = Hex(2 + 1) = Hex(2) + (6� 2) =(Hex(1) + (6� 1)) + 12 = 1 + 6 + 12 = 19.Abstra
tion is a pro
ess of extra
ting a general argument from its examples.In this paper it refers to 
onstru
ting a s
hemati
 proof from example proofs.For example, the pro
ess of 
onstru
ting proof (n) for the multiple additiontheorem given above from the examples of its proof for n = 2 and n = 3 isreferred to as abstra
tion.Another meaning of abstra
tion in this paper is to refer to an abstra
tion de-vi
e, su
h as ellipsis (i.e., the \: : :" notation), to represent general diagrams.Abstra
tion is sometimes referred to as indu
tive inferen
e, or \philosophi
alindu
tion", or generalisation.Generalisation repla
es a formula by a more general one. For example, 
on-stants, fun
tions or predi
ates 
an be repla
ed by variables (e.g., x+ 3 = yis generalised to x+a = y where a 
onstant 3 is repla
ed by a variable a), oruniversally quanti�ed variables are de
oupled (e.g., 8x:(x+x)+x = x+(x+x)is generalised to 8x8y8z:(x+ y) + z = x+ (y + z)).Obje
t-level statement is a well-formed term, proof or inferen
e step of thelogi
 in use (
f. meta-level statement). For example, the proof of multipleaddition theorem given above in x1 is an obje
t-level statement.Meta-level statement is a statement about an obje
t-level statement, in somelogi
al theory (
f. obje
t-level statement). For example, a 
laim that theproof of multiple addition theorem given above in x1, is a 
orre
t proof of thistheorem, is a meta-level statement about the proof of the multiple additiontheorem.Mathemati
al indu
tion or standard indu
tion is a rule of inferen
e in somelogi
al theory whi
h is used to prove the statement that some propositionP (n) is true for all values of n > n0, where n0 is some base value. Thisrule of inferen
e makes an assertion about obje
t-level statements (
f. meta-indu
tion). For example, in Peano arthmeti
, the rule of indu
tion is:P (0) P (n)! P (s(n))8n:P (n)



5Meta-indu
tion is a rule of inferen
e in some logi
al theory whi
h is used toprove the meta-statement that some proposition MP (n) about the obje
t-level statement P (m) is true for all values of n > n0, where n0 is some basevalue. This rule of inferen
e makes an assertion about proofs rather thanobje
t-level statements (
f. mathemati
al indu
tion). For example, in Peanoarithmeti
, the rule of meta-indu
tion is (where proof is a re
ursive fun
tion,and \:" stands for \is a proof of"):proof (0) : P (0) proof (n) : P (n)! proof (s(n)) : P (s(n))8n:proof (n) : P (n)S
hemati
 is an adje
tive that refers to some general way of des
ribing a 
lassof obje
ts. We use this adje
tive when des
ribing a program that generatesa proof for all instan
es of some 
orresponding theorem. We refer to theseprograms as s
hemati
 proofs. A formal de�nition of a s
hemati
 proof isgiven in x2 in De�nition 3.2 S
hemati
 proofsOur interest in s
hemati
 proofs 
omes from the perspe
tive of automated rea-soning, where the aim is to implement a system whi
h 
onstru
ts s
hemati
proofs. The automation of proof extra
tion requires some suitable me
hanism to
apture a general proof. S
hemati
 proofs provide su
h a me
hanism. Generals
hemati
 proofs 
an be 
onstru
ted from a sequen
e of instan
es. A mathemat-i
al basis whi
h justi�es the step from spe
i�
 examples to a general s
hemati
proof is the 
onstru
tive !-rule [1℄. ! is the name given to the in�nite setf0; 1; 2; 3; : : :g, or equivalently, using the su

essor fun
tion s (see x1.1), theset f0; s(0); s(s(0)); s(s(s(0))); : : :g. Typi
ally, a s
hemati
 proof is formalisedas a re
ursive program. This re
ursive program allows us to 
on
lude a generals
hemati
 proof for the universally quanti�ed theorem. In this se
tion, we for-mally de�ne what a s
hemati
 proof is, and what is the mathemati
al basis forits formalisation.The mathemati
al basis for extra
tion of s
hemati
 proofs is the 
onstru
tive!-rule. This rule is a version of the !-rule [3℄:De�nition 1 (!-Rule).The !-rule allows inferen
e of the senten
e 8x: P (x) from an in�nite sequen
eP (n) for n 2 ! of senten
es P (0); P (1); P (2); : : :8n:P (n)Using the !-rule, an in�nite number of premisses needs to be proved in order to
on
lude a universal statement. This makes the !-rule unusable for automation.Hen
e, we 
onsider the 
onstru
tive version of this rule [1℄:



6De�nition 2 (Constru
tive !-Rule).The 
onstru
tive !-rule allows inferen
e of the senten
e 8x: P (x) from an in�nitesequen
e P (n) for n 2 ! of senten
esP (0); P (1); P (2); : : :8n:P (n)su
h that ea
h premiss P (n) is proved uniformly (from parameter n).Note that the !-rule and the 
onstru
tive !-rule are stronger alternatives formathemati
al indu
tion.The uniformity 
riterion is taken to be the provision of a 
omputable pro-
edure des
ribing the proof of P (n), e.g., proof (n). The requirement for a 
om-putable pro
edure is equivalent to the notion that the proofs for all premissesare 
aptured in a re
ursive fun
tion. We refer to su
h a re
ursive fun
tion as as
hemati
 proof.De�nition 3 (S
hemati
 Proof).A s
hemati
 proof is a re
ursive fun
tion,2 e.g., proofP (n),3 whi
h outputs aproof of some proposition P (n) given some n as input.Suppose the re
ursive fun
tion, proof, is a s
hemati
 proof. The fun
tionproof takes one argument, namely a parameter n. In general, this fun
tion 
anbe de�ned to take any number of arguments. By instantiation, i.e., by assigninga parti
ular value to n and passing it as an argument to the fun
tion proof, andby appli
ation of this instantiated fun
tion to the theorem, proof P (n) gener-ates a proof for a parti
ular premiss P (n). More pre
isely, proof P (n) des
ribesthe inferen
e steps (i.e., rules) made in proofs for ea
h P (n). Now, proof (n) iss
hemati
 in n, be
ause we may apply some rule R a fun
tion of n (or a 
onstant)number of times. That is, the number of times that a rule R is applied in theproof might depend on the parameter n. This re
ursive de�nition of a proof isused as a basis for implementation of the s
hemati
 proofs [2, 1℄.From a pra
ti
al point of view, the 
onstru
tive !-rule and s
hemati
 proofseliminate the need for an in�nite number of proofs, or in other words, they enableus to spe
ify an in�nite number of proofs in a �nite way. Moreover, they providea te
hnique whi
h enables an automation of sear
h for proofs of universallyquanti�ed theorems from instan
es of proofs.We now show how s
hemati
 proofs of universally quanti�ed theorems 
anbe found using several heuristi
s.2.1 Finding a S
hemati
 ProofA s
hemati
 proof 
an be 
onstru
ted by 
onsidering individual examples ofproofs for instan
es of a theorem, and then extra
ting a general pattern from2 Te
hni
al terminology is explained in x1.13 Note that we omit the use of subs
ript P in proof P (n) where it is 
lear whi
h theoremproof proves.



7these instan
es. The idea is that in order to extra
t a general stru
ture 
ommonto all instan
es of a proof, the parti
ular examples of proofs of a theorem whi
hare 
onsidered, need to be general representatives of all instan
es, and not spe
ial
ases. These are normally taken to be some intermediate values, e.g., 5 and 6,or 7 and 9, rather than the initial values, e.g., 0 and 1, sin
e the proofs forinitial values of a parameter n are almost always spe
ial 
ases. Therefore, weuse su
h intermediate values, e.g., P (7) and P (9) and 
orrespondingly proof (7)and proof (9), to extra
t the pattern, whi
h we hope is general. A stru
turewhi
h is 
ommon to the 
onsidered examples is extra
ted by an abstra
tion.The result is the 
onstru
tion of a general s
hemati
 proof. If the instan
esfor the intermediate values that were 
onsidered are not representative of allinstan
es, so that the abstra
tion was 
arried out on in
omplete information,then the 
onstru
ted re
ursive fun
tion proof 
ould be wrong. Therefore, thefun
tion proof needs to be veri�ed as 
orre
t. This involves reasoning about theproof (using meta-level reasoning), and showing that proof indeed generates a
orre
t proof of ea
h P (n).The following pro
edure summarises the essen
e of using the 
onstru
tive!-rule in s
hemati
 proofs:1. Prove a few parti
ular 
ases (e.g., P (7), P (9), ... and thereby dis
over proof (7),proof (9), ...).2. Abstra
t proof (n) from these proofs (e.g., from proof (7), proof (9), ...).3. Verify that proof (n) proves P (n) by meta-indu
tion4 on n.The general pattern is abstra
ted from the individual proof instan
es bylearning indu
tion or abstra
tion. By meta-indu
tion we mean that we introdu
ea theory Meta su
h that for all n the base 
ase of the meta-indu
tion is:Meta ` proof (0) : P (0)and the step 
ase is:Meta ` proof (n) : P (n) �! proof (n+ 1) : P (n+ 1)By meta-indu
tion we need to show in the meta-theory that given a propositionP (n), proof(n) indeed proves it, i.e., it gives a 
orre
t proof with P (n) as its
on
lusion, and axioms of some obje
t logi
 as its premisses. This ensures thatthe 
onstru
ted general s
hemati
 proof is indeed a 
orre
t proof for all instan
esof a proposition.4 The meta-indu
tion is often mu
h simpler than the mathemati
al indu
tion that isalternative to the s
hemati
 proof. For example, whereas generalisation is requiredin some obje
t-level indu
tive proofs, no generalisation is required in the meta-indu
tion at the veri�
ation stage of the 
orresponding s
hemati
 proof. See x4 and x6for more dis
ussion and some examples.



