

Edinburgh Research Explorer

Artificial Intelligence: An introductory course

Citation for published version:
Bundy, A, Burstall, R, Weir, S & Young, R 1978, Artificial Intelligence: An introductory course. Edinburgh
University Press.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

http://www.research.ed.ac.uk/portal/en/publications/artificial-intelligence-an-introductory-course(648ad9b3-13be-48f7-9e8c-41df81b939cb).html

ARTIFICIAL INTELLIGENCE:

AN INTRODUCTORY COURSE

A.Bundy
R.M.Burstall

S.Weir
A. M.Young

EDINBURGH
University Press

ARTIFICIAL INTELLIGENCE:
AN INTRODUCTORY COURSE

Fan Zhu

CO Nfl NTS

Preface p. vii

1. Problem Solving
1.1 Geometric Analogy Problems 1
1.2 Missionaries and Cannibals:

The Problem and the Approach 7
1.3 Missionaries and Cannibals:

Building the Program 9
1.4 Missionaries and Cannibals:

Search Techniques 22
1.5 The Complete Missionaries and

Cannibals Program in LOGO 26
1.6 The Complete Missionaries and

Cannibals Program in LISP 28
1.7 Draughts 31
1.8 The General Problem Solver 35
1.9 Robot Plan Formation: Background 42
1.10 Robot Plan Formation: Making Plans 47
1.11 Robot Plan Formation: Assorted Issues 53

2. Natural Language
2.1 Sentence Generation 59
2.2 Generating Blocks World Sentences 64
2.3 Parsing 67
2.4 Translation 75
2.5 Conversations about Blocks 83
2.6 A Ia Recherche du Temps Perdu 95
2.7 Winograd's Conversational Program 98
2.8 Verbs and their Meanings 103
2.9 Acknowledgements 107

3. auestion Answering and Inference
3.1 The Inference System 108
3.2 Forward and Backward Deduction 113
3.3 Summaryof LOGO INFERENCE Package 119

4. Visual Perception
4.1 Forming Structural Descriptions 121
4.2 Using Structural Description 135
4.3 Machine Perception 141
4.4 Interpretation, Semantics and Models 147
4.5 Object Identification and

the Use of Stored Prototypes 153
4.6 Line-Finding 160

4.7 Contribution to a Theory of
Visual Perception 165

5. Learning
5.1 Samuel's Checkers-Player

and Hill-Climbing 172
5.2 Structural Learning and General Comments 175
5.3 Perceptrons 181
5.4 Induction 186
5.5 Production Systems 190
5.6 Schemata 195

6. Programming
6.1 How to Use a Computer 198
6.2 Procedures 199
6.3 How to Define a Procedure 208
6.4 Control Structures 212
6.5 Recursion 216
6.6 Miscellaneous Exercises 230
6.7 Behind the Scenes 231

7. Appendixes
7.1 Teaching and Assessment Methods 236
7.2 A Rough Timetable 237
7.3 General Reading List 238
7.4 Examination Questions 238
7.5 Student Project Titles 249
7.6 Student Questionnaire Returns 1975-76 250
7.7 Afternote 252

PREFACE

These are the collected lecture notes of the course, Artificial Intelligence 2,
given at the University of Edinburgh in the academic year 1976-77 by the
staff of the Department of Artificial Intelligence. Despite its title the course
was introductory, requiring no previous knowledge of Al or Computer
Science (the 2" is a code meaning "not for first years"). The course
attracted students from psychology, linguistics, philosophy, computer-
science, mathematics, and other disciplines. It has now run for three years.

Teaching a new and multi-disciplinary course, like Al, is very hard. Even
though we put a lot of work into it, we are still conscious of the need for
improvement, especially in the teaching of programming to social science
and arts students. By binding our notes into this volume we hope both to
promote feedback and perhaps to save others some work.

Rather than attempt a broad survey of the field we have tried to show how
Al programs are built. This was done by taking a series of tasks, proposing
and discussing ways of modelling them, then extending and debugging
these models. Students eventually tried this for themselves in their pro-
jects. A lot of emphasis was placed on the acquisition of skills e.g.
programming, writing robot operators, writing a context-free grammar,
line labelling polyhedral scenes, etc. General issues were delayed until the
students had acquired some grasp of the subject. Most discussion of these
issues took place in class sessions and student presentations and so is not
recorded in the notes.

The notes are divided into six sections: Representation of Knowledge;
NaturalLanguage; Question Answering and Inference; Visual Perception;
Learning; and Programming. The ledtures were not given in this order; in
particular, the Representation of Knowledge and Programming lectures
were closely integrated. The actual sequence of lectures is given in
appendix 2.

The programming section is a guide to the programming language LOGO,
which was especially developed for non-numerical work and for teaching
to young students. It has also been used successfully to teach people
without a strong mathematical background and so is particularly good for
a course like ours. LOGO programs have been used to illustrate ideas in
other sections of the book. In order to make the book suitable for a wider
audience, LISP translations of most of these programs are provided.

The book is concluded with a number of useful appendixes for those plan-
ning a similar course to ours. These include details of the way in which the
course was given and a discussion of the difficulties inherent in a course of
this nature.

vu

ACKNOWLEDGEMENTS

During the three years the course has been running, a tremendous number
of people have had a hand in it. We would like to thank the various
demonstrators, tutors, project supervisors, lecturers and examiners,
without whom it would not have been possible. Although it is not possible
to mention everyone, we would like to single out: Peter Buneman, the
original organiser; Cohn McArthur and Rosemary Robinson, who kept
LOGO running; Aaron Sloman, our external examiner; Mark Adler, who
carefully translated many of our LOGO programs into LISP; and last, but
certainly not least, the secretaries, Jean, both Margarets, Peggy and
Eleanor, who tirelessly typed the original huge volume of notes.

viii

PROBLEM SOLVING

1.1 GEOMETRIC ANALOGY PROBLEMS

1.1.1 Introduction

Pick some task that involves intelligence and try to give a precise "recipe"
for doing task, e.g. the analogy test in example 1:

Li
Instructions, Find the rule by which A has been changed to make B. Apply
the rule to C.
Select the result from 1 —5.

Questions to ask yourself, Can I dolt? Is intelligence needed? Could I
explain to someone how to do it? Could I write an instruction booklet?
Would a machine be intelligent if it could do the task, or if it could do some
such tasks, but not all?

1.1.2 First Recipe
Consider the original instructions and focus on the imprecise parts of
them: finding the rule (a creative act?); applying the rule (probably
straightforward); selecting the best answer (either straightforward or go
back to the beginning).

Finding the Rule. Because the problem is solved 'in the head" the rule
must apply to some description of A and produce a description of B.

1. Make a description of A in English.
2. Make a description of B in English.
3. Compare descriptions to find what must be done to one to produce

the other.
Thus, for example 1 we could have:

A is "a rectangle with a triangle on its perimeter"
B is "a rectangle with a triangle inside it"
rule is change "on its perimeter" to "inside it"
C is "arch with a square on its perimeter"

Therefore, applying the rule to C, the answer should be
"Arch with a square inside it"

which corresponds to answer 3.

1.1.3 Debugging the Rule Finder - Symbolic Descriptions
If we had described B as "a triangle inside a rectangle", or "a rectangle

surrounding a triangle", we would not have found this simple rule. We
need some unique form for the description of a figure, e.g. [inside triangle
rectangle], where:

1. We drop all superfluous words e.g. "a" and limit ourselves to the
objects mentioned (triangle, rectangle) and the relationship between
them (inside).

2. We decide always to replace all descriptions using "outside",
'surrounding" etc. with the equivalent description using "inside".

3. The objects are put in some fixed (but arbitrary) order. In our case the
inside object (triangle) always comes first.

The description [inside triangle rectangle] will be called a symbolic
description. The first word (inside) is sometimes called the predicate and
the remainder (triangle, rectangle) its arguments. The brackets are
currently just for punctuation. However, when we come to represent these
symbolic descriptions in the computer we will see that the brackets are
pan of the syntax of the data-structure called lists.

The descriptions in example 1 become:
A: [on triangle rectangle]
B: [inside triangle rectangle]
rule: change "on" to "inside"
C: [on square arch]
new description: [inside square arch]

1.1,4 More Debugging - More Complete Descriptions
Let us try this on another example, example 2:

_ A @J

Descriptions. Because we must distinguish different objects, these
become:

A: tinside trianglel triangle2]
B:?
rule: delete everything?

It would be a good idea to add a list of objects in the figure to our
description, or we will not be able to separate answers 2,4 and 5. It would
also be a good idea to allow several relationships in a description. So our
general description becomes:

[objects in the figure] (relationships in the figure]
Try the example again:

A: [trianglel triangle2] Einside trianglel triangle2l
B: [triangle2]

2

rule: remove "inside" object and any relationships it is involved in
C: [circle square] [inside square circle]
new description: [circle]

Which answer is this a description of?

1.1.5 Even More Debugging - Similarity Descriptions
When we gave the triangle in B (example 2) the same name as one of the
triangles in A we were begging the question. These two triangles are
matched because the similarity between them is most direct. Suppose,
however, that answer 4 was not available, but that there was a large
square, as in example 3:

Then we might extract the rule "remove outside object and blow up inside
object by a factor of 2", i.e. there are two different correspondences
between objects in A and B. From each correspondence we get a different
rule, yielding a different answer. We must therefore distinguish objects in
A from objects in B, and then make any correspondences explicit. Thus the
descriptions become:

A: [trianglel triangle2] [inside trianglel triangle2l
B: (triangle3]
similarity 1: [sim triangle2 triangle3 direct] for example 2)
similarity 2: [sim trianglel triangle3 (scale 211 (for example 3)

where, in similarity 2, trianglel and triangle3 are identical if we apply the
(scale 21 transformation to the first. Each of the correspondences between
objects in A and B gives rise to a different rule.

1.1.6 Making the Rule Precise
Can we now be more precise in our definition of a rule? One thing a rule
must do is to say which objects in A correspond to objects in B, and which
objects in A are just removed. For instance in our previous example the
rules must say:

rule 1: [remove trianglel] (match triangle2 triangle3]
rule 2: [remove triangle2] (match trianglel triangle3]

Remove Part. Consider the first rule. (Remove triangle 1] really means,
'remove 'triangle 1 from the list of objects in the description of A and also
remove any relationships it is involved in". But, of course, trianglel is not
mentioned in the description of C, so how will we know which object to
remove from the description? We will have to give sufficient information
to identify the object in C that corresponds to trianglel in A, namely
"square'. Why do trianglel and square correspond? Because they both

bear similar relationships to the other objects in their figures, i.e. they are
both "inside" the other object. So if we say what relationships the object
to be removed takes pan in, this should be sufficient information to
identify the correct object in C:

[remove x [inside x y]]
where x andy are some arbitrary names that will be associated with
square, etc., when we apply the rule.

Match Part. [Match triangle2 triangle3] means "replace triangle2 by
triangle3 in the list of objects in the description of A and replace all
relations involving triangle2 with the relations involving triangle3".

To make this a rule that can be applied to C we will again have to replace
triangle2, triangle3, etc., with some arbitrary name that can be associated
with any object.

We will have to add the relations that triangle2 is involved in so that the
appropriate association is made.

We will have to add the relations that triangle3 is involved in so that we
know what relationships the "new object is to have.

We will also have to say what transformation must be applied to triangle2
to make it into triangle 3.

So the rule becomes:
[match y [inside x y] [I direct]

/\\N
instruction joint name relations relations transformations
to "match" of both of y in A of y in B to be applied

objects

Does this rule totally describe the changes?

Previous Examples Revisited. The rule in example 3 is now:
[remove y [inside x y]]
[match x [inside x y] [1 [scale 2]]

Does the rule totally describe changes?

Let us try to formalise the rule in example 1. Our descriptions are now:
A: [triangle 1 rectangle 1] [on triangle 1 rectangle ii
B: [triangle2 rectangle2] [inside triangle2 rectangle2]
C: [square arch] [on square arch]

Correspondences are:
[sim trianglel triangle2 direct]
[sim rectanglel rectangle2 direct]

The rule is:
[match x [on x y} [inside x y] direct]
[match y [on x y] [inside x y] direct]

Let us try this on another example.

1.1.7 Debugging the Rule—Add Part

r (©I cj

We see that as well as Remove rules we need Addition rules.
(add object [relations it is in involved in in B]]

Are we now in a position to give a precise recipe for doing geometric
analogy problems? Consider the task of finding the rule given the symbolic
descriptions of A and B and similarities between objects in them, i.e.
given:
a description of A in theform

[objects in A] (relationships between objects in A)
a description of B in the form

[objects in BI [relationships between objects in B]
and various similarities in the form

[sim objA objB transformation]
obtain a symbolic description of a rule that transforms A into B.

Describing how to form the rule from these symbolic descriptions is not a
deep task, but it is tricky and involved. The English language does not lend
itself to the task of making clear and precise instructions. Later you will
see how to use programming languages, like LOGO, for such tasks. In the
meantime we will use English for what it is good for - giving hints and
clues as to how a precise recipe might be put together.

Clue 1. The rule will be composed of a series of:
'Match descriptions, one for each object in A that appears (possibly
transformed) in B.
'Remove' descriptions, one for each object in A that does not appear in B.
"Add" descriptions, one for each object in B that does not appear in A.

Clue 2. Each similarity description will give rise to a match description, e.g.
[Sim trianglel triangle2 direct]

gives rise to
(Match x (on x yl [inside x yj direct]

Clue 3. The candidates for 'removing" are those objects in A that are not
involved in a similarity description with an object from B. Similarly with
"adding" and left-over objects from B.

Clue 4. The names of actual objects, e.g. trianglel, square2, etc., are
always replaced with a variable, e.g. x, y, z, etc., and by a symbolic
description that will enable the appropriate actual object to be identified in
A and C, e.g. [on x y], [inside u vi, etc.

5

ClueS. Some of the similarity descriptions are incompatible, e.g.
(I) [Sim triangle2 triangle3 direct]
(ii) [Sim trianglel triangle3 [scale 211

We can form several sets of compatible similarities (0) will be in one set
and (ii) in another). Each set will give rise to a different rule. Which rule is
finally used will depend on the answer figures available.

'Exercise 1.1.1. Using the above clues, try to describe in English how rule
descriptions could be formed from the description of A and B and the
similarity descriptions.

1.1.8 Questions and Answers on Computers
We have made instructions more and more precise - how do we know
when to stop? When we can express instructions in the form of a
computer program that works. How close are we to that?

Can we represent descriptions of figures and rules in the computer? Yes,
using list data-structures. We will see how in the programming chapter.

Can we automatically form descriptions of figures from, say, input from a
TV camera? Yes. This problem will be addressed in the chapter on visual
perception. The impatient can read the recommended paper by Evans (see
below).

Can we write a computer program that can carry out the English recipe
described in the last section?That is, can we form the descriptions of the
rule given the descriptions of the figures? Yes, using simple list
manipulation programs - breaking down, copying and building up lists.

Can we automatically apply rules to description of figures? Yes, but using
rather harder list manipulation involving pattern matching.

1.1.9 Recommended Reading
T.G. Evans (1964) A heuristic program to solve geometric analogy
problems. Spring J.S.C.C. (April). This section is based on Evans' work but
is not an exact description of it. Evans program chooses the answer figure
by building rules to take A to B and C to each of 1 - 5. It then compares
these rules to see which are the most similar. He also describes how the
symbolic descriptions can be formed from a Cartesian description of the
figures.

M. Minsky & S. Papert (1972) ArtificialIntelligence Progress Report.
section 1.1. Al Memo No. 252, MIT. This is a condensed version of Evans'
work.

1.1.10 Exercises

H F\11 111
6

(a) Give a symbolic description of A, B and C and the similarities between
objects in A and B.

(b) Give a symbolic description of the rule that transforms A to B.
(c) If this rule were applied to your description of C what would be the

resulting description, and what would the answer figure look like?

1.1.3.

½ LI I
(a) Repeat 2(a), (b) and (c) with the above figure.
(b) Suppose C had been

What goes wrong when we try to apply the description of the rule to the
description of D? How might we amend the rule description so that it
applies to the description of 0 and produces a description of E?

[TJ
(Discussion point: Does the new kind of rule description create problems
for the rule-finding and rule-applying recipes?)

1.1.4. Discuss briefly the statement "Since a computer program can now
do analogy problems it makes no sense to use them as human intelligence
tests."

1.1.5. Design a geometric analogy problem that the recipes we have been
building could not cope with. Explain why they could not cope. If possible,
suggest ways of amending the recipes to deal with the new situation.

1.2 MISSIONARIES AND CANNIBALS:
THE PROBLEM AND THE APPROACH

1.2.1 The Problem
Three missionaries and three cannibals seek to cross a river from the left
bank to the right bank. A boat is available, which will hold two people and
which can be navigated by any combination of missionaries and cannibals
involving one or two people. If the missionaries on either bank of the river
are outnumbered at any time by cannibals, the cannibals will indulge in
their anthropophagic tendencies and do away with the missionaries.
When the boat is moored at a bank, it is counted as part of the bank for
these purposes.

Find the simplest schedule of crossings that will permit all the
missionaries and cannibals to cross the river safely.

1.2.2 The Approach
Consider the missionaries and cannibals (M & C) problem. Do it yourself
and note the following points:

1. You will have to develop a more precise statement of the problem in
terms of initial and goal states and legal moves.

2. You will have to develop a symbolic description of states of the river
banks e.g. something like M M C C/BOAT M C

3. Note the method you use to describe a move. Is it a verbal description
like move a missionary and a cannibal from left to right"?

4. Note whether your attempts to solve the problem can be described by
a path through a tree of bank states and moves.

initial state

Xnext

 aernative:;ves

M M C C / BOAT M moves

5. In such a tree a solution is represented by a path from the initial state
to the goal state.

6. The solution can be found by exhaustively searching the tree.
7. If the real missionaries and cannibals try to solve the problem by

actually trying out sequences of crossings, their behaviour can be
described by a depth first" search through the tree.

B. If the real missionaries and cannibals try this method someone might
get eaten. It is best to plan in advance.

Precise Recipe. Can we design a "precise recipe' for finding a solution to
this problem? In order to guarantee the precision of our recipe let us aim
at making it a computer program from the start. Let us weaken the task,
initially, to that of writing a computer program that will merely check our
solution, and then develop it into a program that finds the solution itself.
On the way we will introduce numerous ideas about programming and
problem solving. .

What Will We Need? A formalisation of the problem, e.g. in terms of
states and moves. How to get from the natural language input to this
formalisation is an issue we delay tackling until we get to the Natural
Language chapter.

We need to represent 'states inside the computer. We will also need to
be able to apply moves to these states to produce new states. It seems
natural to represent the states and the objects to be moved as data
structures, for instance lists, and to represent the move-maker as a
procedure to manipulate these lists.

8

For example, States represent M M C C BOAT/M C as
a list called Ieftbank = [M M C C BOAT]
a list called rightbank = EM C]

Moves represent "move a missionary and a cannibal from left to right" in
two pans: (a) as a list of things to be moved, e.g. [M C BOAT], called the
'movelist, (b) as a program to transfer these things from one bank to the
other, called the "move-left-to-right' procedure. For example:

To Move-left-to-right the movelist
Make new leitbank, old leitbank without the movelist
Make new rightbank, old rightbank with the movelist
End

(Note that the boat is moved automatically by including it in the movelist.)

Solution Checker. If we could turn our English version of the move-left-to-
right procedure into a computer program, together with a move-right-to-
left procedure, and if we could make leftbank and rightbank take their
initial values, then we could use the computer to check potential solutions.
We need a procedure

To Start-Missionary-and-Cannibal
Make leftbank be EM M M C C C BOAT]
Make rightbank be the empty list
End

In order to be able to do these things, we are going to have to learn
something about programming. [Read sections 6.1-3.1

ILi['1Ji1II4SitM'Xiih1iI :Jj!.
BUILDING THE PROGRAM

1.3.1 A Solution-Checking Program
Armed with our knowledge of programming we can now try to make our
recipe for a solt*tion checker more precise. LEFTBANK and RIGHTBANK
will be variables. Their values at any one time will be the current states of
the left and right banks. These variables cannot be local to any of our
procedures or their values would be lost when the procedures were exited.
Therefore we will not declare them as new and they will become global
variables, i.e. always accessible. The procedures translate fairly directly,
i.e.

TO MOVELTOR 'MOVELIST
10 MAKE 'LEFTBANK WITHOUT :MOVELIST :LEFTBANK
20 MAKE 'RIGIITBANK WITH :MOVELIST :RIGHTBANK
END

similarly
TO MOVERTOL 'MOVELIST
10 MAKE 'RIGHTBANK WITHOUT :MOVELIST :RIGHTBANK
20 MAKE LEFTBANK WITH :MOVELIST :LEFTBANK
END

TO STARTMANDC
10 MAKE 'LEFTBANK [M M M C C C BOAT]
20 MAKE RIGHTBANK []
END

It is necessary to define the subprocedures WITH and WITHOUT. WITH is
relatively easy, but WITHOUT is much harder and needs concepts we have
not yet introduced, so we delay consideration of it until later in the course.

Let us also define a procedure to tell us the current state. Otherwise we
will find it difficult to remember how we are doing.

TO PRINTSTATE
10 PRINTLEFTBANK
20 PRINTRIGHTBANK
END

TO PRINTLEFTBANK
10 TYPE 'LEFTBANK
20 TYPE SPACE
30 TYPE 'IS
40 TYPE SPACE
50 TYPE :LEFTBANK
60 TYPE NL
END

TO PRINTRIGHTBANK
10 TYPE 'RIGHTBANK
20 TYPE SPACE
30 TYPE IS
40 TYPE SPACE
50 TYPE :RIGHTBANK
60 TYPE NL
END

Exercise 1.3.1. PRINTLEFTBANK and PRINTRIGHTBANK are very similar.
Can you write a procedure with one argument that can do the work of
both?

Solution Checking. Using the procedures introduced, we can try solving
the problem 'by hand", but using the computer to keep track of where we
are. We use the procedures STARTMANDC, MOVELTOR, MOVERTOL
and PRINTSTATE. For example:

1 :STARTMANDC
1 :PRINTSTATE

LEFTBANK IS [M M M C C C BOAT] starting position
RIGHTBANK IS [

1:MOVELTOR [M C BOAT]
1 :PRINTSTATE

10

LEFTBANK IS [M M C C]
RIGHTBANK IS [M C BOAT]

1:MOVERTOL EM BOAT]
1 :PRINTSTATE

LEFTBANK IS EM M C C M BOAT)
RIGHTBANK IS (C]

1:MOVELTOR [M C BOAT]
1 :PRINTSTATE

LEFTBANK IS EM C M]
RIGHTBANK IS [C M C BOAT]

1 :STARTMANDC
1:MOVELTOR [C C BOAT]
1 :PRINTSTATE

LEFTBANK IS EM M M C]
RIGHTBANK IS [C C BOAT]

1.3.2 APPLYMOVE

after these moves, Missionary
on rightbank gets eaten

start over again
try a different first move

It seems a bit clumsy to have to specify MOVELTOR or MOVERTOL each
time, and also unnecessary. The computer itself ought to be able to figure
out which way to move next. How? Suppose, for instance, we are in this
situation:

1 :PRINTSTATE

LEFTBANK IS [M C BOAT]
RIGHTBANK IS EM C M C]

which way should we move next? Obviously, since the boat is on the
LEFTBANK, we have to MOVELTOR. So if we could get the computer to
see which bank the boat is on, we ought to be able to write a single
procedure APPLYMOVE, which can decide to MOVELTOR or MOVERTOL
as appropriate.

Writing APPLYMOVE. We now try to write the procedure APPLYMOVE.
Like MOVELTOR and MOVERTOL it takes a single argument, a list of what
is to be moved across the river. Let us call it MOVELIST, so we can type in

1:TO APPLYMOVE MOVELIST
What do we want APPLYMOVE to do? Well, if the BOAT is at LEFTBANK,
we want it to MOVELTOR the MOVELIST and that's all, so we type:

&:10 IF AMONGO 'BOAT :LEFTBANK THEN RESULT MOVELTOR
:MOVELIST AND STOP

AND STOP causes procedure to exit.

We need a procedure called AMONGQ, whose arguments are an item and
a list of items, which looks to see whether the item appears in the list. If it
does, the procedure returns TRUE; if not, FALSE:

11

TAMONGQ
'BOAT Ui M C BOAT]

 -• TRUE

So we have:
1:PRINT AMONGQ 'BOAT EM M C BOAT]
TRUE
1:PRINT AMONGQ 'CAT [BOY GIRL CAT DOG]
TRUE
1 PRINT AMONGQ 15 [21 12 2121
FALSE
1:PRINT AMONGQ FIRST [MAN HUMAN CHILD]

[CHIMPANZEE MAN ELEPHANT]
TRUE

In programming lectures we will see how to write AMONGQ. Go back to
writing APPLYMOVE

&:20 IF AMONGQ 'BOAT :RIGHTBANK THEN RESULT
MOVERTOL :MOVELIST AND STOP

and that's it:
&:END

Now, if we SHOW APPLYMOVE, we have
TO APPLYMOVE 'MOVELIST
10 IF AMONGQ 'BOAT :LEFTBANK THEN RESULT

MOVELTOR :MOVELIST AND STOP
20 IF AMONGQ 'BOAT :RIGHTBANK THEN RESULT

MOVERTOL :MOVELIST AND STOP
END

That looks OK, so let us try using it in our instructions to the computer:
1 :STARTMANDC
1 :PRINTSTATE

LEFTBANK IS [M M M C C C BOAT]
RIGHTBANK IS I I
1:APPLYMOVE [C BOAT]
1 :PRINTSTATE

LEFTBANK IS EM M M C Ci
RIGHTBANK IS [C BOATJ

1:APPLYMOVE [C BOAT]
1 :PRINTSTATE

LEFTBANK IS EM M M C C C BOAT]
RIGHTBANK IS [

12

1 :APPLYMOVE (C C BOAT]
1 :PRINTSTATE

LEFTBANK IS [M M M C]
RIGHTBANK IS [C C BOAT]

1.3.3 Simple Interaction
Even with APPLYMOVE we still have to do a lot of unnecessary typing.
Why not write a simple program that knows that we want to
STARTMANDC and then specify a sequence of moves, with a
PRINTSTATE to be done after each?
Let's try:

TO MANDC
10 STARTMANDC
20 MAKEMOVES
END

and
TO MAKEMOVES
10 REQUESTAMOVE
20 APPLYMOVE IT

IT returns the result of line 10
30 MAKEMOVES
END

where we use
TO REQUESTAMOVE
10 PRINTSTATE

This line reads in a
20 PRINT [TYPE A MOVELIST]

movelist and makes a

30 GETLIST

list out of it

40 IF AMONGQ 'BOAT IT THEN RETURN IT ._[whichisthen
returned

50 PRINT [YOU FORGOT THE BOAT, DUMMY: TRY AGAIN]
60 REQUESTAMOVE
END

This makes things much easier. For example:
1 MAN DC

LEFTBANK IS [M M C C C BOAT]
RIGHTBANK IS (]

[TYPE A MOVELIST]
DATA:C C BOAT

LEFTBANK IS [M M M C]
RIGHTBANK IS IC C BOAT]

[TYPE A MOVELIST]
DATA:C BOAT

LEFTBANK IS [M M M C C BOAT]
RIGHTBANK IS [C]

13

[TYPE A MOVELIST]
DATA:C C
[You FORGOT THE BOAT, DUMMY: TRY AGAIN]

LEFTBANK IS [M M M C C BOAT]
RIGHTBANK IS [C]

[TYPE A MOVELIST]
DATA:C C BOAT

LEFTBANK IS [M M MI
RIGHTBANK IS [C C C BOAT]

1.3.4 Towards an M & C Solver
Although so far we have been doing all the problem solving, remember
that our goal is to write a LOGO program that can solve the M & C
problem by itself. We try gradually working towards such a program.

Backup. We have
TO MAKEMOVES
10 REQUESTAMOVE
20 APPLYMOVE IT
30 MAKEMOVES
END

But what happens if we make a mistake? We have to start again from the
beginning. It would be nice to be able to "back-up", i.e. to reverse the last
move and try again. We recognise that we are really searching a tree

initial state

VVE = Cc BOAT] VE = Cc c BOAT]

14 C ci LEFTBANK = CM 14 / tJEFTBANK = FM M M c]
RIGHTBANK = [C BO1T] 1 / iRIGUTBANIC = Cc C BOAT]

Cc BOAT]

'1LEFTBANK = CM M 14 c C BOAT]
IRIGHTBANK = Cc]

Suppose we decide that we are in a blind alley and we want to "back-up"
and try again?

start

first try

no good,
back-up

try again

14

We must remember the previous states!!

TRYMOVES. Change MAKEMOVES so that instead of just applying the
move at step 20 it also explores all the consequences of applying the
move, i.e. it tries further moves. If these consequences are not to our liking
we can decide to terminate step 20 and go on with step 30, which tries
alternative moves, i.e.

current state

current
•& alterna tive moves (step 30)

consequences (step 20)

TO TRYMOVES
10 REQUESTAMOVE 1totallyexplores

- 9 20 EXPLOREASTATE :LEFTBANK :RIGHTBANK 1T4 consequences
\of current move

30 TRYMOVES . / restores previous state
and requests another move

END
Specifying :LEFTBANK and :RIGHTBANK ensures that the present
context of TRYMOVES is not sullied by EXPLOREASTATE.

TO EXPLOREASTATE 'LEFTBANK 'RIGHTBANK 'MOVELIST
50 APPLYMOVE :MOVELIST makes move
100 TRYMOVES makes consequent moves
END

TO MANDC
10 STARTMANDC

—* 20 TRYMOVES
END

REQUESTAMOVE. How do we tell the program we have made a mistake
and wish to back-up? Just type BACKUP when it asks for our next move,
i.e. after REQUESTAMOVE.

TO REQUESTAMOVE
10 PRINTSTATE

.-.-e- 20 PRINT [TYPE A MOVE OR BACKUP]
30 GETLIST

—*. 40 IF EITHER AMONGQ BOAT IT OR EQUALQ IT [BACKUP]
THEN RESULT IT

50 PRINT [YOU FORGOT THE BOAT, DUMMY: TRY AGAIN]
60 REQUESTAMOVE
END

How do we make use of this information when we get it? By altering

15

TRYMOVES so that it does not continue if it is told to back-up.
TO TRYMOVES
10 REQUESTAMOVE

-p. 20 IF EQUALQ IT [BACKUP] THEN STOP
ELSE EXPLOREASTATE :LEFTBANK :RIGHTBANK IT

30 TRYMOVES
END

Now try it on the computer.
1 MAN DC

LEETBANK IS [M M M C C C BOAT] initial node 1
RIGHTBANK IS [

[TYPE A MOVE OR BACKUP] first move
DATA:C C BOAT

LEFTBANK IS [M M M Cl gives a new node2
RIGHTBANK IS IC C BOAT)

[TYPE A MOVE OR BACKUP] second move from there
DATA:C BOAT

LEFTBANK IS [M M M C C BOAT] gives a new node3
RIGHTBANK IS [C]

[TYPE A MOVE OR BACKUP] third move
DATA:M C BOAT

LEFTBANK IS EM M Cl gives a state where the Cs eat a M
RIGHTBANK IS [C M C BOAT]

[TYPE A MOVE OR BACKUP]
DATA BAC K U P

LEETBANK IS [M M M C C BOAT]
RIGHTBANK IS [C]

[TYPE A MOVE OR BACKUP]
DATA:M BOAT

LEFTBANK IS [M M C C]
RIGHTBANK IS [C M BOAT]

so backup

to node3

and try a different move

Checking forSoluzion. In exploring a new state we ought at least to notice
when we have solved the problem. This is easily done, by adding a new
line (line 80) to EXPLOREASTATE:

TO EXPLOREASTATE LEFTBANK 'RIGHTBANK MOVELIST
50 APPLYMOVE :MOVELIST

—+80 IF SUCCEEDEDQ THEN PRINT 'SUCCESS AND QUIT
100 TRYMOVES
END

16

I) QUIT stops all procedures.

Here we have assumed the existence of a predicate, SUCCEEDEDQ,
which outputs TRUE when the M & C problem is solved. How could we
write such a predicate? One simple way is to notice that there is
somebody on the LEFTBANK until the problem is solved, so we could
check for that condition:

TO SUCCEEDEDQ
10 RESULT EMPTYQ :LEFTBANK
END

Checking for Cannibalism. In a similar way we can arrange for
EXPLOREASTATE to check whether the cannabalism condition is violated.
Adding an appropriate command to EXPLOREASTATE is straightforward:

TO EXPLOREASTATE 'LEFTBANK RIGHTBANK 'MOVELIST
50 APPLYMOVE :MOVELIST

—~60 IF MISSIONARIESEATENQ THEN STOP
80 IF SUCCEEDEDQ THEN PRINT 'SUCCESS AND QUIT
100 TRYMOVES
END

But then we have to spell out the predicate MISSIONARIESEATENQ.
Missionaries get eaten if they get eaten either on the LEFTBANK or on the
RIGHTBANK, so if we invent a subsidiary predicate MEATENQ that
worries only about one bank at a time, then we can write:

TO MISSIONARIESEATENQ
10 RESULT EITHER MEATENO :LEFTBANK OR MEATENQ

RIG HTBAN K
END

So under what conditions do the missionaries on a bank get eaten? Clearly
if there are more cannibals there than missionaries. But this means that
we need to be able to count the number of missionaries (or cannibals) on a
bank. How do we do this? By our favourite trick of simply supposing a
suitable procedure to exist, and then worrying about how to define it later.
So let us assume that we have available a procedure NUMBEROF, which
takes two arguments, an item and a list of items, and returns the number
of times the item occurs in the list:

NUI4BEROF

COW [HORSE COW DOG COW
SHEEP HORSE RABBIT]

-

So NUMBEROF is in several ways analogous to AMONGQ, but whereas
AMONGQ merely tells whether or not an item occurs at all, NUMBEROF
tells how many times it occurs:

I)•

17

1:PRINT NUMBEROF 'COW [HORSE COW DOG COW SHEEP
RABBIT]

2
1:PRINT NUMBEROF 'M EM C M
2
1:PRINT NUMBEROF 'M [C C C]
0

So now we can write MEATENQ. The condition that there are more
cannibals than missionaries on some BANK becomes just:

GRTAQ (NUMBEROF 'C BANK) (NUMBEROF 'M BANK)
But this cant be quite right, since when the number of missionaries is zero
it doesn't matter how many cannibals there are. In other words, there have
to be some missionaries present if an are to be eaten. This gives us:

TO MEANTENQ BANK
10 BOTH GRTRQ (NUMBEROF 'C BANK) (NUMBEROF 'M

BANK) ANDALSO GRTRQ (NUMBEROF 'M BANK) 0
END

Exercise 1.3.2. Add all the changes made so far to the original program.
Try running MANDC. You may find it more helpful to make line 60 ol
EXPLOREASTATE print out an informative message, perhaps:
—460 IF MISSIONARIESEATENO THEN PRINT

[MISSIONARIES EATEN, MOVE REJECTED] AND STOP

1.3.5 Generating Applicable Moves
By now the program is doing all the work except for the actual selection of
moves, so the last step is to have it do this as well. How can it? What basis
is there for choosing moves? One way is to simply let it try all the possible
moves in turn. This is perfectly reasonable, since there are only five of
them. So let us begin by making sure that some list contains all five of
these possible moves:

TO STARTMANDC
10 MAKE 'LEFTBANK [M M M C C C BOAT]
20 MAKE 'RIGHTBANK []
40 MAKE 'POSSIBLEMOVES [[C C BOAT] [C BOAT]

[M C BOAT] [M M BOAT] [M BOAT])
END

Then in EXPLOREASTATE, we replace the line telling it to TRYMOVES
typed in by us, by a line telling it to TRYALL :POSSIBLEMOVES (see line
100, below). And how should it TRYALL? Simply by trying one at a time:

TO TRYALL 'SETOFMOVES
10 IF EMPTYG :SETOFMOVE5 THEN STOP
20 EXPLOREASTATE :LEFTBANK :RIGHTBANK FIRST

:SETOFMOVES
30 TRYALL BUTFIRST :SETOFMOVES
END

In

We have to change MANDC in the same way:
TO MANDC

20 TRYALL :POSSIBLEMOVES
--30 PRINT [NO SOLUTION FOUND]

END
(Line 30 is justified because if the program does try all possible moves
without meeting success, it will indeed have failed.)

