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Psyhologial Validity of Shemati ProofsMateja Jamnik1 and Alan Bundy21University of Cambridge Computer Laboratory,J.J. Thomson Avenue, Cambridge, CB3 0FD, England, UKMateja.Jamnik�l.am.a.ukhttp://www.l.am.a.uk/~mj2012Centre for Intelligent Systems and their Appliations, Division of Informatis,University of Edinburgh, 80 South Bridge, Edinburgh, EH1 1HN, Sotland, UKA.Bundy�ed.a.ukhttp://www.dai.ed.a.uk/homes/bundy/Abstrat. Shemati proofs are funtions whih an produe a proof ofa proposition for eah value of their parameters. A shemati proof anbe onstruted by abstrating a general pattern of proof from several ex-amples of a family of proofs. In this paper we examine several interestingaspets of the use of shemati proofs in mathematis. Furthermore, wepose several onjetures about the psyhologial validity of the use ofshemati proofs in mathematis. These onjetures need testing, henewe propose an empirial study whih would either support or refute ouronjetures. Ultimately, we suggest that shemati proofs are worthy ofa loser and more detailed study and investigation.1 IntrodutionIn this paper we study and address several questions about the nature of math-ematial proofs. How an a well hosen example often onvey the idea of a proofbetter than the proof itself? How is it possible for proofs to be erroneous, and forsuh faulty \proofs" to persist for deades? Why are the proofs of some interme-diate results less intuitive than the original theorem? We suggest that studyingshemati proofs might provide some answers to suh questions.Shemati proofs have been used and studied in various branhes of mathe-matis. Their use has been suessfully mehanised in automated mathematialreasoning [1, 2℄. We hypothesise that humans often use proedures similar to theonstrution of shemati proofs. The aim of this paper is to motivate ognitivesientists and ognitive psyhologists that shemati proofs are an interestingonept in mathematis and that they are worthy of a loser investigation froma psyhologial point of view. Suh an investigation would shed some light on thenature of human mathematial thought. We examine some interesting aspetsof shemati proofs and postulate a number of onjetures about the psyho-logial validity of shemati proofs. We have anedotal evidene to support ourintuitions, however, we have not onduted any systemati experiments. Hene,in x7, we propose an experimental investigation and we suggest some of thequestions that suh an investigation ould attempt to answer.



2 Shemati proofs are funtions, i.e., programs, whih output a proof for eahvalue of their parameters, i.e., inputs. That is, they are a way of apturing afamily of proofs.1 For example, onsider a trivial theorem, let us all it multipleaddition, whih says that to get a value of an x in (: : : ((x+a1)+a2)+� � �+an) = yone has to subtrat all the ai from y. So, more formally, the theorem an beexpressed as ((: : : ((x+a1)+a2)+ � � �+an) = y)) (x = (: : : ((y�an)�an�1)�� � � � a2) � a1). The shemati proof for this theorem is the following informalprogram (where we assume that we have de�nitions of proof, apply, et.):proof (n) = apply (U + V =W ) U =W � V ) n timeswhih rewrites n times, terms in the theorem of the form U + V = W to termsof the form U = W � V . A shemati output of this program gives a proof ofthe multiple addition theorem (bold bloks represent program exeution steps,i.e., appliations of rewrite rules on the theorem):(((: : : ((x + a1) + a2) + � � � ) + an�2) + an�1) + an = yww�apply (U + V =W ) U =W � V )((: : : ((x + a1) + a2) + � � � ) + an�2) + an�1 = y � anww�apply (U + V =W ) U =W � V )(: : : ((x + a1) + a2) + � � � ) + an�2 = (y � an)� an�1...x = (: : : ((y � an)� an�1)� � � � � a2)� a1A proedure that an be used to onstrut shemati proofs is to prove somespeial ases of a proposition, extrat a pattern from these proofs, and abstratthis pattern into a general shemati proof. We give examples of proofs for speialases for the above theorem where n = 2 and n = 3. When the shemati proof isgiven an input 2, then the program is instantiated to proof (2) = apply (U+V =W ) U =W � V ) 2 times . The output of this program is:(x+ a1) + a2 = bww� apply (U + V =W ) U =W � V )x+ a1 = b� a2ww� apply (U + V =W ) U =W � V )x = (b� a2)� a1Similarly, when the shemati proof is given an input 3, then the program isinstantiated to proof (3) = apply (U + V = W ) U = W � V ) 3 times . The1 Shemati proofs are often used as an alternative to mathematial indution (see x2).



3output of this program is:((x + a1) + a2) + a3 = bww� apply (U + V =W ) U =W � V )(x + a1) + a2 = b� a3ww� apply (U + V =W ) U =W � V )x+ a1 = (b� a3)� a2ww� apply (U + V =W ) U =W � V )x = ((b� a3)� a2)� a1Finally, the shemati proof needs to be shown to be orret, i.e., that proof (n)outputs a proof of the theorem for ase n. This is disussed in x2. In x3 we givemore examples of the use of shemati proofs in mathematis.There are three partiular aspets of shemati proofs that we investigate insome detail. First, we examine how shemati proofs an be onstruted from ex-amples of proofs. The mathematial foundation for the onstrution of shematiproofs provides a justi�ation for the step from examples to general proofs totheorem-hood. So, in x4, our �rst onjeture is that:Shemati proofs explain how examples an be used for onstruting gen-eral proofs.Seond, we examine how shemati proofs have been used in the past to rep-resent laimed proofs of theorems. However, upon loser examination, it turnedout in some ases that what was thought to be a proof, was atually faultyand not a proof at all. We argue that this may be due to the omission of theveri�ation of the shemati proof. Hene, in x5, our seond onjeture is that:Shemati proofs aount for some erroneous proofs in mathematis.We give some historial examples whih support our onjeture.Finally, shemati proofs of some theorems an be very di�erent from theirstandard non-shemati indutive ounterparts. They often seem to be moreeasily understood than indutive proofs. A number of examples are given tosupport our laim. Therefore, in x6, our third and �nal onjeture is that:Shemati proofs are more intuitive than indutive proofs.1.1 Tehnial TerminologyHere we give some de�nitions of tehnial terms used in this paper that mightprove useful. Notie that in the literature, the terms indution, abstration andgeneralisation are often used interhangeably for the same onept. We havethree di�erent notions for these terms, and hene de�ne them here preisely.