83 Appli
ation of s
hemati
 proofsTo illustrate the use of the 
onstru
tive !-rule in s
hemati
 proofs, we givehere �ve examples of s
hemati
 proofs for the following theorems: an arith-meti
 s
hemati
 proof of asso
iativity of addition implemented by Baker [1℄, as
hemati
 proof of rotate-length theorem, two diagrammati
 s
hemati
 proofs,the �rst of the theorem regarding the sum of odd naturals implemented by Jam-nik et al [2℄, and the se
ond regarding the sum of hexagonal numbers presentedby Penrose [4℄, and a faulty s
hemati
 proof of Euler's theorem presented byLakatos in [5℄.3.1 Asso
iativity of AdditionConsider a theorem about the asso
iativity of addition, stated as(x+ y) + z = x+ (y + z)Baker studied s
hemati
 proofs of su
h theorems in [1℄. The re
ursive de�nitionof \+" is given as follows: 0 + Y = Y (1)s(X) + Y = s(X + Y ) (2)We also need a re
exive law 8n: n = n.The 
onstru
tive !-rule is used on x in the statement of the asso
iativityof addition. We write any instan
e of x as sn(0). By sn(0) is meant the n-thnumeral, i.e., the term formed by applying the su

essor fun
tion to 0 n times.Next, the axioms are used as rewrite rules from left to right, and substitutionis 
arried out in the !-proof, under the appropriate instantiation of variables.Hen
e, the following en
oding:8n:(sn(0) + y) + z = sn(0) + (y + z)8x: (x+ y) + z = x+ (y + z)where n is the parameter, represents any instan
e of the 
onstru
tive !-rule inour example (note the use of ellipsis):(0 + y) + z = 0 + (y + z); (s(0) + y) + z = s(0) + (y + z);(s(s(0)) + y) + z = s(s(0)) + (y + z); : : :8x: (x+ y) + z = x+ (y + z)We 
onstru
t a s
hemati
 proof in terms of this parameter, where n in theante
edent 
aptures the in�nity of premisses a
tually present, one for ea
h valueof n. This removes the need to present an in�nite number of proofs. The aim isto redu
e both sides of the equation to the same term. The s
hemati
 proof ofthis theorem is the following program:proof(n) = Apply rule (2) n times on ea
h side of equality,Apply rule (1) on
e on ea
h side of equality,Apply rule (2) n times on left side of equality,Apply Re
exive Law



9Running this program on the asso
iativity theorem proves it. For example:(sn(0) + y) + z = sn(0) + (y + z)ww� Apply rule (2) n times on ea
h side...sn(0 + y) + z = sn(0 + (y + z))ww� Apply rule (1) on ea
h sidesn(y) + z = sn(y + z)ww� Apply rule (2) n times on left...sn(y + z) = sn(y + z)ww� Apply Re
exive LawtrueNote that the number of proof steps depends on n, whi
h is the instan
e of xwe are 
onsidering. We see that the proof is s
hemati
 in n | 
ertain steps are
arried out a number of times depending on n.3.2 Rotate-Length TheoremThe rotate-length theorem is about rotating a list its length number of times,and 
an be stated as: rotate(length(l); l) = lwhere length(l) gives the length of a list l, and rotate(x; l) takes the �rst xelements of a list l and puts them at its end (e.g., rotate(3; [a; b; 
; d; e℄) =[d; e; a; b; 
℄), and 
an be de�ned as:rotate(0; l) = lrotate(x; [ ℄) = [ ℄rotate(n+ 1; l :: ls) = rotate(n; ls�[l℄)Note that :: is in�x 
ons (it takes an element and a list and puts the elementat the front of the list, e.g., 1 :: [2; 3; 4℄ = [1; 2; 3; 4℄) and � is in�x append(it takes two lists and puts them together, e.g., [1; 2; 3℄�[4; 5℄ = [1; 2; 3; 4; 5℄).Consider a s
hemati
 proof of this theorem. First we give an example proof forsome instan
e of a theorem. An example proof for the instan
e of a list of any�ve elements l = [a; b; 
; d; e℄, i.e., length(l) = 5 goes as follows. Let the list l
onsist of �ve elements. We take the �rst element of the list and put it to theba
k of the list. Now, we do the same for the remaining four elements.