There is only one snag left now, which is that not all moves are necessarily
applicable to a particular state. For example, if we have LEFTBAN K IS
[M C BOAT], it is impossible to move two cannibals across! What should
we do about this? One possibility would be to modify TRYALL so that it
tries only applicable moves, but it seems simpler to add a further test to
EXPLOREASTATE, this time before the move:

TO EXPLOREASTATE 'LEFTBANK 'RIGHTBANK 'MOVELIST
-4- 40 IF NOT APPLICABLEQ :MOVELIST THEN STOP

50 APPLYMOVE :MOVELIST
60 IF MISSIONARIESEATENQ THEN STOP
80 IF SUCCEEDEDQ THEN PRINT 'SUCCESS AND QUIT

—4-100 TRYALL :POSSIBLEMOVES
What decides whether a move is applicable? Clearly there must be at least
as many missionaries on the bank as are specified in the move, and
similarly for cannibals:

TO APPLICABLEQ 'MOVE
10 BOTH LESSEQUALQ (NUMBER OF 'M MOVE)

(NUMBEROF 'M FROMSIDE)
ANDALSO LESSEQUALQ (NUMBEROF 'C :MOVE)
(NUMBEROF'C FROMSIDE)

END
FROMSI DE is a function that returns the bank that the BOAT will be
leaving from. Could you write it?

Looping. Try out the above procedure pretending to be the computer.

19

cJ;LEFTBA1K = [M M MC C C BOAT] 1 :RIGHTBANK = L]

[c C BOAT]

1:LEFTBANK = [M M M C]
:RIG}qrBANK = [c C BOAT]

[C C BOAT]

j:LEFTBANK = [M M M C C C BOAT]
:RIGHTBANK = []

etc.

We are in a loop!

We could avoid this particular loop by ensuring that we do not
immediately reverse a step we have just made. Unfortunately there are
more subtle loops.

/ state A

several moves I
in between

/ state A again

Note that if we have a solution with repeated states, we can modify it to
get a simpler solution without repeated states. Therefore a solution with
repeated states is not the simplest solution, which is what is required. To
avoid loops we need to keep track of which states we have seen before
and avoid repeatedly exploring them. How shall we do this?

As always, the appropriate changes to EXPLOREASTATE are easy to
make. We just need to reject a state if we have seen it before (line 70, see
below), but if it is a genuinely new state then we must record the fact that
we have seen it (line 90):

TO EXPLOREASTATE 'LEFTBANK 'RIGHTBANK 'MOVELIST
40 IF NOT APPLICABLE :MOVELIST THEN STOP
50 APPLYMOVE :MOVELIST
60 IF MISSIONARIESEATENQ THEN STOP

- 70 IF SEENSTATEBEFOREQ THEN STOP
80 IF SUCCEEDEDQ THEN PRINT 'SUCCESS AND QUIT

—+90 RECORDNEWSTATE
100 TRYALL :POSSIBLEMOVES
END

How are we to remember which states we have seen before? One way

20

would be to keep a list of all the LEFTBANKs and RIGHTBANKs we have
seen, and then, when we have a possibly new state, check whether we
have seen this particular combination before. But that would be a bit
complicated, and we can simplify it in two ways: (a) We don't need to
record both the LEFTBAN Ks and the RIGHTBAN Ks, since given one we
know what the other must be. For example, if LEFTBANK is [M C BOAT]
then we know that the RIGHTBANK must be EM C M C]. So it would be
sufficient to remember just, say, the LEFTBANKs. (b) We still must be
careful over what it is about the LEFTBANKs that we remember. Suppose
that we have previously seen a LEFTBANK of [M C BOAT], and that it is
now [C M BOAT] then they are really the same LEFTBANK even though
they are not equal':

1:PRINT EQUALQ [M C BOAT] [C M BOAT]
FALSE

What is really important about the LEFTBANK is the number of
missionaries and cannibals (and boat) there, not the order in which they
appear in the list. This suggests remembering the LEFTBANK as a group
of three numbers - (number-of-boat-on-leftbank, number-of-
missionaries-on-leftbank, number-of-cannibals-on-leftbank) - so that, for
example. [M C BOAT] corresponds to [1 1 1]. one boat, one missionary,
one cannibal.

Let us define a procedure to construct these triples:
TO STATETRIPLE
10 NUMBEROF BOAT :LEFTBANK
NIJMBEROF 'M :LEFTBANK
NUMBEROF :LEFTBANI())
END

(The list brackets ((. . .)) allow elements to be results of procedure
calls.) So that we have, for example:

1 :PRINTSTATE

LEFTBANK IS EM M M]
RIGNTBANK IS [C C C BOAT]

1 :PRINT STATETRIPLE
[030]

If we have a list, STATESEEN, which holds all the state triples we have
seen, it is easy to write our procedures to examine or update it:

TO SEENSTATEBEFOREQ
10 RESULT AMONGO STATETRIPLE :STATESEEN
END

TO RECORDNEWSTATE
10 MAKE 'STATESEEN FIRSTPLJT STATETRIPLE :STATESEEN
END

And we should remember to start STATESEEN off with the initial

21

Search Tr"

looping
detected

state

plicable moves
ranged in order, with
rst choice on left

LE FTBAN K:
TO STARTMANDC
10 MAKE 'LEFTBANK FM M M C C C BOATI
20 MAKE RIGHTBANK F

—*30 MAKE 'STATESEEN Lii 33]]
40 MAKE 'POSSIBLEMOVES [[C C BOAT] [C BOAT)

[M C BOAT] [M M BOAT] EM BOAT]]
END

1.3.6. Exercises
1.3.3. Make these additions and try using them. As before, you will find it
more helpful if line 70 of EXPLOREASTATE prints out an appropriate
message.
1.3.4. Edit STARTMANDC and change the order of POSSIBLEMOVES.
Describe the effect this has.
7.3.5. The representation of states by LEFTBANK and RIGHTBANK is
redundant. Modify the M & C program so that only LEFTBANK is explicitly
represented.
1.3.6. The STATETRIPLES we invented, to record states already reached,

suggest an alternative way of representing states. Modify the M & C
program so that it uses this representation.

1.4 MISSIONARIES AND CANNIBALS:
SEARCH TECHNICLIES

1.4.1 Analysis of Search Strategy
We can represent all possible sequences of moves in the missionaries and
cannibals problem by a tree:

cannibalism
occurs

We can regard the program as growing some of this tree as it runs, and
thus exploring it. In what order does it grow the tree? What was our
search strategy?

22

I Simulatio
of Search

doubl
back-

back-up

This is called depth first search. That is, we keep going down, taking the
left-most branch at every choice point, until we have to back-up. Then we
go back one place and take the next choice.

Simplest Solutions. Unfortunately this does not necessarily give us the
simplest solution.

simplest

solution
found

/

state

goal Non-simplest

state Solution found

We may find a complicated solution on the left-hand side, before a simple
one on the right-hand side. We could search the whole tree then choose
the simplest solution from among all the solutions found. Alternatively we
could explore all solutions in parallel so that the first found was bound to
be the simplest. /

/ Breadth-First

/ Search

F
--- -a- - - 4-4

23

Suppose that simplest means the smallest number of moves, then we can
advance each branch of the tree one step, then go back and do it again.
This is called breadth first search. If our definition of simplest was a bit
more subtle, the search would not be so easy, but we could still do
basically the same thing.

'Exercise 1.4.1. How would you implement the M & C program so that it
did a breadth first search?

1.4.2 Guidance
The search tree for the M & C problem is fairly small, and we are able to
find a solution by a brute-force search (straight down, keep to the left).
Many search trees in Al problems are very large (e.g. draughts) and
programs to search them need to be guided, if they are not to become
bogged down. Typically one would want to choose the most promising
looking move, at any choice point, instead of choosing the next one on
some fixed list. One might want to temporarily stop exploring some
particular state and move on to another, while reserving the right to come
back.

/ "Intelligent"
Search Strategy

Graph Traverser. Many Al programs can be regarded as involving some
search through a search tree. These trees are typically large (especially if
the problem domain is not well understood) and the search through one
needs to be guided if the program is not to become bogged down.
Attempts have been made to write general purpose tree-searching
programs that only need to be fed particular details about the state
descriptions and legal moves. Having such a program available makes it
easier to formalise problems like the missionaries and cannibals. This is
important when it comes to designing a program to solve problems from
their verbal statement. One such general search program is the Graph
Traverser of Doran and Michie (see recommended reading). Their program
searches graphs instead of trees, but the difference is slight. In a tree, if we
have two identical states on different branches, we record them
separately; in a graph we use one node to record them both. When we say
we are searching a graph, rather than a tree, we imply that the test for
looping is built-in to our program.
24

A Tree A Graph

the states identical .
states identified

Evaluation Functions. The Graph Traverser provides a general mechanism
for guiding search. The user is expected to provide a procedure which
takes a state and calculates a numerical score which measures how close
the present state is to the goal state. Such a procedure is called a Heuristic
Evaluation Function. The graph traverser always chooses to explore next
the unexplored state with the highest score.

1.4.3 Exercises
1.4.2. Write an evaluation function for the missionaries and cannibals
problem.
1.4.3. The Eight-Puzzle" is played on the 3 x 3 tray illustrated below:

N- a wn
U-

Mounted in the tray are eight 1 x 1 square pieces, which are free to slide
left, right, up or down into an empty square. The standard position is
illustrated, in which the centre square is empty and the letters are
arranged in order. The puzzle is played by initialising the pieces in some
other order and then trying to get them back into the standard position.
(a) Explain how a course of play can be represented as a search through a

tree or graph.
(b) How would this representation help you to design a computer program

to solve eight-puzzle problems?
(c) Suppose you were writing such a program. How could you represent in

LOGO: states of the tray and moves. Explain in English (or LOGO) how
you would apply moves to states to produce new states.

1.4.4 Recommended Reading
J. Doran (1971) An approach to problem solving, in Machine Intelligence
1 (eds N. L. Collins & D. Michie) pp. 105-23. Edinburgh: University Press.
This paper describes the Graph Traverser program, which embodies an
heuristic search strategy. It can solve any puzzle input to it in the form of
states and legal moves plus an evaluation function for assigning a numeric
score to states.

1044

1.5 MISSIONARIES AND CANNIBALS:
THE COMPLETE LOGO PROGRAM

TO MOVELTOR 'MOVELIST
10 MAKE LEFTBANK WITHOUT :MOVELIST :LEFTBANK
20 MAKE 'RIGHTBANK JOIN :RIGHTBANK :MOVELIST
END

TO MOVERTOL 'MOVELIST
10 MAKE 'RIGHTBANK WITHOUT :MOVELIST :RIGHTBANK
20 MAKE LEFTBANK JOIN :LEFTBANK :MOVELI5T
END

TO APPLYMOVE 'MOVELIST
10 IF AMONGQ BOAT :LEFrBANK THEN RESULT MOVELTOR

:MOVELIST
20 IF AMONGQ 'BOAT :RIGHTBANK THEN RESULT MOVERTOL

:MOVELIST
30 BREAK ERROR IN APPLYMOVE
END

TO WITHOUT 'DELETIONS 'ORIGINAL
10 APPLIST :DELETIONS [MAKE 'ORIGINAL WITHOUT1 EACH

:ORIGINAL]
20 RESULT :ORIGINAL
END

TO WITHOUT1 'DELETION 'ORIGINAL
10 IF EMPTYQ ORIGINAL THEN SAY JOIN [CANNOT REMOVE]

FIRSTPUT DELETION [FROM GIVEN LIST] AND BREAK ERROR
20 IF EQUALO DELETION FIRST :ORIGINAL THEN RESULT

BUTFIRST :ORIGINAL
30 RESULT FIRSTPUT FIRST ORIGINAL WITHOUT1 DELETION

BUTFIRST :ORIGINAL
END

TO MANDC
10 STARTMANDC
20 TRYALL POSSIBLEMOVES
30 PRINT [NO SOLUTION FOUND]
END

TO EXPLOREASTATE 'LEFTBANK 'RIGI-ITBANK 'MOVELIST
40 IF NOT APPLICABLEQ :MOVELIST THEN STOP
50 APPLYMOVE :MOVELIST
60 IF MISSIONARIESEATENQ THEN STOP
70 IF SEENSTATEBEFOREQ THEN STOP
80 IF SUCCEEDEDQ THEN PRINT 'SUCCESS AND QUIT
90 RECORDNEWSTATE

26

100 TRYALL POSSIBLEMOVES
END

TO PRINTSTATE
5 TYPE NL

10 TYPE 'LEFTBANK AND TYPE SPACE AND TYPE 'IS AND TYPE
SPACE

20 TYPE :LEFTBANK AND TYPE NL
30 TYPE 'RIGHTBANK AND TYPE SPACE AND TYPE 'IS AND

TYPE SPACE
40 TYPE :RIGHTBANK AND TYPE NL
50 TYPE NL
END

TO STARTMANDC
10 MAKE 'LEFTBANK [M M M C C C BOAT]
20 MAKE 'RIGHTBANK [j
30 MAKE 'STATESEEN [[1 3 3 1]
40 MAKE 'POSSIBLEMOVES [[C C BOAT] [C BOAT] [M C BOAT]

[M M BOAT] FM BOAT]]
50 PRINTSTATE
END

TO NUMBEROF 'ITEM 'LIST
10 IF EMPTYQ LIST THEN RESULT 0
20 IF EQUALQ JTEM FIRST :LIST THEN RESULT 1+NUMBEROF

ITEM BUTFIRST :LIST
30 RESULT NUMBEROF :ITEM BUTFIRST :LIST
END

TO TRYALL 'SETOFMOVES
10 IF EMPTYQ :SETOFMOVES THEN STOP
20 PEXPLOREASTATE :LEFTBAN K :RIGHTBANK FIRST

:SETOFMOVES
30 TRYALL BUTFIAST :SETOFMOVES
END
TO FROMSIDE
10 IF AMONGQ 'BOAT :LEFTBANK THEN RESULT :LEFTBANK
20 IF AMONGQ 'BOAT :RIGHTBANK THEN RESULT :RIGHTBANK
30 BREAK ERROR IN FROMSIDE
END

TO APPLICABLEQ 'MOVE
10 BOTH LESSEQUALQ (NUMBEROF 'M MOVE)

(NUMBEROF 'M FROMSIDE)
ANDALSO LESSEQUALQ (NUMBEROF 'C MOVE)
(NUMBEROF 'C FROMSIDE)

END
27

TO RECORDNEWSTATE
10 MAKE STATESEEN FIRSTPUT STATETRIPLE :STATESEEN
END

TO SEENSTATEBEFOREQ
10 RESULT AMONGQ STATETRIPLE :STATESEEN
END

TO MISSIONARIESEATENQ
10 RESULT EITHER MEATENQ :LEFTBANK MEATENQ :RIGHTBANK
END

TO MEATENQ BANK
10 BOTH GRTRQ (NUMBEROF C :BANK) (NUMBEROF 'M :BANK)

ANDALSO GRTRQ (NUMBEROF M BANK) 0
END

TO SUCCEEDEDQ
10 RESULT EMPTYQ :LEFTBANK
END

TO STATETRIPLE
10 (((NUMBEROF 'BOAT :LEFTBANK) (NUMBEROF 'M

:LEFTBANK) (NUMBEROF 'C :LEFTBANK)))
END

TO PEXPLOREASTATE 'LEFTBANK RIGHTBANK 'MOVELIST
40 IF NOT APPLIçABLEQ :MOVELIST THEN STOP
50 APPLYMOVE :MOVELIST
55 TYPE APPLIEDMOVE AND TYPE SPACE AND PRINT

MOVE LIST
60 IF MISSIONARIESEATENQ THEN PRINT 'MISSIONARIESEATEN

AND stop
70 IF SEENSTATEBEFOREQ THEN PRINT SEENSTATEBEFORE

AND STOP
75 PRINT 'NEWSTATE AND PRINTSTATE
80 IF SUCCEEDEDQ THEN PRINT SUCCESS AND QUIT
90 RECORDNEWSTATE
100 TRYALL :POSSIBLEMOVES
105 PRINT BACKUP
END

1.6 MISSIONARIES AND CANNIBALS:
THE COMPLETE LISP PROGRAM

(DEFUN QUIT I) (bC G))

(DEFUN MOVELTOR (MOVELIST)
(SETQ LEFTBANK (WITHOUT MOVELIST LEFTBANK))
(SETQ RIGHTBANK (APPEND RIGHTBANK MOVELISTII)

28

(DEFUN MOVERTOL (MOVELIST)
(SETQ RIGHTBANK (WITHOUT MOVELIST RIGHTBANK))
(SETQ LEFTBANK (APPEND LEFTBANK MOVELIST)))

(DEFUN APPLYMOVE (MOVELIST)
(COND ((MEMBER BOAT LEFTBANK) (MOVELTOR MOVELIST))

((MEMBER BOAT RIGI-4TBANK) (MOVERTOL (MOVELIST))
IT (BREAK (ERROR IN APPLYMOVE) T))))

(DEFUN WITHOUT (DELETIONS ORIGINAL)
(MAPC (LAMBDA (EACH) (SETQ ORIGINAL (WITHOUTI EACH

ORIGINAL))) DELETIONS)
ORIGINAL)

(DEFUN WITHOUT1 (DELETION ORIGINAL)
COND ((NULL ORIGINAL)

(PRINT
(APPEND ICANNOT REMOVE) (CONS DELETION

(FROM GIVEN LIST))))
(BREAK ERROR T))

((EQ DELETION (CAR ORIGINAL))
(CDR ORIGINAL))
IT (CONS (CAR ORIGINAL) (WITHOUT1 DELETION

(CDR ORIGINAL))))))

(DEFUN MANDC
(STARTMANDC)
(TRYALL POSSIBLEMOVES)
(PRINT (NO SOLUTION FOUND)))

(DEFUN EXPLOREASTATE (LEFTBANK RIGHTBANK MOVELIST)
(PROG

(COND ((NOT (APPLICABLEQ MOVELIST)) (RETURN NIL)))
(APPLYMOVE MOVELIST)
(COND ((MISSIONARIESEATENQ) (RETURN NIL))

((SEENSTATEBEFOREG) (RETURN NIL))
((SUCCEEDEDQ) (PRINT 'SUCCESS) (QUIT)))

(RECORDNEWSTATE)
(TRYALL POSSIBLEMOVES)))

(DEFUN PRINTSTATE
(TE R PR I)
(PRIN1 LEFTBANK) (TYO 40) (PRIN1 'IS) (TYO 40)
(PRIN1 LEETBANK) (TERPRI)
(PRIN1 'RIGHTBANK) (TYO 40) (PRIN1 15) (TYO 40)
(PRIN1 RIGHTBANK) (TERPRI)
(TER PR I))

(DEFUN STARTMANDC
(SETQ LEFTBANK '(M M M C C C BOAT))
(SETQ RIGHTBANK NIL)
(SETQ STATESEEN Ui 3 3D)
(SETQ POSSIBLEMOVES '((C C BOAT) (C BOAT) (M C BOAT)

(M M BOAT) (M BOAT)))
(PRINTSTATE))

(DEFUN NUMBEROF (ITEM LIST)
(COND ((NULL LIST) 0)

((EQ ITEM (CAR LIST)) (1+ (NUMBEROF ITEM (CDR
LIST))))

IT (NUMBEROF ITEM (COR LIST))))

(DEFUN TRYALL (SETOFMOVES)
(COND ((NULL SETOFMOVES))

IT (PEXPLOREASTATE LEFTBANK RIGHTBANK (CAR
SETOFMOVES)) (TRYALL (CDR SETOFMOVESD)))

(DEFUN FROMSIDE ()
(COND ((MEMBER 'BOAT LEFTBANK) LEFTBANK)

((MEMBER 'BOAT RIGHTBANK) RIGHTBANK)
(T (BREAK (ERROR IN FROMSIDE) T)))))

(DEFUN APPLICABLEQ (MOVE)
(AND (NOT (>(NUMBEROF 'M MOVE) (NUMBEROF 'M

(FROMSIDE)D)
(NOT (>(NUMBEROF 'C MOVE) (NUMBEROF 'C

(FROMSIDED)D)
(DEFUN RECORDNEWSTATE ()

(SETQ STATESEEN (CONS (STATETRIPLE) STATESEEND)

(DEFUN SEENSTATEBEFOREQ U
(MEMBER (STATETRIPLE) STATESEEN))

(DEFUN MISSIONARIESEATENQ ()
(OR (MEATENQ LEFTBANK) (MEATENQ RIGHTBANKD)

(DEFUN MEATENQ (BANK)
(AND (>(NUMBEROF 'C BANK) (NUMBEROF 'M BANK))

(>(NUMBEROF 'M BANK) 0)))

(DEFUN SUCCEEDEDQ U
(NULL LEFTBANK))

(DEFUN STATETRIPLE ()
(LIST (NUMBEROF 'BOAT LEFTBANK)

(NUMBEROF 'M LEFTBANK)
(NUMBEROF 'C LEFTBANK)))

30

(DEFUN PEXPLOREASTATE (LEFTBANK RIGHTBANK MOVELIST)
(PROG ()

(COND ((NOT (APPLICABLEQ MOVELIST)) (RETURN)))
(APPLYMOVE MOVELIST)
(PRIN1 'APPLIEDMOVE) (TYO 40) (PRIN1 MOVELIST)
COND ((MISSIONARIESEATENQ) (PRINT MISSIONARIESEATEN)

(TERPRI) (RETURN))
USEENSTATEBEFOREQ) (PRINT 'SEENSTATEBEFORE)

(TERPRI) (RETURN)))
(PRINT 'NEWSTATE) (PRINTSTATE)
(COND ((SUCCEEDEDQ) (PRINT 'SUCCESS) (QUIT)))
(RECORDNEWSTATE)
(TRYALL POSSIBLEMOVES)
(PRINT 'BACKUP)))

1.7 DRAUGHTS

1.7.1 Introduction
In many ways M & C was a toy problem. For instance, the search tree was
very small and we did not need to exercise much intelligence in searching
it (once we had arrived at the formal representation). We now turn our
attention to a problem area where it is perhaps easier to see how to
represent the problem as searching a tree, but where the search raises
formidable problems. The problem area is draughts. Can we give a precise
recipe for playing a good game of draughts?

1.7.2 Complete Analysis (and the search tree)
One way to guarantee a good game would be to analyse completely the
game, i.e. to explore, once and for all, all the possible games. Maybe this is
possible using modern high-speed computers? Let us draw a picture of
such a complete analysis:

Search Tree Ainitial board position

l first
aYer's moves

all second
player's responses

moves Ej

board
positions

win draw lose

31

It has been estimated that this tree contains 1040 nodes. If we make the
(very optimistic) assumption that we can consider 3 nodes per milli-
microsecond, it would take 1021 centuries to explore the whole tree.
Clearly this is out of the question (regardless of whether we search the
tree depth first, breadth first, etc.)

1.7.3 Look-Ahead
An alternative to searching the whole tree is to search some way ahead,
whenever we have a choice, to see what is locally the best choice.

Look-Ahead - - - -

current -.
Tree

search I

rc 'this bit

positions

fl . ignore
these bits

rest of tree

win

In order to analyse completely the look-ahead tree we must be able to
assign some value to the terminal nodes (previously they were all wins,
draws or losses). As a first step let us decide to award a numerical score to
each terminal position:

a win for first player gets the biggest positive number
a lose for first player gets the biggest negative number
a draw gets zero
other scores will be in between, as we decide

1.7.4 MIni-Maxing
Having fixed scores for the terminal positions how do we analyse the
board? (Assume that the first player is to choose throughout.)

moves

+10 -2 -8 +4

Clearly, in this case, the first player will choose move A. However, if we
look further ahead, the tree may look like this (note that this is a different
tree):

32

\ work
\backwards

+10 -2 +1 +5 +3 -2 -3

first player's moves

second player's moves

+10 -4 +1 +5 +3 -2 -3

Is A the best move now? No, because the second player can be assumed
to take the —2 branch to maximise his chances; so move B, for instance,
would be better. In fact C is best, because the second player can only take
the +3 branch at best. Can we formalise this procedure?

Starting with the scores of the terminal positions we work backwards up
the tree, labelling the nodes as follows. If the second player has the choice
of move we label the node with the lowest possible score from the
available alternatives. If the first player has the choice, we label the node
with the highest possible score. We can carry out the process to any
depth, and this technique is called mini-maxing.

1.7.5 Choosing the Score
How do we decide what score to give a board position? Could we decide
in advance on a score for each individual position? No, because there are
too many (- 1040). We must use some high-level classification of board
positions, e.g. we must look for features. What is a feature? Some
examples are:

Who has the most pieces?
Is anybody in a position to fork?
Is anybody in a position to gain a king?
Who controls the centre?

jrk

33

We can look for features and award points for each, e.g. so many points
for each potential king, etc. Then we can add up all the points to get a total
score for the board, advantages for the first player being scored positive,
and advantages for the second player being scored negative.

How do we decide relative values between different features? Usually by
experimentation and practice. Therefore it is useful to be able to adjust
relative values easily. The way to do this is to score each feature
separately, without regard to relative values, and to weight each score
before adding them together, i.e.

Total Score = w 1 s 1 + w2 s2 + ... ± wn sn
where w is the weight allocated to each feature scores.

1.7.6 Factors Affecting Look-Ahead
How do we decide how far ahead to look, and where to stop? We must
take into account: (a) The limited capacity of the machine. The number of
nodes increases exponentially with depth, which means that typically we
can only search 3-4 moves deep. (This phenomenon is called the
Combinatorial Explosion.) (b) The principle of hot pursuit, i.e. we want to
pursue further those branches that are not stable. For instance, if the next
move is a jump, keep looking unless we are nearly exceeding the capacity
of machine. (c) The fact that we may waste time considering branches that
cannot be any good, e.g.

Cannot be <10

Cannot be > 5

10

'
',*—can be ignored,

because score of

C cannot now beat
/ score of B

This refinement is called a - fi search.

Exercise 1.7.1. Consider the following look-ahead tree, where the scores
for the terminal positions have been filled in. Using the mini-max
procedure, determine which move the first player should make.

34

+5 -17 +7 1-2 +90 +30 +10 -3 -2 -3 +100 +70 +3 +5 +2 +7

1.7.7 Conclusion
Samuel's checkers (American for draughts) program, which is based on
these principles, beats all but the very best players. Chess-playing
programs have also been written along the same lines. Here the situation
is not so healthy. They can play only as well as the best amateurs, and
there is no hope of a radical improvement in their performance. Their play
can only be improved by searching deeper or increasing the effort involved
in calculating the score of a position. Both of these involve an increase in
the time spent choosing moves, and the existing programs already use all
the time allocated to them under tournament rules.

The whole area of chess-playing programs is currently undergoing a
revolution, and new techniques are being explored. For instance, using
high-level descriptions of board positions to carry out a strategic search,
before unpacking this into a more detailed, deep but narrow search. For a
good account of the problems of the old approach and some of the new
techniques, see the paper by Berliner.

1.7.8 Recommended Reading
A. L. Samuel, (1963) Some studies in machine learning using the game of
checkers, in Computers and Thought (eds F. A. Feigenbaum & J.
Feldman). McGraw-Hill. This paper describes Samuel's highly successful
draughts-playing program, including a discussion of how it was able to
learn from experience. (See also section 4.1.)

If this area particularly interests you, see H. Berliner. (1973) Some
necessary conditions of a master chess program, in Proceedings of the 3rd
/JCA/, pp 77-85. Stanford. Berliner describes thelimitations of the mini-
max techniques and suggests ways of overcoming these limitations.

1.8 THE GENERAL PROBLEM SOLVER

1.8.1 Introduction
So far we have constructed or discussed computational models for
particular tasks (IQ tests, the M & C problem, and draughts), but humans

35

have the ability to solve problems in a wide variety of domains, including
areas they have not encountered before. What does this general problem-
solving ability consist of? Can we construct a program with this capability?
In the late 'fifties and early 'sixties a lot of energy was devoted to this
question, the most famous program being the General Problem Solver
(GPS) of Newell, Simon & Shaw.

Naturally it is necessary to explain a particular problem to GPS, and this is
done by giving descriptions of the initial and goal states of the world
(called objects) and operators to transform these objects. Thus, just as in
the M & C problem, GPS has to search for a sequence of operators that
transform the initial object into the final object. To help it with this search
GPS must also be given a procedure for finding differences between
objects, and a way of relating these differences to operators relevant to
reducing such differences. The central contribution of GPS is a general
search technique called means-ends analysis.

1.8.2 Means-Ends Analysis
Consider the problem of getting from my home in Edinburgh to Trafalgar
Square, London. GPS would go through a process of reasoning like the
following:

"My goal or end is to transform 'me at home' into 'me in Trafalgar Square.
The first task is to compare these two states and find the difference. I find
the difference to be one of location. The means I have of reducing
differences of location are operators like 'walk or 'travel by train. Some
operators, like 'walk', can be rejected as infeasible, but travel by train is
feasible, so my next task is to apply this operator to the initial state, 'me at
home'. Unfortunately the operator will not apply immediately because the
conditions are not right; I am not at the station. So I set up a new sub-goal
to transform 'me at home' into 'me at the station'. Again the difference is
one of location and again I find the travel' operators. I can reject walk' as
infeasible (I am lazy) and 'go by train' as a potential loop and select 'go by
taxi'. This cannot be applied because the conditions are wrong; the taxi
driver does not know I need him. The difference is one of information, so I
look for an operator that can reduce differences of information and find the
communication operators like 'use the telephone' . .

This kind of analysis can be carried on to any required depth and will
eventually produce a plan consisting of a sequence of operators.

Methods. Means-ends analysis is embodied in GPS as a series of
procedures called methods. These are usually explained by the following
flowcharts.

36

Method 1. Goal: Transform object A into object B.

F match A to B D sub-goai: , jsub-goal: Ito find)dreduce A
transform) Success t Lference 0 [J success into B success

none

fail ,[fail

Success Fail Fail

Method 2. Goal: Reduce difference D between objects A and B.

Fseaurcch for opera- test if es sub-goal:
A' relevant to > feasible " >apply Q to Aj_5uccess

ing 0 (preliminary) jfoducingJ

none
'1

,j, no fail

Fail try for another operator

Method 3. Goal: Apply operator C to object A.

F

dtch condition D Pfl A' sub-goal: QtoA tofind -.-- >apply Q Success successfference 0

I to A
none ,J, fail fail

Fail Fail

produce result A Success

GPS can achieve goals of three different types:
1. Transforming one object into another.
2. Reducing a difference.
3. Applying an operator.

For each type of goal there is a method. These methods generate sub-
goals and call the appropriate methods to achieve these sub-goals. Thus
each method can call itself and the others in a highly recursive way.
Exercise 1.8.1. Using the above flowcharts, trace the behaviour of GPS on
the Trafalgar Square example.

1.8.3 Defining the Problem
How can we describe a problem to GPS? We must choose a way of
describing states of the world. A good way might be lists of symbolic
descriptions like:

[[at me home] [near me telephone] [has me £29]j
We must also tell it what operators are available, what preconditions they
have, and how to apply them to one object to produce another. For
instance, we could describe the operator "go by train' as

provided the object contains (at me station 11
form a new object by deleting [at me stationi I
and adding [at me station2]

(in a suitable procedural form of course).

37

Unfortunately, this is not all we have to do. We must also give GPS a
procedure for picking the most significant differences between objects.
For example, location is the most significant difference between the initial
state above and ([at me Trafalgar Square]]. Then it must be able to use
these differences to extract relevant operators. This is usually done by
feeding GPS a difference/operator table, e.g.

walk train taxi phone cable write
difference

location X X X
information X X X

A cross in the table indicates that the operator in this column is useful for
reducing the difference in this row. These differences must also be ordered
by the difficulty of reducing them. The most difficult is always selected as
the most significant between objects, and there is a check to see that we
never try to reduce a hard difference as a subgoal of an easier one.

GPS also requires us to supply a procedure for testing the feasibility of an
operator in some particular situation. For instance, we might reject 'walk"
if the difference in location is more than a mile, or reject 'write a letter" if
the demand for information exchange is pressing. This feasibility test is a
hack, enabling us to include ad-hoc, unsystematised knowledge that
supplements the distance/operator table. If we succeeded in
systematising this knowledge we might prefer to include it in the table,
e.g.

location
difference
in miles walk taxi train plane

0-i X
1-10 X X
10-100 X
>100 X

This is rather a lot of information to have to give for a particular problem,
and the question arises whether GPS succeeds as a general problem
solver. We will return to this later.

1.8.4 The Search
When GPS is set loose on a problem it becomes involved in a complicated
series of recursive calls to the three methods. It is useful to have a neat
way of describing the search behaviour, and we present such a way here.

4:]

Another description for the GPS search strategy is problem reduction.
Problem reduction is the strategy of exchanging your current goal for a
series of simpler sub-goals, and then exchanging these for even simpler
sub-goals, until all the sub-goals are trivial. Problem reduction searches
can always be represented as and-or search trees. These are like ordinary
search trees, except that the sub-nodes of a particular node can be
grouped into and bundles, e.g.

The three Bs are one and bundle. The two Cs are another. The
interpretation is that sub-goals 81, B2 and B3 together establish A, and
that sub-goals Cl and C2 together establish A.

The search for a solution to the "Trafalgar Square" example can be
illustrated by the following and-or search tree. This tree is grown in a
depth-first manner.

transform "me at home"
into
"me at Trafalgar Square"

reduce difference transform "me at King's
of "location" } Cross" into "me at

I ITratalgar Square"

method2

apply operator\ /
"go by train"
to "me at home"

method 3

reduce difference /apply operator
of "location" < "go by train" to

\ "me at waverley"

method 2

apply operator\ /apply operator
"go by train") .("go by taxi" to
to "me at hone"! \"me at home"

ioop detected,
so back-up

Exercise 1.8.2. Explain how the look-ahead tree used in draughts can be
regarded as a type of and-or search tree.

1.8.5 Psychological Validity
GPS was claimed to be not only a general problem solver, but also to have
psychological validity, i.e. it was supposed to solve problems in a similar
way to humans. How could we test this claim? First we have to choose a
level at which to make the comparison. For instance, at a very basic level,
that of the excitation of neurones and of currents passing through
transistors, the human and the computer are obviously behaving
differently. On the other hand, at the gross level of whether thebot3i-
solve the problem the similarity can be trivial. Newells contribution was to
define an intermediate level of comparison, that of the programs running
in each. Even this is not quite right. It would clearly be silly to claim that
people are programmed in LOGO or any other computer language. What
Newell does claim is that people are programmed in some language and
that the GPS program is similar to the human program but in a different
language, just as a programmer will often claim that some ALGOL
program, say, is similar to some FORTRAN program. This level of
comparison is called the Information Processing Level.

This claim is tested by comparing the trace of both programs. The GPS
trace is easy to obtain, by getting the program to print out messages as it
proceeds. The human trace is obtained by getting the subject to think
aloud" while he is doing the problem. The result is tape recorded and is
called a protocoL Newell at al. claim that this protocol is not introspection
but behaviour.

However, the traces still cannot be compared directly, since the computer
trace is not in English. Instead the human is assumed to be searching the
same and-or tree as the computer and his protocol is examined for
evidence as to how he searched this tree. The computer and the human
are said to be behaving similarly if they searched the tree in the same way.

How successful was this attempt at psycholoical simulation? In the
example in the recommended reading the correlation was fairly good.
There are, however, some aspects of behaviour that GPS finds difficult to
simulate:

(a) The program makes no distinction between searches conducted in
memory and searches conducted in the world, e.g. between remembering
a telephone number or looking it up in the directory.

(b) The program does not handle meta-remarks (i.e. reflections about the
task) like 'this is difficult" or "I am lost", etc.

(c) Subjects sometimes handle similar goals in parallel, which the program
could not do. For example, the subject might consider, and reject, several

40

modes of transport (aircraft, ship, hovercraft) at a stroke, whereas the
program would have to consider each possibility individually.

(d) Subjects sometimes indulge in a more complex kind of back-up than
the depth-first search that GPS is capable of. For example, when planning
how to get from King's Cross to Trafalgar Square, you may realise that you
will not have enough money for a taxi unless you decide to walk from
home to Waverley Station after all.