4A Reursive funtion is a funtion whose de�nition appeals to itself withoutan in�nite regression. For example, Hex is a reursive funtion whih foreah input natural number n gives the nth hexagonal number:Hex(0) = 0Hex(1) = 1Hex(n+ 1) = Hex(n) + 6� nThe Suessor funtion is a funtion that adds one to its argument. For ex-ample, s(s(0)) = s(1) = 2.Instantiation is a proess of replaing a variable with some value. Instantiationof a funtion is a proess of assigning values to the arguments of the funtionand evaluating the funtion for these values. For example, instantiating theabove funtion Hex for 3 gives Hex(3) = Hex(2 + 1) = Hex(2) + (6� 2) =(Hex(1) + (6� 1)) + 12 = 1 + 6 + 12 = 19.Abstration is a proess of extrating a general argument from its examples.In this paper it refers to onstruting a shemati proof from example proofs.For example, the proess of onstruting proof (n) for the multiple additiontheorem given above from the examples of its proof for n = 2 and n = 3 isreferred to as abstration.Another meaning of abstration in this paper is to refer to an abstration de-vie, suh as ellipsis (i.e., the \: : :" notation), to represent general diagrams.Abstration is sometimes referred to as indutive inferene, or \philosophialindution", or generalisation.Generalisation replaes a formula by a more general one. For example, on-stants, funtions or prediates an be replaed by variables (e.g., x+ 3 = yis generalised to x+a = y where a onstant 3 is replaed by a variable a), oruniversally quanti�ed variables are deoupled (e.g., 8x:(x+x)+x = x+(x+x)is generalised to 8x8y8z:(x+ y) + z = x+ (y + z)).Objet-level statement is a well-formed term, proof or inferene step of thelogi in use (f. meta-level statement). For example, the proof of multipleaddition theorem given above in x1 is an objet-level statement.Meta-level statement is a statement about an objet-level statement, in somelogial theory (f. objet-level statement). For example, a laim that theproof of multiple addition theorem given above in x1, is a orret proof of thistheorem, is a meta-level statement about the proof of the multiple additiontheorem.Mathematial indution or standard indution is a rule of inferene in somelogial theory whih is used to prove the statement that some propositionP (n) is true for all values of n > n0, where n0 is some base value. Thisrule of inferene makes an assertion about objet-level statements (f. meta-indution). For example, in Peano arthmeti, the rule of indution is:P (0) P (n)! P (s(n))8n:P (n)



5Meta-indution is a rule of inferene in some logial theory whih is used toprove the meta-statement that some proposition MP (n) about the objet-level statement P (m) is true for all values of n > n0, where n0 is some basevalue. This rule of inferene makes an assertion about proofs rather thanobjet-level statements (f. mathematial indution). For example, in Peanoarithmeti, the rule of meta-indution is (where proof is a reursive funtion,and \:" stands for \is a proof of"):proof (0) : P (0) proof (n) : P (n)! proof (s(n)) : P (s(n))8n:proof (n) : P (n)Shemati is an adjetive that refers to some general way of desribing a lassof objets. We use this adjetive when desribing a program that generatesa proof for all instanes of some orresponding theorem. We refer to theseprograms as shemati proofs. A formal de�nition of a shemati proof isgiven in x2 in De�nition 3.2 Shemati proofsOur interest in shemati proofs omes from the perspetive of automated rea-soning, where the aim is to implement a system whih onstruts shematiproofs. The automation of proof extration requires some suitable mehanism toapture a general proof. Shemati proofs provide suh a mehanism. Generalshemati proofs an be onstruted from a sequene of instanes. A mathemat-ial basis whih justi�es the step from spei� examples to a general shematiproof is the onstrutive !-rule [1℄. ! is the name given to the in�nite setf0; 1; 2; 3; : : :g, or equivalently, using the suessor funtion s (see x1.1), theset f0; s(0); s(s(0)); s(s(s(0))); : : :g. Typially, a shemati proof is formalisedas a reursive program. This reursive program allows us to onlude a generalshemati proof for the universally quanti�ed theorem. In this setion, we for-mally de�ne what a shemati proof is, and what is the mathematial basis forits formalisation.The mathematial basis for extration of shemati proofs is the onstrutive!-rule. This rule is a version of the !-rule [3℄:De�nition 1 (!-Rule).The !-rule allows inferene of the sentene 8x: P (x) from an in�nite sequeneP (n) for n 2 ! of sentenes P (0); P (1); P (2); : : :8n:P (n)Using the !-rule, an in�nite number of premisses needs to be proved in order toonlude a universal statement. This makes the !-rule unusable for automation.Hene, we onsider the onstrutive version of this rule [1℄:



6De�nition 2 (Construtive !-Rule).The onstrutive !-rule allows inferene of the sentene 8x: P (x) from an in�nitesequene P (n) for n 2 ! of sentenesP (0); P (1); P (2); : : :8n:P (n)suh that eah premiss P (n) is proved uniformly (from parameter n).Note that the !-rule and the onstrutive !-rule are stronger alternatives formathematial indution.The uniformity riterion is taken to be the provision of a omputable pro-edure desribing the proof of P (n), e.g., proof (n). The requirement for a om-putable proedure is equivalent to the notion that the proofs for all premissesare aptured in a reursive funtion. We refer to suh a reursive funtion as ashemati proof.De�nition 3 (Shemati Proof).A shemati proof is a reursive funtion,2 e.g., proofP (n),3 whih outputs aproof of some proposition P (n) given some n as input.Suppose the reursive funtion, proof, is a shemati proof. The funtionproof takes one argument, namely a parameter n. In general, this funtion anbe de�ned to take any number of arguments. By instantiation, i.e., by assigninga partiular value to n and passing it as an argument to the funtion proof, andby appliation of this instantiated funtion to the theorem, proof P (n) gener-ates a proof for a partiular premiss P (n). More preisely, proof P (n) desribesthe inferene steps (i.e., rules) made in proofs for eah P (n). Now, proof (n) isshemati in n, beause we may apply some rule R a funtion of n (or a onstant)number of times. That is, the number of times that a rule R is applied in theproof might depend on the parameter n. This reursive de�nition of a proof isused as a basis for implementation of the shemati proofs [2, 1℄.From a pratial point of view, the onstrutive !-rule and shemati proofseliminate the need for an in�nite number of proofs, or in other words, they enableus to speify an in�nite number of proofs in a �nite way. Moreover, they providea tehnique whih enables an automation of searh for proofs of universallyquanti�ed theorems from instanes of proofs.We now show how shemati proofs of universally quanti�ed theorems anbe found using several heuristis.2.1 Finding a Shemati ProofA shemati proof an be onstruted by onsidering individual examples ofproofs for instanes of a theorem, and then extrating a general pattern from2 Tehnial terminology is explained in x1.13 Note that we omit the use of subsript P in proof P (n) where it is lear whih theoremproof proves.



7these instanes. The idea is that in order to extrat a general struture ommonto all instanes of a proof, the partiular examples of proofs of a theorem whihare onsidered, need to be general representatives of all instanes, and not speialases. These are normally taken to be some intermediate values, e.g., 5 and 6,or 7 and 9, rather than the initial values, e.g., 0 and 1, sine the proofs forinitial values of a parameter n are almost always speial ases. Therefore, weuse suh intermediate values, e.g., P (7) and P (9) and orrespondingly proof (7)and proof (9), to extrat the pattern, whih we hope is general. A struturewhih is ommon to the onsidered examples is extrated by an abstration.The result is the onstrution of a general shemati proof. If the instanesfor the intermediate values that were onsidered are not representative of allinstanes, so that the abstration was arried out on inomplete information,then the onstruted reursive funtion proof ould be wrong. Therefore, thefuntion proof needs to be veri�ed as orret. This involves reasoning about theproof (using meta-level reasoning), and showing that proof indeed generates aorret proof of eah P (n).The following proedure summarises the essene of using the onstrutive!-rule in shemati proofs:1. Prove a few partiular ases (e.g., P (7), P (9), ... and thereby disover proof (7),proof (9), ...).2. Abstrat proof (n) from these proofs (e.g., from proof (7), proof (9), ...).3. Verify that proof (n) proves P (n) by meta-indution4 on n.The general pattern is abstrated from the individual proof instanes bylearning indution or abstration. By meta-indution we mean that we introduea theory Meta suh that for all n the base ase of the meta-indution is:Meta ` proof (0) : P (0)and the step ase is:Meta ` proof (n) : P (n) �! proof (n+ 1) : P (n+ 1)By meta-indution we need to show in the meta-theory that given a propositionP (n), proof(n) indeed proves it, i.e., it gives a orret proof with P (n) as itsonlusion, and axioms of some objet logi as its premisses. This ensures thatthe onstruted general shemati proof is indeed a orret proof for all instanesof a proposition.4 The meta-indution is often muh simpler than the mathematial indution that isalternative to the shemati proof. For example, whereas generalisation is requiredin some objet-level indutive proofs, no generalisation is required in the meta-indution at the veri�ation stage of the orresponding shemati proof. See x4 and x6for more disussion and some examples.