10 rotate(length([a; b; 
; d; e℄); [a; b; 
; d; e℄) =rotate(5; [a; b; 
; d; e℄) =rotate(4; [b; 
; d; e; a℄) =rotate(3; [
; d; e; a; b℄) =rotate(2; [d; e; a; b; 
℄) =rotate(1; [e; a; b; 
; d℄) = [a; b; 
; d; e℄It is very easy to see that this pro
ess gives us ba
k the original list. Moreover,it is 
lear that if we follow the same pro
edure, i.e., s
hemati
 proof, for a list ofany length, we always get ba
k the original list. Hen
e, the number of inferen
esteps in the proof depends on n, so a proof is s
hemati
 in n:rotate(length([a1; a2; a3; : : : ; an℄); [a1; a2; a3; : : : ; an℄) =rotate(n; [a1; a2; a3; : : : ; an℄) =rotate(n� 1; [a2; a3; : : : ; an; a1℄) =rotate(n� 2; [a3; : : : ; an; a1; a2℄) =...rotate(1; [an; a1; a2; a3; : : :℄) = [a1; a2; a3; : : : ; an℄3.3 Sum of odd natural numbersWe now 
onsider a theorem about the sum of odd naturals and its s
hemati
proof as studied by Jamnik et al in [2℄ and [6℄. Jamnik et al studied the no-tion of diagrammati
 proofs and formalisation of diagrammati
 reasoning. Adiagrammati
 proof is 
aptured by a s
hemati
 proof that is 
onstru
ted fromexamples of graphi
al manipulations of instan
es of a theorem. This diagram-mati
 s
hemati
 proof has to be 
he
ked for 
orre
tness. A diagrammati
 proof
onsists of diagrammati
 inferen
e steps, rather than logi
al inferen
e rules. Di-agrammati
 inferen
e steps are the geometri
 operations applied to a diagram.The operations on diagrams produ
e new diagrams. Chains of diagrammati
 in-feren
e rules, spe
i�ed by the s
hemati
 proof, form the diagrammati
 proof ofa theorem. In Jamnik et al's formalisation of diagrammati
 reasoning, diagramsare used as an abstra
t representation of natural numbers, and are representedas 
olle
tions of dots. Some examples of diagrams are a square, a triangle, anell (two adja
ent sides of a square). Some examples of geometri
 operations arel
ut (split an ell from a square), remove row, remove 
olumn.We demonstrate here a diagrammati
 proof of the theorem about the sum ofodd natural numbers. The theorem 
an be stated asn2 = 1 + 3 + 5 + � � �+ (2n� 1)We 
onsider an instan
e of the theorem 42 = 1+3+5+7 and its diagrammati
proof where n = 4. Let us 
hoose that n2 is represented by a square of magnituden, (2n � 1) is represented as an ell whose two sides are both n long, i.e., oddnatural numbers are represented by ells, and a natural number 1 is representedas a dot. The proof of this instan
e of the theorem 
onsists of 
utting a square4 times into ells.
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4 x LCUTNoti
e, that a similar pro
edure holds for a square of any size, i.e., for anyinstan
e of the theorem. Therefore, these steps are suÆ
ient to transform asquare of magnitude n representing the LHS of the theorem to n ells of in
reasingmagnitudes representing the RHS of the theorem.Note that the number of proof steps (i.e., diagrammati
 inferen
e steps)depends on n { for a square of size n the proof 
onsists of n l
uts. Hen
e theproof is s
hemati
 in n. Here is a de�nition of this s
hemati
 proof:proof (n+ 1) = apply l
ut, then proof (n)proof (0) = empty3.4 Sum of hexagonal numbersLet us now examine a theorem about the sum of hexagonal numbers and its(diagrammati
) s
hemati
 proof as presented by Penrose in [4℄. We repeat herethe formal re
ursive de�nition of hexagonal numbers from x1.1:Hex(0) = 0Hex(1) = 1Hex(n+ 1) = Hex(n) + 6� nInformally, hexagonal numbers 
ould be presented as hexagons where the hexag-onal number is the number of dots in a hexagon:

1 7 19 .  .  .  .The theorem is stated as follows:n3 = Hex(1) +Hex(2) + � � �+Hex(n)Let n3 be represented by a 
ube of magnitude n and Hex(n) by an nth hexagon.The instan
e of the proof that we 
onsider here is for n = 3. The diagrammati
proof of the sum of hexagonal numbers 
onsists of breaking a 
ube into a seriesof half-shells. A half-shell 
onsists of three adja
ent fa
es of a 
ube.
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If ea
h half-shell is proje
ted onto a plane, that is, if we look at the top-right-ba
k
orner of ea
h half-shell down the main diagonal of the 
ube from far enough,then a hexagon 
an be seen. So the 
ube is then presented as the sum of allhalf-shells, i.e., hexagonal numbers.
Again, noti
e that the general proof holds for any instan
e n. That is, these stepsare suÆ
ient to transform a 
ube of magnitude n representing the LHS of thetheorem to n in
reasing hexagons representing the RHS of the theorem. Notethat the number of diagrammati
 inferen
e steps depends on the value of n, sothe proof is s
hemati
 in n.3.5 Euler's TheoremLet us 
onsider a famous example of an erroneous s
hemati
 \proof", namely,the history of Euler's theorem [5℄. Euler's theorem states that for any polyhedronV � E + F = 2 holds, where V is the number of verti
es, E is the number ofedges, and F is the number of fa
es. Lakatos5 initially gives a proof, histori
allydue to Cau
hy, of the theorem, whi
h is a uniform method for proving instan
esof Euler's theorem. Thus, the method is a s
hemati
 proof. However parts ofthe method are not expli
itly stated, but seem very 
onvin
ing when applied5 The proof of Euler's theorem is also dis
ussed in [7, pages 47-48℄.



13to simple polyhedra. Here is a summary of the proof method taken from [5,pages 7-8℄.6
(a) (b) (c)

(d) (e) (f)Take any polyhedron (note that in our 
ase, we take a 
ube, but the result isthe same for any polyhedron). Imagine that it is hollow, and that its fa
es aremade out of rubber (see (a) of the diagram above). Now, remove one fa
e fromthe polyhedron, and stret
h the rest of the polyhedron onto the plane (see (b)of the diagram). Note that sin
e we have taken one fa
e o�, our formula shouldbe V �E + F = 1. Note also that the relations between the verti
es, edges andfa
es are preserved in this way. Triangulate all of the fa
es of this plane network(i.e., we are adding the same number of edges and fa
es to the network, so theformula remains the same | see (
) of the diagram). Now, start removing theboundary edges (see (d) of the diagram). This will have the e�e
t of removingan edge and a fa
e from the network at the same time, or two edges, one vertexand one fa
e, so our formula is still preserved. We 
ontinue removing edges inappropriate order (see (e)), thus preserving the formula, until we are left withone triangle only. Clearly, for this triangle V � E + F = 1 holds, sin
e thereare three verti
es, three edges and one fa
e. Here is an informal diagrammati
s
hemati
 proof:1. remove one fa
e from any given polyhedron,2. stret
h the rest of the polyhedron onto the plane,3. triangulate all of the fa
es that are not triangles already,4. remove the boundary edges one after another, until you are left with a singletriangle.However, this s
hemati
 \proof" is faulty, and we will dis
uss the reasons forthis in x5.6 The diagram demonstrating the proof of Euler's theorem is also taken from [5,page 8℄.