1.8.6 ConclusIons
As a general problem solver, GPS was not an unqualified success. Its main
shortcoming was the tremendous amount of information that had to be
input about each particular problem and the small contribution made by
GPS. Few people in Al now believe that it is possible to construct a
general problem solver that does make a large contribution, and the effort
is now directed to building systems with expertise in areas of
commonsense reasoning (like visual perception). The role of GPS is now
filled by new, high-level programming languages (like CONNIVER and
PLANNER), which we will hear more about later. Judged as a
programming language GPS's shortcoming is that information about
particular problems has to be fed in in a highly stylised, awkward way.
Some of its applications seem rather forced. Newell at al. have now
dropped GPS in favour of a type of programming language called
Production Systems, which we will discuss in the chapter on learning. The
new high-level programming languages are designed to make the
programming of task-specific information easier.

Despite its shortcomings, GPS has been highly influential in Al. Many of
the ideas embodied in it have been adopted in later programs, sometimes
to better effect. For instance, compare GPS differences with the
Geometric Analogy problem rules, which really describe differences
between figure descriptions.

1.8.7 ExercIses
1.8.3. Suppose you were trying to get GPS to solve the M & C problem.
What would you choose as the objects, operators and differences?
1.8.4. We can express each of the G PS methods as a LOGO procedure.
For instance, method 1, for transforming one object into another, can be
written:

TO TRANSFORM 'A 'B
10 NEW ED Al]
20 MAKE 'D FINDDIFF :A :B
30 IF EQ :D 'NONE THEN RESULT 'SUCCESS
40 MAKE 'Al REDUCEDIFF :D :A
50 IF EQ :Al 'FAIL THEN RESULT 'FAIL
60 RESULT TRANSFORM :Al :B
END

41

Express the other two methods as LOGO procedures, (Hint: method 2 is
more difficult because of the loop. Make a list of all relevant operators,
then work down this list.) Each of the methods call sub-procedures like
FINDDIFF. Write these using CALLUSER, then run your program on the
"Trafalgar Square" example.
1.8.5. There is a deep bug in the GPS flowcharts associated with back-up.
What is it?

1.8.8 Recommended Reading
A. Newell & H.A. Simon (1963) GPS, a program that simulates human
thought, in Computers and Thought (eds E.A. Feigenbaum & J. Feldman)
pp.279-93. McGraw-Hill. GPS is described using an example from
propositional logic as a vehicle. The trace of GPS and the protocol of a
human subject are compared.

If you are particularly interested in the computer simulation of human
behaviour (i.e. in information processing models) then another good
reference is
A. Newell, H.A. Simon, & J.C. Shaw. Elements of a theory of human
problem solving, in Readings in the Psychology of Cognition (eds
Anderson & Austel).

1.9 ROBOT PLAN FORMATION:
THE BACKGROUND

1.9.1 The Problem
Suppose we had a robot janitor, looking after a suite of rooms. We want to
give him a series of tasks to perform each day, then leave him to it. We do
not want to have to give a separate program for every conceivable task.
Rather we would like to give him a few basic programs (called operators),
and have him put them together into a big program to perform whatever
task we give him. The task will usually be explained by giving a description
of the desired state of the rooms.

Example: Collecting Boxes. Suppose the initial state of one of room A is:

obot 1
We might ask that all the boxes be put in the same place, i.e. that the final
state of room A is:

obot

42

where the robot has available two operators: (a) he can go from one place
to another; or (b) he can push something from one place to another.

He might devise the plan:
1. qotobox2

4. push it to box 1
It will be no use him just performing various operations at random, until he
chances upon some combination that works. This would take far too long,
and might cause irreparable damage to the rooms. Rather, he must form a
plan. To form a plan he must perform a GPS-like means-ends analysis, i.e.
he must find the difference between his current description of the rooms,
and the description of the desired state, then pick an operator relevant to
reducing that difference. This implies that he must know something about
his basic operators, e.g. under what conditions they can be run, and what
their effects are.

1.9.2 AutomatIc Programming
This problem is analogous to the problem of getting computers to write
their own procedures. That is, instead of writing a procedure to do a task,
we would like to be able to specify the task, and to have a computer
program put together its existing procedures into a procedure to achieve
this task. This is calledAutomatic Programming. The operators here will
be the procedures that have already been written. The task will be
described by making statements about the values various variables should
have before and after the procedure is run.

Example: Reversing a List. Given the procedures EMPTVQ, NOT
BUTFIRST and FIRSTPUT, write a procedure to reverse a list.

We might explain the task by giving some example input/output pairs, e.g.
input is [A B C Dl
output is [D C B A]

or by giving a mathematical definition of REVERSE, e.g.
REVERSE of [list]

REVERSE of :LIST is LASTPUT (FIRST LIST) (RE'
:LIST)

We would expect the program to write a procedure like
TO REVERSE 'LIST

THEN FPUT F LI
AND MAKE 'LIST
RESULT :ANS

1.9.3 Compartson
Work is going on in both domains, robot planning and automatic
programming, and there has been useful interaction between the fields.
We will be mainly concerned with the former in these sections. The work
on robot planning has tended to concentrate on searching for so-called
simple plans, i.e. a sequence of operators, as in the collecting boxes
example. On the other hand, people in automatic programming have been
unable to ignore the need for conditionals, loops and recursion, as in our
list-reversing example. Consequently they have made less progress (this
work is still in its infancy), but results in this domain should have
repercussions in robot planning, since plans for everyday tasks need
conditionals, loops and recursion too, as the following example shows.

Example: Cigarette Lighting.
To light-a-cigarette
Put cigarette in your mouth
get a flame
hold flame against end of cigarette
inhale until cigarette lights
end

To get-a-flame
If you have matches then
Take a match out of box
Strike match against box repeatedly, until it lights
else ask someone else for a light
end

Each of the lines with "until" in them implies repeating some action until
some predicate is true, i.e. looping. Compare the use of WHILE in the list-
reversing example (section 1.9.2).

1.9.4 DescribIng the Task
How can we describe the task of "collecting three boxes" to a computer
program? By giving symbolic descriptions of the initial state of the room
and the final goal, e.g.

Initial state: [AT ROBOT A] (AT BOX1 B] [AT BOX2 C]
[AT BOX3 D]

Final goal: [AT BOX1 ?X] [AT BOX2 ?X] [AT BOX3 ?X]
A, B, C and D are constants representing places. ?X is a variable that may
be assigned a place as its value during the construction of the plan. In
what follows it will not always be possible to say, in advance, which
variables are to be assigned values (denoted 'X) and which are to be
replaced by their values (denoted :X). We will therefore drop the prefixes
and :, and write ?X instead. When the inference system meets ?X, it will

first check to see whether X has been assigned a value. If X has a value, ?X
will mean :X. Otherwise, if X has no value, ?X will mean 'X.

44

When we search for a plan we will need to represent intermediate states.
These can also be represented as a set of facts. Note that a fact, like [AT
ROBOT A]. may be true at one time and false at another. We can deal with
this in at least two ways:

(a) We can give each fact an extra argument, stating at what time or in
what situation the fact is true (called the situation calculus), e.g.

time I [AT ROBOT Al]
t. [AT ROBOT C21

situation J [AT ROBOT A INITIALLY]
1. [AT ROBOT C [DO [GO A Cl INITIALLY])

(b) We can have a sequence of databases, each one labelled with a
particular time or situation.

(a) and (b) are essentially (logically) the same, but (b) is more suggestive
when it comes to designing an efficient computer program to do planning,
so we will adopt it here. In fact what we will really need when we are
searching for a plan is not a sequence of databases, but a search tree of
databases, where the links are operators:

initial state

operator
[cOABJ AC]j [coRD]

[no [cc A B] rJ

[no [PUSH BOX! B c] [no [cc A B] 111 intermediate state

final state

Clearly simple times will not do to label these states (why?); we must use
situations.

1.9.5 Representing the Operators
How can we describe the operators to the computer program? It is easy to
represent the two operators "robot go from x to y" and push z from x to

as [GO ?X ?Y] and [PUSH ?Z ?X Ti'], but in order to construct
sensible plans we must also know (a) when the operators can be applied,
and (b) what effect they have on databases.

We deal with (a) first. In our planning model we must say what properties
the database must have for an operator to be applicable to it. For instance,

45

for the robot to go from x toy, he must first be at x. So we can say that
[AT ROBOT ?Xj is a precondition of EGO ?X WI, i.e. [AT ROBOT ?XJ
must be true in a database (s, say) before we can apply [GO ?X ?YJ to
produce a new database, [DO [GO ?X 7?] 51. Similarly the preconditions
of [PUSH 7Z X ?YJ are [AT ROBOT ?X] and [AT 7Z ?X]. Thus each
operator will have associated with it a pattern called its precondition, and
this precondition must be true in a database if the operator is to apply to it.

We now turn to (b), representing the effects of the operator. These effects
are represented in our planning model by instructions about how to modify
a database when an operator is applied to it. For instance, when the robot
goes from x toy, we should delete the fact [AT ROBOT ?X] and add the
fact EAT ROBOT 7?]. Similarly whenthe robot pushes z from x toy, we
should delete (AT ROBOT ?X] and [AT ?Z ?X] and add [AT ROBOT 7?]
and [AT ?Z 7?1.

In general most facts remain true when an operator is applied, e.g. the
pictures stay on the wall when I pour the tea. (Explosions are a notable
exception.) Therefore it is most convenient to list what old facts become
false (or unknown) and what new facts become true. So each operator has
associated with it two patterns, called the add and delete lists. The new
database is formed by taking the old database and first subtracting the
delete list, then adding the add list.

The Frame Problem(s). Unfortunately, representing the effects of an
operator is not as easy as this. The problems are collectively referred to as
the frame problem (the name comes from an early proposed solution to
them). We discuss these problems in the order of their increasing
difficulty.

The first problem we have already dealt with, namely, we overcome the
tedium of listing all the facts that remain true when an operator is applied,
by only mentioning (in the delete list) those that become false (or
unknown).

The second problem is one of computational efficiency. In a realistic
planning situation, any one of the databases will be very large, containing
perhaps thousands of facts. The search tree similarly may contain
thousands of databases, each of which will be very similar. Storing all
these facts in the computer will use up lots of space. Every time a new
database is created we will have to spend lots of computer time copying
facts into it. The solution is to store only the initial database and the add
and delete lists every time an operator is applied. To decide whether a fact
is true in a database we apply the following procedure:

To lsq fact database
10 If the database is the initial one, access as normal
20 Else if the fact is in the add list of the last operator then true
30 Else if the fact is in the delete list of the last operator then false

46

40 Else call procedure recursively on the previous database
end

This procedure can be supplemented by (a) earmarking various facts that
are always true (true initially, and cannot be changed by available
operators) and adding line 5:

5 If fact always true then true
and (b) checking if the fact was in the precondition of the last operator, in
which case it must have been true then and has not been deleted since,
i.e.

35 Else if the fact is in the precondition of the last operator then true.
There is no reason why these solutions cannot be adopted in the situation
calculus formalism, but they are suggested by the sequence of databases.

The last problem is the most serious and is still an open one, namely, that
the effects of an operator may be more subtle than can be represented by
simple add and delete lists. We delay further discussion of it until later.

1.10 ROBOT PLAN FORMATION:
MAKING PLANS

1.10.1 Collecting Boxes Again
We now turn our attention to the problem of actually making a plan, given
a description of the task and the operators. We will work through the
collecting three boxes" example in detail. The initial state is:

EAT ROBOT A] EAT BOX1 B] [AT BOX2 C] EAT BOX3 0]
and we call this state S 1 . The final state must satisfy the pattern:

[AT BOX1 ?X] [AT BOX2 ?X] EAT BOX3 ?X]

The operators are described in the following operator table:

Operator Preconditions Delete List Add List

EGO ?X N] (AT ROBOT ?X] EAT ROBOT ?X] [AT ROBOT N]

EPUSH ?Z ?X ?y] EAT ?Z ?x] [AT ROBOT ?X] [AT ROBOT ?V]
EAT ROBOT iX) EAT ?Z ?X] [AT ?Z ?Y]

The plan we will build up is:
EGO A C] EPUSH BOX2 C B] EGO B D] EPUSH BOX3 D B)

As we build this plan up, we will need to refer to the intermediate states,
so it will be helpful to define them now. They are defined by the following
planned state sequence:

47

[AT ROBOT A] [AT BOX1 B] [AT BOX2 C] [AT BOX3 D] 1
[GO A C)

[AT ROBOT C] [AT BOX1 B) [AT BOX2 C] [AT BOX3 DJJ

[PUSH BOX2 C B]

[AT ROBOT B] [AT BOX1 B) [AT BOX2 B] [AT BOX3 D]J

[GO B D]

[AT ROBOT Dl [AT BOX1 B] [AT BOX2 B] [AT BOX3 o]

[PUSH BOX3 D B]

[AT ROBOT B] [AT BOX1 B) [AT BOX2 B] [AT BOX3 B]

1.10.2 The Plan
At each stage of building the plan we consider the current state and plan,
and the goals we have still to achieve. Initially we are in state S with the
goal [AT BOX1 ?X] [AT BOX2 ?X} [AT BOX3 ?X] and no plan. Our first
step is to see whether we can satisfy this goal in the current state. We can
satisfy (AT BOX1 ?X] by assigning B to ?X. This leaves us with the goal
[AT BOX2 B] [AT BOX3 B], which is not satisfied in S and becomes
our first difference. We concentrate on trying to achieve one of the facts,
say the first [AT BOX2 B], and look for a means of reducing the
difference. A means would be any operator that contains in its add list a
pattern that matches (AT BOX2 B]. The only such operator is [PUSH ?Z
?X TV'], which contains (AT ?Z ?Y] in its add list. We assign BOX2 to ?Z
and B to TV', and decide to try to apply [PUSH BOX2 ?X B]. But for an
operator to be applicable to a state, its preconditions must be satisfied, so
we must check [AT BOX2 ?X] [AT ROBOT ?X] in S. We can satisfy [AT
BOX2 ?X] if we assign C to ?X, but then [AT ROBOT C] is not true and
becomes our second difference. Again we look for an operator with a
matching pattern in its add list, and first find [GO ?X ?Y] with pattern [AT
ROBOT M. We match C toY, and try to apply [GO ?X C]. The
preconditions of the operator are satisfied in S, if we assign A to X. Now
the preconditions of [GO A C] are satisfied, and we apply it to create state

Si =

=

53 =

S4 =

S5 =

I:]

Similarly the preconditions of (PUSH BOX2 C B! are satisfied, so we
apply it to create state S 3 .

We are now left with the task of achieving [AT BOX3 B], in the current
state S3 . This is done in a very similar way to the achievement of [AT
BOX2 B).

We can sum up the above argument by listing the stages of development
of the plan together with a note about the reason for the change.

Current Plan
(PUSH BOX2 ?X B)
(PUSH BOX2 C B)

EGO ?X C) [PUSH BOX2
EGO A C) [PUSH BOX2

Reason for Change
to achieve [AT BOX2 B)
to make precondition match
[AT BOX2 Cl

B) to achieve [AT ROBOT C)
B) to make precondition match

[AT ROBOT A]

These two operators can now be applied to S to produce S and the first
goal is achieved. S3 is now used for checking preconditions.

[GO A C) [PUSH BOX2 C B]
[PUSH BOX3 ?X B)

[GO A C] [PUSH BOX2 C B)
[PUSH BOX3 D B)

(GO A C) (PUSH BOX2 C B)
[GO ?X D) [PUSH BOX3

[GO A C) [PUSH BOX2 C B)
(GO B 0) [PUSH BOX3

to achieve [AT BOX3 B)

to make precondition match
[AT BOX3 D)
to achieve [AT ROBOT D)

D B)
to make precondition match

B] [AT ROBOT B)

The remaining two operators can now be applied to produce S 5 and the
second goal is achieved.

1.10.3 Search
The process of making a plan described above really involves search. At
any stage there may be several preconditions or goals (e.g. [AT ?Z ?X]
and [AT ROBOT ?X)} remaining to be satisfied and we must attempt
them in some order. There may also be several operators applicable (e.g.
GO and PUSH), and these must be attempted in some order. In each case
we have chosen to use the order in which they appear in our operator
table.

This order was carefully chosen. We never had to remake a choice. We
could have got stuck in all the normal ways. We might have got in a loop.
We might have got into a situation where no operator was applicable. We
might have produced a non-optimal plan. We could recover from these
situations by remaking one of our choices.

Note that the search space was not as big as it would have been if we had

49

just tried putting together operators in random order. For instance every
attempted plan must include the PUSH operator. The search tree is made
smaller by the use of GPS-like means-ends analysis.

Exercise 1.10.1. Think of a non-optimal plan for the collecting three boxes
example. At what points must we exercise different choices to get this
plan rather than the previous one?

1.10.4 Protection
Note that all the conjuncts of the final goal must be simultaneously true at
the end, and that all the preconditions of an operator must be true just
before the operator is applied. Unfortunately, a goal, once achieved, can
be deleted later by the effect of a subsequent operator. In our example
[AT BOX1 B] was true initially, but it could have been inadvertently
deleted during the course of achieving [AT BOX2 B] or [AT BOX3 B].
Suppose we have reached the state:

obot

The robot must go to D to collect BOX3. Suppose it (stupidly) tried to get
there by applying [PUSH BOX1 B DI. The resulting situation would be

robo 2j
[AT BOX1 BI would be deleted - a retrograde step.

How can we prevent this happening? We could insist that PUSH is not
used to achieve goals like [AT ROBOT 0]. Unfortunately there are
situations in which we prefer PUSH to GO, e.g., achieve [AT ROBOT D]
[AT BOX1 01. In any case this is an example of a wider problem - how
not to destroy an achieved goal during the achievement of a subsequent
one. People sometimes have trouble with this, e.g. "How can you take
your car to the garage, then come home but leave it there?".

Another solution is to protect achieved goals and preconditions, until they
are no longer needed, i.e. to mark them in some way and arrange that any
operator that tries to delete a marked fact is not incorporated in the plan.
Thus, once we had achieved [AT CAR GARAGE], no operator that deleted
this would be considered, and we would have to go home by bus. Of
course, when we have achieved [SERVICED CAR], this mark would be
removed.

50

1.10.5 Stacking Boxes
We now further debug our plan formation recipe, by considering a new
example. We will consider a robot with a single ability, that of stacking and
unstacking boxes. We will express this by a single operator [MOVE ?X Ti
?Z], which means 'move box X from place V to place Z'. A place can be
another box or the floor. In our very simple world all boxes are assumed to
be the same size, so in order for the operator to be applicable place Z must
be "clear" - i.e. if it is a box there must be no other boxes on it. To
simplify matters further, we will assume that there is always room on the
floor, by asserting that the floor is always "clear". To make box X easier to
manipulate we will further insist that it must be "clear before it can be
moved. We can sum all this up by the following table and diagrams.

Operator Preconditions Delete List Add List

[MOVE ?X Ti ?Z] [01FF ?X ?Z] [ON ?X Ti] [ON ?X ?Z]

[DIFF Ti ?z] [CLEAR ?Z] [CLEAR Ti]

[ON ?x Ti] [CLEAR FLOOR]

[CLEAR ?X]

[CLEAR ?Z]

There are three cases to consider.

(a) (B) (c)

1- x

z ri _______

Note [CLEAR FLOOR] is needed in the add list because it is inadvertently
deleted in case (c). This begins to show the inadequacy of add and delete
lists for dealing with the effects of operators.

1.10.6 A Three Box Problem
Consider the problem defined by the following diagram:

Initial _____ Final
State, Si A State

B

A B c
FLOOR

51

We can describe the initial state by
ION C Al [ON A FLOOR] ION B FLOOR]
[CLEAR Cl [CLEAR B] [CLEAR FLOOR]
[DIFF A BI (01FF B C],etc.

We can describe the final goal by
[ON A B] [ON B C]

Suppose we decide to work on [ON A B] first. We pick the only relevant
application of an operator [MOVE A ?Y B]. We can satisfy all but one of
the preconditions of this by choosing V to be FLOOR. We are left with the
precondition [CLEAR A]. The only relevant operator application for
reducing this is [MOVE ?X A ?Z], and the preconditions of this are all
satisfied if we let X be C and Z be FLOOR, so the plan is now

[MOVE C A FLOOR] [MOVE A FLOOR B]
This partial plan can now be executed and achieves [ON A B]. It creates
the state aBA State 83

c1
So we protect [ON A B] and proceed with proving [ON B C]. The only
relevant operator application is [MOVE B FLOOR C]. Unfortunately a
precondition of this is [CLEAR B] and the achievement of this would undo
[ON A B], which is protected.

This difficulty arises because we tried to achieve the two goals
independently with two plans, and then put these plans one after the
other, i.e. [MOVE C A FLOOR] [MOVE A FLOOR B] followed by
[MOVE B FLOOR C]. In fact the two goals interact, and their plans have
to be intermingled in order to achieve both goals at the same time. (Trying
the plans in reverse order results in a similar difficulty.) So we try inserting
the new operator [MOVE B FLOOR C] in different places in the previous
plan. It turns out that the sequence

[MOVE C A FLOOR] [MOVE B FLOOR C] [MOVE A FLOOR B]
works.

1.10.7 Exercises
1.10.2. Consider the problem defined by the following diagram.

Initial Final
State State a A

52

(a) Give a description of the initial state.
(b) Give a description of the final goal.
(c) Give a plan using the MOVE operator.
(d) Draw a diagram of the planned state sequence.

9e) Show how your plan could have been discovered by a planning
program by listing the stages of its development, giving reasons for
each change.

1.10.3. Design a set of robot operators that will enable the robot to turn a
light switch on, i.e. starting from the initial state

A t\ROBcfr C

SWITCH

achieve the goal [STATUS SWITCH ON]

Describe the initial state with the facts:
[AT ROBOT A] [AT BOX1 B] [AT SWITCH Cl
[STATUS SWITCH OFF] (ON ROBOT FLOOR]'[TYPE BOX1 BOX]

Give the robot the two operators GO and PUSH described earlier. In
addition, give him an operator [TURNON ?X], which is applicable provided
that X, the switch, is initially off, the robot is standing on a box and the
box, robot and switch are at the same place. This operator changes the
status of the switch from off to on. To get on the box the robot will need
an additional operator [CLIMBON ?X], which is applicable provided X is a
box, the robot is initially on the floor and both are at the same place. You
will need to alter PUSH so that it can only push boxes, and both GO and
PUSH to make sure the robot is on the floor before they are applied.

(a) Describe the four operators by drawing an operator table giving their
preconditions, delete lists and add lists.

(b) Describe a plan for achieving the task and draw a planned state
sequence diagram.

1.11 ROBOT PLAN FORMATION:
ASSORTED ISSUES

1.11.1 Controlling Search
During a process of making a plan we have to exercise various choices, i.e.
we have to choose
(a) Which unachieved goal or precondition (hereafter, collectively called

sub-goals) to work on next.
(b) Which fact from the database to try to match the subgoal against.
(c) Which relevant operator to try to apply.

Making these choices badly can cause us to:

53

(a) go into a loop
(b) work on a branch containing an unachievable subgoal.
(c) Find a non-optimal plan.
It is obviously of crucial importance to make these choices sensibly.

The following diagram illustrates a stage of the development of the plan to
collect three boxes:

Current Database

[AT ROBOT A] [AT BOXi B] [AT B0X2 C] [AT BOX3 D]

Current sub-goals

[AT BOX2 ?X] [AT ROBOT ?X] / [AT BOX1 B] [AT B0X2 B] [AT BOX3 B]

Current Plan /
[PUSH BOX2 ?X B]

The top line is a description of the current (and initial) state. The second
line lists the various goals and preconditions that have yet to be satisfied.
The three goals on the right of the stroke are the original three goals. The
underlined goal has already been satisfied. We are working on the next
one, [AT BOX2 B). The bottom line lists the partial plan, containing one
operator [PUSH BOX2 ?X BE The operator is pointing, with a single-
headed arrow, at the goal it is meant to achieve. It is pointing with a
double-headed arrow at its preconditions.

To continue with building up the plan we must choose one of these
preconditions to work on next. If we choose to work on [AT ROBOT ?X)
next, something silly happens. EAT ROBOT ?X) is matched against [AT
ROBOT A], i.e. A is assigned to X. We next try to satisfy [AT BOX2 A].
Even if we are very sensible (or lucky) with the remaining choices, we are
now bound to get a non-optimal plan, e.g. [GO ROBOT C) [PUSH BOX2
C A] [PUSH BOX2 A B) . . . etc. What kind of control mechanism would
choose to work on [AT BOX2 ?X) first?

The area is still controversial, but one method is to arrange the sub-goals
into a hierarchy, according to how difficult they are to satisfy, and always
work on the hardest sub-goal first (cf. GPS ordering of differences and
difficulty of goals). According to this method [AT BOX2 ?X) is tackled
before [AT ROBOT ?X] because it is more difficult to get a box to a place
than the robot to a place. At the top of the hierarchy are the sub-goals that
are impossible to change, unless they are already true, i.e. those like
[TYPE ?X BOX] and [AT SWITCH ?X], which no available operator can
effect.

A hierarchy for the switch on the light" example is

54

top [TYPE ?X ?Y]
[AT SWITCH ?X]
[STATUS ?X 0t11
[ON ROBOT ?X]
[AT BOX ?X]

bottom tAT ROBOT ?Xj
At present, these hierarchies have to be provided by the human
programmer for each new domain. Work is proceeding on the problemof
having the planning program work them out for itself, by examining the
operators that achieve each sub-goal.

If we correctly choose [AT BOX2 ?XI, and satisfy it by assigning C to X,
we must then work on [AT ROBOT C]. Since this fact is not in the
database, we must find a relevant operator to apply. Both GO and PUSH
have patterns in their add lists of the form [AT ROBOT ?Y], so both are
relevant. We can choose either but would clearly prefer GO. Choosing
PUSH would lead to a non-optimal plan.

How can we express or characterise our preference, in order to get a
general solution to the problem? Notice that if one choice of operator
works, we do not need to try another. This is different from the situation
with sub-goals, where all sub-goals need to be satisfied for a successful
conclusion. So the sensible choice is to choose the easiest operator first.
The easiest operator means the one with the easiest preconditions. We
can see that GO is easier than PUSH, since the preconditions of GO are a
subset of those of PUSH.

1.11.2 Macro Operators
It is possible for our robot to indulge in an elementary form of learning by
remembering the plans he constructs. In effect a plan, properly
remembered, becomes a new ability, i.e. a new operator (sometimes
called a macro operator). Properly remembered here means, of course, not
only remembering the sequence of operators that constitute the plan, but
also working out under what conditions the plan can be applied and what
its effects are, i.e., we need to know the preconditions, add list and delete
list of the new operator. These can all be worked out (at the cost of some
book-keeping) by studying the derivation of the plan. The preconditions of
the new operator are just the sub-goals that were not achieved by an
operator, but by direct reference to the initial state. The add and delete
lists can be worked out by comparing the initial and final state.

To be useful these macro operators must be generalised before they are
stored as new operators. For instance, if we were remembering the plan to
switch on the light we would not want to insist that it is BOX1 we climb
onto - any box would do. Similarly the precise places involved are not of
interest. In practice the operators are generalised before the precondition
and add and delete lists are worked out, but the same principles apply.

55

Even with generalisation the macro operators are still susceptible to slight
changes in the initial situation. Suppose that the initial state of the switch
on the light example were:

Lw
We would like the robot to be able to adapt the plan

[GO ?P1 ?P21 [PUSH ?B ?P2 ?P31 [CLIMBON ?B]
[TURNON ?Sj

and only use the last three operators. Otherwise it might pick up BOX1
and take that to the switch. Therefore the plan is stored in a triangular
table, with the preconditions and effects of each operator stored
separately. This is explained in the reference, and the details are not
important. Using this the robot is able to execute subplans of the plan. He
is also able to recover to a certain extent when the plan goes wrong during
execution (see section 1.11.4).

Great care must be exercised over the formation of macro operators.
Properly used the robot can be taught how to achieve a complex task that
it previously found too difficult. Suppose that the search tree of a task is so
large that the robot cannot find a plan in a reasonable length of time (an
all-too-frequent occurrence). By giving it a judicious training sequence of
simpler tasks, the robot can be made to learn just those macro operators
he needs to solve the original task. Let loose on it again he quickly finds a
short plan consisting of these macro operators. However, if we allow the
robot to form macro operators for every task he performs, he quickly
becomes bogged down with hundreds of operators with long
preconditions and add and delete lists. The search trees of all tasks
become too large for him to find any plans. Getting the robot to decide for
himself what is worth keeping, and what is not, is a long way off.

Exercise 1.1 1.1. Form a macro operator called [COLLECT ?BOX2
?PLACE1 ?PLACE2 ?PLACE31 for collecting two boxes.

PLACE2 PLACE3

I BOXII {Box 2]

PLACE 1 A ROBOT

Look at the operator table for GO and PUSH to decide what the
preconditions, add list and delete list of the new operator, COLLECT,
should be.

56

1.11.3 The Frame Problem Re-Visited
We now return to the most serious aspect of the frame problem - that
the effects of an operator may be more subtle than can be represented by
simple add and delete lists. For instance, we may have to refer to the
previous state before we can be sure precisely what to add or delete. e.g.
(a) how much tea is left in the pot after we have poured one cup? (b)
pushing one box may change the position of another if they are joined by a
rod or rope, or if one is on top of another.

We can think up situations in which the contents of the add and delete
lists depend on an arbitrary amount of deduction. If this deduction is
computationally too expensive to perform, e.g. an explosion, or if we have
imperfect information about the previous state, then we may be unable to
predict the effect of an operator. We may resort to: (a) predicting nothing;
(b) predicting the "most likely" event and being prepared to be
contradicted; (c) adding or deleting laws instead of facts; or (d)
performing the operation and observing the result. Can you think of
circumstances under which you would resort to each of the above
possibilities? Can you think of any other possibilities?

The plan formation program we discussed in these lectures modelled the
effects of operators using the add and delete lists. So it was not able to
handle these more subtle effects. What modifications to it are required,
and whether these modifications would enable us to preserve our
solutions to the other aspects of the frame problem is an open question.

1.11.4 Executing Plans (and the auaiiflcation Problem)
If the plans our robot janitor is to make are ever to be put to use, there
must be a procedure associated with each operator that will actually
perform the operation, e.g., really make the robot go from a to b. Such a
procedure is called the operator's action routine. We must be careful to
distinguish the operator from the action routine. The operator, with its
preconditions and add and delete lists, is only a model of the action
routine, just as our databases are models of states of the real world.

Because our planning program is only a model, it is liable to go wrong due
to unforeseen difficulties. For instance, we may make a plan to go to
America, by driving to the airport by car, catching the 3.00 p.m. plane,
etc., only to find that the car runs out of petrol halfway or the plane's crew
are on strike. This problem is called the Qualification Problem. Again the
problem has been foolishly named after a possible solution, though not
one that was ever seriously proposed. The solution is that one could hedge
one's plans about with various qualifications, about what to do if you ran
out of petrol, etc. This may be possible for simple worlds, but it is a well
known platitude that one "can't think of everything" for more realistic
situations. Note also that we would need plans with conditionals to handle
qualifications.

57

The solution to this problem would seem to be, that one would want to
write qualifications into the plan to deal with the most likely difficulties,
but that, more importantly, the action routines must have the capacity to
fail and pass control back to the planning program, together with a
message about what went wrong. Unfortunately, how to provide a
measure of what is "most likely", and how to decide what has "gone
wrong' with a plan, are not well understood at the moment.

1.11.5 Reference
Several Al groups have written robot plan formation programs. The best
known program is probably STRIPS - the Stanford Research Institute
Problem-Solver. This program is used by SHAKEY, the Stanford Research
Institute robot, to form plans for the tasks he is given. You can read more
about the program, and possible extensions of it, in R.E. Fikes, P.E. Hart &
N.J. Nilsson (1972) Some new directions in robot problem solving, in
Machine Intelligence 7 (ads. B. Meltzer, & D. Michie) p.405-30.
Edinburgh: University Press. STRIPS is briefly described, then various
possible extensions of it are discussed, including how it might deal with
unexpected changes to its environment during the execution of a plan.

2. NATURAL LANGUAGE

2.1 SENTENCE GENERATION

2.1.1 Introduction

Some of the reasons for studying computer processing of natural language
are: (a) understanding language; (b) understanding intelligence (language
as the window into the mind); (c) natural language would be a very
desirable way to communicate with computers, and would "democratise"
computer use; (d) it is interesting.

Artificial Intelligence research has contributed to the area of
computational linguistics, which seeks computer algorithms for parsing
sentences to exhibit their underlying syntactic structure and hence to elicit
their 'meaning" in a sense appropriate to the task in hand; it also seeks
algorithms for generating sentences to express a given meaning". The
desire to tackle practical computer applications involving language
processing has led Al research to give more weight to questions of
semantics than most formal linguistic research, where until recently most
of the effort has been put into syntactic questions; an important question
for Al has been how we use our common-sense knowledge of the world in
disentangling what a sentence could mean.

What kind of applications motivate this research? It is now quite common
to store large amounts of information in computer databases, about airline
reservations, about orders and stocks in a factory, about car licences or
about the location and availability of railway carriages. But it is hard to
make simple enquiries about this data. e.g. 'How many serviceable
carriages are at Crewe?", "How many orders for 2 H.P. motor armatures
did we have from China last year?" To make a flexible and easy to use
enquiry system natural language input would be of enormous value, and
much effort is now being put into increasing the "naturalness" of formal
enquiry languages. Similarly we would like to tell the computer what to do
in our language, rather than its own, e.g. "Put the axle into the hole at the
front of the car body" or "Delete the third occurrence of 'idiotic' and
replace it by 'somewhat inappropriate". In general the usefulness of
computers to us is limited not so much by what they can do as by how
well we can communicate with them.

There is a lot of work going on in Al studies of natural language, much of it
on particular facets of the problems involved. Of the working systems that
demonstrate some ability for understanding language b/ a computer the
best known is Winograd's 1970 program, which internally models a
collection of blocks, boxes and pyramids on a table top, displays it on a
screen and is able to accept commands and answer questions, e.g. "Find a
block that is taller than the one you are holding and put it into the box"

59

and "How many blocks are not in the box?". It is able to communicate
about this very limited situation using quite a variety of syntactic forms.
Another well-known program, by Woods, answers questions from a
database of information about moon rocks.

What are the difficulties encountered in computer processing of natural
language? They are certainly formidable:
(a) The sheer size and complexity of English (or Eskimo) syntax.
(b) The ambiguity of words and phrases in natural language, which must

be resolved from context and background knowledge. (Even
determining which person a pronoun like "he" refers to is a hard task.
The need to consider all possibilities, and to follow trails that may later
turn out false, complicates the programming.)

(c) The large amount of common-sense knowledge needed to understand
even simple pieces of text, such as stories written for five-year-olds.

(d) The difficulty of finding suitable notions of "meaning' for parts of
sentences, and of representing these meanings in a computer.

(e) The need to keep within practical bounds the potentially very large
amount of computer time needed to process a sentence; this involves
clever search and coding techniques, which make programs hard to
write and to describe.

The Al approach to language has been directed to the more obvious
practical aspects; it has left aside all the emotional and poetic content that
is so important in human use of language.

These notes try to introduce you to computational linguistics by building
up programs to perform simple tasks; generating sentences, parsing
sentences, and answering questions about a very simplified version of
Winograd's blocks model. Using this as a concrete basis for understanding
we can then look at Winograd's much more elaborate system (still a gross
simplification of human linguistic behaviour). This work is mainly
concerned with the meanings of noun phrases, e.g. 'the green pyramid
that is on the box", so we conclude with a brief look at verbs and the
important notion of 'case", which relates a number of nouns to a verb. All
this is a first nibble at a complex and exciting area of research.

References. For further reading the following are recommended:

E. Charniak and V. Wilks, eds (1976) Computational Semantics.
Fundamental Studies in Computer Science No. 4. North-Holland. A series
of linked articles giving a good introduction to the area.

R.C. Schank and K.M. Colby, (1973) Computer Models of Thought and
Language. San Francisco: Freeman. Contains tutorial papers by several
leading researchers.

R.C. Schank, E. Charniak, V. Wilks, T. Winograd and W.A. Woods (1977)
Invited panel discussion, in Proc. Fifth lnternationaljoint Conf. on

60

Artificial Intelligence, pp.1007-13. Cambridge, Mass: MIT. A discussion
highlighting current interests and uncertainties.

2.1.2 The Insult Program
Here is a program to generate insults such as "GET LOST YOU FILTHY
BEAST'. (See section 2.1.5 for the program in LISP.)