83 Appliation of shemati proofsTo illustrate the use of the onstrutive !-rule in shemati proofs, we givehere �ve examples of shemati proofs for the following theorems: an arith-meti shemati proof of assoiativity of addition implemented by Baker [1℄, ashemati proof of rotate-length theorem, two diagrammati shemati proofs,the �rst of the theorem regarding the sum of odd naturals implemented by Jam-nik et al [2℄, and the seond regarding the sum of hexagonal numbers presentedby Penrose [4℄, and a faulty shemati proof of Euler's theorem presented byLakatos in [5℄.3.1 Assoiativity of AdditionConsider a theorem about the assoiativity of addition, stated as(x+ y) + z = x+ (y + z)Baker studied shemati proofs of suh theorems in [1℄. The reursive de�nitionof \+" is given as follows: 0 + Y = Y (1)s(X) + Y = s(X + Y ) (2)We also need a reexive law 8n: n = n.The onstrutive !-rule is used on x in the statement of the assoiativityof addition. We write any instane of x as sn(0). By sn(0) is meant the n-thnumeral, i.e., the term formed by applying the suessor funtion to 0 n times.Next, the axioms are used as rewrite rules from left to right, and substitutionis arried out in the !-proof, under the appropriate instantiation of variables.Hene, the following enoding:8n:(sn(0) + y) + z = sn(0) + (y + z)8x: (x+ y) + z = x+ (y + z)where n is the parameter, represents any instane of the onstrutive !-rule inour example (note the use of ellipsis):(0 + y) + z = 0 + (y + z); (s(0) + y) + z = s(0) + (y + z);(s(s(0)) + y) + z = s(s(0)) + (y + z); : : :8x: (x+ y) + z = x+ (y + z)We onstrut a shemati proof in terms of this parameter, where n in theanteedent aptures the in�nity of premisses atually present, one for eah valueof n. This removes the need to present an in�nite number of proofs. The aim isto redue both sides of the equation to the same term. The shemati proof ofthis theorem is the following program:proof(n) = Apply rule (2) n times on eah side of equality,Apply rule (1) one on eah side of equality,Apply rule (2) n times on left side of equality,Apply Reexive Law



9Running this program on the assoiativity theorem proves it. For example:(sn(0) + y) + z = sn(0) + (y + z)ww� Apply rule (2) n times on eah side...sn(0 + y) + z = sn(0 + (y + z))ww� Apply rule (1) on eah sidesn(y) + z = sn(y + z)ww� Apply rule (2) n times on left...sn(y + z) = sn(y + z)ww� Apply Reexive LawtrueNote that the number of proof steps depends on n, whih is the instane of xwe are onsidering. We see that the proof is shemati in n | ertain steps arearried out a number of times depending on n.3.2 Rotate-Length TheoremThe rotate-length theorem is about rotating a list its length number of times,and an be stated as: rotate(length(l); l) = lwhere length(l) gives the length of a list l, and rotate(x; l) takes the �rst xelements of a list l and puts them at its end (e.g., rotate(3; [a; b; ; d; e℄) =[d; e; a; b; ℄), and an be de�ned as:rotate(0; l) = lrotate(x; [ ℄) = [ ℄rotate(n+ 1; l :: ls) = rotate(n; ls�[l℄)Note that :: is in�x ons (it takes an element and a list and puts the elementat the front of the list, e.g., 1 :: [2; 3; 4℄ = [1; 2; 3; 4℄) and � is in�x append(it takes two lists and puts them together, e.g., [1; 2; 3℄�[4; 5℄ = [1; 2; 3; 4; 5℄).Consider a shemati proof of this theorem. First we give an example proof forsome instane of a theorem. An example proof for the instane of a list of any�ve elements l = [a; b; ; d; e℄, i.e., length(l) = 5 goes as follows. Let the list lonsist of �ve elements. We take the �rst element of the list and put it to thebak of the list. Now, we do the same for the remaining four elements.



10 rotate(length([a; b; ; d; e℄); [a; b; ; d; e℄) =rotate(5; [a; b; ; d; e℄) =rotate(4; [b; ; d; e; a℄) =rotate(3; [; d; e; a; b℄) =rotate(2; [d; e; a; b; ℄) =rotate(1; [e; a; b; ; d℄) = [a; b; ; d; e℄It is very easy to see that this proess gives us bak the original list. Moreover,it is lear that if we follow the same proedure, i.e., shemati proof, for a list ofany length, we always get bak the original list. Hene, the number of inferenesteps in the proof depends on n, so a proof is shemati in n:rotate(length([a1; a2; a3; : : : ; an℄); [a1; a2; a3; : : : ; an℄) =rotate(n; [a1; a2; a3; : : : ; an℄) =rotate(n� 1; [a2; a3; : : : ; an; a1℄) =rotate(n� 2; [a3; : : : ; an; a1; a2℄) =...rotate(1; [an; a1; a2; a3; : : :℄) = [a1; a2; a3; : : : ; an℄3.3 Sum of odd natural numbersWe now onsider a theorem about the sum of odd naturals and its shematiproof as studied by Jamnik et al in [2℄ and [6℄. Jamnik et al studied the no-tion of diagrammati proofs and formalisation of diagrammati reasoning. Adiagrammati proof is aptured by a shemati proof that is onstruted fromexamples of graphial manipulations of instanes of a theorem. This diagram-mati shemati proof has to be heked for orretness. A diagrammati proofonsists of diagrammati inferene steps, rather than logial inferene rules. Di-agrammati inferene steps are the geometri operations applied to a diagram.The operations on diagrams produe new diagrams. Chains of diagrammati in-ferene rules, spei�ed by the shemati proof, form the diagrammati proof ofa theorem. In Jamnik et al's formalisation of diagrammati reasoning, diagramsare used as an abstrat representation of natural numbers, and are representedas olletions of dots. Some examples of diagrams are a square, a triangle, anell (two adjaent sides of a square). Some examples of geometri operations arelut (split an ell from a square), remove row, remove olumn.We demonstrate here a diagrammati proof of the theorem about the sum ofodd natural numbers. The theorem an be stated asn2 = 1 + 3 + 5 + � � �+ (2n� 1)We onsider an instane of the theorem 42 = 1+3+5+7 and its diagrammatiproof where n = 4. Let us hoose that n2 is represented by a square of magnituden, (2n � 1) is represented as an ell whose two sides are both n long, i.e., oddnatural numbers are represented by ells, and a natural number 1 is representedas a dot. The proof of this instane of the theorem onsists of utting a square4 times into ells.