144 Learning from examplesS
hemati
 proofs and the 
onstru
tive !-rule explain why one or more examples
an represent a general proof. Therefore, our �rst 
onje
ture is that s
hemati
proofs explain the use of examples for 
onstru
tion of proofs. Furthermore, wepropose that reasoning with 
on
rete 
ases, i.e., instan
es or examples, is oftenmore easily understood than reasoning with abstra
t notions.As des
ribed in x2, the 
onstru
tive !-rule enables us to 
apture in�nitary
on
epts in a �nite way. It enables us to use s
hemati
 proofs in order to proveuniversal statements. The 
onstru
tive !-rule gives us a mathemati
al basiswhi
h justi�es how and why the examples or instan
es of problems 
an be usedin order to 
on
lude a general statement, in our 
ase a general proof of a univer-sally quanti�ed theorem. We des
ribe two systems whi
h use s
hemati
 proofs,and hen
e reason with instan
es of theorems in order to prove universally quan-ti�ed theorems, namely Baker's system CORE whi
h reasons about theorems ofarithmeti
 [1℄, and Jamnik's system Diamond whi
h formalises diagrammati
reasoning [2℄.Baker used s
hemati
 proofs in order to prove theorems of arithmeti
, espe-
ially the ones whi
h 
ould not be proved by automated systems without the useof generalisation (for de�nition, see x1.1). One of Baker's example theorems isa spe
ial version of the theorem about asso
iativity of addition. In x3.1 we gavea general version of this theorem. Baker's spe
ial version of the theorem 
an bestated as: (x+ x) + x = x+ (x+ x)The CORE system automati
ally proves this theorem by enumerating instan
esof a proof, then 
onstru
ting a general s
hemati
 proof, and �nally, verifyingthat the s
hemati
 proof is 
orre
t. Instan
es of the theorem 
an be en
oded as:(sn(0) + sn(0)) + sn(0) = sn(0) + (sn(0) + sn(0))for ea
h parameter n. The s
hemati
 proof of this theorem is identi
al to theone in x3.1. In a theorem prover that 
annot 
onstru
t s
hemati
 proofs, thistheorem would normally be proved by mathemati
al indu
tion. But indu
tionin this 
ase is blo
ked, as P (s(n)) 
annot be given in terms of P (n) (for moredetails see [1℄). Hen
e, generalisation to full asso
iativity (x+y)+z = x+(y+z)is ne
essary. Rather than using generalisation, as in other automated reasoningsystems, CORE was able to prove this theorem using 
on
rete instan
es of atheorem and its proof.Jamnik uses s
hemati
 proofs for diagrammati
 proofs of theorems of naturalnumber arithmeti
, like the theorem about the sum of odd natural numbers givenin x3.3. To devise a general diagrammati
 proof of this theorem, one would needto use abstra
t diagrams, i.e., diagrams of a general size. Therefore, diagramswould have to be represented using abstra
tion devi
es, su
h as ellipsis. Ab-stra
tion devi
es in diagrams are problemati
 as they are inherently ambiguous.The pattern on either end of the ellipsis needs to be indu
ed by the system. For



15instan
e, it is ambiguous whether an abstra
t 
olle
tion of rows or 
olumns ofdots with ellipsis, like this:
. . .
. . .
. . .

. . .

. . .
. . .
. . .

. . .. . 
.is a square or a re
tangle, or if it is of odd or even magnitude. The problembe
omes more a
ute when dealing with more 
omplex stru
tures. To re
ognisethe pattern that the ellipsis represents, the system needs to 
arry out somesort of pattern re
ognition te
hnique whi
h dedu
es the most likely pattern andstores it in an exa
t internal representation. This guessed pattern might stillbe wrong. Be
ause of the ambiguity of ellipsis it is diÆ
ult to keep tra
k of itduring manipulations of diagrams. S
hemati
 proofs are a good way of avoidingthis problem, as they allow us to use 
on
rete instan
es of a theorem and itsproof, and yet prove a general theorem. A pro
edure to 
onstru
t a s
hemati
proof in Diamond and CORE is to �rst prove instan
es of a theorem, e.g., adiagram, then 
onstru
t a s
hemati
 proof, and �nally prove that this s
hemati
proof is 
orre
t. Using instan
es of a theorem enables us to use 
on
rete diagramsin order to extra
t formal general proofs.Besides the ability to extra
t general proofs from examples, it also appearsthat reasoning with examples seems easier for humans to understand than rea-soning with abstra
t notions. The usual way in logi
 to prove Baker's theoremby a me
hanised provers is to use mathemati
al indu
tion and a generalisation,whi
h is diÆ
ult to �nd for both, a human and an arti�
ial mathemati
ian {a me
hanised mathemati
al reasoning system. Furthermore, another way of di-agrammati
ally proving Jamnik's theorem is to reason with abstra
t diagramswhi
h 
ontain problemati
 ellipses. Using s
hemati
 proofs and instan
es of the-orems seems an easier way to prove these theorems, and seems to 
onvey betterwhy the theorems hold.5 Erroneous proofsA generally a