TO ELEMENT 'N 'L
10 IF :N=1 THEN RESULT FIRST :L
20 RESULT ELEMENT 0-1) (BUTFIRST :L)

END nth element of L

TO CHOOSEANY 'L
10 NEW 'R
20 MAKE 'R (RANDOM ((COUNT :L)-1))+1
30 RESULT ELEMENT :R :L

END chooses a random element of L

TO DOANY 'L
10 APPLY CHOOSEANY :L executes a random element of L

END a list of procedure names

TO OUT 'X
10 TYPE SPACE AND TYPE :X

END prints its argument preceded by a space

TO SUGGEST1
10 OUT 'GET AND OUT 'LOST
END

TO SUGGEST2
10 OUT 'GO AND OUT 'JUMP AND OUT 'IN AND OUT 'THE

AND OUT 'LAKE
END

TO SUGGEST
10 DOANY [SUGGEST1 SUGGEST2I

END

TO MISNAME1
10 OUT 'ROUEN AND OUT 'SWINE

END

TO MISNAME 2
10 OUT 'FILTHY AND OUT 'BEAST

END

TO MISNAME
10 DOANY [MISNAME1 MISNAME2I

END

61

TO INSULT
10 SUGGEST AND OUT 'YOU AND MISNAME
20 PRINT NL

END

2.1.3 The Insult Grammar
We can generate these insults by a grammar, which expresses succinctly
the rules of generation embodied in the above program.

insult—, suggest 'you misname
suggest -'- 'get 'lost
suggest -e' 'go 'jump 'in 'the 'lake
misname—.. 'rotten 'swine
misname— 'filthy 'beast

A context-free grammar is a set of production rules, made from non-
terminal symbols (naming phrases) and terminal symbols (quoted words),
Each production rule consists of a non-terminal (on the left) and a list of
terminals and/or non-terminals (on the right). There is also a starting
symbol (here it is insult). You can think of the grammar in two ways: (a) as
an inductive definition:

'filthy 'beast is a misname
'rotten 'swine is a misname
'go 'jump in 'the 'lake is a suggest
'get 'lost is a suggest
A suggest followed by 'you followed by a misname is an insult.

or (b) as a recipe for generating sentences:
To generate an insult generate a suggest then 'you then a misname
To generate a suggest generate 'get then 'lost

or To generate a suggest generate 'go then 'jump then 'in then 'the
then 'lake
To generate a misname, etc.

Exercise 2.1.1, Write a grammar to produce at least 100 insults in any
language you choose. (Try to manage with less than 100 production
rules.)

2.1.4 Number Grammar
Here is a grammar for the English numbers from "one" to "nine hundred
and ninety-nine".

ump— one
ump—'two -

ump—. 'nine
umpteen - 'ten
umpteen—... 'eleven

umpteen—.. 'nineteen
umpty—.. 'twenty

[;YA

umpty— 'ninety
upt099—. ump
upto99—. umpteen
upt099—" umpty
upto99-- umpty ump
umphun—'- ump 'hundred
upt0999—.- upto99
upto999— umphun
upto999— umphun 'and upto99

(This grammar is essentially due to H.C. Longuet-Higgins.)

Exercises (' means a hard exercise, " means a mini-project)
2.1.2. Continue by defining upto999999.
2.1.3. Do it in French or German or Gaelic or whatever.
2.1.4. Program the random generation for upto999 (you can pretend 3 to
8 don't exist to avoid tedium).

'2.1.5. Write a program to take a number expressed as a list of digits and
print its name.

"2.1.6. Adapt 2.1.5 to write a teaching program that generates lists of
digits at random, generates the English and French (or language X) name,
simultaneously prints one, asks the user for the other, and tells him if he is
right.

'2.1.7. We could represent the grammar by
TO GRAMMAR
10 [[UMP QUOTE ONE] [UMP QUOTE TWO] . . . [UMP

QUOTE NINE] [UMPTEEN QUOTE TEN] . . . [UMPTY
QUOTE TWENTY] . . . [UPT099 UMP] [UPT099
UMPTEEN] [UPT099 UMPTY UMP] . .

END
Write a function to generate random number names from this
representation of the grammar instead of the representation by individual
functions we used before.

2.1.5 The Insult Program in LISP

(DEFUN ELEMENT (N L)
(COND ((EQ N 1) (CAR U)

(T (ELEMENT (1- N) (CDR L)))))

(DEFUN CHOOSEANY (L)
(PROG (R)

(SETQ R (1± (RANDOM (LENGTH LU))
(RETURN (ELEMENT R UD)

(DEFUN DOANY (U
(APPLY (CHOOSEANY L) NIL))

63

(DEFUN OUT (X)
(TYO 40) (PRIN1 X))

(DEFUN SUGGEST1 ()
(OUT 'GET) (OUT 'LOST))

(DEFUN SUGGEST2 ()
(OUT 'GO) (OUT JUMP) (OUT 'IN) (OUT 'THE) (OUT 'LAKE))

(DEFUN SUGGEST ()
(DOANY '(SUGGESTl SUGGEST2)))

(DEFUN MISNAME1 ()
(OUT 'ROTTEN) (OUT 'SWINE))

(DEFUN MISNAME2 U
(OUT 'FILTHY) (OUT 'BEAST))

(DEFUN MISNAME ()
(DOANY '(MISNAMEl MISNAME2)))

(DEFUN INSULT ()
(TERPRI) (SUGGEST) (OUT 'YOU) (MISNAME) (TERPRU)

2.2 GENERATING BLOCKS WORLD SENTENCES

2.2.1 the Blocks World
A world rather simpler and less disturbing than our own, although perhaps
a trifle dull, is the Blocks World,

VA

B

Igreeni I 0

IC I I green

0' . I' I -, I • , It
0 5 10 15

There are four square blocks A,B,C,D of fixed size (2 units for A,B,C and 4
units for D), of fixed colour (red or green) and of variable position (x,y)
denoting mid-point of base, e.g. A has x=3, y=0, and B has x=10, y=2, in
the above figure.

There are relations between any blocks a and b:
a is to the left of b if Xa++ size8+f sizeb
a is to the right of b if b is to the left of a
a is on b if Y.= y+ size r, and a is not

to the left of, or to the right of, b.
64

Exercise 2.2.1. Define above similarly. (But what exactly does above mean
in English? Does it mean anything exactly?)

2.2.2 Sentences About Blocks World
Assertions There is a green block to the left of the big block.

The small green block is on a red block.
The block to the left of the small green block is

to the right of the big green block.
Questions Is a small block to the left of a green block?

Is a block to the right of a red block a green block?
The following grammar will generate these and similar sentences:
noun—.- 'block
adj -.- big
adj - 'small
adj - 'red
adj - green
prep—.- on
prep—.- 'to 'the 'left 'of
prep—.- to 'the right of e.g.
nounphr—.- noun (block)
nounphr—.-adj nounphr (big block)
nounphr—.- nounphrqualif (block on a red block)
qualif—.-prep clnounphr (on a red block)
clnounphr—.-a nounphr (a red block)
clnounphr—'the nounphr (the block on a green block)
assertion—.-'there 'is 'a nounphr (there is a green block)
assertion—.-clnounphr 'is qualif (a red block is on a red block)
question—.-is clnounphr qualif (is ared block on a red block)
sentence—.- assertion
sentence—.- question
(clnounphr means closed noun phr3se: no more adjectives can be prefixed)

Exercises
2.2.1. Use a penny to hand-simulate RANDOM and generate three
sentences at random.
2.2.2. Try to find some stupid sentences generated by this grammar. (Not
just lies, but stupid sentences.)
2.2.3. Add rules to generate each of the following kinds of sentence: What
is on the small red block?; The big block is green; A block between the
small red block and the big block is green.
2.2.4. Make up a grammar for recipes in cookery books (add a pound of
sugar, mix in a spoonful of flour, bake slowly). If you try cooking your
random recipes you will discover that syntax without semantics is nothing
but a pain in the gut.

65

2.2.3 Structure of Sentences
A sentence like "the small green block is on a red block' has a syntactic
structure. Here is one way of showing it

[[THE [[SMALL)[[GREEN)[BLOCK])]) IS [[ON][A[[RED][BLOCK])])]
or as a tree

the

green block red block

It does not have the structure
[[THE [SMALL)][[GREEN][[BLOCK]IS ON) [A[RED])IBLOCK)

because [BLOCK IS ON] and [A RED] are not grammatical entities
(phrases). But for the former structure we have:

[BLOCK] - noun
[GREEN BLOCK] - nounphr
[SMALL GREEN BLOCK) - nounphr
[THE SMALL GREEN BLOCK] - clnounphr
[BLOCK] - noun
[RED BLOCK] - nounphr
[A RED BLOCK] - clnounphr
[ON) - prep
[ON A RED BLOCK] - qualif
[THE SMALL GREEN BLOCK IS ON A RED BLOCK] - assertion

We could easily make the generating program type out an indication of the
structure by making each procedure like nounphr print out its own name
before it starts, so that we get

QUALIF PREP on CLNOUNPHR a NOUNPHR ADJ red NOUNPHR
NOUN block

or pictorially as a tree
QUALIF

PREP cWOuNPHR

on a NOIJNPHR
/N

ADJ NOUNPHR

red NOUN

block

2.2.4 Ambiguity
The phrase "red block on a green block" could have the structure (omitting
some brackets)

FRED[BLOCK[ON A GREEN BLOCK])]
or [FRED BLOCK] [ON A GREEN BLOCK]]

Intuitively these mean the same, so the syntactic ambiguity is
harmless. But green block to the left of the big block on a red block"
could mean

[[GREEN BLOCK TO THE LEFT OF THE BIG BLOCK] ON
A RED BLOCK]

which is B in the figure of section 2.2.1. or it could mean
[GREEN BLOCK(TO THE LEFT OF THE BIG BLOCK ON A RED
BLOCK])

and there is no big block on a red block. This is semantic ambiguity.

Exercise 2.2.5. Check that the grammar really will generate these two
readings of 'green block to the left of the big block on a red block', and
draw their trees as above.

2.3 PARSING

2.3.1 Some Problems of Context-Free Grammars
Remember that a grammar describes a set of sentences, just as "the even
numbers not divisible by 5" describes a set of numbers. Problems are:

1. (Generation) Given a grammar, list the set of sentences it describes.
2. (Parsing) Given a sentence and a grammar, test whether the sentencE

is one of those described by the grammar.
3. (Induction) Given a set of sentences, make up a grammar that

describes them.
4. (Equivalence) Given two grammars, do they describe the same set of

sentences.
What do you think is the order of difficulty of these?

The parsing problem is the one that interests us next. For example, does
the grammar of the last lecture produce these sentences?
(a) There is a small block on a red block
(b) Is a red block on a red block on a red block?
(c) A green block is there on the red block
More important, what structure if any does it attribute to them? Is this
structure unique?

2.3.2 An Example to Help Us Understand the Parsing Problem
Here is an easy grammar G, starting symbol P: (using lower case instead
of')

67

P--.aPQ (P1)
P—eaQ (P2)
Q—cQ (Qi)
Q—.-b (Q2)

Does cca come from it? How about ab or aacb? Try generating the
sentences of G systematically. When you have generated even part of a
sentence you can see whether it could be cca by comparing the terminal
symbols (a,b,c) at the front.

P/ P/ \P 2

No good No good No good
So cca does not come from the grammar C. How about ab?

,,/\ P/\
aPQ aPQ

P/
aaPQQ

No good

p

P/
aPQ

P/ \P 2

aaPQQ aaQQ

No good No good

P/ \P 2

aPQ aQ

P/ \P2

aaPQQ aaQQ

No good No good

P ZI ~-~P2

aPQ aQ

P/ \P2 Q/
aaPQQ aaQQ acQ .

No good No good No good

Continue this systematically. Can you generate ab?

Exercise 2.3.1. Try to generate systematically sentences from the above
grammar to get aacbb.

2.3.3 A Parsing Program for This Grammar
Our convention will be that each phrase has a parsing procedure, which is
given a string to parse and returns the remainder of that string after
removing the phrase it is looking for; but if it fails to find it then it returns
FAIL. We will write a collection of procedures for the grammar just given.
(See section 2.3.6 for the program in LISP.)

TAKEOFF just tries to remove a given word from a string of words. P tries
P1 and, if that doesn't work, P2. Similarly 0 tries 01 and, if that doesn't
work, 02. P1 takes off 'A, if the result is OK it removes a P. and if still OK it
removes a Q.

TO TAKEOFF 'WORD 'STRING
IF EMPTYG :STRING THEN RESULT 'FAIL
IF NOT (:WORD=F STRING) THEN RESULT 'FAIL
RESULT BF STRING

END

Examples: TAKEOFF 'A [A B C) = [B C),
TAKEOFF 'D [A B C] = 'FAIL

TO OK 'X
NOT (:X='FAIL)

END

TO P 'STRING (remove a P from front or fail)
NEW 'STRINGREM (remainder string)
MAKE STRINGREM P1 STRING (remove a P1)
IF OK :STRINGREM THEN RESULT :STRINGREM
MAKE 'STRINGREM P2 STRING (otherwise remove a P2)
IF OK :STRINGREM THEN RESULT :STRINGREM
RESULT 'FAIL (P2 didn't work either)

END

TO 0 'STRING
as P but using 01 and Q2

END

Examples: Q[C B A A] -- [A A), Q[A B1 —'''FAlL,
NA B C A)—.'-[C A)

TO P1 'STRING
MAKE "STRING TAKEOFF 'A :STRING
IF NOT OK :STRING THEN RESULT 'FAIL
MAKE 'STRING P STRING
IF NOT OK STRING THEN RESULT 'FAIL
MAKE 'STRING 0 STRING
RESULT :STRING

END

TO P2 'STRING
MAKE 'STRING TAKEOFF 'A STRING
IF NOT OK STRING THEN RESULT 'FAIL
MAKE 'STRING 0 STRING
RESULT STRING

END

(remove 'A P 0)
(takeoff 'A if possible)

(fail if can't take off 'A)

(fail if can't take off P)

(result is remainder or FAIL)

(remove 'A Q)

mml

TO 01 'STRING

END

TO 02 STRING

END

Exercise 2.3.2. Write out some of the procedures needed to parse
numbers with the number grammar given previously (not for all the
productions, just enough to get the idea). Try your procedures on the
machine.

2.3.4 A More General Parsing Program
The program that we gave in section 2.3.3 has three disadvantages:

1. (practical) it is rather long, each production needing a substantial
procedure

2. (theoretical) it will sometimes fail to find a parse when one exists.
To understand (2) consider the grammar, starting with R,

R—'a Gd

c
Trying this on [A B C] using a program like that of section 2.3.3 we get
function calls:

REABDI -I]
R1[ABD] -F]

QFB DI —"[D]
G1EB Dl —'[D]

But on [A B C DI we get
RFA 8 C DI —'FAlL

R1[A B C DI —FAIL
G[B C Dl _-.[C DI

01EB C DI —[C DI
whereas Q2[B C DI—.' [D], which eventually makes P succeed.

3. (theoretical) it goes into an infinite recursion if given productions of
the form P—P. . . . But this is not fatal, because it is always possible
to rewrite a grammar to avoid such productions.

Disadvantage (2) suggests that we define a function P', which takes a
string as argument and produces a set of strings as result (the empty set
now corresponds to FAIL).

Disadvantage (1) suggests that we go further in search of brevity and
define a function P', which takes a set of strings as argument and
produces a set of strings as result. To be technical, suppose P is a symbol
in the grammar. Let P be a set of strings, all strings generable from P. Let
P's, where s is a string, be the set of all strings t such that s=pt for some
string p in P'. Let PS, where S is a set of strings, be the set of all strings

70

such that s=pt for some string s in S and some string p in P

We will now write a program for the grammar of section 2.3.3 with a
function P" for each symbol P (we lust call it PP. not P", in LOGO). We
have corresponding functions, from sets of strings to sets of strings, for
each production. For terminal symbols we define a special function
TAKEOFF, which takes a word and a set of strings to a set of strings.

For each production we simply do the functions corresponding to its
components in sequence. For each non-terminal symbol we do the
function for each of its productions and join up the result. We start the
whole process on a set whose only element is the given string and expect
as result a set whose only element is the empty string (i.e. nothing remains
when a P is removed from the front.) We represent both strings and sets
by lists (confusing, but that is all LOGO offers).

The non-terminal P generates a set of strings, [ab,acb,accb,
aabb,aabcb]. There is a corresponding procedure PP which, given a set
of strings, say (abxyz,accbuvw,bbcc] tries to take off each of the generated
strings from each of these (getting xyz from abxyz, uvw from accbuvw,
nothing from bbcc, [xyz,uvwj in all). Similarly Q generates
[cb,ccb,cccb 1 and has an analogous procedure QQ.

To define these we need a basic proce&ire TAKEOFF to take a single word
off each of a set of strings, given word a and set of lists [axyz.cc,abc] it
gives Ixyz,bc). Do not worry how TAKEOFF is written, just understand
what it does.

Here is the program, followed by some examples (we call the functions PP
and 00 because P is already used for PRINT). (See section 2.3.7 for the
program in LISP.)
TO TAKEOFF 'WORD 'STRINGS

10 NEW 'STRING
20 IF EMPTYQ STRINGS THEN RESULT [
30 MAKE 'STRING F STRINGS AND MAKE STRINGS BF

STRINGS
40 IF EMP1YQ STRING THEN RESULT TAKEOFF WORD

STRINGS
50 IF :WORD=F :STRING THEN RESULT FPUT (BF STRING)

(TAKEOFF :WORD :STRINGS)
60 RESULT TAKEOFF :WORD STRINGS

END

TO PP 'STRINGS
10 IF EMPTYG :STRINGS THEN RESULT (I
20 RESULT JOIN P1 STRINGS P2 STRINGS

END

71

TO 00 'STRINGS
10 IF EMPTYQ :STRINGS THEN RESULT [I
20 RESULT JOIN 01 STRINGS Q2 :STRINGS

END

TO P1'STRINGS
10 RESULT 00 PP TAKEOFF 'A :STRINGS

END

TO P2 'STRINGS
10 RESULT QQ TAKEOFF 'A STRINGS

END

TO 01 'STRINGS
10 RESULT 00 TAKEOFF 'C :STRINGS

END

TO Q2 'STRINGS
10 RESULT TAKEOFF 'B STRINGS

END

TO PARSE 'STRING
10 NEW 'STRINGS
20 MAKE 'STRINGS PP ((STRING))
30 IF (COUNT :STRING5)= 0 THEN RESULT 'NOGOOD
40 IF (COUNT :STRINGS)>1 THEN RESULT FPUT 'AMBIGUOUS

STRINGS
50 IF NOT EMPTYQ F STRINGS THEN RESULT FPUT 'TOOLONG

F STRINGS
60 RESULT 'GOOD

END

Example
TAKEOFF 'A [[A B C]] - [[B C]]
TAKEOFF 'A [ED C]] - I I
TAKEOFF 'A [[A B Cl [A D El [0 CII - [[B Cl [0 E]]
P2[[A B 0] [A A B B El] - [[D]]
P1[[A B D] [A A B B El] - [[El]
PPE[A B D] [A A B B E]] - [[DI [E]]

2,3.5 Limitations of Context-Free Grammars
The notion of context-free grammar is a very important one, particularly in
computational linguistics. It has been very useful for describing
programming languages but it has long been realised that it is inadequate
for describing natural languages. That is to say it is practically (and even
theoretically) impossible to write such a grammar to generate all the
"grammatical" sentences of English but no "ungrammatical" ones. Not
only would the number of non-terminal symbols (phrase names) get

72

unreasonably large, but the whole exercise would give very arbitrary
generation tree-structures to sentences, failing to show similarities
between closely related sentences.

Chomsky's notion of Transformational Grammar has been widely explored
in linguistics; the idea is to generate some basic sentences by a context-
free grammar and then apply transformations to get variants such as
passives and negations. Unfortunately this model is based on generating
sentences and gives us no clue as to how to parse them. Since parsing is
the main point of interest and difficulty in Artificial Intelligence work on
language understanding, transformational grammars have been of little
use.

Winograd makes use of Halliday's Systemic Grammar, which enables one
to get over the multiplicity of arbitrary phrase names in context-free
grammars by using a much smaller number of grammatical classes
qualified by a suitable collection of features. We will also look at Fillmore's
idea of Case Grammar, which is designed to show up the relationship
between verbs and the noun phrases that play different roles with respect
to them.

Nevertheless, many Al systems use relatively simple context-free
grammars, even if not explicit ones, to impose a structure on the
sentences but without excluding all ungrammatical ones. It is then
possible to use 'semantic routines" written in some programming
language, together with suitable 'dictionary' data structures, to rule out
impossible interpretations and so reduce ambiguity. This seems the best
way to handle restrictions like agreement of gender or number, and verbs
like 'eat", which require an animate subject.

2.3.6 The Parsing Program in LISP
This is the program of section 2.3.3.
(DEFUN TAKEOFF (WORD STRING)

(COND (NULL STRING) 'FAIL)
((NOT (EQ WORD (CAR STRING))) FAIL)
(T (CDR STRING))))

(DEFUN OK (X)
(NOT (EQ X 'FAIL)))

(DEFUN P (STRING)
(PROG (STRINGREM)

(SETQ STRINGREM (P1 STRING))
(COND ((OK STRINGREM) (RETURN STRINGREM)))
(SETO STRINGREM (P2 STRING))
(COND ((OK STRINGREM) (RETURN STRINGREM)))
(RETURN 'FAIL.)))

73

(DEFUN Q (STRING)
(PROG (STRINGREM)

(SETQ STRINGREM (Qi STRING))
(COND ((OK STRINGREM) (RETURN STRINGREM)))
(SETQ STRINGREM (Q2 STRING))
(COND ((OK STRINGREM) (RETURN STRINGREMD)
(RETURN 'FAIL)))

(DEFUN P1 (STRING)
(PROG U

(SETQ STRING (TAKEOFF 'A STRING))
(COND ((NOT (OK STRING)) (RETURN FAIL)))
(SETQ STRING (P STRING))
(COND ((NOT (OK STRING)) (RETURN 'FAIL)))
(SETQ STRING (Q STRING))
(RETURN STRING)))

(DEFUN P2 (STRING)
(PROG ()

(SETQ STRING (TAKEOFF 'A STRING))
(COND ((NOT (OK STRING)) (RETURN 'FAIL)))
(SETQ STRING (Q STRING))
(RETURN STRING)))

(DEFUN 01 (STRING)
(PROG C)

(SETQ STRING (TAKEOFF 'C STRING))
(COND ((NOT (OK STRING)) (RETURN 'FAIL)))
(SETQ STRING (Q STRING))
(RETURN STRING)))

(DEFUN 02 (STRING)
(PROG U

(SETQ STRING (TAKEOFF 'B STRING))
(COND ((NOT (OK STRING)) (RETURN FAIL)))
(RETURN STRING)))

2.3.7 The General Parsing Program in LISP
This is the program of section 2.3.4.

(DEFUN TAKEOFF (WORD STRINGS)
(PROG (STRING)

(COND ((NULL STRINGS) (RETURN NIL)))
(SETQ STRING (CAR STRINGS))
(SETQ STRINGS (CDR STRINGS))
(COND ((NULL STRING) (RETURN (TAKEOFF WORD STRINGS)))

((EQ WORD (CAR STRING))

74

(RETURN (CONS (CDR STRING) (TAKEOFF WORD
STRINGS))))

(T (RETURN (TAKEOFF WORD STRINGS))))))

(DEFUN PP (STRINGS)
(CONO ((NULL STRINGS) NIL)

IT (APPEND (P1 STRINGS) (P2 STRINGS)))))

(DEFUN QQ (STRINGS)
(COND ((NULL STRINGS) NIL)

IT (APPEND (01 STRINGS) (02 STRINGS)))))

(DEFUN P1 (STRINGS)
(00 (PP (TAKEOFF 'A STRINGS))))

(DEFUN P2 (STRINGS)
(00 (TAKEOFF 'A STRINGS)))

(DEFUN 01 (STRINGS)
(QQ (TAKEOFF C STRINGS)))

(DEFUN Q2 (STRINGS)
(TAKEOFF 'B STRINGS))

(DEFUN PARSE(STRING)
(PROG (STRINGS)

(SETQ STRINGS (PP (LIST STRING)))
(COND ((EQ (LENGTH STRING) 0) (RETURN 'NOGOOD))

((>(LENGTH STRING) 1)
(RETURN (CONS 'AMBIGUOUS STRINGS)))

((NOT (NULL (CAR STRINGS)))
(RETURN (CONS 'TOOLONG (CAR STRINGS))))

IT (RETURN 'GOOD)))))

2.4 TRANSLATION

2.4.1 Introduction
We have written random generator programs for insults and for sentences
about blocks, also a parser for a b c sentences. The parser just said
whether a string of words belonged to the grammar; can we go further
and produce a 'meaning' for a sentence? (What is a meaning? Good
question.) Let us try, as a very simple example, to get the actual number
from a number name. We will use ((. . .)) for 'the meaning of. . .', and we
will express the way in which the meaning of a string depends on the
meanings of its components by writing equations, one alongside each
production.

75

Number grammar with meanings
ump— one ((urnp))=1
ump— two ((ump))=2

urn p teen —'ten

((umpteen))=1O

umpty—'twenty

((urnpty))=20

upt099— ump ((upto99))=((ump))
upto99— umpteen ((upto99))=((umpteen))
upt099— umpty ((upto99))= ((umpty))
upto99—.- umpty ump ((upto99))=((umpty)) + (ump))
umphun— urnp 'hundred

((umphun))= ((ump))1 00

upto999— upto99

((upto999)) r((upto99))
upto999— umphun ((upto999)) =((umphun))
upto999— umphun and upto99 ((upto999)) =((urnphun)) + ((upto99))
Example
[one] is ump (([one]))=1
[twenty] is umpty (([twenty]))=20
[twenty one] is upto99 (([twenty one])) =

(([twenty])) + (([one])) =20+1=21
Notice that we use the syntax symbols (ump, etc) as variable narnes in the
equations standing for any string of that syntactic class. If a production
involved more than one occurrence. e.g. P— -a 0 b 0, we would have to
use subscripts. e.g. ((P)) = . . . ((1)) . . ((Q))

This way of specifying meaning goes rather naturally with the notion of
context-free grammar. Such grammars and our meaning equations are
restrictive but, as you will see, we can extend their usefulness still using
the same basic ideas. Our approach here has been influenced both by
'syntax-directed compiling and "denotational semantics" in Computer
Science and by Montague's work on the formal semantics of Natural
Language; the main idea is to find a suitable denotation for each phrase
and to say succinctly for each phrase how the meaning of the phrase
depends on the meaning of its constituent phrases.

Reference. R. Montague (1974) Formal Philosophy (ed. R.H. Thomason)
Yale University Press. A fundamentally interesting but difficult-to-read set
of papers on the logic of natural language.

2.4.2 A Translation Program
To program a translater instead of a parser, we need to have functions that
handle not just remainder strings but also meanings. In general a string of
words will produce a string of meanings, rather than just one meaning. We
can think of the translation process as taking words off the front of the
word string and putting meanings on the back of the meaning string. Thus

76

an (intermediate) state of the translation consists of a string of meanings
(its left) and a string of words (its right).

Consider the states produced in translating 'two hundred and twenty
seven', with the rules used to obtain them:

Rule Left (meaning string)

ump/2 [2]
umphun/1 [200]

[2001
umpty/1 [200 201
ump/7 [20020 71
upto99/4 [200 271
upto999/3 [2271

Right (word string)
[two hundred and twenty seven]

[hundred and twenty seven]
[and twenty seven]

[twenty seven]
[seven]

[]

[1
[1

We finish with a unit string of meanings on the left and an empty string of
words on the right.

We want to use the same technique as our second parsing program,
adapted by using states instead of just strings of words. So our translation
functions will all take a set of states as argument and produce a set of
states as result. They are:

MEANINGOF word - meaning
takes an individual word to its meaning (or NOMEANING if it has none).

MKSTATE meaning-string word-string---. state
makes a state represented by a list of the two.

BEGINS word state — T
produces TRUE if the right of the state begins with the word,
FALSE otherwise.

NEWSTATE word statel—.- state2
only used if statel begins with the word. Removes this word from the
right and puts its meaning (if any) on the back of the left.

TAKEOFF word state-seti -. state-set2
for each state in state-seti that begins with the word, remove the word
from the right and get a new state with the meaning of the word on the
back of the left.

Example. If MEANINGOF 'TWO = 2,
TAKEOFF TWO MKSTATE[1] [TWO THREE FOUR]—
[[1 21 [THREE FOUR]

We need some way of associating some semantics with each production.
Consider

upto99 - umpty ump ((upto99)) = ((umpty)) + ((ump))
After we have used this production and called the UMP1'Y and UMP

77

functions we should have a set of states each of whose left is I ... x yL
where x is the meaning of the umpty part and y is the meaning of the ump
part. We need to add these two together to produce a state with x + yon
the end instead. A general function DOSEMANTIC will do all this for any
semantic operation, not just addition.

NARGS function-name---.- N (number of arguments, 1 or 2)
DOSEMANTIC1 function-name state - state-set

where function-name names an arbitrary semantic function. This is
applied to the last element of the left of the state and the result replaces it
(or if NARGS gives 2 to the last two elements and the result replaces
them). A set consisting of lust this state is produced, unless the result of
applying the given function was FAIL when the empty set is produced
(production was semantically inapplicable).

Example. DOSEMANTIC1 SUM MKSTATE Ii 2 31 [FOUR FIVE]
- [[1 51 [FOUR FIVE]]

DOSEMANTIC function-name state-sell - state-set2
does DOSEMANTIC1 to each state of state-setl and collects together all
the results.

Here then are the general procedures for writing translater programs. (See
section 2.4.4 for the program in LISP.)

TO MKSTATE LEFT 'RIGHT
10 RESULT ((:LEFT :RIGHT))

END

TO BEGINS WORD 'STATE
10 NEW 'RIGHT
20 MAKE 'RIGHT F BF :STATE
30 IF EMPTYG RIGHT THEN RESULT FALSE
40 IF :WORD=F :RIGHT THEN RESULT TRUE
50 RESULT FALSE

END

TO NEWSTATE 'WORD 'STATE
10 NEW 'LEFT 'RIGHT 'MEANING
20 MAKE 'LEFT F STATE AND MAKE 'RIGHT F BF :STATE
30 MAKE 'MEANING MEANINGOF :WORD
40 IF :MEANING='NQMEANING THEN RESULT MKSTATE :LEFT

(BF :RIGHT)
50 RESULT MKSTATE (LASTPUT MEANING LEFT) (BF :RIGHT)

END

TO TAKEOFF 'WORD 'STATES
10 NEW 'STATE
20 IF EMPTYG STATES THEN RESULT [
30 M 'STATE F STATES AND M 'STATES BF :STATES

W.

40 IF BEGINS :WORD STATE THEN RESULT FPUT
(NEWSTATE :WORD STATE) (TAKEOFF WORD :STATES)

50 RESULT (TAKEOFF WORD :STATES)
END

TO DOSEMANTIC1 TN 'STATE
10 NEW LEFT 'RIGHT 'FNRESULT
20 MAKE 'LEFT F :STATE AND MAKE 'RIGHT F BE STATE

IF 1=NARGS :FN THEN M 'FNRESULT APPLY EN (LAST
LEFT)

35 IF 1=NARGS :FN THEN M 'LEFT BL :LEFT

30

40 IF 2=NARGS EN THEN M 'FNRESULT APPLY :FN (LAST BL
LEFT) (LAST LEFT)

45 IF 2=NARGS EN THEN M 'LEFT BL BL LEFT
50 IF :FNRESULT='FAIL THEN RESULT [

60 RESULT ((MKSTATE (LASTPtJT :FNRESULT LEFT) :RIGHT)
END

TO DOSEMANTIC 'FN 'STATES
10 IF EMPTYQ :STATES THEN RESULT F I
20 RESULT JOIN (DOSEMANTIC1 :FN F STATES)

(DOSEMANTIC :FN BF :STATES)
END

2.4.3 Using the Translation Program on Number Names
To use the procedures defined above to translate a particular grammar
with particular meaning specification, we need to write some more
procedures corresponding to the rules of that grammar. Below are the
procedures for the number-name grammar up to 99. The final procedure
TEST1 tries UPT099 on a given string of words, putting a full stop at the
end and ensuring that only final states that have devoured all the string up
to the stop are printed.

Exercises
2.4.1. Try to work out on paper in outline the computation produced by
TEST1 [TWENTY TWO]. What procedures are called with what
arguments? (Don't do all the details.)
2.4.2. Write the extra procedures needed to do UPT099.

Number-name translation procedures. (See section 2.4.5 for the program
in LISP.)

TO MEANINGOF 'WORD
10 IF :WORD='ONE THEN RESULT 1
20 IF :WORD='TWO THEN RESULT 2
30 IF :WORD='TWENTY THEN RESULT 20
40 RESULT NOMEANING

END

79

TO NARGS 'FN
10 IF :FN='SLJM THEN RESULT 2
20 IF :FN='TIMESlOO THEN RESULT 1
30 BREAK

END

TO UMP 'STATES
10 JOIN UMP1 :STATES UMP2 :STATES

END

TO UMP1 'STATES
10 TAKEOFF 'ONE STATES

END

TO UMPTEEN STATES
10 UMPTEEN1 STATES

END

TO UMPTY 'STATES
10 UMPTY1 STATES

END

TO UMP2 'STATES
10 TAKEOFF 'TWO :STATES

END

TO UMPTEEN1 'STATES
10 TAKEOFF 'TEN STATES

END

TO UMPTY1 'STATES
10 TAKEOFF 'IWENTY STATES

END

TO UPT099 'STATES
10 JOIN JOIN JOIN UPT0991 :STATES UPT0992

STATES LJPT0993 :STATES UPT0994 STATES
END

TO UPT0991 'STATES TO UPT0992 'STATES
10 LiMP :5TATES 10 UMPTEEN :STATES

END END

TO UPT0993 'STATES TO UPT0994 'STATES
10 UMPTY STATES 10 DOSEMANTIC 'SUM UMP

END UMPTY STATES
END

TO TEST1 'WORDSTRING
10 P TAKEOFF 'STOP UPT099 ((MKSTATE [

(LPUT 'STOP :WORDSTRING)))
END

2.4.4 The Translation Program in LISP
This is the program of section 2.4.2.

(DEFUN MKSTATE (LEFT RIGHT)
(LIST LEFT RIGHT))

(DEFUN BEGINS (WORD STATE)
(PROG (RIGHT)

MA

N
)

(SETQ RIGHT (CADR STATE))
(COND ((NULL RIGHT) (RETURN NIL))

((EQ WORD (CAR RIGHT)) (RETURN T))
IT (RETURN NIL)))))

(DEFUN NEWSTATE (WORD STATE)
(PROG (LEFT RIGHT MEANING)

(SETQ LEFT (CAR STATE))
(SETQ RIGHT (CADR STATE))
(SETQ MEANING (MEANINGOF WORD))
(COND ((EQ MEANING 'NOMEANING)

(RETURN (MKSTATE LEFT (CDR RIGHT))))
IT (RETURN (MKSTATE (APPEND LEFT (LIST

MEANING)) (CDR RIGHT)W))

(DEFUN TAKEOFF (WORD STATES)
(PROG (STATE)

(COND ((NULL STATES) (RETURN NIL)))
(SETQ STATE (CAR STATES))
(SETQ STATES (CDR STATES))
(COND ((BEGINS WORD STATE)

(RETURN (CONS (NEWSTATE WORD STATE)
(TAKEOFF WORD STATES))))

(T (RETURN (TAKEOFF WORD STATES))))))

(DEFUN LAST (LST)
(CAR (REVERSE LSTH)

(DEFUN BUTLAST (LST)
(REVERSE (CDR (REVERSE LST))))

(DEFUN DOSEMANTIC1 (FN STATE)
(PROG (LEFT RIGHT FNRESULT)

(SETQ LEFT (CAR STATE))
(SETQ RIGHT (CADR STATE))
(COND ((EQ (NARGS FN) 1)

(SETQ FNRESULT (APPLY FN (LIST (LAST LEFT))))
(SETQ LEFT (BUTLAST LEFT)))
((EQ (NARGS FN) 2)
(SETQ FNRESULT (APPLY FN (LIST (LAST (BUTLAST

LEFT))(LAST LEFT))))•
(SETQ LEFT (BUTLAST (BUTLAST LEFT)))))

(COND ((EQ FNRESULT 'FAIL) (RETURN NIL))
IT (RETURN (LIST(MKSTATE (APPEND LEFT (LIST

FNRESULT)) RIGHT)DDD)

81

(DEFUN DOSEMANTIC (FN STATES)
(COND ((NULL STATES) NIL)

(T (APPEND (DOSEMANTIC1 FN (CAR STATES))
(DOSEMANTIC FN (CDR STATES))))))

2.4.5 The Number-Name Translation Program in LISP
This is the program of section 2.4.3.

(DEFUN MEANINGOF (WORD)
(PROG()

(COND ((EQ WORD 'ONE) (RETURN 1))
((EQ WORD TWO) (RETURN 2))
((EQ WORD TWENTY) (RETURN 20))
IT (RETURN 'NoMEANING)m)

(DEFUN NARGS (FN)
(COND ((EQ FN '+) 2)

((EQ FN TIMES100) 1)
IT (BREAK NARGS T))))

(DEFUN UMP (STATES)
(APPEND (UMP1 STATES) (UMP2 STATES)))

(DEFUN UMP1 (STATES)
(TAKEOFF 'ONE STATES))

(DEFUN UMP2 (STATES)
(TAKEOFF 'TWO STATES))

(DEFUN UMPTEEN (STATES)
(UMPTEEN1 STATES))

(DEFUN UMPTEEN1 (STATES)
(TAKEOFF TEN STATES))

(DEFUN UMPTY (STATES)
(UMPTY1 STATES))

(DEFUN UMPTY1 (STATES)
(TAKEOFF 'TWENTY STATES))

(DEFUN UPT099 (STATES)
(APPEND (UPT0991 STATES) (UPT0992 STATES)

(UPT0993 STATES) (UPT0994 STATES)))

(DEFUN UPT0991 (STATES)
(UMP STATES))

(DEFUN UPT0992 (STATES)
(UMPTEEN STATES))

82

(DEFUN UPT0993 (STATES)
(UMPTY STATES))

(DEFUN UPT0994 (STATES)
(DOSEMANTIC '+ (UMP (UMPTY STATES))))

(DEFUN TEST1 (WORDSTRING)
(PRINT (TAKEOFF 'STOP (UPTO99 (LIST

(MKSTATE NIL (APPEND WORDSTRING '(STOP)MDD)

2.5 CONVERSATIONS ABOUT BLOCKS

2.5.1 Simple Approach: Phrases Translate to Sets
Let us try to use our translation program on simple sentences about the
blocks world, the sentences generated by the grammar we gave earlier. It
is reasonable to take the phrases to have the following meaning:

noun
simplenounphr I a set of
nounphr blocks
clnounphr
adj a property of
qualif J blocks
prep a relation between blocks
assertion
question no meaning, just a printing effect
sentence

How should we represent these meanings in our program? The most
straightforward way is:

set of blocks set of blocks
property of blocks set of blocks with that property
relation between blocks set of pairs of blocks in that relation

where as usual we use LOGO lists for sets, and we use words to name
blocks. For example:

block (A B C Dl
red [A Cl
small [A B Cl
small red block [A]
left LEA Cl [B Dl [C Dl (A DI)
left of red block [Al
big block left of red block [

We can manufacture these meanings with three main semantic functions:
DOPROP :XS VS

a list of all elements occurring in both the lists XS and VS (intersection)
DOREL :XYS :YS

where XYS is a list of pairs. The result is the list of first elements of those
pairs whose second element is in VS.