11
4 x LCUTNotie, that a similar proedure holds for a square of any size, i.e., for anyinstane of the theorem. Therefore, these steps are suÆient to transform asquare of magnitude n representing the LHS of the theorem to n ells of inreasingmagnitudes representing the RHS of the theorem.Note that the number of proof steps (i.e., diagrammati inferene steps)depends on n { for a square of size n the proof onsists of n luts. Hene theproof is shemati in n. Here is a de�nition of this shemati proof:proof (n+ 1) = apply lut, then proof (n)proof (0) = empty3.4 Sum of hexagonal numbersLet us now examine a theorem about the sum of hexagonal numbers and its(diagrammati) shemati proof as presented by Penrose in [4℄. We repeat herethe formal reursive de�nition of hexagonal numbers from x1.1:Hex(0) = 0Hex(1) = 1Hex(n+ 1) = Hex(n) + 6� nInformally, hexagonal numbers ould be presented as hexagons where the hexag-onal number is the number of dots in a hexagon:

1 7 19 .  .  .  .The theorem is stated as follows:n3 = Hex(1) +Hex(2) + � � �+Hex(n)Let n3 be represented by a ube of magnitude n and Hex(n) by an nth hexagon.The instane of the proof that we onsider here is for n = 3. The diagrammatiproof of the sum of hexagonal numbers onsists of breaking a ube into a seriesof half-shells. A half-shell onsists of three adjaent faes of a ube.



12

If eah half-shell is projeted onto a plane, that is, if we look at the top-right-bakorner of eah half-shell down the main diagonal of the ube from far enough,then a hexagon an be seen. So the ube is then presented as the sum of allhalf-shells, i.e., hexagonal numbers.
Again, notie that the general proof holds for any instane n. That is, these stepsare suÆient to transform a ube of magnitude n representing the LHS of thetheorem to n inreasing hexagons representing the RHS of the theorem. Notethat the number of diagrammati inferene steps depends on the value of n, sothe proof is shemati in n.3.5 Euler's TheoremLet us onsider a famous example of an erroneous shemati \proof", namely,the history of Euler's theorem [5℄. Euler's theorem states that for any polyhedronV � E + F = 2 holds, where V is the number of verties, E is the number ofedges, and F is the number of faes. Lakatos5 initially gives a proof, historiallydue to Cauhy, of the theorem, whih is a uniform method for proving instanesof Euler's theorem. Thus, the method is a shemati proof. However parts ofthe method are not expliitly stated, but seem very onvining when applied5 The proof of Euler's theorem is also disussed in [7, pages 47-48℄.



13to simple polyhedra. Here is a summary of the proof method taken from [5,pages 7-8℄.6
(a) (b) (c)

(d) (e) (f)Take any polyhedron (note that in our ase, we take a ube, but the result isthe same for any polyhedron). Imagine that it is hollow, and that its faes aremade out of rubber (see (a) of the diagram above). Now, remove one fae fromthe polyhedron, and streth the rest of the polyhedron onto the plane (see (b)of the diagram). Note that sine we have taken one fae o�, our formula shouldbe V �E + F = 1. Note also that the relations between the verties, edges andfaes are preserved in this way. Triangulate all of the faes of this plane network(i.e., we are adding the same number of edges and faes to the network, so theformula remains the same | see () of the diagram). Now, start removing theboundary edges (see (d) of the diagram). This will have the e�et of removingan edge and a fae from the network at the same time, or two edges, one vertexand one fae, so our formula is still preserved. We ontinue removing edges inappropriate order (see (e)), thus preserving the formula, until we are left withone triangle only. Clearly, for this triangle V � E + F = 1 holds, sine thereare three verties, three edges and one fae. Here is an informal diagrammatishemati proof:1. remove one fae from any given polyhedron,2. streth the rest of the polyhedron onto the plane,3. triangulate all of the faes that are not triangles already,4. remove the boundary edges one after another, until you are left with a singletriangle.However, this shemati \proof" is faulty, and we will disuss the reasons forthis in x5.6 The diagram demonstrating the proof of Euler's theorem is also taken from [5,page 8℄.