epted de�nition of a proof of a theorem in mathemati
al logi
 isthe one given by Hilbert. Here is a translation of a quote from Hilbert's arti
le [8℄.\Let me still explain brie
y just how a mathemati
al proof is formal-ized. As I said, 
ertain formulas, whi
h serve as building blo
ks for theformal edi�
e of mathemati
s, are 
alled axioms. A mathemati
al proofis an array that must be given as su
h to our per
eptual intuition; it
onsists of inferen
es a

ording to the s
hema



16 SS ! TTwhere ea
h of the premisses, that is, the formulas S and S ! T in thearray, either is an axiom or results from an axiom by substitution, or else
oin
ides with the end formula of a previous inferen
e or results from itby substitution. A formula is said to be provable if it is the end formulaof a proof." [9, pages 381-382℄What Hilbert is talking about is sometimes referred to as Hilbert's Pro-gramme and is about the axiomatisation of mathemati
al systems. The de�ni-tion of a proof in su
h a system 
an be summarised as follows. A proof of atheorem is a sequen
e of inferen
e steps whi
h are valid in some logi
al theorythat has a 
omplete axiomatisation, and whi
h redu
es a theorem that also be-longs to this logi
al theory to a set of axioms, i.e., known true fa
ts of the samelogi
al theory.However, this de�nition is questionable as it implies that the only explana-tion for errors in proofs is that they must be synta
ti
 ones. Namely, Hilbert'sargument suggests that all proofs boil down to a me
hani
al exer
ise of de
om-posing a theorem into a set of axioms of the theory to whi
h they all belong. Wesuggest that synta
ti
 errors 
ould be automati
ally dete
ted during this de
om-position, and so erroneous proofs would not survive for years. In mathemati
s,people do not always formalise all axioms and inferen
es, yet their justi�
ationsfor the truthfulness of theorems are generally a

epted as 
orre
t proofs of theo-rems. For instan
e, 
onsider Eu
lid's proofs of theorems of geometry long beforea 
omplete axiomatisation of geometry was given by Hilbert [10℄.Mathemati
al proofs of theorems sometimes turn out to be faulty. The historyof mathemati
s has taught us that there are plenty of faulty proofs of theoremswhi
h were for a long time 
onsidered to be 
orre
t, but later it turned out thatthe \proofs" were not proofs at all, that is, they were in
orre
t. Amongst famousexamples is Cau
hy's proof of the 
onje
ture whi
h says that the limit of any
onvergent series of 
ontinuous fun
tions is itself 
ontinuous. Cau
hy's \proof"persisted for almost forty years until the faulty 
onje
ture was modi�ed [5℄.Another example is the 4-
olour 
onje
ture whi
h had faulty proofs [11℄. Aninteresting dis
ussion of this 
onje
ture and its \proofs" is given in [12℄, anda 
orre
t proof of this theorem 
an be found in [13℄. If Hilbert's de�nition of aproof was an a

urate des
ription of mathemati
al pra
ti
e, then these erroneous\proofs" would not arise { any fault in the \proof" would be dete
ted qui
klyas synta
ti
 error. So what is going on, why do erroneous \proofs" persist?Clearly, in mathemati
s in general Hilbert's de�nition of a proof holds onlyfor a small part of mathemati
s, namely 
onje
tures in logi
al theories whi
hhave 
omplete axiomatisations. However, not all mathemati
al 
onje
tures arepart of known axiomatised logi
al theories.Let us 
onsider the famous example of an erroneous proof of Euler's theorem,given in x3.5. Analysing this proof, Lakatos [5℄ presents a number of 
ounterexamples in whi
h the method of proof, i.e., the s
hemati
 proof, fails. It turnsout that the initial theorem does not hold for all polyhedra. For example, it does



17not hold for hollow polyhedra, e.g., a solid 
ube with a 
ubi
al hole inside it,sin
e V �E + F = 4. Note that the s
hemati
 proof fails at step 2.
The reader is referred to [5℄ for a number of 
ounter examples of this theorem.One of the problems with Cau
hy's s
hemati
 proof is that the de�nition of apolyhedron is not 
learly stated. Therefore, a re�nement of a theorem is needed.Lakatos's suggestion for this is to de�ne a polyhedron as a surfa
e and not as asolid. Lakatos pro
eeds to dis
uss other 
ounter examples to Cau
hy's s
hemati
proof, and �nally re�nes the de�nition of a polyhedron in a way that Euler's the-orem does hold. It turns out that the theorems holds for all simple 7 [5, page 34℄polyhedra whose fa
es are simply 
onne
ted 8 [5, page 85℄.Cau
hy used a pro
edure for 
onstru
tion of s
hemati
 proofs in order to
onvin
e us of his \proof" of Euler's theorem. However, he did not 
arry out thelast step of the pro
edure for extra
tion of s
hemati
 proofs, namely, he did notverify that the s
hemati
 proof is indeed 
orre
t.9 We argue that if he did usethe 
omplete pro
edure, then the falla
y of the pro
edure would be dete
ted atthe veri�
ation stage. Note that this would require a 
onstru
tive de�nition of apolyhedron.It seems plausible that humans use some sort of s
hemati
 pro
edure to �ndgeneral proofs of theorems. In parti
ular, humans often use examples of proofsfor 
ertain instan
es and then abstra
t them into a general s
hemati
 proof. Ifnot all the 
ases are 
overed by the examples, then the s
hemati
 proof mightbe in
orre
t, as in the 
ase of the proof of Euler's theorem mentioned above. If a7 Simple polyhedra are ones whi
h 
an be stret
hed onto the plane, i.e., those that aretopologi
ally equivalent to a sphere.8 A surfa
e S is de�ned to be 
onne
ted if any pair of its points 
an be joined by a
ontinuous 
urve lying entirely within the surfa
e. Further, a surfa
e is said to besimply 
onne
ted if any 
losed 
urve C on the surfa
e divides the surfa
e into twodistin
t regions, ea
h of whi
h is internally 
onne
ted in the sense just des
ribed,and su
h that any 
ontinuous 
urve whi
h joins a point in one of those regions to apoint in the other must 
ross the 
losed 
urve C.9 A modern formal proof of Euler's theorem was devised only mu
h later and is a