83

UNIQUE :XS
if the list XS has exactly one element then result is XS, otherwise prints a
grumble.
For example.
DOPROP [A B Cl (B A Di = [A B),
DOREL [[A C] [B Di [C Dl] [B Di = [B C].

Now we write down the meanings of phrases as before:
simpnounphr— noun ((noun))
simpnounphr—adj simpnounphr doprop((adj)) ((simpnounphr))
nounphr—..simpnounphr qualif doprop((qualif)) ((simpnounphr))
nounphr—..simpnounphr ((simpnounphr))
qualif —prep clnounphr dorel ((prep)) ((clnounphr))
clnounphr—..'a nounphr ((nounphr))
clnounphr—. the nounphr unique ((nounphr))
assertion —.'there is if emptyq ((nounphr))

'a nounphr then p liar else p correct
assertion—. 'clnounphr if emptyq doprop((qualif))

is qualif ((clnounphr)) then p liar
else p 'correct

question—'is clnounphr if emptyq doprop ((qualif))
qualif ((clnounphr)) then p 'yes

else p 'no
Here then is the program, using TAKEOFF and DOSEMANTIC as above.

Naive blocks program. (See section 2.5.3 for program in LISP.)

TO MEANINGOF 'W
10 IF :W='BLOCK THEN RESULT [A B C Di
20 IF :W='BIG THEN RESULT [D]
30 IF :W='SMALL THEN RESULT [A B C]
40 IF :W='RED THEN RESULT [A C]
50 IF :W='GREEN THEN RESULT [B Di
60 IF :W='ON THEN RESULT [[B C])
70 IF :W=LEFT THEN RESULT [[A C] [B Di [C D]]
80 IF :W='RIGHT THEN RESULT EEC A] [0 B] [0 C]]
90 RESULT 'NOMEANING

END

TO MEMBERQ 'X 'XS
10 IF EMPTYQ :XS THEN RESULT FALSE
20 IF (F :XS)=:X THEN RESULT TRUE
30 RESULT MEMBERQ :X BF :XS

END

TO DOREL 'XYS 'VS
10 NEW (XV FIRSTSOFBF]
20 IF EMPTYQ :XVS ThEN RESULT [1

30 M XV F :XVS
40 M FIRSTOFBF DOREL BF :XVS VS
50 IF NOT MEMBERQ (F BF :XV) :YS THEN RESULT

:FIRSTSOFBF
60 IF MEMBERQ F :XV :FIRSTSOFBF THEN RESULT :FIRSTSOFBF
70 RESULT FPUT F XV :FIRSTSOFBF

END

TO DOPROP XS VS
10 IF EMPTYQ :XS THEN RESULT [1
20 IF MEMBERQ F :XS :V5 THEN RESULT FPUT IF :XS)

(DOPROP BF :XS YS)
30 RESULT DOPROP BF :XS VS

END

TO DOPROPREV 'XS 'VS
10 DOPROP VS :XS

END

TO UNIQUE 'XS
10 IF (COUNT :XS)= 1 THEN RESULT :XS
20 IF (COUNT :XS)= 0 THEN RESULT 'FAIL
30 P 'AMBIGUOUS AND QUIT

END
TO TESTEMPTY 'XS

10 IF NOT EMPTVQ :XS THEN P 'CORRECT ELSE P 'LIAR
END

TO TESTNONEINBOTH 'XS 'VS
10 IF EMPTYQ (DOPROP :VS :XS) THEN P LIAR ELSE P

'CORRECT
END

TO ANSWEREMPTV 'XS VS
10 IF EMPTYQ (DOPROP VS :XS) THEN P'YES ELSE P 'NO

END

TO NOUN STATES
10 TAKEOFF 'BLOCK STATES

END

TO ADJ 'STATES
10 JOIN JOIN JOIN TAKEOFF 'BIG STATES TAKEOFF 'SMALL

:STATES TAKEOFF 'RED :STATES TAKEOFF 'GREEN :STATES
END

TO PREP 'STATES
10 JOIN JOIN PREP1 :STATES PREP2 STATES PREP3 :STATES

END

85

TO PREP1 'STATES
10 TAKEOFF 'ON STATES

END

TO PREP2 'STATES
10 TAKEOFF 'OF TAKEOFF 'LEFT TAKEOFF 'THE TAKEOFF 'TO

STATES
END

TO PREP3 'STATES
10 TAKEOFF 'OF TAKEOFF 'RIGHT TAKEOFF THE TAKEOFF 'TO

:STATES
END

TO SIMPNOUNPHR 'STATES
10 JOIN SIMPNOUNPHR1 STATES SIMPNOUNPHR2 STATES

END

TO SIMPNOUNPHR1 'STATES
05 IF EMPTYQ :STATES THEN RESULT
10 NOUN STATES

END

TO SIMPNOUNPHR2 'STATES
10 DOSEMANTIC 'DOPROP SIMPNOUNPHR ADJ STATES

END

TO NOUNPHR 'STATES
05 IF EMPTYQ STATES THEN RESULT []
10 JOIN NOUNPHR1 STATES NOUNPHR2 :STATES

END

TO NOUNPHR1 'STATES
10 DOSEMANTIC 'DOPROPREV QUALIF SIMPNOUNPHR STATES

END

TO NOUNPHR2 'STATES
10 SIMPNOUNPHR STATES

END

TO QUALIF 'STATES
10 DOSEMANTIC 'DOREL CLNOUNPHR PREP STATES

END

TO CLNOUNPHR 'STATES
10 JOIN CLNOUNPHR1 :STATES CLNOUNPHR2 :STATES

END

TO CLNOUNPHR1 'STATES
10 NOUNPHR TAKEOFF 'A :STATES

END
86

TO CLNOUNPHR2 STATES
10 DOSEMANTIC 'UNIQUE NOUNPHR TAKEOFF 'THE :STATES

END

TO ASSERTION STATES
10 JOIN ASSERTION 1 STATES ASSERTION2 STATES

END

TO ASSERTION 1 'STATES
10 DOSEMANTIC 'TESTEMPTY NOUNPHR TAKEOFF 'A TAKEOFF

'IS TAKEOFF 'THERE :STATES
END

TO ASSERTION2 'STATES
10 DOSEMANTIC 'TESTNONEINBOTH QUALIF TAKEOFF 'IS

CLNOUNPHR :STATES
END

TO QUESTION STATES
10 DOSEMANTIC ANSWEREMPTY QUALIF CLNOUNPHR

TAKEOFF 'IS STATES
END

TO SENTENCE 'STATES
10 JOIN ASSERTION STATES QUESTION STATES

END

To use this translater we need a main function that makes a set containing
just one state from a given list of words, applies a given phrase function to
this set of states, then prints the meaning part of each resulting state
(there should only be one unless the phrase is ambiguous):

TO DO 'PHRASE 'WS
10 APPLY PHRASE (((([] :WS))))
20 MAPLIST IT [PRINT F EACH]

END

For example, we should get:
DO 'NOUNPHR [SMALL RED BLOCK]
[A C] (result)
DO 'SENTENCE [THERE IS A BIG BLOCK ON A BLOCK]
LIAR (printed by assertioni)

2.5.2 A More Flexible Approach: Translation to Functions
The program in the last section is rather inflexible. Suppose we want to
change the world by moving, or painting, some block. We have to adjust
the meanings of all the words affected: 'ON, 'LEFT, 'RIGHT, 'RED,
'GREEN. So a conversation with commands like "put the red block on the
big block" would be hard to implement. We can get over this by having a
separate wor/dmode/and computing the meanings of words like 'ON
87

when we encounter them, using this model. The model can be changed; it
can also be displayed to give non-verbal output.

The world model can be just a list of pairs, each a block name and a block
description as follows: colour, dimension, x-coordinate, y-coordinate. For
the world we had before:-

[[A [RED 2 2 01]
[B [GREEN 2 5 211
[C [RED 2 5 011
[D [GREEN 4 11 0111

We can write basic functions COLOF, DIMOF, XOF, YOF, which take the
name of a block and give its colour, dimension, x-coordinate andy-
coordinate in the current world. Now we can program a meaning function
for each word in a natural way. Let us use the name ØXYZ for the meaning
function associated with the word 'XYZ.

Øblock - list of blocks (i.e. their names)
Øred block — truthvalue
Øon block block—truthvalue

and so on.

TO MAKEWORLD
10 M 'WORLD [[A [RED 2 2 0]) [B [GREEN 2 5 211

[C [RED 2 5 0]] [D [GREEN 4 11 0]]
END

TO LOOKUP 'X 'XYS
10 IF :XYS=(I THEN TYPE :X AND P 'NOTFOUND AND QUIT
20 IF :X=F F :XYS THEN RESULT F BF F :XYS
30 LOOKUP :X (BF :XYS)

END
(finds the y corresponding to x in the list of x-y-pairs xys)

TO COLOF 'B TO XOF 'B
10 F LOOKUP :B :WORLD 10 F BF BF LOOKUP :B WORLD

END END

TO DIMOF 'B TO YOF 'B
10 F BE LOOKUP :B WORLD 10 F BF BF BF LOOKUP :B :WORLD

END END

(Note COLOF :B, XOF :8, etc., now depend on the state of the world. We
lazily made this a global variable instead of passing it to each function as a
parameter,)

TO ØBLOCK
10 MAPLIST WORLD 'F

END

TO ØBIG •B

TO ØRED :B
10 (DIMOF 0>2

10 (COLOF :B)='RED
END

END

TO ØSMALL 8

TO ØGREEN :B
10 (DIMOF :B)4 3

10 (COLOF :B)=GREEN
Li END

END

TO 0ON Bi '82
10 IF NOTUVOF :B1)=(VOF :B2)+(DIMOF :132)) THEN RESULT

FALSE
20 IF EITHER(ØLEFT :131 :132) (ØRIGHT :131 :82) THEN RESULT

FALSE
30 RESULT TRUE

END

TO ØLEFT 'Bi 82
10 (XOF :B1)+(OIMOF :81)c= (XOF :B2)

END

TO ØRIGHT 'Bl '82
10 LEFT :132 :131

END

TO MEANINGOF 'W
10 IF :W='BLOCK THEN RESULT ØBLOCK
20 IF :W='BIG THEN RESULT ØBIG
ETC.

END

See section 2.5.4 for the program in LISP.

Now we have to rewrite DOPROP and DOREL to cope with a function
name as first argument instead of a list. But wait, how do we handle
qualif?

qualif-..-prep clnounphr
Its meaning is a property of blocks, but we cannot easily produce a LOGO
function to represent this property. We will just have to use a list as we did
before, so DOPROP must accept lists as well as function names.

DOPROP(function-name or set-of-blocks) set-of-blocks---
set-of -blocks

DOREL function-name set-of-blocks-.set-of-blocks

TO DOPROP 'PROP 'VS
10 IF EMPTYQ :YS THEN RESULT []
20 IF LISTQ :PROP THEN RESULT OLDDOPROP :PROP 'VS
30 IF APPLV :PROP IF :VS)

THEN RESULT FPUT (F :VS) (DOPROP PROP (BF :VS))

go

40 DOPROP :PROP (BF :YS)
END
(subset of YS which have the property;OLD DO PROP is DOPROP of last
section)

TO DOREL 'REL 'YS
10 FILTER ØBLOCK :REL VS

END

TO FILTER 'XS 'REL 'VS
10 IF EMPTYQ :XS THEN RESULT [I
20 JOIN(FILTER1(F :XS) :REL :YS) (FILTER (BE :XS) :REL YS)

END
(finds all X in XS which are related to some V in YS)

TO FILTER1 'X 'REL 'VS
10 IF EMPTYQ VS THEN RESULT
20 IF APPLY REL :X IF :YS) THEN RESULT ((:X))
30 FILTER1 :X :REL (BF YS)

END
((:X)) if X related to some V in VS, else emptylist)

With redefinitions our program should work as before but more flexibly,
since its behaviour depends on the current value of the variable WORLD.

2.5.3 The Naive BIock8 Program in LISP

(DEFUN NARGS (EN)
(COND ((EQ FN 'DOPROP) 2)

((EQ EN OOPROPREV) 2)
((EQ EN 'DOREL) 2)
((EQ EN 'UNIQUE) 1)
((EQ FN 'TESTEMPTY) 1)
((EQ FN 'TESTNONEINBOTH) 2)
((EQ FN ANSWEREMPTY) 2)
(T (BREAK NARGS T)

(DEFUN MEANINGOF (W)
(COND ((EQ W 'BLOCK) '(A B C D))

((EQ W 'BIG) '(D))
((EQ W 'SMALL) '(A B C))
((EQ W 'RED) '(A C))
((EQ W 'GREEN) '(B D))
((EQ W 'ON) '((B C)))
((EQ W 'LEFT) '((A C) (B D) (C D)))
((EQ W 'RIGHT) '((C A) (D B) (D C)))
(T 'NOMEANING)))

90

(DEFUN MEMBERQ (X XS)
(COND ((NULL XS) NIL)

((EQ (CAR XS) X))
IT (MEMBERQ X (CDR XS)))))

(DEFUN DOREL (XVS YS)
(PROG (XV FIRSTOFBF)

(COND ((NULL XVS) (RETURN NIL)))
(SETQ XV (CAR XVS))
(SETQ FIRSTOFBF (DOREL (CDR XVS) YS))
(COND ((NOT (MEMBERQ (CADA XV) YS)) (RETURN

FIRSTOFBF))
((MEMBERQ (CAR XV) FIRSTOFBF) (RETURN

FIR STOFB F))
IT (RETURN (CONS (CAR XV) FIRSTOFBF)W)

(DEFUN DOPROP (XS VS)
PROG ()

(COND ((NULL XS) (RETURN NIL))
((MEMBERQ (CAR XS) '(5) (RETURN (CONS (CAR XS)

(DOPROP (CDR XS) VS)D)
(T (RETURN (DOPROP (CDR XS) VS))D))

(DEFUN DOPROPREV (XS VS)
(DOPROP VS XS))

(DEFUN UNIQUE (XS)
(PROG U

(COND ((EQ (LENGTH XS) 1) (RETURN XS))
((EQ (LENGTH XS) 0) (RETURN FAIL))
IT (PRINT AMBIGUOUS) (QUIT)))))

' 1 (DEFUN TESTEMPTV (XS)
(PROG U

¼ (COND ((NOT NULL RIGHT)) (RETURN NIL)) (parse incomplete)
((NOT (NULL XS)) (PRINT CORRECT))

'-I (T (PRINT LIAR)))))

(DEFUN TESTNONEINBOTH (XS VS)
(PROG U

(COND ((NOT (NULL RIGHT)) (RETURN NIL)) (parse incomplete)
((NULL (DOPROPREV XS VS)) (PRINT LIAR))
(T (PRINT CORRECT)))))

(DEFUN ANSWEREMPTV (XS YS)
(PROG U

(COND ((NOT (NULL RIGHT)) (RETURN NIL)) (parse incomplete)
((NULL (DOPROPREV XS '(5)) (PRINT NO))
(T (PRINT YES)))))

91

(DEFUN NOUN (STATES)
TAKEOFF 'BLOCK STATES))

(DEFUN ADJ (STATES)
(APPEND (TAKEOFF 'BIG STATES) (TAKEOFF 'SMALL STATES)

(TAKEOFF RED STATES) (TAKEOFF GREEN STATES)))

(DEFUN PREP (STATES)
(APPENO (PREP1 STATES) (PREP2 STATES) (PREP3 STATES)))

(DEFUN PREP1 (STATES)
TAKEOFF 'ON STATES))

(DEFUN PREP2 (STATES)
(TAKEOFF 'OF (TAKEOFF 'LEFT (TAKEOFF 'THE

(TAKEOFF 'TO STATES)))))
(DEFUN PREP3 (STATES)

(TAKEOFF OF (TAKEOFF 'RIGHT (TAKEOFF 'THE
(TAKEOFF 'TO STATES)))))

(DEFUN SIMPNOUNPHR (STATES)
(COND ((NULL STATES) NIL)

IT (APPEND (SIMPNOUNPHR1 STATES)
(SIMPNOUNPHR2 STATES)))))

(DEFUN SIMPNOUNPHR1 (STATES)
(COND ((NULL STATES) NIL)

(T (NOUN STATES))))

(DEFUN SIMPNOUNPHR2 (STATES)
(DOSEMANTIC 'DOPROP (SIMPNOUNPHR (ADJ STATES))))

(DEFUN NOUNPHR (STATES)
(COND ((NULL STATES) NIL)

CT (APPEND (NOUNPHR1 STATES) (NOUNPHR2
STATES)))))

(DEFUN NOUNPHR1 (STATES)
(DOSEMANTIC 'DOPROPREV (QUALIF (SIMPNOUNPHR

STATES))))
(DEFUN NOUNPF4R2 (STATES)

(SIMPNOUNPHR STATES))

(DEFUN QUALIF (STATES)
(DOSEMANTIC 'DOREL (CLNOUNPHR (PREP STATES))))

(DEFUN CLNOUNPHR (STATES)
(APPEND (CLNOUNPHR1 STATES) (CLNOUNPHR2 STATES)))

92

(DEFUN CLNOUNPHR1 (STATES)
(NOUNPHR (TAKEOFF 'A STATES)))

(DEFUN CLNOUNPHR2 (STATES)
(DOSEMANTIC 'UNIQUE (NOUNPHR (TAKEOFF 'THE

STATES))))

(DEFUN ASSERTION (STATES)
(APPEND (ASSERTION 1 STATES) (ASSERTION2 STATES)))

(DEFUN ASSERTION1 (STATES)
(DOSEMANTIC 'TESTEMPTY (NOUNPHR (TAKEOFF 'A

(TAKEOFF 'IS (TAKEOFF 'THERE STATES))))))

(DEFUN ASSERTION2 (STATES)
(DOSEMANTIC 'TESTNONEINBOTH

(QUALIF (TAKEOFF 'IS (CLNOUNPHR STATES)))))

(DEFUN QUESTION (STATES)
(DOSEMANTIC 'ANSWEREMPTY (QUALIF (CLNOUNPHR

(TAKEOFF 'IS STATES)))))

(DEFUN SENTENCE (STATES)
(APPEND (ASSERTION STATES) (QUESTION STATES)))

(DEFUN DO (PHRASE WS)
(PROG C)

(MAPC '(LAMBDA (EACH)
(COND ((CAAR EACH) (PRINT (CAAR EACH)))))
(APPLY PHRASE (LIST (LIST NIL WS)M))))

2.5.4 The More Flexible Approach, in LISP

The World Model

(DEFUN LISTQ (L)
(OR (EQ (TYPEP L) LIST) (EQ L NIL)))

(DEFUN MAKEWORLD NIL
(SETQ WORLD ((A (RED 2. 2. 0.))

(B (GREEN 2. 5. 2.))
(C (RED 2. 5. 0.))
(0 (GREEN 4. 9. 0.)))))

(DEFUN LOOKUP (X XYS)
(PROG NIL

(COND ((NULL XYS)
(PRINT X)
(PRIM 'NOTFOUND)
(QUIT)))

93

(COND ((EQ X (CAAR XYS)) (RETURN (CADAR xYs))))
(RETURN (LOOKUP X (CDR XYS)))))

(DEFUN COLOF (B) (CAR (LOOKUP B WORLD)))

(DEFUN XOF (B) (CADDR (LOOKUP B WORLD)))

(DEFUN DIMOF (B) (CADR (LOOKUP 8 WORLD)))

(DEFUN YOF (B) (CADDDR (LOOKUP B WORLD)))

(DEFUN ØBLOCK NIL (MAPCAR 'CAR WORLD))

(DEFUN ØBIG (B) (>(DIMOF 8) 2))

(DEFUN ØSMALL (8) (<(DIMOF B) 3))

(DEFUN ØRED (B) (EQ (COLOF B) 'RED))

(DEFUN ØGREEN (B) (EQ (COLOF B) 'GREEN))

(DEFUN 0ON (81 132)
(COND ((NOT (EQ (YOF 81) (+ (YOF 132) (DIMOF B2)))) NIL)

((OR (ØLEFT 81 82) (ØRIGHT 61 62)) NIL)
(T)))

(DEFUN ØLEFT (81 132) (NOT (>(+ (XOF 61) (DIMOF 61)) (XOF
B2)fl)

(DEFUN ØRIGHT (Al 82) (ØLEFT 82 Bl))

(DEFUN MEANINGOF IN
(COND ((EQ W 'BLOCK) (ØBLOCK))

((EQ W 'BIG) ØBIG)
((EQ W 'SMALL) 'ØSMALL)
((EQ W 'RED) 'ØRED)
((EQ W 'GREEN) 'ØGREEN)
((EQ W 'ON) 'ØON)
((EQ W 'LEFT) 'ØLEFT)
((EQ W 'RIGHT) ØRIGHT)
(T 'NOMEANING)))

A
DOPROP and DOREL

(DEFUN DOPROP (PROP YS)
(PROG NIL

(COND ((NULL YS) (RETURN NIL))
((LISTQ PROP) (RETURN (OLDDOPROP PROP YSD)
((APPLY PROP (LIST (CAR YS)))
(RETURN (CONS (CAR YS) (DOPROP PROP (CDR YS))D)
IT (RETURN (DOPROP PROP (CDR vS)))flll

ffj

(DEFUN DOREL (REL YS)
(FILTER (OBLOCK) REL YS))

(DEFUN FILTER (XS REL YS)
COND ((NULL XS) NIL)

(T (APPEND (FILTER 1 (CAR XS) REL YS)
(FILTER (CDR XS) REL YS))fl)

(DEFUN FILTER1 (X REL YS)
(COND (NULL YS) NIL)

((APPLY REL (LIST X (CAR YSH) (LIST X))
(T (FILTER1 X REL (CDR YS)))))

(DEFUN OLDDOPROP (XS YS)
(PROC NIL

(COND ((NULL XS) (RETURN NIL))
((MEMBERO (CAR XS) YS)
(RETURN (CONS (CAR XS) (OLDDOPROP (CDR XS)

YS))))
IT (RETURN (OLDOOPROP (CDR XS) YS))D))

2.6 A LA RECHERCHE DU TEMPS PERDU

2.6.1 History and Time Contexts
So far all our sentences about blocks have referred to a single state of the
world, the present one. Let us try to extend our system to discuss the past,
giving the blocks world a history. This brings up the important idea of
interpreting a phrase in a context, in our case a time context. Other
contexts would be place ("come here') or speaker('/ killed Cock Robin").

Let us simply take Monday, Tuesday as the times, and define the
blocks history as a set of day-world pairs. If we use the notation X-"Y to
abbreviate [X Yl for readability we have as a possible history:

[MONDAY [A—(RED 2 2 01 B--[GREEN 2 5 21

C—FRED 2 5 01 D-is.FGREEN 4 11 0]]

TUESDAY [A—FRED 2 5 41 B-..[GREEN 2 5 21

C--[RED 2 5 01 D--FGREEN 4 11 011
WE ON ES DAY—(etc.

(Nothing much happened between Monday and Tuesday except that the

) red block to the left of a red block was put on the small green block.)

We also need to know what day it is today, say Thursday. So global
variables HISTORY and TODAY describe our model (they can be set up by
a procedure MAKEHISTORY corresponding to our previous
MAKEWORLD). If we want to know what the world was like on Monday
LOOKUP 'MONDAY :HISTORY will tell us. and LOOKUP 'TODAY
:HISTORY gives us the news.

What sort of sentences should we have? How about: The block which
was to the left of a red block on Monday is on a block', or 'On Wednesday
the block which was to the left of the block which was on a big block on
Monday on Tuesday was to the right of the block which was on a red block
on Thursday". Has the big block been on a small block? The point is that
we can't evaluate on a big block" to find which blocks it describes until
we know which day we are talking about. So when we translate such a
phrase we cannot pass on a list of blocks as the result, as we did
previously.

So let us pass back a description, which can be evaluated for a given day
when we have read enough to know what day it is. This description can be
a list of lists of lists that is a tree structure, using markers OBJ (object),
PROP (property), REL (relation), UNIQUE (to handle 'the). The tips of the
tree can be the names of semantic functions ØBLOCK, ØRED, etc. The
phrase [RED BLOCK ON THE BIG BLOCK] would give the tree

PROP

EEL PROP
I

00W UNIQUE ØRED 05.3

PROP ØBLOCK
I

ØBIG 05.3

05L01C

This would be represented by lists thus
[PROP [REL ØON [UNIQUE [PROP 0BIG [OBJ ØBLOCK]]]]

[PROP ØRED [OBJ ØBLOCK]1]
We could also allow such descriptions to have as components lists of
blocks, which we have already evaluated. Such trees are easily
constructed by functions MAKEOBJECT, etc; thus:

TO MKOBJ 'X TO MKPROP 'PR 'x))
10 (('OBJ :X)) 10 (('PROP :PR :X))

END END
and similarly for MKREL and MKUNIQUE.

Now we need a function to evaluate descriptions for a given day and
produce a list of blocks. It can use our previous functions DOPROP,
DOREL and UNIQUE, thus:

TO EVAL DESCRIP 'DAY
NEW 'WORLD
M 'WORLD LOOKUP DAY HISTORY
IF WORDQ :DESCRIP THEN RESULT :DESCRIP (e.g. ØBIG)

IF 'OBJ=F :DESCRIP THEN RESULT APPLY SECOND :DESCRIP
IF 'PROP=F :DESCRIP THEN RESULT DOPROP

(EVAL SECOND :DESCRIP :DAY)
(EVAL THIRD :DESCRIP :DAY)

IF 'REL=F :DESCRIP THEN RESULT DOREL
(EVAL SECOND :DESCRIP :DAY)
(EVAL THIRD :DESCRIP :DAY)

IF UNIQUE=F :DESCRIP THEN RESULT UNIQUE
(EVAL SECOND :DESCRIP :DAY)

RESULT :DE5CRIP (i.e. set of blocks, already evaluated)

(Note SECOND is F BF,THIRD 1sF SF SF). See section 2.6.4 for the
LISP translation.

Now DOPROP and DOREL, which make reference to WORLD, will have
the right world to work in, since it is set up as a local variable and made to
be the world for the day supplied. EVAL just calls itself recursively to
evaluate sub-trees (think of it as solving sub-problems of evaluation).

2.6.2 Semantics for Blocks with Tense
Here then is the semantic specification for blocks with reference to past
time. The new productions are marked with an asterisk. Coding the
specification as LOGO procedures is tedious but straightforward. Notice
that a production that does not know what day it is makes a description;
one that is given a day evaluates descriptions.

simpnounphr -.noun
simpnounphr - adj simpnounphr
nounphr - simpnounphr qualif
nounphr-.- simpnounphr

Thounphr-t. simpnounphr tqualif
qualif—prep clnounphr
tqualif -. which 'was qualif

'on 'day
clnounphr -''a nounphr
clnounphr— the nounphr
assertion -'-there 'is 'a

nounphr
'assertion -.-'on day 'there

'was 'a nounphr
question —'is clnounphr qualif

'question -...'has clnounphr 'been
qualif

sentence -'-assertion

mkobj ((noun))
mkprop ((adj)) ((simpnounphr))
mkprop ((qualif)) ((simpnounphr))
((simpnounphr))
mkprop ((tqualif)) ((simpnounphr))
mkrel ((prep)) ((clnounphr))
eval ((qualif)) ((day))

((nounphr))
mkunique ((nounphr))
not emptyq(eval ((nounphr))
today)
not emptyq(eval ((nounphr))
((day)))
exercise
exercise

if ((assertion)) then
p 'correct else p liar

97

sentence —...question if ((question)) then
p 'yes else p no

sentence—'today 'is day m 'today ((day))

2.6.3 Exercises
2.6.1. Fill in the semantics of questions.
2.6.2. Hand-simulate in outline the action of the EVAL procedure on the
description tree given above and day MONDAY, using the history given at
the beginning.
2.6.3. Write LOGO procedures for the new productions, using those for
the "more flexible program" of section 2.5.2 as prototypes,

2.6.4 The Block-Listing Function in LISP

(DEFUN MKOBJ (X)
(LIST 'OBJ X))

(DEFUN MKPROP (PR X)
(LIST 'PROP PR X))

(DEFUN EVAL' (DESCRIP DAY)
(PROC U

(SETQ WORLD (LOOKUP DAY HISTORY))
(COND ((ATOMP DESCRIP) (RETURN DESCRIP))

((EQ 'OBJ (CAR DESCRIP)) (RETURN (APPLY (CADR
DESCRIP)D)

((EQ 'PROP (CAR DESCRIP))
(RETURN (DOPROP (EVAL (CADR DESCRIP) DAY)

(EVAL (CADDR DESCRIP) DAY))))
((EQ 'REL (CAR DESCRIP))
(RETURN (DOREL (EVAL (CADR DESCRIP) DAY)

(EVAL (CADDR DESCRIP) DAY))))
((EQ 'UNIQUE (CAR DESCRIP))
(RETURN (UNIQUE (EVAL (CADR DESCRIP) DAY))))

(T (RETURN DESCRIPD)))

2.7 WINOGRAD'S CONVERSATIONAL PROGRAM

2.7.1 Introduction
Winograd's program for conversing about a simple world of blocks and
pyramids was a landmark in natural language processing by computers. It
simulates a system of blocks, pyramids and boxes and displays the current
state on a screen. The user can give it commands and ask it questions, not
only about the current state of the world but about its own past actions
and reasons for them. We will not describe the program here since there is
a very clear description in Winograd's 1973 paper; we just give a portion
of Winograd's sample dialogue and make a few comments relating to it
and to our previous work with LOGO.

2.7.2 Sample Dialogue

1. pick up a big red block
OK

2. grasp the pyramid
I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN

3. find a block which is taller than the one you are holding
and put it into the box.
BY "IT', I ASSUME YOU MEAN THE BLOCK WHICH IS
TALLER THAN THE ONE I AM HOLDING
OK

4. what does the box contain?
THE BLUE PYRAMID AND THE BLUE BLOCK

5. what is the pyramid supported by?
THE BOX

6. how many blocks are not in the box?
FOUR OF THEM

7. is at least one of them narrower than
the one which I told you to pick up?
YES, THE RED CUBE

8. is it supported?
YES, BY THE TABLE

9. can the table pick up blocks?
NO

10. can a pyramid be supported by a block?
YES

11. can a pyramid support a pyramid?
I DON'T KNOW

12. stack up two pyramids
I CAN'T.

13. the blue pyramid is mine
I UNDERSTAND

14. I own all blocks which are not red,
but I don't own anything which supports a pyramid
I UNDERSTAND

15. dolownthebox?
NO

16. do I own anything in the box?
YES. TWO THINGS: THE BLUE BLOCK AND THE BLUE
PYRAMID

17. will you please stack up both of the red blocks
and either a green cube or a pyramid?
OK

18. which cube is sitting on the table?
THE LARGE GREEN ONE WHICH SUPPORTS THE RED
PYRAMID

19. is there a large block behind a pyramid?
YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN
CUBE AND THE BLUE ONE

20. put a small one onto the green cube which supports a pyramid
OK

21. put the littlest pyramid on top of it
OK

22. how many things are on top of green cubes?
I'M NOT SURE WHAT YOU MEAN BY ON TOP OF" IN THE
PHRASE "ON TOP OF GREEN CUBES"
DO YOU MEAN:

- DIRECTLY ON THE SURFACE
2 - ANYWHERE ON TOP OF?

23. had you touched any pyramid before you put the green one on the
little cube?
YES, THE GREEN ONE

24. when did you pick it up?
WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED
BLOCK AND A LARGE GREEN CUBE

25. why?
TO GET RID OF IT

26. why did you do that?
TO CLEAR OFF THE RED CUBE

27. why did you clear off that cube?
TO PUT IT ON A LARGE GREEN CUBE

28. why did you do that?
TO STACK UP THE RED CUBE, A LARGE RED BLOCK
AND A LARGE GREEN CUBE,

29. why did you do that?
BECAUSE YOU ASKED ME TO

2.7.2 Semantics: Some Remarks
(a) Our LOGO program computes a set (list) of blocks when it is unsure
which one is meant, e.g. [GREEN BLOCK] gives list LB DI. Winograd in
his Planner system chooses one of the blocks and uses a "back-track"

100

facility in Planner to go back and repeat with the next block. We can't do
this in LOGO, but computing the list seems about as good.

(b) Winograd actually creates some Planner program and then runs it. We
just run existing program. His Planner program looks rather like sentences
in logic. For example:

a red cube which supports a pyramid
(GOAL (IS ?X1 BLOCK))
(GOAL (COLOR-OF ?X1 RED))
(GOAL (EQUIDIMENSIONAL ?X1))
(GOAL (IS ?X2 PYRAMID))
(GOAL (SUPPORT ?X1 ?X2))

This is more sophisticated than our description trees in the final LOGO
program.

(c) Even the dictionary of word meanings had the names of procedures in
it. (Similarly in our LOGO program MEANINGOF ON is a procedure name
ØON.)

(d) Notice the complexity of a word like "the". Sentence 2 "Grasp the
pyramid" is ambiguous, but "Grasp the red pyramid" is OK since the
model world only has one red pyramid. In sentence 5 "What is the
pyramid supported by?" there'is no ambiguity, since a particular pyramid
has just been mentioned; here the ambiguity is resolved by syntactic
context, not by reference to the model. Our LOGO program could not do
this unless we made procedures like NOUNPHR store the meaning and
the corresponding input string or tree,

2.7.3 Syntax: Some Remarks
(a) Notice the complexity of the syntax Winograd's program can handle
compared with ours. Ours, with only a few kinds of phrases, was still a bit
hard to keep in one's head. If we simply invented 199 more kinds of
phrases we would get in a muddle.