144 Learning from examplesShemati proofs and the onstrutive !-rule explain why one or more examplesan represent a general proof. Therefore, our �rst onjeture is that shematiproofs explain the use of examples for onstrution of proofs. Furthermore, wepropose that reasoning with onrete ases, i.e., instanes or examples, is oftenmore easily understood than reasoning with abstrat notions.As desribed in x2, the onstrutive !-rule enables us to apture in�nitaryonepts in a �nite way. It enables us to use shemati proofs in order to proveuniversal statements. The onstrutive !-rule gives us a mathematial basiswhih justi�es how and why the examples or instanes of problems an be usedin order to onlude a general statement, in our ase a general proof of a univer-sally quanti�ed theorem. We desribe two systems whih use shemati proofs,and hene reason with instanes of theorems in order to prove universally quan-ti�ed theorems, namely Baker's system CORE whih reasons about theorems ofarithmeti [1℄, and Jamnik's system Diamond whih formalises diagrammatireasoning [2℄.Baker used shemati proofs in order to prove theorems of arithmeti, espe-ially the ones whih ould not be proved by automated systems without the useof generalisation (for de�nition, see x1.1). One of Baker's example theorems isa speial version of the theorem about assoiativity of addition. In x3.1 we gavea general version of this theorem. Baker's speial version of the theorem an bestated as: (x+ x) + x = x+ (x+ x)The CORE system automatially proves this theorem by enumerating instanesof a proof, then onstruting a general shemati proof, and �nally, verifyingthat the shemati proof is orret. Instanes of the theorem an be enoded as:(sn(0) + sn(0)) + sn(0) = sn(0) + (sn(0) + sn(0))for eah parameter n. The shemati proof of this theorem is idential to theone in x3.1. In a theorem prover that annot onstrut shemati proofs, thistheorem would normally be proved by mathematial indution. But indutionin this ase is bloked, as P (s(n)) annot be given in terms of P (n) (for moredetails see [1℄). Hene, generalisation to full assoiativity (x+y)+z = x+(y+z)is neessary. Rather than using generalisation, as in other automated reasoningsystems, CORE was able to prove this theorem using onrete instanes of atheorem and its proof.Jamnik uses shemati proofs for diagrammati proofs of theorems of naturalnumber arithmeti, like the theorem about the sum of odd natural numbers givenin x3.3. To devise a general diagrammati proof of this theorem, one would needto use abstrat diagrams, i.e., diagrams of a general size. Therefore, diagramswould have to be represented using abstration devies, suh as ellipsis. Ab-stration devies in diagrams are problemati as they are inherently ambiguous.The pattern on either end of the ellipsis needs to be indued by the system. For



15instane, it is ambiguous whether an abstrat olletion of rows or olumns ofdots with ellipsis, like this:
. . .
. . .
. . .

. . .

. . .
. . .
. . .

. . .. . 
.is a square or a retangle, or if it is of odd or even magnitude. The problembeomes more aute when dealing with more omplex strutures. To reognisethe pattern that the ellipsis represents, the system needs to arry out somesort of pattern reognition tehnique whih dedues the most likely pattern andstores it in an exat internal representation. This guessed pattern might stillbe wrong. Beause of the ambiguity of ellipsis it is diÆult to keep trak of itduring manipulations of diagrams. Shemati proofs are a good way of avoidingthis problem, as they allow us to use onrete instanes of a theorem and itsproof, and yet prove a general theorem. A proedure to onstrut a shematiproof in Diamond and CORE is to �rst prove instanes of a theorem, e.g., adiagram, then onstrut a shemati proof, and �nally prove that this shematiproof is orret. Using instanes of a theorem enables us to use onrete diagramsin order to extrat formal general proofs.Besides the ability to extrat general proofs from examples, it also appearsthat reasoning with examples seems easier for humans to understand than rea-soning with abstrat notions. The usual way in logi to prove Baker's theoremby a mehanised provers is to use mathematial indution and a generalisation,whih is diÆult to �nd for both, a human and an arti�ial mathematiian {a mehanised mathematial reasoning system. Furthermore, another way of di-agrammatially proving Jamnik's theorem is to reason with abstrat diagramswhih ontain problemati ellipses. Using shemati proofs and instanes of the-orems seems an easier way to prove these theorems, and seems to onvey betterwhy the theorems hold.5 Erroneous proofsA generally aepted de�nition of a proof of a theorem in mathematial logi isthe one given by Hilbert. Here is a translation of a quote from Hilbert's artile [8℄.\Let me still explain briey just how a mathematial proof is formal-ized. As I said, ertain formulas, whih serve as building bloks for theformal edi�e of mathematis, are alled axioms. A mathematial proofis an array that must be given as suh to our pereptual intuition; itonsists of inferenes aording to the shema



16 SS ! TTwhere eah of the premisses, that is, the formulas S and S ! T in thearray, either is an axiom or results from an axiom by substitution, or elseoinides with the end formula of a previous inferene or results from itby substitution. A formula is said to be provable if it is the end formulaof a proof." [9, pages 381-382℄What Hilbert is talking about is sometimes referred to as Hilbert's Pro-gramme and is about the axiomatisation of mathematial systems. The de�ni-tion of a proof in suh a system an be summarised as follows. A proof of atheorem is a sequene of inferene steps whih are valid in some logial theorythat has a omplete axiomatisation, and whih redues a theorem that also be-longs to this logial theory to a set of axioms, i.e., known true fats of the samelogial theory.However, this de�nition is questionable as it implies that the only explana-tion for errors in proofs is that they must be syntati ones. Namely, Hilbert'sargument suggests that all proofs boil down to a mehanial exerise of deom-posing a theorem into a set of axioms of the theory to whih they all belong. Wesuggest that syntati errors ould be automatially deteted during this deom-position, and so erroneous proofs would not survive for years. In mathematis,people do not always formalise all axioms and inferenes, yet their justi�ationsfor the truthfulness of theorems are generally aepted as orret proofs of theo-rems. For instane, onsider Eulid's proofs of theorems of geometry long beforea omplete axiomatisation of geometry was given by Hilbert [10℄.Mathematial proofs of theorems sometimes turn out to be faulty. The historyof mathematis has taught us that there are plenty of faulty proofs of theoremswhih were for a long time onsidered to be orret, but later it turned out thatthe \proofs" were not proofs at all, that is, they were inorret. Amongst famousexamples is Cauhy's proof of the onjeture whih says that the limit of anyonvergent series of ontinuous funtions is itself ontinuous. Cauhy's \proof"persisted for almost forty years until the faulty onjeture was modi�ed [5℄.Another example is the 4-olour onjeture whih had faulty proofs [11℄. Aninteresting disussion of this onjeture and its \proofs" is given in [12℄, anda orret proof of this theorem an be found in [13℄. If Hilbert's de�nition of aproof was an aurate desription of mathematial pratie, then these erroneous\proofs" would not arise { any fault in the \proof" would be deteted quiklyas syntati error. So what is going on, why do erroneous \proofs" persist?Clearly, in mathematis in general Hilbert's de�nition of a proof holds onlyfor a small part of mathematis, namely onjetures in logial theories whihhave omplete axiomatisations. However, not all mathematial onjetures arepart of known axiomatised logial theories.Let us onsider the famous example of an erroneous proof of Euler's theorem,given in x3.5. Analysing this proof, Lakatos [5℄ presents a number of ounterexamples in whih the method of proof, i.e., the shemati proof, fails. It turnsout that the initial theorem does not hold for all polyhedra. For example, it does