ord-ing to Lakatos [5, page 118℄ due to Poin
ar�e [14℄. It works by representing polyhedraas sets of verti
es, edges and fa
es together with in
iden
e matri
es to say whi
hverti
es are in ea
h edge and whi
h edges are in ea
h fa
e. A restri
ted 
lass ofpolyhedra is then turned into a formulae of ve
tor algebra and a 
al
ulation in thisalgebra gives the value 2 for V �E + F . The proof is not intuitively 
lear, and it isnot easy to see why the theorem holds and why this formal proof is 
orre
t.
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ounter example is en
ountered, then the method needs to be revised to ex
ludesu
h 
ases. It seems that humans sometimes omit this step all together. Humanma
hinery for extra
ting a general s
hemati
 argument is usually 
onvin
ingenough to reassure them that the s
hemati
 argument is 
orre
t, e.g., 
onsiderthe \proof" of Euler's theorem. Humans are happy with intuitive understandingsof de�nitions and steps in the proof { as long as they do not en
ounter a 
ounterexample, their general pattern of reasoning in the proof is a

eptable. Lakatosrefers to su
h mathemati
al proofs as \thought experiments". It is only re
ently,in the 20th 
entury, that thought experiments were repla
ed by logi
al proofs.In an automated reasoning system, formality is of 
ru
ial importan
e. The
orre
tness of the indu
ed s
hemati
 argument has to be formally shown. This
on�rms that a s
hemati
 proof is indeed a 
orre
t formal proof of a theorem. Ifall proofs of theorems that people �nd followed rules of some formal logi
, thenthere would be no explanation for how erroneous proofs 
ould arise. The errorswould always be dete
ted as synta
ti
al errors, provided that the rules used toprove the theorem are 
orre
t.So, our se
ond 
onje
ture is that human mathemati
ians often use a pro
e-dure similar to the 
onstru
tion of s
hemati
 proofs in order to �nd proofs oftheorems, but they often omit the veri�
ation step whi
h ensures that the proof is
orre
t. We propose further, that omitting the veri�
ation step of su
h pro
edurea

ounts for numerous examples of faulty \proofs". For instan
e, if one has not
onsidered all the representative examples, then the s
hemati
 proof may notprove all 
ases of the theorem. A 
ounter example may be found.6 Intuitiveness of s
hemati
 proofsHere, we extend the point in x4 that reasoning with examples or instan
esof a problem is easier than reasoning with abstra
t notions. We propose thats
hemati
 proofs seem to 
orrespond better to human intuitive proofs. It appearseasier to see why the theorem holds by looking at the instan
es of a theoremand its proof and then 
onstru
ting a s
hemati
 proof, than 
onsidering a logi-
al proof. As eviden
e, we give four examples of theorems from x3, where theirs
hemati
 proofs are easier to understand than formal logi
al proofs: Baker'sproof of asso
iativity of addition from x3.1, Jamnik's diagrammati
 proof of thesum of odd naturals from x3.3, Penrose's sum of hexagonal numbers from x3.4,and rotate-length theorem from x3.2.We now 
onsider further the rotate-length theorem. The informal s
hemati
proof of this theorem is very easy to understand and to generalise to all 
ases ofany list.In 
ontrast to a s
hemati
 proof of the rotate-length theorem, this theoremis not easy to prove by a 
onventional (non-diagrammati
) theorem prover. Theindu
tive proof of the rotate-length theorem usually requires generalisation: e.g.,rotate(length(l); l�k) = k�l, where � is the list append fun
tion as de�nedin x3.2. It is harder to see that this theorem is 
orre
t. S
hemati
 proofs avoid



19su
h generalisations. Baker used s
hemati
 proofs to exploit this fa
t for theo-rems of arithmeti
 [1℄.We propose that the s
hemati
 proof given in x3.2 is a 
ommon way thatpeople think about the proof of this theorem. Ane
dotal eviden
e from humanssuggests that s
hemati
 proofs are psy
hologi
ally plausible. This supports our
onje
ture that s
hemati
 proofs 
orrespond better to human intuitive proofs.7 A proposed studyIn this paper we proposed a number of 
onje
tures about s
hemati
 proofs.1. S
hemati
 proofs explain the use of examples for indu
ing formal proofs.2. S
hemati
 proofs a