(b) To avoid a very big context-free grammar with lots of arbitrary names
of phrase classes Winograd uses "systemic grammar", due to Halliday (he
doesn't regard the choice as crucial, just helpful). There are just four basic
kind of phrase:

CLAUSE 'Is it red?', 'it is on the table',
'on which he sat'

NOUN GROUP 'A big man', 'the man in a hurry', 'cars'
PREPOSITION GROUP 'On top of the table', 'with',

'in the iron mask'
VERB GROUP 'lives', 'will have been living',

'to be kissed'
But each of these is subdivided (into species and subspecies as a biologist
would say). The subdivisions are characterised by features,
DETERMINED. MASCULINE, SINGULAR, ANIMATE, TRANSITIVE,

101

INTERROGATIVE. etc. So instead of a class
MASCSINGCLNOUNPHRASE (!!!)

we might have NOUN GROUP with features MASCULINE, SINGULAR,
CLOSED. This makes it easy to ensure that subject and verb agree in
number without writing separate procedure rules for each case (in French
they must also agree in gender). We can also ensure more easily that
verbs like "loves" get ANIMATE subjects. Notice, too, that one would
expect the semantics of "loves" to be different according to whether the
object is animate or not. "John loves Mary" implies that John is in love,
but "John loves ice cream", doesn't.

The subdivisions of CLAUSE are very complicated (see Winograd 1972
pp.48, 49). Even this does not exhaust the matter because we can also
make distinctions based on transitivity/intransitivity.

(c) Winograd writes his parser in a special language, PROGRAMMAR,
which is not all that different from LOGO but is specially designed for
parsing. For example, we do not need to mention the string S all the time,
and the grammar

5— NP VP
NP— DETERMINER NOUN
VP— VERB/TRANSITIVE NP
VP - VERB/INTRANSITIVE

corresponds to the PROGRAMMAR program

(PDEFINE SENTENCE
(((PARSE NP) NIL FAIL)
((PARSE VP) FAIL FAIL RETURN)))

(PDEFINE NP
(((PARSE DETERMINER) NIL FAIL)
((PARSE NOUN) RETURN FAIL)))

(PDEFINE VP
(((PARSE VERB) NIL FAIL)
((ISO H TRANSITIVE) NIL INTRANS)
((PARSE NP) RETURN NIL)

INTRANS
((I50 H INTRANSITIVE) RETURN FAIL)

In the second line above (PARSE NP) has two "directions", NIL and FAIL,
after it. It uses the first if it succeeds, the second if it doesn't. (PARSE VP)
has a third direction, RETURN, which is used if it succeeds and there is not
more string left. NIL means go onto next instruction. FAIL means output a
fail and restore string to the previous one (like CHECK). RETURN outputs
a result, after attaching the new node to the parse tree (rather like TRY).

102

(d) It is not clear from Winograd's papers how well the program does
when interrogated by a user other than the author, and to what extent the
syntax is tailored to the particular dialogue in the examples. Writing the
syntax in procedural form is a flexible approach but may make it harder to
forsee all possible interactions of the various parsing procedures.

2.7.4 References
T. Winograd (1973) A procedural model of language understanding, in
Computer Mode/s of Thought and Language (eds Schank & Colby) San
Francisco: Freeman.

T. Winograd (1972) Understanding Natural Language. Edinburgh
University Press. (A full account if you want more detail.)

2.8 VERBS AND THEIR MEANINGS

2.8.1 Verbs
In our LOGO program dealing with a simplified blocks world we had
nouns, adjectives and prepositions, but avoided verbs except the verb to
be. Winograd allows a rather restricted set of verbs such as put and
support, but their use is limited since there is only one person' in the
blocks world, namely the program (called SHRDLU). Sentences with more
interesting verbs are:

John sold Fred a donkey.
Fred bought a donkey.
Mary put the pie in the oven and switched it on.
Mary toldTim to eat his pie.

Two points of importance for generating or understanding sentences with
verbs are

1. How does the verb relate to the noun phrases? For example how does
sold relate to John, Fred, a donkey.

2. Can verbs be analysed into more primitive ideas? For example, is
there some primitive idea common to bought and sold?

The first question is the concern of "case grammar". The second involves
the search for semantic" or 'conceptual" primitives.

We should study both of them if we wanted to write a program to answer
questions about a simple story in order to demonstrate its understanding,
e.g. the story might say John sold Fred a donkey and we might ask
What did Fred buy?'

2.8.2 Case Grammars
The grammatical notion of case goes back to the Greek grammarians.
English has three cases, nominative, accusative and genitive (I, me, my;
he, him, his; Bill, Bill, Bill's), but Latin has six, Finnish fifteen. These are
distinguished by word endings. In all three languages the genitive case has
very similar meaning.

103

For semantics we are interested not in 'surface" case, distinguished by
word endings, but in "deep' case, which analyses what kind of role the
noun plays with respect to the verb. Thus in "John sold Fred a donkey"
there are no case endings, but we may distinguish four deep cases:

Agent (John)
Object (donkey)
Source (John)
Goal (Fred)

Filmore (1968) gives the following cases:

Agent (A) the instigator of the event
Counter- the force of resistance against which

Agent (C) the action is carried out
Object (0) the entity that moves or changes or whose

position or existence is in consideration
Result (A) the entity that comes into existence

as a result of the action
Instrument (I) the stimulus or immediate physical cause

of an event
Source (S) the place from which something moves
Goal (G) the place to which something moves
Experience (E) the entity that receives or accepts or expe-

riences or undergoes the effect of an action

Any one verb can accept only a subset of these cases, and from this subset
not all need be supplied in any one sentence, Thus "open" can be used in
four ways:

The door opened (0)
John opened the door (AO)
The wind opened the door (10)
John opened the door with a chisel (AOl)

A translation program might have a "case frame" for each verb telling us:
(a) which cases the verb can take
(b) which of these are compulsory (e.g. object for open)
(c) how each case is to be detected, by word endings or preposition
(d) any semantic restrictions on the case (e.g. agent of open

must be animate, object of open must be physical-object)

This information can be used to remove any ambiguity of sentences
(especially d), and to impose a structure on the sentence which is more
useful than the parse tree for drawing inferences or translating to another
language. For example a traditional parse of "John calmly broke the
window with a hammer" might be:

104

NP

N

John

,/\ ,/\
with a hammer

broke the window

A case grammar might parse it thus:

PRED ANT OBJECT INSTRUMENT MANNER TIME

II
break John the window the hammer calmly past

Here break is the predicate (verb), AGENT, OBJECT and INSTRUMENT
are cases, and MANNER and TIME are verb modifiers. (The example is
from Bruce 1975.) Most recent Al programs for natural language use
some form of case analysis, but there is no agreed system of cases.

A more semantic way of looking at cases is to think of a narrative as
describing events". A verb is then a property of an event (a "falling
event, 'selling event, etc.) and the cases specify important relations
between the event and individuals (agent relates individual John to event
e). Events, unlike people, do not have proper names, and the information
provided by the cases helps to specify them unambiguously.

2.8.3 Semantic Primitives
Pairs of verbs like sell-buy, lend-borrow, come-go clearly have some
elements of meaning in common with each other. We might hope to
analyse them into more primitive meaning constituents. For example,
Schank uses about a dozen such constituents for notions such as transfer,
propel and ingest.

As we have seen, such analysis could enable us to answer questions about
a story even if a question refers to the same event by a word differing from
the one used in the story. Furthermore, if we want to do inferences, e.g. to
derive facts implied by, but not explicitly stated in, a story, it is far more
economical to give rules for the small number of primitives than to give
them for each word in the language. Of course semantic analysis into
primitives can also be done to some extent for nouns (father = male

105

parent. or should it be parent = mother or father?) but we will talk here
about verbs.

Let us take as an example an analysis of verbs proposed by Jackendoff
(1975) following Gruber. He distinguishes GO, BE and STAY verbs

GO The train travelled from Detroit to Cincinnati
The hawk flew from its nest onto the ground

BE Max is in Africa
The cat lay on the couch

STAY The bacteria stayed in his body
Bill kept the book on his shelf

We might do a case analysis of the second sentence above as:

PRED AGENT OBJECT SOURCE GOAL MANNER

I I I I I
GO the hawk the hawk its nest the through

ground the air

eliminating flew" in favour of the primitive GO.

But there is another dimension of variation: Position, Possession,
Identification. The verbs above were all positional, thus BE 01

STAYPOSit Analogues for Possession are:
GO 055055 Harry gave the book to the library
BE possess Max owned an iguana
STAYPOSSOSS The library kept the book

and for identification

GO ident The ice became mushy
BE ident The metal was red
STAYident The redness persisted

Jackendoff further distinguishes two kinds of agent, causal" as in Linda
lowered the rock" and "permissive" as in "Linda dropped the rock". These
distinctions enable him to analyse important components of meaning in a
considerable number of common verbs. He can then build up rather
general inference rules applicable to these verbs, such as (using case
notation):

If GO(object: X, source: Y, goal: Z) at time
then for some times V. t" with tkCt< t"
BE(object: X, location: Y) at t'
BE(object: X, location: Z) at V

On the other hand it is unclear which are the best primitives, for example
Schank makes other distinctions, principally between transferring a
physical object (put a brick) and a mental object (tell him that ...) (See his
paper in Schank and Colby's 1973 book already referred to). Appropriate-
ness of any system of primitives needs further demonstration by working

106

programs, whilst case systems have already proved their value in this way

All this analysis of verbs has led Schank and others to suggest that parsing
should be done not by the traditional context-free syntax analysis or a
variant thereof, but by finding the verbs and then looking around in the
sentence for nouns to fill in the appropriate case slots. In programs
working on a limited domain of discourse, such as electronic circuits, it
seems possible to make good use of known case frames of verbs which
may take very specific kinds of noun in each case position (e.g. connect-
to-).

2.8.4 Exercises
2.9.1. Attempt a case analysis of the following sentences:

Fred peeled the apple with his knife
The heavens opened
John went to the restaurant and ordered a steak from the waiter
Don't eat peas with your spoon
He learnt Artificial Intelligence from a tape recorder in his bath
He left it in the park

2.9.2. Suggest a way in which case parses might be represented in LOGO.
2.9.3. Try to analyse the verbs in the above sentences in terms of -
semantically more primitive concepts.

2.8.5 References
Bruce (1975) Case systems for natural language. AIJ. 6,4. An excellent
review.

Jackendoff (1975) A system of semantic primitives. in Theoretical Issues
in Natural Languages Processing (eds Schank & Nash-Webber).

Schank (1973) in Computer Mode/s of Thought and Language (eds
Schank & Colby).San Francisco: Freeman.

2.9 ACKNOWLEDGEMENTS
Rod Burstall, who wrote the notes on natural language, would like to
thank Stephen Isard for very helpful criticism, and Joseph Goguen for
useful advice. He would also like to thank three generations of students for
their tolerance to a lecturer on natural language processing whose
professional competence (if any) is mainly in the theory of computation.
Thanks also to Mark Adler for translating LOGO programs into LISP.

107

QUESTION ANSWERING
AND INFERENCE

This section is about computer reasoning. The rules of formal logic can be
programmed on a computer together with some heuristic search
strategies to enable the machine to prove mathematical theorems. After
many years of hard research programs exist that can prove standard
theorems at about undergraduate mathematics level. But inferring
conclusions from premises is useful outside the domain of mathematics,
and somewhat simpler methods of computer reasoning have been applied
both in natural language systems, like Winograd's, and in systems that
answer questions from databases of information. A rather limited set of
inference procedures are available in LOGO, and we shall explore their use
here, starting with a consideration of the limitations of our previous
approach to question answering.

3.1 THE INFERENCE SYSTEM

3.1.1 Introduction
We wrote a LOGO program to accept sentences about the blocks world
and to make some primitive responses to them. But the model to which
the sentences referred was put in as a collection of lists described in
LOGO. It was not the result of our conversation. This might be a fair
representation of a system that answers questions about a scene it sees
through a TV camera or even about some specific body of data like airline
timetables. But often we derive our knowledge from sentences: 'Read this
passage and answer the questions below", as the school books say. So we
need to represent an incomplete model in a way that is easy to add to or
change. The list representation was specific (it knew just where everything
was), not too easy to change and needed special LOGO code for concepts
like ON. An alternative to lists + procedures is facts + inference rules.

3.1.2 Memory
The program must store some information about the blocks world, for
instance The block is red. We adopt the same method as we used in the
geometric analogy problems and the making of structural descriptions,
and for the same reasons: i.e. we use symbolic descriptions. We could
choose, say, [RED BLOCK] or [COLOUR BLOCK RED]. The latter will be
most versatile, for instance if we wanted to answer the question 'What is
the colour of the block?".

Typically we will want to store a large collection of such facts inside the
computer. As a first approximation we can imagine a list of them. e.g.

[[COLOUR BLOCK RED] [BELONGS BLOCK ME] [BIG BLOCK]
[ON BLOCK1 BLOCK] . .

Such a collection of facts is usually called a database.

108

Retrieval. How would the program use this database to answer the
question "Is the block coloured red?'. First it would have to analyse the
sentence and build up the description [COLOUR BLOCK RED]. Then it
would call:

AMONGQ [COLOUR BLOCK RED] DATABASE
and print YES or NO as the result of this call was TRUE or FALSE. (Should
it be NO or DO NOT KNOW?)

The problem of building up descriptions from the English input has been
the subject of our natural language lectures.

3.1.3 Organising the Database
Unfortunately the number of facts that have to be stored in most non-
trivial domains, is very large. Searching down a long list, as AMONGQ
does, take a long time. It is rather as if one was searching for a book in the
library by looking at every book. Our solution to this problem is similar to
the library's: we index the database. Various indexing systems are used to
organise databases. We have made a system available in LOGO (available
through BORROWFILE or LIBRARY as 'ECMIOl 'INFERENCE). You can
add a fact to the database with the command ASSERT. e.g.

ASSERT [COLOUR BLOCK RED]
ASSERT [BIG BLOCK]

To decide whether a fact is present we have provided the test function
ISO, i.e.

ISQ [COLOUR BLOCK RED]
corresponds to

AMONGQ [COLOUR BLOCK RED] :DATABASE

3.1.4 Blocks World
Let us fill the database with some facts about a Iitt!e world consisting of
two blocks, both red, one big and one light (in weight). We must choose
proper names for the blocks, say blocki and block2. The procedure
SETUPWORLD will set this up for us:

TO SETUPWORLD
10 CLEARDATABASE
20 ASSERT [COLOUR BLOCK1 RED]
30 ASSERT [COLOUR BLOCK2 RED]
40 ASSERT [BIG BLOCK11
50 ASSERT [LIGHT BLOCK21

END

3.1.5 Semantic Networks
These sequences of assertions are a little difficult to read, so, just as in the
structural description problem, we can represent them as a network (these
networks are variously called semantic networks, relational nets or graphs
in the literature).

109

BIG

BLK1) (BLcCK2

LIGHT

RED

3.1.6 "Wh" auestions
Suppose we ask the question 'What colour is blockl ?". What do we want
the program to do? The program should look for a fact of the form:
[COLOUR BLOCK ?fl in the database. where ?? is any argument
whatever, and returns as its result whatever 7? turns out to be (in this case
RED).

We have already met something in LOGO that plays a similar role to ??,
namely a LOGO variable, e.g. COL. We will use the same notation here
and write [COLOUR BLOCK 'COL]. Originally COL will be uassigned, but
during the course of answering the question it will be assigned a value, in
this case RED. So we need a procedure, say FINDANY, which takes [COL]
and [COLOUR BLOCK1 'COL] as arguments and returns RED as result,
e.g.

1: PRINT FINDANY [COL] [COLOUR BLOCK1 'COL]
RED

This procedure will have to compare [COLOUR BLOCK1 'COLI against
facts in the database, looking for one that matches, e.g. [COLOUR
BLOCK1 RED]. Matching [COLOUR BLOCK1 'COL] against a fact
consists of checking that the first and second items of the fact are
COLOUR and BLOCK respectively and then assigning the third item to
COL (i.e.MAKE 'COL 'RED). FINDANY will then return a list containing

just :COL as its result. Similarly "What is coloured red?' could be
translated into:

FINDANY [osj] [COLOUR OBJ RED]

Not just "Wh" questions (WhichWhat . . .?, Who ... 7, How . . .?, etc.)
need to use variables. We might ask 'Is anything red?'. This naturally
translates into:

ISO [COLOUR 'OBJ RED]
which should return TRUE if any fact in the database matches [COLOUR
'OBJ RED] (assigning the appropriate item to OBJ in the process).

3.1.7 Conjunctions
Suppose we ask 'Is there something light and red?' or "What is light and
red?". We clearly want these to succeed if both [LIGHT 'OBJ] and
COLOUR OBJ RED] match with facts in the database and 'OBJ is
assigned the same item in both matches.

110

We will want both ISO and FINDANY to take a list of descriptions as
input. They will take the first description, FLIGHT 'OBJ), and compare it
with facts from the database until they find one that matches (e.g. FLIGHT
BLOCK2I, when OBJ will be assigned the value BLOCK2). It will not do to
continue the process by looking for something to match with [COLOUR
'OBJ RED], because OBJ may be assigned some other value than
BLOCK2. Rather the database must now be searched for something to
match with [COLOUR BLOCK2 RED], i.e. having found a value for OBJ,
we replace all remaining occurrences of X by this value. We signify this to
the procedures ISO and FINDANY by putting a quote in front of any OBJ
that is to be assigned a value, and a colon in front of any OBJ that is to be
replaced by its value, i.e. we write

ISO FILIGHT 'OBJI [COLOUR :OBJ RED])
FINDANY [OBJ) [FLIGHT 'OBJI [COLOUR :OBJ RED]]

To sum up:
'OBJECT means OBJECT is a variable that is to be assigned a value

in the match, called an unbound variable.
:OBJECT means OBJECT is a variable that is to be replaced by the

value of 'OBJECT, called a bound variable.
OBJECT means OBJECT is a constant that stands for itself, like RED,

BLOCK2 or COLOUR.

3.1.8 Failure
If ISO and FINDANY are working properly they should fail to find an object
that is both big and light, i.e.

ISO [[BIG 'OBJECT] [LIGHT OBJECT])
should return FALSE. (FINDANY returns 1].) If we had written:

ISO [[BIG 'OBJECT] [LIGHT 'OBJECT))
then ISO would have returned TRUE by assigning first BLOCK1 to
OBJECT then BLOCK2 to OBJECT.

What we do with this output of FALSE when we get it depends on our
conventions about the database. If we assume that the database has
complete knowledge of the domain and that any fact not stored is false,
then we will print NO. On the other hand, if we admit the possibility that
there may be things it does not know, then we may either print I DO NOT
KNOW or try to show that no big things are light so that we can print NO.
Either of these conventions can be useful in different circumstances. We
should always be clear which we intend.

3.1.9 Search
Suppose we had asked "Is anything red and light?". i.e.

ISO [[COLOUR 'OBJ RED) [LIGHT :X))
There is a good chance that the initial comparison of [COLOUR 'OBJ
RED] with facts in the database would have assigned BLOCK1 to 'OBJ.
Since [LIGHT BLOCK1 I is not in the database, ISO would have returned

111

FALSE unless it was able to back-up, undo its assignment of BLOCK ito
'OBJ and assign BLOCK2 instead. Thus ISO and FINDANY must be
prepared to search for assignments to the variables that simultaneously
satisfy all the descriptions. With a lot of conjunctions and a lot of variables
in the input, ISO and FINDANY may have to do a lot of searching before
they succeed (or fail). We can represent these searches by a search tree,
e.g.

[coLouR 'OBJ RED) I -c goal
j[LIGHT :OB.J]

[CoLouR BLK1 RED]

1operator

[COLOUR BLOCK2 RED]

[LIGHT BL1C11I I[LIGHT BLOCK214—sub-goal

[LIGHT BLOCK21
failure

Success

The nodes of the tree are goals or descriptions to be matched. The arcs or
operators are facts.from the database.

3.1.10 FINDALL
There may be several alternative assignments that lead to success. Both
ISO and FINDANY are satisfied with the first successful assignment they
find, but there are occasions when we are interested in all the successful
assignments. For instance, suppose we ask "Which things are red?". We
would expect the answer "BLOCKi and BLOCK2". A procedure FINDALL
is provided in LOGO. Its syntax is similar to FINDANY, except that it
returns a list of all successful assignments, e.g.

FINDALL [THING! [COLOUR 'THING RED]
returns I[BLOCK1] [BLOCK2I] (NB. not [BLOCK1 BLOCK2I, for a reason
that will soon be clear.)

3.1.11 Many Variables
Some questions may involve using several variables. For instance suppose
we ask 'What colour is the big object?". We would probably translate this
into

FINDANY [COL] [[BIG 'OBJ] [COLOUR :OBJ 'COL]]
which would return [RED]. In the process BLOCK1 would be assigned to
OBJ and RED to COL. Only the value of COL is returned as the result of
FIN DANY. because [COL] was given as its first input. If we wanted the
value of OBJ as well, for instance in answer to the question 'What is the
big object and what colour is it?", we would write

FINDANY [OBJ COL] [[BIG 'OBJ] [COLOUR :OBJ 'COL]I
The result would be [BLOCK1 RED]. This explains why we have been
using lists for the first input and the output of FINDANY and FIN DALL.

112

FINDALL can also find the values of several variables. Consider the
question 'What are all the objects and their colours?'. This translates into

FINDALL [OBJ COL) [[COLOUR 'OBJ 'COLJI
The result of which is

[[BLOCK1 RED] [BLOCK2 RED])
which explains why the result of FINDALL is a list of lists.

3.1.12 Exercises
3.1.1. Write FINDANY in terms of ISQ (i.e. assume ISO is provided, but
FIN DANY is not.)

3.1.2.

H A

Represent the above picture as a procedure that makes a series of
assertions in a database, e.g.

TO ARCH1
10 CLEARDATABASE
20 ASSERT [ONEPARTIS GROUP A] etc.

3.1.3. Translate the following questions into procedure calls that could
access the database set up by ARCH 1.

IsA lying?
What is lying?
What is to the left of C?
What is to the right of B?
What things are supporting A?
What is the arch constructed from?
What are the supports of the arch?
How many things are supporting A?

3.2 FORWARD AND BACKWARD DEDUCTION

3.2.1 Deduction
So far the knowledge in our database has been simple facts or assertions.
Not all knowledge is of this type. Some knowledge is in the form of laws
like "All big things are heavy' (people often use very rough
generalisations). With this law, and the fact that blocki is big, we should
be able to answer the question 'Is blocki heavy? in the affirmative.
Perhaps the simplest way to ensure this would be to have a procedure
which monitored all new additions to the database. Whenever a fact of the
form [BIG Xl was asserted this procedure would deduce [HEAVY XI and
add this to the database. We can add such a procedure to our world model
using the procedure ASSERT. Let us edit the procedure SETUPWORLD

113

and add line
15 ASSERT [IMPLIES [BIG 'X] [HEAVY x]]

You should read this law "The fact that Xis big implies the fact that Xis
heavy". The first description. [BIG 'Xl, is called the antecedent and the
second. [HEAVY :X), is called the consequent. The procedure works by
matching the antecedent against all incoming assertions. If a match
succeeds the procedure asserts the consequent, replacing any variables
with their assigned values. Such a procedure is sometimes called an
'antecedent theorem, an 'if asserted method", or a "demon', and the
kind of deduction it does is variously called "forwards deduction',
'forwards chaining, "bottom-up reasoning' or 'hypotheses-driven
deduction".

We should be sure to add such demons' before asserting any facts,
because they will only deduce consequences of facts asserted after they
themselves have been asserted. Thus when line 40, which is

40 ASSERT [BIG BLOCK11
is executed, our demon will set to work and ASSERT [HEAVY BL0CK1 1.
(If line 40 were line 13, our demon would do nothing.) Now if we ask

ISQ [HEAVY BLOCK11
we will get the result TRUE.

3.2.2 Problems with Forwards Deduction
Unfortunately it is not always convenient to draw all possible conclusions
from the things we assert. Typically an already large database will become
cluttered with facts we may never need to know. Imagine, for instance,
what would happen to our database if every time we asserted [HUMAN
Xl, we deduced [HAS X HEART], [HAS X HEAD], [HAS X HAIR],
HAS X LUNG], etc. Any new assertion would lead to an explosion of
deductions, and the database would become so full that we would find it
increasingly hard to retrieve facts.

The situation is worse because some demons lead to a call of themselves.
Consider "Every human has a human mother". If we asserted [HUMAN
JANE1] wewould deduce and assert [MOTHER JANE2 MUM11 and
HUMAN MUM 1] where MUM 1 was a new constant. This would lead to a
new deduction [HUMAN MUM21 and so ad infinitum. Clearly some laws
need to be kept for use only when needed.

3.2.3 Functions
In the previous example we cheated a bit. Each application of the law
"Every human has a human mother", introduces a new constant, (e.g.
MUM 1, MUM2 ,..,,etc.). But we have not yet discussed a mechanism
for introducing new constants. We now correct this omission.

A first approximation might be to include a new constant in the statement
of the laws, e.g.

114

[IMPLIES [HUMAN 'X] [HUMAN MUM]}
[IMPLIES [HUMAN! Xl [MOTHER :X MUM]]

This would work for the fist application of the law to, say, [HUMAN
JANE] producing [HUMN MUM] and [MOTHER JANE MUM], but the
second application (to [HUMAN MUM]) would produce [HUMAN MUM]
and [MOTHER MUM 1MUM], which would be silly. Clearly the new
constant should depend on the particular value of X at the time the law is
called. To deal with this problem we represent the new constant by
something like an eplicit LOGO procedure call using the function name
MUMOF and taking :X as argument. So MUM1 will be represented by I
MUMOF JANE] and MUM2 by [MUMOF [MUMOF JANE]].The law
"Every human has a human mother" can now be represented as

[IMPLIES [HUMAN 'XI [HUMAN [MUMOF xi]]
together with

[IMPLIES [HUMAN 'XI [MOTHER [MUMOF XI]]

Exercise 3.2.1. Represent the law "Every human has a head".

3.2.4 Backwards Deduction
What we need is a law that will only be invoked when it is needed to
answer some question, e.g. when we ask ISQ [HEAVY BLOCK 11 it
changes the question to ISO [BIG BLOCK1], which returns TRUE. But
HEAVY BLOCK1] is never asserted. In LOGO we store such a law by
typing

ASSERT [TOINFER [HEAVY 'XI [BIG XI]
Read this law "To infer that X is heavy, deduce that X is big'. ISQ
HEAVY BLOCK1] first checks to see if [HEAVY BLOCK1] is in the
database. If not, it then checks in a database of laws to see if any are
relevant. This means matching the consequent of the law against the
current goal (e.g. [HEAVY 'X] against [HEAVY BLOCK1]).Then the
current goal is replaced by the antecedent of the law (with any assigned
variables replaced by their values), e.g. ISO [HEAVY BLOCK 1] is replaced
by ISQ [BIG BLOCK11.

Such laws are variously called "consequent theorems" or 'if needed
methods", and the kind of deductions they do are called "backwards
deduction', 'backwards chaining", "top-down reasoning" or "goal-
directed deduction".

We will want to allow the antecedent of our TOINFER laws to consist of
several descriptions, e.g.

[TOINFER [METAL 'X] [HEAVY XI [COLOUR :X GREY]]
This will cause no problems, since ISO, etc., can handle conjunctions of
goals.

3.2.5 Search Again
Just as it was possible to make the wrong assignments to variables and
have to back-up, it is possible to apply the wrong law and have to back-up.

115

Suppose we edit SETUPWORLD to have two TOINFER laws,
corresponding to "All metal things are heavy", and "All big things are
heavy", i.e.

TO SETUPWORLD
10 CLEARDATABASE
13 ASSERT [TOINFER [HEAVY 'THING] [BIG THING]]
15 ASSERT [TOINFER [HEAVY 'THING] [METAL :THING]]
20 ASSERT [COLOUR BLOCK1 RED]
30 ASSERT [COLOUR BLOCK2 RED]
40 ASSERT [BIG BLOCK11
50 ASSERT [LIGHT BLOCK21

END

If we ask ISQ [HEAVY BLOCK1] in our current INFERENCE system the
first law, "all metal things are heavy", will be used first and it will call ISO
[METAL BLOCK1 1. This will fail, so if the original goal is not to fail, ISQ
must be prepared to back up and try the second law.

We can represent the search by a tree:

[HEAVY BLOCK1]

[TOINFER / \ [TOnwER
[HEAVY 'THING] [METAL :THING]J / \ [HEAVY 'THING] [BIG ;THING]]

[TAx BLcCK11I JEBIG BLOCK11

failure [BIG BLOCK1]

Success:

The arcs can now represent laws or facts from the database.

Even these TOINFER laws do not prevent explosions. For instance,
suppose we added the law:

[TOINFER [ON 'X xl [ON :X 'Yl [ON :Y :Z]]
corresponding to: if one block is on top of another and a third is on top of
that, then the top block is on top of the bottom block. Suppose we now
ask ISQ [ON BLOCK1 BLOCK21. Since this is not in the database the law
will be invoked and

ISQ [[ON BLOCK1 'Yl [ON :Y BLOCK2]]
will be called. This will call

ISO [[ON BLOCK1 'Vi] [ON Vi 'Vi [ON :V BLOCK2]]
and so, ad infinitum.

3.2.6 Predicate Calculus
Those of you familiar with predicate calculus will find all this rather
familiar. In fact this is a procedural version of a subset of predicate

116

calculus. For that reason you will sometimes see programs like this
referred to as inference systems' or 'theorem provers'.

3.2.7 Logical Arguments
We can get the program to perform most of the logical deductions that
you find in the literature. For instance, consider:

All Humans are Fallible
Turing is human
Socrates is human
Socrates is Greek

Who is a fallible Greek?
translate this into

ASSERT [TOINFER [FALLIBLE)() (HUMAN All
ASSERT [HUMAN TURING]
ASSERT [HUMAN SOCRATES)
ASSERT [GREEK SOCRATES]
FINDANY [X) [[FALLIBLE 'XI [GREEK XI)

to get [SOCRATES).

3.2.8 Exercises
3.2.2. Try the above translation with:

All men are mortal
Socrates is a man

Is Socrates mortal?

Ontology. We have met a very limited class of entities in this simple
descriptive language, i.e. just:

Physical objects like blocki, block2
Properties like red
Relations between them like colour, big
Assertions like [COLOUR BLOCK1 RED]
Laws like [IMPLIES [BIG 'Xi [HEAVY :X])

To conduct reasonable conversation we will have to represent: places;
times; events; actions; substances, etc.

3.2.3. (a) Using the LOGO inference system translate each of the following
sentences into a procedure call corresponding to its meaning:

The Pope is good
John Wayne is good
John Wayne is courageous
Anyone who is good and courageous is a hero

Who is a hero?
(b) Suppose the translations of the sentences above the line were used to
set up a database, and the translation of the sentence below the line were

117

used to interrogate that database. Draw the search tree of that
interrogation.

3.2.4. II Xis a parent of V and Lisa sister of X then Z is an aunt of V.
If X is a parent of V and X is an aunt of Z then V is a cousin of Z.

A mother or a father is a parent
Mary is the mother of John
Fred is the father of Jane
Mary is the sister of Fred
Daisy is the wife of Fred

Who is the cousin of Jane?
Draw the search tree of the above.

3.2.5. What additional laws do you need to answer Who is the aunt of
John?"
3.2.6.

[. •1

Using the LOGO INFERENCE system:
(a) Give a partial symbolic description of the above drawing of a face
sufficient to answer "yes" to the following questions, by direct database
lookup:

Is the mouth in the lower portion of the face?
Is the left eye in the upper portion of the face?
Is the nose in the centre of the face?

(b) In addition represent the laws that:
Anything in the centre of the face is also in the middle
portion.
Anything in the middle portion of something is always above
anything in the lower portion.
Anything in the upper portion of something is always above
anything in the middle portion.

(c) Represent the question:
Is the nose above the mouth?

Draw the complete search tree of its interrogation of the database.
(d) In addition represent the law:

To infer that x is above y
show that x is above z and z is above y.

and the question:
Is the mouth above the nose?

Draw some of the search tree of this interrogation. What problem arises?

d

118

How might it be overcome? Does your solution involve changing the
LOGO INFERENCE system?

3.2.9 Recommended Reading
B. Raphael, (1964) A computer program which understands, in AFIPS
Conference Proceedings Vol.26, part 1, pp.577-99.

G.J. Sussman, T. Winograd & E. Charniak (1972) Micro-Planner
Reference Manual MIT Al Memo 203A. (Read lightly, not attempting to
learn Microplanner.)

3.3 SUMMARY OF THE LOGO INFERENCE PACKAGE

3.3.1 Access
The IN FERENCE system consists of a number of procedures available as a
file in NEWLOGO. It provides facilities for making a database, retrieving
from it and doing forward and backward inference.

3.3.2 Patterns
A pattern is a list of pattern elements or patterns. A pattern element is
either
(a) A constant, i.e. a word or number
(b) A quoted variable, i.e. a quote followed by a variable name
(c) A colon variable, i.e. a colon followed by a variable name.
Examples of patterns:

(LIKES JOE FOODI
[LIKES JOE 'XX]
[NEAR XX CURRENT]
[LIKES JOE [DAUGHTEROF XX]]
[[LIKES JOE 'XX] [AVAILABLE :xx]]

A pattern is simple if its first is a pattern element, otherwise it is
compound. Compound patterns are understood as conjunctions. (All but
the last pattern above are simple.)

3.3.3 Procedures
Notation: Pat = pattern, T = truthvalue, L = list, LI = list of lists, VI = list of
variables.

CLEARDATABASE Clears the database.

ASSERT simple-pat - Adds pattern to database, any colon
variables take their current values.

Example: ASSERT [COLOUR RED :OBJ]

SQ Pat —'T Tests whether pattern matches one in
database. A quoted variable is assigned
a value by the matching if possible.
Colon variables take their current values
whether assigned by MAKE or by matching.

119

New values are available after ISQ
is finished. For a compound pattern each
component is matched in succession,
depth first.

Example: ISQ [[BIG 'XX] [BAD XX]]

FINDANY VI Pat -. L The pattern is matched against the
database; result is the list of
subsequent values of the variables named
in VI.

Example: FINDANY [XX] [BIG XX]

FINDALL VI Pat - LI Like FINDANY, but finds all possible
ways of matching the pattern with the
database; result is the list of all
possible lists of subsequent values
of the variables named in VI.

3.3.4 Rules
ASSERT can also be used with a rule as argument. Rules use antecedents
and consequents, which are simple patterns. There are two kinds of rules:

[IMPLIES antecedent consequent]
subsequently, when any pattern which matches the
antecedent is asserted the consequent is also
asserted (with the then current values of the
variables, including assignments to variable
while matching the antecedent).
Example:ASSERT [IMPLIES [STUDENT XI [INDUSTRIOUS :X]I

[TOINFER consequent antecedenti antecedent2 ...]
whenever the system tries to match some pattern
of the same form as the consequent it can
instead try to match the pattern(s) defined by
the antecedent(s) (all of them conjunctively).
Example:ASSERT [TOINFER [MAN 'Xl [MALE :X] [HUMAN :X]]

Restrictions.
1. No colon variables in the consequent of a TOINFER rule.
2. Variables occurring in the rules must not clash with any variables that

appear in non-rule patterns. Adopt a convention like X,Y,Z only for
rule-variables.

3.3.5 Negation
In a compound pattern any component after the first may be negated by
NOT [. . .1]. e.g.

ISO [[RED 'XI [NOT [SMALL Xl]].

120

4. VISUAL PERCEPTION

To expose some of the themes that arise when programming a computer
to "see", we first consider how we ourselves might perceive simple
drawings. Just as with problem solving, perceptual processes involve the
formation and use of descriptions.

4.1 FORMING STRUCTURAL DESCRIPTIONS

4.1.1 Introduction
Task. How could we get a sensible description of the following figure?

Ri

R7 dR2[j R3[J R4
R6

We would prefer a chair near a table' to "5 vertical rectangles and 2
horizontal rectangles". Let us look again at the process of achieving a
symbolic description of a picture we went through in the analogy lectures.

(a) We need to achieve uniformity of predicates. If several descriptions are
possible, e.g. "a triangle inside a square", or 'a square surrounding a
triangle', we arbitrarily choose a predicate, say, "inside" and then stick to
it, to enable rigorous comparison between descriptions.