17not hold for hollow polyhedra, e.g., a solid ube with a ubial hole inside it,sine V �E + F = 4. Note that the shemati proof fails at step 2.
The reader is referred to [5℄ for a number of ounter examples of this theorem.One of the problems with Cauhy's shemati proof is that the de�nition of apolyhedron is not learly stated. Therefore, a re�nement of a theorem is needed.Lakatos's suggestion for this is to de�ne a polyhedron as a surfae and not as asolid. Lakatos proeeds to disuss other ounter examples to Cauhy's shematiproof, and �nally re�nes the de�nition of a polyhedron in a way that Euler's the-orem does hold. It turns out that the theorems holds for all simple 7 [5, page 34℄polyhedra whose faes are simply onneted 8 [5, page 85℄.Cauhy used a proedure for onstrution of shemati proofs in order toonvine us of his \proof" of Euler's theorem. However, he did not arry out thelast step of the proedure for extration of shemati proofs, namely, he did notverify that the shemati proof is indeed orret.9 We argue that if he did usethe omplete proedure, then the fallay of the proedure would be deteted atthe veri�ation stage. Note that this would require a onstrutive de�nition of apolyhedron.It seems plausible that humans use some sort of shemati proedure to �ndgeneral proofs of theorems. In partiular, humans often use examples of proofsfor ertain instanes and then abstrat them into a general shemati proof. Ifnot all the ases are overed by the examples, then the shemati proof mightbe inorret, as in the ase of the proof of Euler's theorem mentioned above. If a7 Simple polyhedra are ones whih an be strethed onto the plane, i.e., those that aretopologially equivalent to a sphere.8 A surfae S is de�ned to be onneted if any pair of its points an be joined by aontinuous urve lying entirely within the surfae. Further, a surfae is said to besimply onneted if any losed urve C on the surfae divides the surfae into twodistint regions, eah of whih is internally onneted in the sense just desribed,and suh that any ontinuous urve whih joins a point in one of those regions to apoint in the other must ross the losed urve C.9 A modern formal proof of Euler's theorem was devised only muh later and is aord-ing to Lakatos [5, page 118℄ due to Poinar�e [14℄. It works by representing polyhedraas sets of verties, edges and faes together with inidene matries to say whihverties are in eah edge and whih edges are in eah fae. A restrited lass ofpolyhedra is then turned into a formulae of vetor algebra and a alulation in thisalgebra gives the value 2 for V �E + F . The proof is not intuitively lear, and it isnot easy to see why the theorem holds and why this formal proof is orret.



18ounter example is enountered, then the method needs to be revised to exludesuh ases. It seems that humans sometimes omit this step all together. Humanmahinery for extrating a general shemati argument is usually onviningenough to reassure them that the shemati argument is orret, e.g., onsiderthe \proof" of Euler's theorem. Humans are happy with intuitive understandingsof de�nitions and steps in the proof { as long as they do not enounter a ounterexample, their general pattern of reasoning in the proof is aeptable. Lakatosrefers to suh mathematial proofs as \thought experiments". It is only reently,in the 20th entury, that thought experiments were replaed by logial proofs.In an automated reasoning system, formality is of ruial importane. Theorretness of the indued shemati argument has to be formally shown. Thison�rms that a shemati proof is indeed a orret formal proof of a theorem. Ifall proofs of theorems that people �nd followed rules of some formal logi, thenthere would be no explanation for how erroneous proofs ould arise. The errorswould always be deteted as syntatial errors, provided that the rules used toprove the theorem are orret.So, our seond onjeture is that human mathematiians often use a proe-dure similar to the onstrution of shemati proofs in order to �nd proofs oftheorems, but they often omit the veri�ation step whih ensures that the proof isorret. We propose further, that omitting the veri�ation step of suh proedureaounts for numerous examples of faulty \proofs". For instane, if one has notonsidered all the representative examples, then the shemati proof may notprove all ases of the theorem. A ounter example may be found.6 Intuitiveness of shemati proofsHere, we extend the point in x4 that reasoning with examples or instanesof a problem is easier than reasoning with abstrat notions. We propose thatshemati proofs seem to orrespond better to human intuitive proofs. It appearseasier to see why the theorem holds by looking at the instanes of a theoremand its proof and then onstruting a shemati proof, than onsidering a logi-al proof. As evidene, we give four examples of theorems from x3, where theirshemati proofs are easier to understand than formal logial proofs: Baker'sproof of assoiativity of addition from x3.1, Jamnik's diagrammati proof of thesum of odd naturals from x3.3, Penrose's sum of hexagonal numbers from x3.4,and rotate-length theorem from x3.2.We now onsider further the rotate-length theorem. The informal shematiproof of this theorem is very easy to understand and to generalise to all ases ofany list.In ontrast to a shemati proof of the rotate-length theorem, this theoremis not easy to prove by a onventional (non-diagrammati) theorem prover. Theindutive proof of the rotate-length theorem usually requires generalisation: e.g.,rotate(length(l); l�k) = k�l, where � is the list append funtion as de�nedin x3.2. It is harder to see that this theorem is orret. Shemati proofs avoid