ount for erroneous proofs.3. S
hemati
 proofs are more intuitive than standard indu
tive proofs.These 
onje
tures are not yet supported by an empiri
al study, but by ourintuition and some suggestive examples. Hen
e, we propose an experimentalstudy whi
h 
ould support or refute our intuitions. The study would look atsome or all of the aspe
ts of s
hemati
 proofs addressed in the previous se
tions.In parti
ular, it would attempt to answer the following questions:1. Do humans prefer to reason with 
on
rete rather than general 
ases of aproblem? Do humans use a pro
edure similar to the 
onstru
tion of s
hemati
proofs when solving problems? If so, in what way do they use it and when?2. Are there other examples whi
h support the 
onje
ture that in
ompletes
hemati
 proofs a

ount for some erroneous proofs?3. Is reasoning with examples easier than reasoning with abstra
t notions? Ares
hemati
 proofs more easily understood than formal indu
tive proofs? If so,why do they appeal to humans more than formal indu
tive proofs?The study proposed here would explore human intuitive reasoning in a novelway. We think that humans �nd s
hemati
 proofs easier to understand and more
ompelling than their logi
al 
ounterparts. This is also part of the reason whyhumans might �nd diagrammati
 proofs more intuitive than standard indu
tiveproofs. We have only ane
dotal eviden
e to support our belief. However, a 
om-parative psy
hologi
al validity experimental study 
ould be 
arried out to answersome of the questions posed above and to provide some empiri
al eviden
e foror against our 
laims.The proposed study 
ould take the following form. An experiment 
ould be
arried out on a 
lass of students with a 
ertain level of mathemati
al knowledge(probably �nal year of se
ondary s
hool level { the students should be equippedwith the notion of mathemati
al indu
tion). The 
lass should be suÆ
ientlylarge that the results are statisti
ally signi�
ant. The students would be givenexamples of indu
tive theorems and non-theorems, and asked if they think thetheorem is true or not. If they think it is true, the students would be asked togive an argument why they think it is true. Some of the non-theorems 
ould bethose whi
h hold for the majority of 
ases, but are not true for some spe
ial and



20non-obvious 
ases. The students would also be asked to provide details of theirproblem solving pro
ess, i.e., the arguments that helped them rea
h a proof ofa theorem or a 
on
lusion that the theorems does not hold.The data 
olle
ted from the students would be analysed. Here are a fewaspe
ts that 
ould be addressed in the analysis:{ 
lassi�
ation of problem solving strategies using some existing te
hniques,{ analysis of whether the arguments used in the proof are indu
tive, s
hemati
(using something like the 
onstru
tive !-rule), or some other type,{ analysis of the responses for non-theorems whi
h are true for most 
ases, butnot true for some more obs
ure spe
ial 
ases:� If the students realise that the 
onje
ture is a non-theorem, how did theydis
over this (espe
ially in the 
ase of a s
hemati
 argument)?� If the students do not realise that the 
onje
ture is a non-theorem, whatare the arguments that falsely reassure them that the 
onje
ture is atheorem and that it is true?Another test that the students 
ould be given 
onsists of theorems and non-theorems, and their proofs and faulty \proofs" respe
tively. Ea
h (non-) theorem
ould be a

ompanied with, say, three di�erent (faulty) proofs ea
h following adi�erent strategy, e.g., indu
tive, s
hemati
 or other. In the 
ase of non-theorems,the indu
tive argument would 
ontain some synta
ti
 errors and the s
hemati
argument would not be veri�ed for 
orre
tness. The students would be asked to
hoose the proof that is most 
onvin
ing and that they think they understandbest, and to elaborate on the reasons for their 
hoi
e.The questions whi
h should be studied in more detail before the experimentis 
ondu
ted in
lude how mu
h mathemati
al knowledge and knowledge of logi
should the students have. Should they be trained in mathemati
al indu
tion,
onstru
tive !-rule, and other problem solving te
hniques? The danger is thatpeople who have some training in mathemati
s, but not in logi
 would solveproblems di�erently from those trained in logi
, or those with little knowledgeof mathemati
s and logi
. Hen
e, the results would say less about the nature ofproofs than about the abilities of individual students. A possibility is to separatesubje
ts into two or more groups a

ording to their level of training, and studythe data a

ording to these groups.Here, we gave some preliminary suggestions for the design of the proposedexperimental study. However, these ideas should be investigated in mu
h greaterdetail before an experiment is 
ondu
ted.8 Con
lusionIn this paper we posed several 
onje
tures about the use of s
hemati
 proofs inmathemati
s. These 
onje
tures make 
laims about the psy
hologi
al validity ofs
hemati
 proofs. First, we suggested that humans often use examples in orderto 
on
lude a general mathemati
al statement. Se
ond, we 
onje
tured that in-
omplete s
hemati
 proofs a

ount for some erroneous proofs. Our suggestion



21is that looking at faulty proofs that have survived for years might give us use-ful insights into human reasoning. Finally, we 
onje
tured that often s
hemati
proofs are more intuitive than their indu
tive 
ounterparts. These three 
on-je
tures are only supported by ane
dotal eviden
e, so there is a 
lear need fora s
ienti�
 experimental study whi
h would test them. The motivation for thiswork is to investigate the nature of human mathemati
al thought and the notionof mathemati
al proof. S
hemati
 proofs provide a good 
ase study for su
h aninvestigation. Hen
e, our aim was to demonstrate that s
hemati
 proofs are wor-thy of a further study by 
ognitive s
ientists, and to propose the sort of questionsthat su
h an experiment 
ould aim to answer. We hope that we provided enougheviden
e and motivation that the study of psy
hologi
al validity of s
hemati
proofs will be seen as a pro�table s
ienti�
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