(b) To avoid ambiguity, we express the elements involved in the
relationship in a fixed order. [inside triangle square] must be distinguished
systematically from [inside square triangle].

(c) We ignore superfluous words such as "with", 'a", "it".

(d) In cases where we have two objects of the same shape, we distinguish
them in the obvious way: triangle 1, triangle2.

(e) We list the objects in the figure, explicitly, and our descriptions take
the form:

(set of objects in figure) (set of relationships in figure)

4.1.2 Relations
Now consider our task figure. For convenience we abbreviate 'rectangle'
to 'R", and the set of objects in the figure is [Ri R2 R3 R4 R5 R6 R71. We
coUld describe the spatial relationship between Ri and R2 using above',
"below", 'under" or "on". "On" includes the idea of touching and suits our
purposes best. Thus:

121

[on Al R21 [on Ri R31 [on Rb 1341 [on Rb R61 [on R7 Rb]
We capture the different orientations thus:

[standing R21 [standing R3] [standing R41 [standing R61
[standing R7] [lying Al] [lying R5]

Rather a lot of expressions are accumulating and we have not yet
expressed half the things we need to say about the picture. We need ways
of making it easier to see what is going on. Notice the threefold mention of
R 1 - three facts about R 1 have been asserted. We have a way of
grouping references to the same object by creating a node to represent the
object and using directed arrows to represent the relationships it has with
other objects.

1:3
The third fact about R 1 [lying All tells us about a property of R 1 rather
than how it is related to other objects. We treat properties as one-place
relationships, in that the description of the property is attached to an
arrow from the node:

st

There are two interesting consequences of this representation:
1. The objects form two clusters by virtue of their relations:

group 1 is [Ri R2 R31, and group 2 is [R4 R5 R6 Ri].
2. We can readily see patterns of relations: 'a lying object on two

standing objects" isa pattern that occurs in each cluster, and
suggests a derived predicate: "is supported by"

How does the first point, the grouping of objects, help us in our task? Let
us proceed with the business of adding relations to our network, e.g. R2 is
to the left of R3; R6 is to the right of R4. We choose, arbitrarily, "leftof" as
the canonical predicate and insert.

122

It is much more convenient to group the relations:

,R7\

leftof API

leftof / .. leftof

[leftof groupl group2J [leftof 1(2 1(3] [leftof 1(4 1(6]

But we need a way to refer to the dotted circles, and what do we mean by
these circles anyway? We make explicit the relationship "one-part-is:

leftof
group 1

U) / I U) 0') / to
D / one-part-is .. -,- j' one-
UI 'I i 1 4j1 par t T "

'0-i
10' 'dj is Ofl 'ii
IPi Pit
I' JC,I 'I c)k IC \ 1(5

/0 O\

- leftof - Leftof -

Our representation now reflects the grouping process explicitly and so
enables our seeing more easily".

123

4.1.3 More About Relations
1. Consider again the problem of choosing predicates: [inside triangle

rectangle] has no intrinsic superiority over [outside rectangle triangle]. We
could introduce explicitly the fact that the two are equivalent by using two
arrows each time the relationship occurred in the network:

triangle

outside

le

inside

Alternatively, and more economically, we can provide this information
once and for all in the form of an inverse rule:

if objl inside obj2 then obj2 outside obji. More generally, if one
relation REL1 is the inverse of another relation REL2 then if [REL1
OBJ1 06J2] then [REL2 06J2 OBJ11.

Some relations, like next to" or 'near", are symmetrical and can be
represented by a two-way arrow

which would be equivalent to asserting both [near A B] & [near B A]

2. How about the relationship between R7 and RB in the task picture?
We have [on R7 RB] and [on R5 R6], and 'on" is a particular kind of
relation that is transitive. We could have a transitive rule of the form:

If obji on obj2, and obj 2 on obj3, then obji on obj3.
Again, more generally, if a relation REL1 is transitive then

if [HELl OBJ1 OBJ21 and [RELI OBJ2 OBJ31 then [REL1 OBJ1
OBJ3].

However, we cannot pursue this indefinitely for some relations, otherwise
we could prove, say, that everything is near everything else. "Being near
to" seems to include the idea of "distance away from" relative to some
activity, i.e. near enough to be affected by.

3. In network terms, we have traversed two directed arrows in order to
get [on R7 R6]; in both cases, the directed arrow had the label "on". In the
same way, two successive arrows labelled "father-of" could give us
"grandfather-of". We need not restrict ourselves to successive arrows
having the same label. Thus "aunt-of" could be "mother-of" followed by
"sister-of".

4. Problems arise in assigning predicates:
(a) Recall "is-supported-by" in the task figure, derived from grouping "one
lying rectangle on two standing rectangles".

124

But what about this figure?

(b) Consider "leftof" and above" in the following:

=
leftof above above and leftof

(c) The cube is rightof the arch in the picture, but, in the real world scene
that this represents, the cube is leftof the archway.

This is a matter of frame of reference in terms of which the relations are
defined. The cube is to the left of the archway as seen from the point of
view of someone in the right-hand part of our picture.

4.1.4 Pointof View
Consider the task figure again. All the relations used in the description
make an assumption about the figure, namely that we are looking at a side
view of some scene and that, for example, points in the top part of the
picture correspond to higher points in the scene than do those in the lower
part of the picture.

Now let us assume that the picture represents an aerial view of some
scene. What happens to our description?

125

(0 -1

a,
0

parallel to parallel to

Notice that we have some symmetric relations, some transitive relations,
and some inverse relations, and the same general rules already developed
for these will hold.

A crucially important set of remarks. How difficult was it for you to see the
picture as an aerial view? The familiar arrangement of parts triggers
concepts we already have, i.e. it evokes the labels "table" and "chair" for
groupi and group2 respectively. We can say it imposes the viewpoint. We
see the three rectangles Al, R2 and R3 as a table. Parts take their names
from the wholes they are seen to belong to, e.g. Al becomes "table-top".
No such ready interpretation emerges for an aerial view.

\4 11

t

Rubin's figure Boring's figure

126

We find that a global decision, such as viewpoint assignment, can
determine which predicates will be included in the description.

Sometimes there are two equally strong possible interpretations. The so-
called ambiguous figures that abound in the psychological literature have
just this property, e.g. the Rubin figure, which can be seen sometimes as a
vase and sometimes as two faces; or Borings figure, which can bn seen as
a young girl or an old woman (see Gregory 1970).

We try out our method of forming structural descriptions on some
standard displays used by Gestalt psychologists.

4.1.5 Grouping
Example (a). Consider this display of five vertical lines:

23 45

Our description might look like this:

CE1 (jine2)-'c ne

iTj,) Cine4)•c near

We could put in 'parallel-to". But since each line is parallel to every other
line, such a tag would only load up our description without providing any
evidence for grouping. Similarly, properties like 'vertical" and 'straight'
would occur attached to every node and would not affect our bias to form
groups on the basis of a shared relation "near" as follows:

group 1: line2 and line3 (abbreviate L2 & L3)
group 2: L4 and L5
group 3: Li

Example (b). Now we add four lines to our display to get:

6 8

1 2 3 4 5

7 9

The new feature is that certain lines are connected.

127

ft
connects connects connects connects

~Aar ~nT

connects connects connects connects

Again three groups fall out quite naturally on the basis of closed rings of
links, thus:

one-
part
-is

group1" near

7 one-part one-
me- part -is part

ToneT

-is part one- one-

Jç -is part part

La -is -is

ts connects

L4 15

' '

Notice how lines 2 and 3 have changed allegiance, and now belong to
different groups. The nodes in groups 1 and 2 formed closed rings. To
keep the skeleton of our description clear, we will not follow through the
details of adding features, like 'parallel-to" and "at-right-angles-to",
necessary to provide the basis for identifying groups 1 and 2 as rectangles
Instead we look at example (c):

j6 8 Jlo 12 j

N 2 ! I I

128

'I

This yields

p connects

4
connects

the following:

Ll

connects connects

r L 3

connects connects

At first blush, we might seem to be back to the situation of example (a)
with the same three groups. However by noticing the collinearity of the
hanging lines 6 and 8, 7 and 9, 10 and 12, 11 and 13, we form a
conceptual closure of the shape thus:

coil i near

cts connects

cts connects

collinear

coiiinear

connects connects

near

connects connects

`~O
collinear

Now we are in situation (b). Indeed, if we had a description of the
rectangles in (b) stored away, we could imagine that finding the 'hook" [

(1-6-1-1 -1-7) could invoke the stored description or model of a rectangle, i.e.
trigger the expectation of a rectangle, and lead to an active search for the
rest of the rectangle. More of this later.

Notice, however, that there is a bug in our recipe. Since we have granted
our system the ability to notice collinearity in situation (c), we should have
noticed the collinear lines in situation (b). When we allow this, we find
that, because this relation involves only some nodes, it seriously affects
our grouping. The description of situation (b) should have been:

Co11ine

connects connects connects conne ts

rL3 neax

connects connects connects connects

collinear

Now we can no longer claim that two groups fallout naturally. There is
more than one way of extracting groups from this network. We need to
have a way of ordering our grouping criteria. For example, if there are two
possible closed rings to which any one node can belong, then choose the
ring formed by relations of the same sort, or as nearly the same sort as
possible. So, in our example, 6-1-7-2 are linked by a ring of "connects"
and are preferred as a group to 6-2-3-8, which are linked by a diverse
collection of relations.

Now we have to decide what to do about"collinear". One of the reasons
for grouping is to form entities that at a higher level can themselves
behave as primitive elements in a relation, e.g. groupi near group2.
However, we would still want to retain the ability to relate part of one
group to either the whole of another group, or to part of another group.

Consider again the task figure of section 4.1.1. We observe that the
bottom lines of the two rectangles forming the "chair" are collinear, and
that the same goes for the bottom lines of the rectangles forming the
"table". Furthermore all these lines are collinear, i.e. part of part of the
"chair" group is collinear with part of part of the "table" group, and we
can, and probably do, use this as evidence of a support plane, the "floor".

Example (d). What do you see in this display?

F J F I
At this point, I start seeing the letter E in several places. Can we get this
description with the rules we have been using so far? Try this example
yourselves. (Suggestion: There is a much deeper bug in our method, which
was hinted at earlier by the remark that hooks of the form [might invoke
the stored description or model of a rectangle.)

There is more to structuring a picture than is given directly in the picture.

130

4.1.6 The Relation "Belonging-to"
We now look at the following ambiguous figure, where P1 to P8 are
sectors or pie slices, either ribbed (P1) or striped (P2), Li to L8 are the
shared lines separating P1-8, and R 1 and R2 are examples of arcs.

L8

This can be seen either as a cross of four ribbed pie slices on a background
disc of concdntric circles, a target; or as a cross of striped pie slices on a
background disc of radiating spikes. In the former case, the arcs are seen
as the visible pans of complete circles; in the latter they are seen as true
arcs.

We form a description, which reflects the facts that: (a) the areas cluster
into two groups by virtue of their surface markings; and (b) in each group
the members are identical to one another. We describe a typical group,
and note the members.

members members

group 1

abuts-R

groupi j

p
k p p p

y z j

131

But what are we to do with lines 1-8? Consider Li and the areas directly
separated by it, i.e. P1 or P2. We could see Li as belonging either to P1,
or to P2, or to both. Let us follow through the consequences of each
choice.

1. Suppose we choose to assign Li as the boundary of P1. This leads us
to expect L8 to form the other boundary of P1, which then achieves the
status of a closed figure.

Rule: Try to group lines into closed figures.
Thus, P2 and PS become background. If P1 is to remain a typical member
of our groupi, then we are led to postulate boundaries for all the other
members of the group in the same way; the group now consists of four pie
slices joined at the centre. Group2 consists of four bits of background, and
we are likely to see them as one area patchily occluded by the cross of
closed figures, by noticing that the arcs in these areas form matching sets
of T-junctions with the figure boundaries:

UT
Again we form conceptual closures, as we did in the earlier rectangle
display, and see the arcs as passing under the figure to complete the
circles. Our description now looks like this:

members members

groupi) in-front-of >(jioup2

typical is-the
PS

member

is-a
background

target
hnked_ -faced

ribbed at-centre
I ___

\.embers J
2. Suppose we choose to assign Li to P2. Applying our closure rule, we

get L2 belonging to P2 as well, to form a closed figure. The consequence
of this spreads through the display, this time turning all group2 areas into
closed figures joined at the centre to form a cross. Now we hallucinate
radial spikes behind the figure. The description follows the previous
pattern.

132

3. If we try to assign Li to both P1 and P2, we run into difficulties. What
is involved is conceptually splitting each line, and inhibiting the T-junction
effect, in order to see a flat surface of alternately ribbed and striped
figures. We just don't seem to do this very readily.

More examples of how context influences the structural descriptions being
constructed are given in the figures at the end of this section.

In Summary. We have explored, in a tentative way, some of the methods
we as human observers use to group lines into shapes into coherent
structures. Grouping imposes an organisation on the figure, structures it
into a meaningful whole.

Points to Notice.
1. Small local changes in the display can produce large global effects,

e.g. by influencing the choice of grouping rule. We saw how lines changed
their allegiance, i.e. what they are seen as belonging to, by virtue of
changes elsewhere in the picture.

2. Grouping elements into larger units is part of an "effort after
meaning', in which stored experience plays an important role.

3. We can systematically debug the rules we think we are using by
spelling them out and then trying them out on a new display. It is very
likely that you can find more bugs in the above account. That is good. It is
a virtue of the methodology we are using that we can gradually refine our
recipes by exposing them to new cases. The best way to find bugs that
elude the kind of hand-testing we have been doing is to program up the
rules and run the program on a set of examples. An issue that arises when
we write such a program is the need to specify the stock of possible kinds
of links that can appear in the descriptions.

4. Choosing good examples is an important part of the story.

Try to find shape a in figure b in each case
(after Gottschaldt 1926)

133

Reproduced Word Stimulus Vbrd Reproduced
figure list 1 figures list 2 figure

[XJ
IX.!!

Curtains in
a window

Dianc,nd in
a rectangle

Bottle Stirrup rIN

62 ::c t Letter C C
Beehive Hat

Eyeglasses Dumb-bell C>=C)
7 Seven 17(P'our 2/

() Ship's wheel C) Sun

Hour-glass Table

Qj9 Kidney bean Canoe

Pine tree Trowel

Gun Broom

2.
Two 3 Eight 8

Nnbiguous figures (after Carmichael et al.) . Subjects
were shown the series of stimulus figures in the cen-
tral column, each of which could represent two things
As each figure was shown, names from list 1 were read
out to one group; alternative names for each figure
from list 2 were read out to another group. The two
groups were then asked to draw what they had seen as
accurately as possthle.

4.1.7 References

F.P. Bartlett (1932) Remembering. Cambridge: University Press. This is a
lovely book. It is the source of the notion of "effort after meaning'
mentioned above. It provides a rich source of evidence for what will
emerge as a central theme of these lectures, viz, the constructive nature of
perceptual processes.

L. Carmichael etal. in J. Exp. Psychol. 75,80.

K. Gottschaldt (1926) in Experiments in Visual Perception (ed. M.D.
Vernon). Penguin Books.

134

R.L. Gregory (1970). The Intelligent Eye. New York: McGraw-Hill.
(Especially the sections on ambiguous figures and illusions.)

Read about the "Gestalt laws of organisation" in the psychology text-book
of your choice (e.g. J.E. Hochberg (1964) Perception, pp. 85-8, in the
Foundations of Modern Psychology series, Prentice-Hall, N.J.) and
compare them with the ideas presented here.

M. Wertheimer (1961) Productive Thinking. Tavistock Publications. An
inspired treatise on the role of perceptual organisation in problem solving.

4.2 USING STRUCTURAL DESCRIPTIONS

4.2.1 Two-Dimension Drawings of Planar Solids
The three faces of a cube meet at a trihedral vertex. In a 2D drawing of a
cube, the three edges forming such a vertex are represented by the
junction of lines, forming either:
(a) a FORK junction:J7 31

(b) an ARROW junction: J2 J4 J6

f~
35

32

33

34

(one of three angles at junction> 1 80), or
(c) an ELL junction: J 1 J3 J5

The number of visible faces at each vertex decides what the junction will
look like:

3 visible faces-.-a FORK junction in the picture
2 visible faces-.an ARROW junction in the picture
1 visible face—an ELL junction in the picture

Going the other way, given a 2D representation of a collection of planar
solids, we can decide which regions belong to which solids using rules,
e.g.

(a) The FORK rule links all

(b) The ARROW rule links two
three regions surrounding of the regions contributing to
a junction the junction

N71
135

For example: To segment an arch into its component parts, plant links
wherever an arrow or a fork occurs.

The regions can be grouped on the basis of these links into three groups

A R4

 RS R7

A B C

A segmentation process using rules like these forms the basis of a
computer program written by Adolpho Guzman at MIT in 1968. This will
be discussed in detail later.

4.2.2 Learning Structural Descriptions
We explore the problem of learning, using and extending the ideas of
building and manipulating descriptions that we have developed so far. We
will follow through a process of description refinement in response to a
judiciously selected training sequence. This is a simple-minded version of
a well-known program written by Pat Winston at MIT, and figure 4.1 a-d
shows the sequence of exhibits he used to "teach" the concept of an
ARCH.

PreliminaryAccount. The world consists of children's building blocks,
brick-shaped or wedge-shaped, out of which the arches (and other simple
structures) are built.

The idea is to set up an Initial Description of the first, good example of the
concept, and then to gradually debug this description in the light of
subsequent exhibits. The point of the exercise is to show the value of
exhibiting something that is nearly an example but just fails to be so
because of the presence or absence of only a few features: the near miss.

The process rests on comparing descriptions, a technique we used in the
analogy problems. We build a description, for example, of the near miss,
and compare it to the one we already have of a good example. The
difference between the two tells us precisely why this new thing didn't

136

rF

(b) NEAR MISS (a) ARCH

(c) ARCH (I) NEAR MISS

Figure 4.1. The concept of an arch.
make it: it highlights which of the features in our first (model) description
are just not allowed to be missing. We enrich our description by adding
this information about mandatory features of the concept.

Information comes too from new good examples: if this new thing is still a
goodie and yet isnt the same as our standard good example with which
we have compared it, then we need to loosen up our description to cover
this new case.

Initial Descriptions. Consider figure 4.1 a. We see that the arch consists of
three bricks, one lying on and supported by the other two standing ones.
This step is achieved in Winston's program by (a) using the segmentation
program of Guzman mentioned above, and (b) using algorithms for
determining relations like LEFTOF, ABOVE, SUPPORT, IN-FRONTOF.
Our initial description would look like this:

137

group

one- one-part-is one-
part _.. part
-is (brickA1yinq -is

Dl. Description of
figure 4.1a

brickB),—r---r'j brickc

standing

Note that the node labelled 'group" is the distinguished entry node into
the description. We set this description up as our mark 1 model of the
concept of an arch.

Next we build up a description of figure 4.1 b.

BE
MR

one- one-part-is one-
part

(Eiying part -is

ipported / D2. Description of

by\ / figure 4.1b

brickE)—,--,---.(brickF

Comparing Descriptions. In each case we have a group of three bricks; we
can match up the lying bricks (A, D) as each is supported by two other
standing bricks. In each case, one of these standing bricks (B, E) is to the
leftof of the oTher (C, F). But there is an extra 'abuts" arrow connecting
bricks E and F, and we conclude that this is the unwanted feature in D2
that makes it a non-example.

Let us spell out in greater detail how we might perform this comparison.
The process involves matching the nodes in the two networks and
deciding which nodes to pair up. We note that any node or arrow maybe
present in one description and not in the other.

(a) We start at the entry nodes. In each case we find a node with three
arrows leaving it. Furthermore the arrows have the same labels. We
decide to pair up these nodes as a matched pair.

138

group - - - matched pair - - - roup

one- one- one- one- one- one-
part part part part part part
-is -is -is -is -is -is

-, 4 / 4
first node in Dl first node in D2

(b) We then follow any one of the arrows out of the Dl member of the
linked pair, locate the node it connects to (the daughter node) and
examine this node. For example, suppose we choose the arrow going to
brick A. This node has three arcs leaving it and none coming in (apart from
the one we arrived on). We compare this with each of the nodes one arrow
along in D2 to find the one that is most similar. Brick E has three entering
and two exit arrows while brick F has four coming in and one leaving.
Brick D is the obvious winnbr because it has the same number of arrows
as our criteria node, and moreover these have labels that match up exactly
with those of the criteria nodes, so we link these nodes as follows:

I
gmup matched

__

pai------(o)

Le-part-is one-part-is

(A~ ----matched pair -- --

ted supported supported supported
by by\ /by by\

part of Dl part of D2

(c) Now we repeat step (b) for each of the other daughter nodes of
'group" in 01. attempting in each case to find a node in 02 that best
matches it.

For brick B, the comparison looks like this:
incoming arrows outgoing arrows

Brick B supported by standing; leftof
Brick E supported by; abuts standing; leftof
Brick F supported by; leftof; abuts standing

What do we need to do to brick E so that it will exactly match brick B?-
remove the relations 'abuts". What do we need to do to brick F so that it
will exactly match brick B? - remove the relation "abuts' and invert the
relation 'leftof". The first change involves fewer steps than does the
second, and we choose brick E as the pair to link to brick B, under the
transformation (remove "abuts"]. The same transformation converts brick
F into an exact match of brick C, and now our comparison is complete.

139

_
4

group - - - -matched pair-- - -froup

brickA - - - - matched pair - - - - ckD

bricka ----matched pair--

brickC ----matched pair ---- fF

under the transfor-
mation [remove abuth]

under the transfor-
mation [remove abuts]

Now we have located the bug in figure 4.1 b, and can describe it in terms
of the transformation we had to make in order to get a match. Another
way of saying this, is that [remove "abuts'] describes the mismatch. The
way to ensure that we get a match in the first place is not to allow an
'abuts" relation. We capture the information gained from analysing this
bug by recording on our model a "must-not-have" note.

group

one- one-part-is one-
part part
-is brick -is

brick) 1eftof—(brick

We have marked the "must-riot-have note using a crosshatched link. This
is to emphasise its meta-comment nature, and to distinguish it from
arrows that will participate directly in the matching.

Exercise 4.2.1. Repeat the process on figures 4.1c and d, omitting the
detail in steps a-c above. Form descriptions of the figures, compare the
new description with the model, find the mismatch by inspection, and
update the model appropriately.

4.2.3 References
P.H.Winston (1970) Learning structural descriptions from examples. PhD
thesis, Al technical report 231, MIT. See also chapter 5 in The Psychology
of Computer Vision (ed. P.H. Winston), McGraw-Hill 1972. This gives
more details of the processes discussed in this section, using a whole
range of training sequences.

140

4.3 MACHINE PERCEPTION

4.3.1 Introduction
We are interested in studying machine vision for several reasons:

1. To increase understanding of human perception.
2. To increase understanding of intelligence: perception is a rich area in

which to study knowledge-based reasoning.
3. Many connections with other branches of Al, e.g. perceptual

strategies in game playing.
4. Application possibilities, e.g. the designing of industrial robots.

Kinds of Tasks.
1. Robot perception of real world scenes of simple objects

(a) recognition of objects as a task in itself, e.g. the first set of
Edinburgh robot programs recognised spectacles, cups.

(b) as pan of performing actions on such objects, e.g. assembly tasks,
as in current Edinburgh robot project; pushing boxes around, as at
Stanford Research Institute; copying structures from a collection
of spare pans, as at MIT.

2. Understanding line drawings
(a) line drawings as input using digitiser, e.g. Peanuts canoons.
(b) low level symbolic description of line drawings as input: typically

drawings representing scenes from blocks world.

Genera/Remarks. Much of the work has involved a simplified world of
objects with flat surfaces. We know the world does not consist of only
such objects; however, this simplification has been a very productive one,
leading to the development of a series of programs, each built as a result
of the experience gained from, and attempting to repair the limitations of,
the previous ones and all contributing to an Al theory of perception.

It is convenient to stan with a consideration of line drawings repreenting
scenes of planar objects. We will come back to the problem of real world
input later.

4.3.2 Interpretation of Line Drawings
We take up the story begun in section 4.2.1, where we introduced some of
the ideas incorporated in Adolpho Guzman's program, SEE (Guzman
(1968).

Points to RecalL
(a) The task under consideration is the Segmentation task. When we as
observers look at a line drawing, say figure 4.2a, we see one cube lying on
another. We allocate the regions to one or other of the cubes present.
Flow do we do this? What information would we need to provide a
program in order that it could perform this task?
(b) We follow Guzman's program and tackle the problem in two steps: (i)
collect local evidence for linking regions, and (ii) weigh this evidence and

141

EU

T

R4 R5

R6

L12jI1

R6

(a) (b)

Figure 4.2. Linklist: [[Ri R21 [R2 R31 [R3 nil [Ri R21

[R4 R51 [R4 R51 [in R21 [in RIJI

accumulate groups of regions.
Ic) What kind of local evidence can we use? We exploit the fact that some
places in the picture contain more information than others, i.e. the points
at which several lines meet: the vertices or picture junctions. As usual, we
need some vocabulary for describing these picture fragments in order to
be able to talk about and use them. To the set of junctions already
mentioned - the FORK, the ARROW and the ELL - we add two more,
the TEE junction and the PSI junction, and we also show the links that
they all generate.

ELL: no links TEE: no links ARROW: 1 link

PSI: 2 links FORK: 3 links

142

Linkage Generation.
(a) We have already considered the FORK rule, which links all three

regions comprising the junction, and the ARROW rule, which links the
pair of regions that flank the shaft of the arrow.

(b) An ELL junction contributes no links.
(c) The links generated by a PSI junction reflect its origin; that is to say, it

is really an ARROW sitting on a FORK.
(d) A TEE provides powerful evidence for not linking the regions on

opposite sides of its crossbar, e.g. in figure 4.3, the circled TEE
junction is evidence that Ri and R4 belong to different objects.

Figure 4.3

Programming Suggestions. Suppose we input the picture description as a
list of junctions where each junction is specified by its name, the list of
lines that form it, and the list of regions that meet at this point, given as
the region name alternating with the size of the angle it contributes to the
junction. For figure 4.2a, such a junctionlist would take the form:

[[ji [Li L2 1-51 [Ri 60 R2 60 R6 240]]
[J2 [LI 1-31

[JiO [1-5 L6 L141 ER2 120 R4 60 R6 18011).

To classify a junction, we need to know: (a) how many lines meet at that
junction, and (b) whether any of its regions contribute more than two of
the quadrants around that junction.

We can now write a procedure for each junction type that embodies its
behaviour, i.e. that knows how to recognise an instance of itself, and how
to generate its characteristic links. Consider an ARROW procedure taking
as input a junction specification in the form indicated above.

TO ARROW 'JUNCTION
Step 1 answers the question: Is this an arrow?
(a) find the number of lines that it comprises. If this is not equal to 3 then

result false and stop.
(b) find a region that contributes a greater-than-iSO angle to the

junction. If none, then result false and stop.

143

Step 2is reached only if :JUNCTION isa bona-fide ARROW.
(c) find the pair of regions around the shaft of the arrow.
(d) add this pair to a global linklist.

Exercise 4.3.1.
(a) Write a set of such procedures, one for each junction type.
(b) Using these, write a program to generate the linklist for figure 4.2a.

Grouping Regions using the Link//st The linklist captures all the pieces of
local evidence we have accumulated. We now need rules for weighing this
evidence, such as a simple one-link ru/e:

Group all regions that are linked to one another by at least one link.
Given a Iinklist such as that shown in figure 4.2b, and a global slot for
accumulating all groups of connected regiqns, initially empty, which we
call GROUPLIST, we can write a procedure for grouping regions
containing the following steps:

TO GROUP 'LINKLIST
Step 1 if LINKLIST empty then stop
Step 2 choose a pair from :LINKLIST and set this up

as a group
Step 3 find all pairs containing at least one element in

common with this group and form into PAIRLIST
Step 4 form the union of all such pairs and

add to :GROUPLIST
Step 5 call GROUP recursively with input

LINK LIST-without-PAIR LIST
END

Applying this procedure to figure 4.2b, we would produce the GROUPLIST
[[Al R2 R31 [R4 A511

What about R6?

Refining andAdding to our Rules.
1. ADDING a matching TEE rule. We need such a rule to spgment figure

4.3.

This rule applies when we have a pair of TEE junctions whose shafts are
collinear. We link regions on corresponding sides of the shafts. We have
already met this rule in the pie-slice example of section 4.1.6; it enables us
to halltkinate arcs passing behind the pie-slice to complete the circles. In
figure 4.3, the effect of this rule is to enable us to "imagine" the part of the
low flat object which lies behind and is occluded by the object lying in
front of it.

144

Figure 4.4

2. Two-/ink rule. When we try our simple one-link rule on figure 4.4a and
b we come up with a single group in each case. Whilst this might do for
4a, it seems unsatisfactory for 4b, which ought to be seen as two separate
bodies. One way out for this figure would be to require at least two links
between regions before admitting them into the same group.

Figure 4.5

3. Inhibiting Link-Formation. While the two-link rule would produce a
more reasonable solution for figure 4.4b, it would not help in figure 4.5. It
is true that this could represent a single body with the top brick glued on
to the bottom one; however, it would be nice if our program could
separate these two. We can achieve this by introducing the idea of
inhibiting link formation in certain contexts, i.e allowing the context of a
junction to influence the information it yields. Thus, if the arm of a fork
ends in the barb of an arrow, do not place the link across that arm: the
dotted link is inhibited.

This gives the desired effect in figure 4.5.

145

146

Another inhibitory situation arises when one of the regions contributing to
a junction is known to be background. In this case we do not place links
between this and other regions. For example, at B in figure 4.5, we would
only place one link; at A and B in figure 4.4a, we would also only place one
link. Further examples require the addition of more inhibiting rules.

Summary of Guzman 's Program in its Final Form.
"In the first pass, the program gathers evidence through the vertex-
inspired links that are not inhibited by adjacent vertices. In the
second pass, these links cause binding together wherever two
regions or sets of previously bound regions are connected by two or
more links. It is a somewhat complex but reasonably talented
program which usually returns the most likely partition of a scene
[such as figure 4.61 into bodies."

This summary is taken from Winston (1972).

4.3.3 Problems
The program comes to grief on figures 4.7 and 4.8. Try these. In 4.7, we
notice that the program cannot see holes. In 4.8, it cheerfully accepts the
impossible Devil's pitchfork as one body. An analysis of these deficiencies
provides the basis for the next group of scene analysis programs.

Figure 4.7

Figure 4.8

4.3.4 References
A. Guzman (1968) Decomposition of a visual scene into three-
dimensional bodies, in AFIPS proceedings of the Fall Joint Computer
Conference 33,291-304. This gives a good account of the system,
including the many link-inhibiting rules that his program needed to
segment drawings of complex blocks-world scenes.

R.J. Popplestone (1977) A language for specifying robot assembly, in
Proc. Applied Robotics 77, pp. 183-95. Karlovy Vary. This describes the
Edinburgh robot work.

P.H. Winston (1972) The MIT robot, in Machine Intelligence 7 (eds B.
Meltzer & D. Michie) pp.431-63. Edinburgh: University Press.

4.4 INTERPRETATION, SEMANTICS AND MODELS

4.4.1 Introduction
Consider again the configuration in figure 4.5, which led us to postulate
our first inhibitory rule. The source of the link that caused the trouble was
the FORK at A, and the difference between this fork and the forks in the
previous figures is that it occurs at a concavity in the object, whereas
previous forks were at convex corners. Another way of saying this is,
whether or not a link-generating rule works depends on the 3D situation
represented by the 2D drawing, i.e. we need to attend to the 3D feature to
which the 2D fragment corresponds. When we see figure 4.2a as one
cube on another, we are using the following mapping rules from the
picture domain into the scene domain: lines in the picture correspond to
edges of solid objects; regions in the picture correspond to surfaces

147

meeting at these edges; and junctions in the picture correspond to
corners, where two or more edges meet, i.e. where several surfaces meet.

4.4.2 The CLOWES-HUFFMAN line-labelling technique
As pointed out in section 4.2.1, when we look at a corner of a convex
object end on, so that all three surfaces that meet at that corner are
visible, we depict that corner as a fork in our line drawing. Our fork rule,
which links all three regions, does so correctly. If we rotate the object (or
walk round it) until just beyond the point where one of the surfaces
disappears from view, a drawing from this point of view will show our
same corner as an arrow. Again the two surfaces that remain visible are
just the ones that the arrow rule links. But we would like to be able to
handle concave objects as well.

If we look at the concave edge of an L-shaped solid (labelled -) we see
that the corner at which it meets two convex edges (labelled ±) is depicted
as an ARROW. If we rotate this solid (anti-clockwise, say) until the (left-
hand) surface disappears, that corner is now represented by an ELL.

One arm of this ELL corresponds to the convex edge at which the
remaining two visible surfaces meet. But now one of these surfaces
disappears under the other arm of the ELL; this latter line depicts the edge
of the occluding surface A. We call such an edge an occluding edge, and
label it with an arrow. The labelling convention requires the occluding
surface to be on the right when facing the direction of the arrow.

So our occluding surface is partly hiding one of the original three surfaces
we could see, and totally hiding another. Notice that all three surfaces we
have been talking about belong to the same body. In scenes containing
several polyhedra, a so-called occluding edge can partially or completely
hide surfaces of bodies other than the one it belongs to. The external
edges of all bodies occlude the background.

Possible Interpretations of a Line.
1. The line represents an edge, both of whose contributing surfaces, A

and B. are visible:

148

(a) convex, labelled + A +
B

(b) concave, labelled - A -
B

2. Only one of the contributing surfaces is visible; the arrowhead labels
an edge that belongs to the (occluding) surface on the right (as you
move in the direction of the arrow):
(c) occluding: in-pointing arrow C

B
(d) occluding: out-pointing arrow A

C
(C is further away and passes under A or B)

Pictorial Inference. Now label figure 4.8. You will notice that different ends
of lines A, B and C have different labels on them. We have contravened a
basic rule of polyhedral scene interpretation, that a given line (in the
picture domain) must have the same meaning (in the scene domain) all
along its length. Using this single coherence rule the line-labelling method
(published independently by Clowes 1971 and Huffman 1971) correctly
detects impossible objects like this devil's pitchfork.

4.4.3 The Effects of Adding all this Information
Since there are 4 possible interpretations of a single line, there are 42
possibilities for an ELL and 43 possibilities for each ARROW and each
FORK. If we were to embark upon the task of automatically producing all
possible labellings of a given picture, say, a simple cube, by systematically
considering the possible labellings of each junction, the space of
possibilities we would be searching over would be very large. We appear
to have created a combinatorial explosion. The striking fact is that very
few of these are physically possible. These can be visualised using the
following reasoning:

The three planes that meet at a corner divide the space around that corner
into eight octants. Some of these octants are filled with solid material and
some are empty.

1 octant filled implies all convex edges contributing to corner
3 octants filled implies 2 convex and 1 concave edge
5 octants filled implies 2 concave and 1 convex edge
7 octants filled implies 3 concave edges

Any corner can be viewed from each unoccupied octant around it and all
views from a given octant give the same configuration. Figure 4.9 shows
the possible views for each corner type, and summarises the legal
labellings that have a meaning in the real world. We have added semantic
information to our system, but instead of searching over the whole space
of theoretical possiblities, we need to search only over this restricted
range of possible corner models.

149

ELL junctions FORK junctions

(1)

(3)

7:

+ ARROW junctions

C

Figure 4.9. Legal labellings of various junctions. Numbers in
brackets are the numbers of octants filled.

150

Exercise 4.4.1. Use the table of possible line-labellings to generate all
possible labellings of a cube. (Notice that since the last choice has to mesh
with the first, you will produce a graph, best represented on line drawings
of a cube.)

4.4.4 Another Look at Guzman's Program
Now we can look back at the link-generating rules. We remarked (and in
this, we use the analysis of Mackworth 1974) that Guzman's program
works as well as it does because of the implicit assumption about convex
bodies. Consider the legal labellings table again and eliminate all those
possibilities that involve concave edges - there is now a unique labelling
for each junction.

In the case of FOR KS and AR ROWS, if we disallow all lines labelled
concave, we are left with the unique labellings

xana/N

If we look at figure 4.9, showing how the various ELL Iabellings arise, we
see that all but the first imply a hidden concave edge.

The importance of the Huffman-Clowes contribution in distinguishing the
picture domain from the scene domain cannot be over-emphasised.