19suh generalisations. Baker used shemati proofs to exploit this fat for theo-rems of arithmeti [1℄.We propose that the shemati proof given in x3.2 is a ommon way thatpeople think about the proof of this theorem. Anedotal evidene from humanssuggests that shemati proofs are psyhologially plausible. This supports ouronjeture that shemati proofs orrespond better to human intuitive proofs.7 A proposed studyIn this paper we proposed a number of onjetures about shemati proofs.1. Shemati proofs explain the use of examples for induing formal proofs.2. Shemati proofs aount for erroneous proofs.3. Shemati proofs are more intuitive than standard indutive proofs.These onjetures are not yet supported by an empirial study, but by ourintuition and some suggestive examples. Hene, we propose an experimentalstudy whih ould support or refute our intuitions. The study would look atsome or all of the aspets of shemati proofs addressed in the previous setions.In partiular, it would attempt to answer the following questions:1. Do humans prefer to reason with onrete rather than general ases of aproblem? Do humans use a proedure similar to the onstrution of shematiproofs when solving problems? If so, in what way do they use it and when?2. Are there other examples whih support the onjeture that inompleteshemati proofs aount for some erroneous proofs?3. Is reasoning with examples easier than reasoning with abstrat notions? Areshemati proofs more easily understood than formal indutive proofs? If so,why do they appeal to humans more than formal indutive proofs?The study proposed here would explore human intuitive reasoning in a novelway. We think that humans �nd shemati proofs easier to understand and moreompelling than their logial ounterparts. This is also part of the reason whyhumans might �nd diagrammati proofs more intuitive than standard indutiveproofs. We have only anedotal evidene to support our belief. However, a om-parative psyhologial validity experimental study ould be arried out to answersome of the questions posed above and to provide some empirial evidene foror against our laims.The proposed study ould take the following form. An experiment ould bearried out on a lass of students with a ertain level of mathematial knowledge(probably �nal year of seondary shool level { the students should be equippedwith the notion of mathematial indution). The lass should be suÆientlylarge that the results are statistially signi�ant. The students would be givenexamples of indutive theorems and non-theorems, and asked if they think thetheorem is true or not. If they think it is true, the students would be asked togive an argument why they think it is true. Some of the non-theorems ould bethose whih hold for the majority of ases, but are not true for some speial and



20non-obvious ases. The students would also be asked to provide details of theirproblem solving proess, i.e., the arguments that helped them reah a proof ofa theorem or a onlusion that the theorems does not hold.The data olleted from the students would be analysed. Here are a fewaspets that ould be addressed in the analysis:{ lassi�ation of problem solving strategies using some existing tehniques,{ analysis of whether the arguments used in the proof are indutive, shemati(using something like the onstrutive !-rule), or some other type,{ analysis of the responses for non-theorems whih are true for most ases, butnot true for some more obsure speial ases:� If the students realise that the onjeture is a non-theorem, how did theydisover this (espeially in the ase of a shemati argument)?� If the students do not realise that the onjeture is a non-theorem, whatare the arguments that falsely reassure them that the onjeture is atheorem and that it is true?Another test that the students ould be given onsists of theorems and non-theorems, and their proofs and faulty \proofs" respetively. Eah (non-) theoremould be aompanied with, say, three di�erent (faulty) proofs eah following adi�erent strategy, e.g., indutive, shemati or other. In the ase of non-theorems,the indutive argument would ontain some syntati errors and the shematiargument would not be veri�ed for orretness. The students would be asked tohoose the proof that is most onvining and that they think they understandbest, and to elaborate on the reasons for their hoie.The questions whih should be studied in more detail before the experimentis onduted inlude how muh mathematial knowledge and knowledge of logishould the students have. Should they be trained in mathematial indution,onstrutive !-rule, and other problem solving tehniques? The danger is thatpeople who have some training in mathematis, but not in logi would solveproblems di�erently from those trained in logi, or those with little knowledgeof mathematis and logi. Hene, the results would say less about the nature ofproofs than about the abilities of individual students. A possibility is to separatesubjets into two or more groups aording to their level of training, and studythe data aording to these groups.Here, we gave some preliminary suggestions for the design of the proposedexperimental study. However, these ideas should be investigated in muh greaterdetail before an experiment is onduted.8 ConlusionIn this paper we posed several onjetures about the use of shemati proofs inmathematis. These onjetures make laims about the psyhologial validity ofshemati proofs. First, we suggested that humans often use examples in orderto onlude a general mathematial statement. Seond, we onjetured that in-omplete shemati proofs aount for some erroneous proofs. Our suggestion
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