4.4.5 Progressive Constraint Satisfaction —The Waltz Effect
A dramatic reduction of the search space can be achieved by a pairwise
elimination of possibilities. This involves the same rule we have already
used, i.e. that a single line must have the same label along its entire
length. By comparing adjacent pairs of junctions at the start of the search
and satisfying their mutal constraints, we can filter out many of the
possibilities from further consideration. For example, consider two
adjacent junctions, one ELL and one ARROW:

151

_A/
Whichever of the three legal labellings of the ARROW we choose, we will
never have a match with the two starred possibilities of the ELL junction.
So under these particular circumstances, these latter two need never be
considered again. By repeating this process of pairwise constraint
satisfaction on each adjacent pair and by allowing the consequences of
each elimination to percolate through the whole figure, a remarkable
reduction in the search space is achieved. To use an analogy, the more
specified your piece of jigsaw puzzle is, i.e. noting its colour and surface
markings as well as its contour, the fewer places it is likely to fit. (See
Waltz 1972.)

Exercise 4.4.2. Try the effect of pairwise elimination on the cube example
used previously.

4.4.6 Coplanarity
There is yet a further bug in our method, which shows up when we use it
on the following figure.

152

This is satisfactorily labelled, i.e. accepted as a legal figure, because the
method cannot distinguish between different degrees of convexity or
concavity and makes no requirement about surface coherence. More
recent programs have been generated by this bug but these are beyond
our present scope (see Mackworth 1974, Marr 1977). Locating and
analysing surfaces and identifying the solids to which they belong leads us
into the next section.

4.4.7 References
M.B. Clowes (1971) On seeing things. Art/ftc/a/Intelligence 2(1), 79-112.

D.A. Huffman (1971) Impossible objects as nonsense sentences, in
Machine Intelligence 6 (eds B. Meltzer & D. Michie) pp.295-323,
Edinburgh: University Press.

A.K. Mackworth (1973) Interpreting pictures of polyhedral scenes.
Artificial Intelligence 4, 121-38.

D. Marr (1977) Representing Visual Information. MIT memo AIM 415.

D. Waltz (1972) Generating semantic descriptions from drawings of
scenes with shadows, in The Psychology of Computer Vision (ed. P.H.
Winston) McGraw-Hill.

P.H. Winston (1972) The MIT robot, in Machine Intelligence 7 (eds B.
Meltzer & D. Michie), Edinburgh: University Press.

Clowes gives an account of a computer program that does pictorial
inference using the line-labelling technique, and Huffman presents a
theoretical analysis that includes a preliminary discussion of curved
objects. Waltz carries these ideas forward, showing how extending the
range of information used helps the problem-solving process to converge.
This is an important principle, which generalises to many domains.
Mackworth's program POLY embodies general coherence rules that
surfaces and edges must satisfy, using a dual-space representation that is
plane-oriented.

4.5 OBJECT IDENTIFICATION
AND THE USE OF STORED PROTOTYPES

4.5.1 Introduction
We have a real world scene of 3D objects, and we wish to specify a
perceiving system that can say what these objects are. This is the

153

Transformation Object

expanded along
Z-axis and rotated

rotated and stuck
on side of cube 1 L-beam

identification task. We restrict the objects to planar solids and provide a
set of prototypes so that objects are seen as some transformation of these
models. Such a system embodies the notion of the continual perception of
familiar shapes under a wide variety of transformations - each model
represents an invariant percept.

We base our discussion on a program implemented by Roberts in 1963; it
predates the programs already described and does not use junctions or
line-labelling.

To motivate the discussion, we illustrate the kind of answer we expect our
system to produce. In the first example, the 2 x 1 cuboid is seen as a cube
expanded along the V-axis.

Model Transformation Object

:rt:10->
L<-

cube 2x1 cuboid
In the second example, the composite object, an L-beam, is seen as a
combination of transformations of two instances of the cube prototype.

Model rT
cube 1

cube 2

ff
154

In order to find the relation R between the model and the object, we take
an indirect route via a TV camera picture of the unknown object. We set
up the more tractable task of finding a picture description with which to
compare our stored mode/description and so derive the relation H. Then
we can use R = H x P 1 (the inverse transformation) to solve our problem.

Object 4

Picture Description. Taking a picture of the object corresponds to
projecting 3D points in the object through a focal point on to a 2D picture
plane. For a given camera and picture size, this transformation is known.

The first pan of Roberts' program consists of converting digital intensity
values of the picture input into a line drawing and finding closed picture
regions. For present purposes, we assume that this (very considerable)
task has been completed. The resultant picture description consists of:
(a) a set of lines represented by their endpoint coordinates, and
(b) a set of regions bounded by these lines.

description consists of:
(a) a set of point coordinates representing the corners of the model, and
(b) a list of the polygons surrounding each point.

ff 15
Given the three models shown, the set of appro ved polygons is restricted
to convex polygons of sides 3,4 or 6.

Each point on a CUBE model has 3 quadrilaterals around it.
Each point on a WEDGE model has 2 quadrilaterals and

1 triangle around it.
Each point on an HEXAGONAL PRISM model has 2 quadrilaterals

and 1 hexagon around it.

Model-Picture Matching, i.e. finding the transformation H. Under ideal
conditions, we need only know what the regions around a picture point are
in order to assign it to the correct model. In practice, the matching process
is complicated by two factors: (a) the presence of composite objects, e.g.
the L-beam in section 4.5.1; and (b) occlusion of one object by another, as
in figure 4.10.

Figure 4.10

This means that regions in the picture may not belong to the set of
approved polygons. Our task is to find the largest picture fragment that
will home in on the right model most rapidly, where "right" means
"contains a matching model fragment'. Roberts provides an ordered
sequence of four tests, allowing successively greater departure from the
ideal, i.e. from a picture of a non-composite, non-occluded object. We
illustrate this by considering a picture of a simple cube, and the collection
of objects depicted in figure 4.10.

Test 1. Find a picture point that is completely surrounded by approved
polygons. A is such a point:

7 picture
cc ints
required

(See also point A in figure 4.10.)

156

Test 2. Find a line that has an approved polygon on either side of it, e.g.
line AB:

6 picture
points
required

(See also line BC in figure 4.10.)

Test 3. Try for an approved polygon with a line coming from one of its
vertices, e.g. A B C D, with line B E:

5 picture
points
required

a also OF G, with line D H, in figure 4.10.)

Test4. Find a point which three lines emerge, e.g. point D:

D[1&:
(see also point E in figure 4.10.)

Selecting a Model. The next step is to use the best picture fragment (this
will be the largest fragment that passes the above tests) as the basis for
model selection. Roberts uses a predetermined order of models (cube -
wedge - hexagonal prism) over which the program searches for a model
fragment to correspond to the picture fragment. That is to say, it looks for
a model point surrounded by the same polygon structure as the selected
picture point and constructs a list of matching (i.e. topologically
equivalent) model-picture points pairs.

If the object were identical in shape, size and orientation to the standard
prototype, there would be an exact match (taking into account the loss of
the third dimension) between the picture points projected by that object
and the model points with which they have been paired. A mismatch
reflects a transformed model. To get an intuitive feel for what this could
mean, consider the upper surface of a cube as it is tilted backwards away
from the vertical. Two of the angles, starting off as 90 0 , would become
increasingly more acute, and the other two more obtuse. The degree of
acuteness (obtuseness) reflects the degree of tilt. Roberts' program uses
standard matrix manipulation to calculate the combination of

157

transformations (rotation/translation/perspective/expansion-along-an-
axis) to account for the mismatch.

Finally, the selected model-plus-transformation is used to generate the
rest of the picture, i.e. to predict all the remaining picture points not so far
involved in the matching. These predicted points are compared with the
actual picture points. Three possibilities arise:
(a) A fit means we have found the correct mode; and the trans-

formation H.
(b) If some of the model-generated points fall outside the external

boundary of the picture, this means we have the wrong model and we
try another.

(c) If all the generated points fall inside the boundary but do not account
for all the picture lines, this indicates that we are dealing with a picture
of a composite object. We need to decompose the object into sub-
pans that can be seen as transformed models.

Decomposition. Consider the L-beam on the left of the figure below.
Finding a 'good' picture fragment involves trying the four tests outlined
above successively. There is no picture point surrounded by three
approved polygons (test 1). Applying test 2 yields three possible
candidates. Line 1, flanked by regions A and B, would find a matching
fragment in the cube model, but when the rest of the picture is generated
by this model, some points fall outside the picture boundary.

Line 2, flanked by polygons B and C, is more promising; the points
predicted by the cube model that it matches would fall within the external
boundary of the picture. Roberts decomposes the picture using the
following steps:

1. All model lines and points are added to the picture if not already there
(dotted lines)

2. If a model point falls on a picture line, insert the point (X)
3. Each visible model point in the picture that does not connect to any

non-model line is marked 'used" (0
4. Delete all used points and their attached lines and polygons

158

step 2

step 3

step 1

step 4

The remaining picture (step 4) is matched to the cube model under the
transformation 'expansion-in-V-axis". Starting with line 3, flanked by A
and D, corresponds to the example shown in section 4.5.1.

4.5.3 Notes
1. We observe that Roberts' first test, find a point surrounded by three
approved polygons, corresponds to Guzman's FORK heuristic; and his
second test, find a line flanked by accepted polygons, is just our old friend
the ARROW rule.

2. Roberts' system incorporates a two-way addressing process whereby
stimulus cues ('good" picture fragments) address or invoke internal
models, which in turn suggest (predict) where the rest of the picture will
be.

3. Combining the ideas of Roberts with those of Guzman, Clowes and
Huffman, we see the possibility of a hierarchy of semantic models.

Points 2 and 3 will be taken up again later.

159

4.5.4 References
L.G. Roberts (1965) Machine perception of 3D objects, in Optical and
Electro-optical Information Processes (edsTippett et at) pp. 159-97, MIT
press.

4.6 LINE-FINDING

4.6.1 Introduction
Many Al systems developed to analyse real-world scenes have involved
producing a line drawing as a definitive stage in the processing of the
scene. Figure 4.11 shows typical stages in the process of transforming a
TV camera picture into a description of the scene. We give a simple-
minded version of the second stage of this process — the detection of
discontinuities in the intensity array, using a local gradient operator and
thresholding — and then discuss difficulties that arise and proposals for
overcoming these problems.

INpIsr ou'rpjr

Stage I
to produce > brightness array take TV camera picture

Stage 2 to produce
apply local gradient)- edge point description:
operator and thresholding site of significant
at every point in image intensity gradients

Stage 3 to produce
fit line segments line drawing description;
to edge points and lines - endpoint
identify closed regions coordinates

regions - boundary lines
and junctions

junctions - coordinates
of points (2D)

Stage 4
compare line drawing
with stored prototypes:
surfaces - units normal

to face
edges - length in

real numbers
corners - 3D coordinates

AND

use infornation about the
camera position and the
supporting plane of
the scene

IDENTIFIED SOLIDS
LOCATED IN 3-SPACE

Figure 4.11. Showing stages in scene analysis (after Falk 1972).

160

4.6.2 The Detection of Discontinuities
The Gradient Operator. AN picture of a 3D scene records the light
intensity or brightness level (a product of illumination and reflectance of
the surface). The brightness intensity at each small area of the resultant
picture is convened via an analogue-to-digital convertor into an integer to
produce an array of numbers: the digitised image. A small portion of such
an array (under near ideal conditions) might look like this:

columns A B C 0 E F G

rowsll I 1 1 2 4 5 5 6

12 I 1 1 1 5 5 6 5

13 I 1 1 1 5 6 5 5

We are interested in finding picture edges of interest. i.e. "significant"
local changes in picture brightness. So we examine what is happening in
the immediate neighbourhood of each point by passing a 3 x 3 grid across
the whole array, and computing the gradient at each point as follows:

Point 012 is flanked by
column E, which sums to 16 column difference = 12
and column C, which sums to 4 i
and by row 13, which sums to 12 row difference = 1
and by row 11,which sums toll J

Clearly there is a lot happening in the row direction and not very much in
the column direction. In contrast, point 612 yields a column difference of
1 and a row difference of 1.We can compute the gradient as

(a) the amount of difference = (column difference 2 + row difference2)
(b) the direction of difference (as its tangent)

= column difference/ row difference
Note that the edge should be perpendicular to the gradient. Repeating the
process for each picture point, we get an array of gradients. Since we are
not interested in small differences, we eliminate these by applying a
threshold, leaving only the edge points of interest.

Fitting Line Segments. Under ideal conditions, the edge points found in
stage 2 should line up nicely. Unfortunately, difficulties arise with actual
pictures of real world scenes due to mutual illumination, scattering effects
at edges, smudges, shadows, object deformities such as surface chips,
surface markings and a whole battery of instrument defects. Background
noise is high; variations within a picture region can be larger than the step
across to the next region. This gives rise to spurious points above the
threshold, and if we increase the threshold we risk losing significant
points. In general it is difficult to find a good comprornisel Consequently a
line finder that tries to piece together edge points by tracking at 90 to the
gradient direction at each point, i.e. by "following its nose" in the direction

161

of a putative edge, can be misled by wrong local data into going off in the
wrong direction: and it can be hampered by missing edge points.

4.6.3
To overcome the difficulties mentioned above several approaches have
been used, which include ideas of the following son:

1. Brightness contrast across edges falls into 3 categories:

step roof peak

So Binford and Horn use a set of different gradient operators to facilitate
detection of particular edge types.

2. Marr uses specific intensity profiles suggested by the
neurophysiological finding of Hubel and Wiesel that simple cells
of the visual cortex respond to EDGES and BARS in the scene.
He passes EDGE masks and BAR masks

of varying widths and at a variety of orientations over the array. In addition
he generates an explicit description of the range of information extracted.
The result is a rich symbolic description of
(a) intensity changes, their position, spatial extent, contrast and type of

change.
(b) 20 geometric relations, e.g. parallel relationships between nearby

edges.

3. O'Gorman and Clowes look at edge points globally to find sets of
collinear points.

4. Shirai finds external boundary lines first, since these are more easily
found, and uses typical configurations in the contour to guide the search:

Concavities are good places to stan. They could conceal a T-junction, e.g.
at A, so look for one by looking along the extension of one arm of the
concavity: find the third line at a junction, e.g. B, C, by doing a circular

162

scan; in either case try to find a line parallel to a contour line.

5. Falk doesn't try too hard for a complete line drawing at the
preprocessing stage, and leaves it to high level programs to complete the
picture by adding lines. He provides three procedures to do this job:
(a) JOIN, which can complete the face F by joining the two hanging

collinear lines Li and Li.

pi

ZF
P2

Li L2

(b) ADDCORNER, which extends dangling lines Li and L2 to complete
the corner and so complete the face F.

Li

' TF
(c) ADDLINE, which looks for evidence that a complete line has been

missed and adds a line between P1 and P2 to split F into two.

ff
Pi

p2

Note. The improvements in line-finding listed above involve using global
properties, using progressively more context, using partial results to
suggest the possible position and orientation of lines still to be found: e.g.
-collinearity of edge points (3 above); collinear lines already found (5a);
parallelism (2, 3); known junction types (4, 5b and c). A knowledge of
what is being looked for is deployed to provide goal-directed search.

4.6.4 Alternatives to Line-Finding
Instead of looking for discontinuities in the intensity array to find lines in
the picture, we can look for regions of similar intensity, e.g. the programs
used in the Edinburgh robot project to recognise spectacles, cups, etc.,
mentioned in section 4.3.1, used region finding.

11*]

We can use range-finders to locate surfaces of objects in the scene,
e.g. (a) the fine-striping technique in the current Edinburgh robot project,
or (b) a laser beam, as used at Stanford and by vision workers in Japan.

4.6.5 Comments
The assumption that producing a line drawing is a necessary stage in the
analysis of a scene is open to question. It would seem more profitable to
regard line drawings as an expression of (i.e. as generatable from) an
internal description that is itself a 3D description. This is not to say that
the reverse process can't occur; it obviously can. When in fact a line
drawing as such is input, e.g. as a diagram, or a PEANUTS cartoon, it can
be readily seen as representing a 3D scene, as indeed can a drawing
composed of dots. In a technical drawing, e.g. a circuit diagram, the
conventions in terms of which the elements of the drawing map into
concepts in the domain (e.g. means resistor) must be explicitly
acquired before the observer can make sense of the drawing. Strip cartoon
devotees gradually acquire a great mass of conventions. For example, in a
PEANUTS cartoon, "distance" means "distance from action", and there
are three positions of importance in the picture: middle ground, where the
centre of the action takes place; background, for observer status; and
(blown-up) foreground, for emphasis. See Minsky and Papert (Al Memo
252) for a discussion of how children reveal their internal representations
in their drawings.

4.6.6 References
T.O. Binford & B.K.P. Horn, The Binford-Horn Line-Finder, MIT Al memo
AIM 285.

G. Falk (1972) Interpretation of line data as a three-dimensional scene.
Artificial Intelligence 3(2), 101-44. A complete scene-analysis system,
which is an interesting combination and elaboration of earlier ideas, e.g.
junction types, search space of 3D models, together with the completion
heuristics mentioned above, and verification of hypothesised line
drawings.

D. Marr (1976) Early processing of visual information. Phil. Trans. Roy.
Soc. London 8,275,483-519.

M. Minsky & S. Papert (1971) Project MAC Progress Report VIII, pp.129-
224. MIT.

R.J. Popplestone at at (1975) Forming models of plane-and-cylinder
faceted bodies from light stripes. Proc. 1975 IJCAI, Tbilisi.

Y. Shirai (1973) A context-sensitive line-finder for recognition of
polyhedra. Artificial Intelligence 4(2), 95-119.

164

4.7 CONTRIBUTION TO
A THEORY OF VISUAL PERCEPTION

We now draw together themes from previous sections.

4.7.1 The Formation and Use of Symbolic Descriptions
In our consideration of grouping processes, we built up the notion of a
hierarchical description and suggested a role for an intermediate
description (section 4.1.5): "if we had a description of a rectangle stored
away, we could imagine that finding the "hook" could invoke this
description'.

We postulated (section 4.1.4) that it was easier to see the picture under
consideration as a side view (of a chair and table) rather than as an aerial
view, by noting that "the familiar arrangement of parts triggers concepts
that we already have", and that "parts take their names from the wholes
they are seen to belong to".

We saw (section 4.1.6) how lines can change their allegiance, i.e. what
they are seen as belonging to, by virtue of changes elsewhere in the
picture. Small local changes in the display produced large global effects.
Grouping elements into larger units was part of an "effort after meaning"
in which stored experience plays an important role.

In sections 4.3,4.4 and 4.5, we considered programs (Guzman, Clowes-
Huffman, Roberts) for analysing line drawings. These programs deploy a
vocabulary of descriptions to refer to significant pans of the picture, e.g.
arrow, forks, junctions, and a repertoire of procedures (rules) for
manipulating these descriptions. Guzman showed how junctions provided
pieces of evidence for linking the regions of which they were part into
whole bodies (section 4.3.2) and how the effect of any one bit of local
evidence could be modified by the context in which the junctions occurred,
e.g. how the presence of a particular neighbouring junction could inhibit
link formation (section 4.3.2).

Both the Clowes-Fluffman line-labelling approach and Roberts' program
introduce the notion of models. In the former, each of Guzman's picture
pans has a set of possible models, e.g. there are four possible edge
models for each line in the picture (section 4.4.2). Edges meeting at a
point constitute corner models, and the number of physically possible
corner models for each junction type was seen to be surprisingly small
(figure 4.9). Since, in a complete line drawing, each line connects two
junctions, applying a coherence rule that a single line must have the same
edge model along its entire length captures the fact that the assignment of
a meaning to each junction must take place within the context of its
immediate neighbours. Interpretation of a picture is then equivalent to
searching over the set of possible corner models for each junction in the
picture and applying this rule.

165

H-,-.

f','', IN InLI,f,.t

''is1 V. PaIi'v.pl,

This acute angle is SEEN AS a right
angle. Our cube schema has "right-
angled" as part of its description.
Recognition involves projecting a
right angle onto the acute angle.

Our schemata include the rule:
Things further away appear smaller;
to get the correct size, enlarge
correspondingly.

Converging lines mean "receding into
the distance". So we project a lar-
ger man onto the stimulus of the
same size.

We may regard pictures as lying in a
kind of continuum. At one end there
will be drawings, realistic paintings
and photographs that are represen-
tational. ... At the other, the fan-
tasy end, will be inkblots or pictures
in the fire or in clouds...

"For most people plate V will be at the
fantasy end, meaning as little or as
much as an inkblot. ... People appro-
priately trained in interpretation of
radiographs will recognise it as a
radiograph of part of a human head..."

(Abercrccbie 1960)

Figure 4.12

Earl

In this line-labelling scheme, concave objects are hand[ed in the same way
as convex objects. Roberts' system adopts an alternative possible
mechanism, in which concave objects are seen as decomposable into a
small set of prototype convex models. Finding the right model involves the
topological matching of the polygon structure around picture points with
the polygon structure around model points. It is point-dominated, and no
intermediate models, e.g. edges or surfaces, are used. Again the search for
a solution takes the form of a search over possible models. A more
powerful, suggestive way of describing the seeing process is as a two-way
addressing system whereby stimulus cues ("good' picture fragments)
address (or invoke) internal models (or schemata) and these models, once
invoked, suggest (or predict) what and where the rest of the picture might
be.

We need both the stimulus patterns and bottom-up analysis of the
Behaviourists, and the candidate models (or wholes) and top-down
hypothesis-generation of the Gestaltists. By adopting this middle-ground
position, we can account for such features of the human perceptual
system as, for example, its constructive gap-filling nature, for models
allow us to hallucinate the missing bits; and the role of mental set in
perception in determining which models are to be considered. In figure
4.12 we show a selection of examples to illustrate this two-way process.

4.7.2 Knowledge-Driven Analysis
Notice (section 4.5.2) that when we had collected our model-picture point
pairs, we did not expect an exact match. Instead we expected to be able to
account for the mismatch by one of a given number of transformations, i.e.
to interpret or make sense of the mismatch between the incoming
perceptual pattern and the stored concept. A crucial element of stored
conceptual structures must consist of knowledge of how to handle such
mismatches.

In our discussion of the low-level process of line-finding, we showed
(section 4.6.3) how a knowledge of what is being looked for can be
deployed to provide a goal-directed search. The analysis is conducted in
terms of assumptions (hypotheses, prejudices) about what is significant
(relevant) and what is noise to be ignored. Notice (section 4.6.2) that
surface markings are listed among the difficulties to be overcome. An
alternative possibility would be to exploit their presence, which is exactly
what the perception psychologist Gibson does in his demonstration of
how surface texture can provide depth information: as the surface recedes,
the markings get closer together. Shadows were regarded as a nuisance
by the early vision programs, until Waltz showed how to use the evidence
they provide to cut down the number of possible interpretations of a
picture, as shown in the MIT film Eye of the Robot. Shadows tell us what
the scene looks like from the viewpoint of the light source.

167

Developing vision systems capable of representing different varieties of
knowledge, and allowing these to interact indifferent ways (in a
heterarchical fashion), depending on on-going partial results, is the
challenge currently being tackled by workers in Al vision projects e.g. the
Fortran coding sheet project at Essex University; the "spotty pictures"
project and the "puppet" project, both at Sussex University. This work is
very much influenced by the seminal paper by Marvin Minsky (1975).

4.7.3 Action Perception
The view of the perceptual process as a constructive, interpretative
activity in which we see the current situation in terms of what we know, is
captivated by Clowes' slogan: 'We can not SEE. We can only SEE-AS".
Work in this department on action perception has involved an extension of
these ideas to a richer domain, which includes moving objects. This can
produce a dramatic increase in the range of concepts that enter into the
interpretative process. Thus moving objects become participants in event-
sequences or actions, in terms of which they acquire roles such as agent
or patient. We become concerned with what caused the perceived
movement and with the attribution of motives to the participants. The
Belgian psychologist Michotte used simple 2D "meaningless" shapes
such as squares, circles and triangles moving in relation to one another
over a screen; subjects viewing such displays receive impressions of one
object chasing another, pushing one another, fleeing from another, and so
on. Except for isolated instances, these effects were independent of the
particular shape used. These observations form an ideal basis for our task
of modelling the perception of moving objects on a computer.

In the classical LAUNCHING experiment, the subject fixates a stationary
red square (B) in the centre of a white screen, while from a point 40 mm
left of centre a black square (A) travels towards B and stops when it
reaches it; B then moves off to the right. Observers see object A bump into
object B and give it a push. What we require in order to produce an
"explanation" of, or to give an account of, the impressions reported by
Michotte's subjects is, in the first instance, the development of a
vocabulary of symbols appropriate to various levels of interpretation of the
kinetic displays, for example:

low-level descriptions of position: bar (position P1 (time ti))
bar (position P2 (time t2))

low-level description of change of position: A moves
intermediate description

in relation to another object: A approaches B rapidly
in relation to a previous movement: A moves to-and-fro

high-level description of causal sequence: A bumps into B and
pushes it forward

168

Depending on the reference point chosen, the description of the
movement of an object, e.g. A moves, can become:

A approaches B
or A movesacross screen
or A withdrawsfrom B

An important issue is how to represent moving objects in the computer in
such a way as to facilitate the generation of descriptions of their
movements. We input the process continuum as successive time slices, or
conceptual snapshots, depicted asa frame sequence rather like a strip
cartoon. It is as though the observer takes successive samplings of the
movement processes and forms descriptions of each, so that the
difference-descriptions between successive frames express the changes
that have occurred during a particular time interval. (Cf. use of difference-
descriptions by Evans in his analogy program, and by Winston in his
learning structural descriptions program.)

The experiments are input to the program in the form of low-level
symbolic descriptions of a sequence of snapshots of moving objects. The
program is required to build up a description of what is happening in the
form of event-sequences to check relevant constraints, and so decide
which of the act types it knows about corresponds to the input sequence.

There will in general be more than one way of pairing picture regions in
successive frames, and we need a way of choosing which of the possible
pairings corresponds to an enduring object in motion.

Which region should we combine with AS? R3 or R4, to which it is
nearer? If we choose R4 we are left with pair R3-R6, but (R3-R5; R4-R6)
is better in that it gives a combined pairing which involves the least overall
change in position.

In Weir (1978) we detail the steps involved in forming descriptions from
the experimental data, e.g. we show how the factors influencing the
choice of a reference point radically affect the intermediate descriptions
generated. Since these latter form the components of action schemata,
this in turn influences which particular action schema will be evoked.
Figure 4.13 gives a representation of some of the features of a pushing or
launching schema. Any component could evoke this schema. Typically, an
instance of [x collideswith y) would be responsible for an active search for
the "withdrawal' of the patient y.

169

Figure 4.13. Pushing schema

PUSHING

CAUSE

COLLIDES-WITH)— -)l WITHDRAWS_FROM*

inanimate *Constraint: if pre-impact
I speedofX< twice the

post-impact speed, try
inanimate triggering schema AE)

agentof partof partof

>jRoAc -

patieritof **constraint : if duration of
contact > 0.2 seconds,
then non-causal

inaninate
0

NOTES:

(a) . is to be read as: the node A can be viewed
A B

as node B and all the
nodes that hang from it

(b) (___E-_)® is to be read as: B (is the) C (of) A
(c) &_.2., is to be read as: A has the property B

(d) The variables IC and Y have been used to avoid complicating
the diagram by identity links between participants of events.

170

4.7.4 Summary
This brief description of the Michotte work has been included to indicate
the potential of the two-way addressing system espoused in this account
of perception. Exploring possible mechanisms to support the attribution of
animacy and causality involved in these experiments suggests ways of
thinking about the much more complex, elaborate processing underlying
interpersonal perception.

4.7.5 References

M. L. J. Abercrombie (1960) TheAnatomy of Judgement. Hutchinson.

A. Bornat & J.M.Brady (1976) Using knowledge in the computer
interpretation of FORTRAN coding sheets./nt. J. Man Machine Studies.

T.G. Evans (1964) A heuristic program to solve geometric analogy
problems. Spring J.S.C.C.

A. Michotte (1963) The Perception of Causality (trans. T. & E. Miles,
original French edn 1946). Methuen.

M. Minsky (1975) A framework for representing knowledge, in The
Psychology of Computer Vision (ed. P.H. Winston). McGraw-Hill.

F. OGorman & M.B. Clowes (1973) in Proc. IJCAI 3 (ed. N. Nilsson).
Stanford.

A. Sloman & S. Hardy (1976) Giving a computer gestalt experiences, in
Proc. AISS, Edinburgh.

S. Weir (1978) The perception of motionf Michotte revisited. To appear in
Perception.

171

5. LEARNING

5.1 SAMUEL'S CHECKERS-PLAYER AND
HILL-CLIMBING

5.1.1 Introduction
For the moment, we will restrict ourselves to issues directly related to one
of the problems we discussed earlier, that of playing draughts. In this
section we are not going to discuss basic questions like "what do we
mean by learning?" or "How do we get a computer to learn?". We will
spend some time on that in the next section, but for the present, without
going into it more deeply, we will just say that the program we are going
to discuss is a learning program because it improves its standard of play
with experience.

5.1.2 Aspects of the Program
Recall: a game-playing program works by minimaxing back up a game
tree, using an evaluation function on the terminal nodes which consists of
a weighted-sum-of-features score. Typical features are: piece ratio, centre
control, threat of fork, denial of occupancy, etc.:

S = w 1 s 1 + w 2 s2 ++ ws
We want to look at this evaluation function in a rather different way than
we have done so far. Notice firstly that there are two different ways that
the nodes in the search tree have values assigned to them:
(a) Nodes at the limits of the search get a value

by calculating the evaluation function.
(b) Other nodes get their values

by minimaxing the values from (a).
So the evaluation score is a result of static, featural analysis, and the
backed-up value is a result of dynamic, exploratory analysis.

Notice secondly that the only reason we need an evaluation function at all
is because we cannot afford to search the whole tree. If we could search
the whole thing, we would be able to assign nodes their true value of + 1
(win), 0 (draw), or—i (lose). But in fact we have to terminate the search
somewhere, and at these points we have to make do with an approxi-
mation to the true value. In other words, the evaluation score is a second-
rate substitute for a full exploratory search. It is intended to tell us approxi-
mately what we would find, if we were able to carry out the full search.

5.1.3 Genoralisation learning
The question now is this: in the "weighted sum of features score", where
do the weights come from? What should they be? And the proposed
answer is that the program should learn the appropriate weights by
experience - it should continually be adjusting its weights to improve its
standard of play. (It also chooses an appropriate set of features - more

172

on this below.) The idea is for the program to play for a while, and see how
well it is doing. It must then somehow increase the weights of the features
that are helping to make the right decisions, and decrease the others.

How often should it do this? If it does it only once per game, the rate of
learning is far too slow, and one is extracting far too little information from
all the activity involved in playing. For example, even if the program lost a
game, it may have been because of just one mistake: most of its decisions
may still have been right. Or conversely, if the program won, does it mean
that a//its decisions were equally responsible for the success? (What we
are discussing here is an aspect of what is known as the credit assignment
problem.)

So we do the updating after each move. This is sufficiently frequent, but
there is a difficulty. On what basis can the program decide "how well it is
doing"? The simple description given above supposes that there is a
trainer standing by to tell the program "Yes, that was a good move" or
"No, you did the wrong thing" In the absence of such a trainer, how can
the program itself, which is already making the best decisions it can, also
know how good these decisions are?

The solution comes from the two points mentioned above, in section
5.1.2. There are two ways of finding the value of a board position: (a) by
static evaluation function, (b) by dynamic search. Since it looks further
ahead, score (b) is less dependent on the details of the evaluation function,
and so it can be used as a criterion for the correctness of score (a).

To say the same thing a different way: remember that (a) is regarded as a
prediction of (b), so that it can serve as a substitute for it. The better the
evaluation function, the better that prediction. If the evaluation function
were perfect, the two scores would be in agreement throughout the game.
So all we have to do to see how good the evaluation function is, is to see
how closely it corresponds to the backed-up score, i.e. for boards
encountered during actual play, we compute

A = (backed-up score of board resulting from chosen move)
- (evaluation score for current board)

If A is positive, then the evaluation score made an under-estimate, so the
positive terms in the polynomial should have more weight, and the
negative terms less weight. If A is negative, the score was an over-
estimate or even led to the wrong choice of move, so the weights should
be altered conversely.

In fact, the program keeps a cumulative average record of the "corre-
lation" between the sign of each term and the sign of A ,and this is used
to adjust the weights after each move. The correlation of a given feature
tells us how good a predictor it is, so the better it is, the more weight it is
given.

173

Term Selection. The evaluation polynomial involves only 16 out of a
possible 38 features. The program keeps track of which term has the
lowest "correlation', and if any term is lowest too often it is replaced by a
new term, which initially has zero weight. With experience this program
becomes highly competent, a "better-than-average" player with good
middle- and end-game play, though the openings remain weak and
unconventional.

5.1.4 Hill climbing
Occasionally, during learning, the program is temporarily unable to
improve its play any further. It is then necessary to give it a big 'kick", by
setting to zero the weight of the leading term in the polynomial. Why does
this happen?

Samuel is essentially using the technique of h/Il climbing to optimise the
program's performance. This technique is appropriate when for some
reason you are unable to analyse the task in such a way as to deduce the
best weights (e.g. in draughts, nobody knows how to do this). Instead you
start from where the program is and make a long series of small improve- 4
ments. Compare this with trying to reach the top of a hill on a foggy night,
without a map. The general idea is to keep going upwards". One can
(a) find the line of steepest slope and take a step along it; or
(b) try steps indifferent directions, and choose the best;

etc.

This method suffers from various problems. The one that concerns us here
is the problem of secondary peaks (or local maxima). You may have
reached a peak, but is it the highest one? One solution is to try making
random leaps. To do better, you have to know more about the structure of
the problem. (Another difficulty is that of encountering a 'mesa", a large
area where there is no change whichever way you move, and therefore no
clue to the correct direction.)

Hill climbing is a technique widely used and studied even outside of Al.

5.1.5 References
A.L. Samuel (1959) Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development 3, 211-29.
Reprinted in Computers and Thought (eds E.A. Feigenbaum & J. Feldman)
pp.71-105. a

A.L. Samuel (1967) Some studies in machine learning using the game of
checkers. II - Recent progress. IBM Journal of Research and
Development 11, 601-17.

In his 1959 paper, in addition to the "generalised learning" discussed
here, Samuel describes a form of "rote learning" in which selected board
positions encountered during play are remembered, and used to increase

174

the effective depth of search, thereby improving the program's play. See
pp.79-83 in Computers and Thought.

5.2 STRUCTURAL LEARNING AND GENERAL
COMMENTS

5.2.1 Digression: "Concept Identification" Experiments
We take a quick look at a chapter of experimental psychology in order to
provide ourselves with certain terminology and ideas. In a "concept
identification' experiment, the subject is presented with a set of objects
varying in some systematic way, e.g. cards with shapes varying in outline,
number, size, colour, etc. A "concept" is a subset of the objects specified
by a simple rule. Different kinds of rules define different kinds of concepts:

conjunctive, e.g. red and square
disjunctive, e.g. red or square
equivalence, e.g. both red and square, or neither.

For a given concept, certain attributes are relevant; e.g. for "red and
square', colour and shape are relevant attributes, the rest are irrelevant.
The subject is shown examples one at a time, and told whether or not they
are instances of the concept the experimenter has in mind. The subject's
task is to guess the rule.

A strategy commonly used for learning conjunctive concepts is
'conservative focussing". Here the subject remembers the first positive

'1~ ff z>
HOUSE NEAR MISS

NEAR MISS NEAR MISS

Figure 5.1. HOUSE

175

instance, and then gradually strips away its irrelevant attributes. We can
see that if a new example differs from the first in several attributes but is
still a positive instance, then those attributes must all be irrelevant.
Whereas if the new example differs in just one attribute and is a non-
instance (a "near-miss'), then that attribute must be relevant. This should
all sound vaguely familiar.

The field was opened up by a book by Bruner, Goodnow and Austin in
1956. Since then more than 1200 similar experiments have been
published.

5.2.2 Winston's Program Revisited
(a) Consider the process of building a model from a sequence of positive
instances and "near-misses", e.g. HOUSE (see figure 5.1). The formation
of the MUST-BE and MUST-NOT-BE links is the detection of the relevant
attributes.

(b) When having to relax a requirement, Winston's program makes an
appropriate genera/isation by finding the first superordinate entity that
includes both cases. For example, when learning ARCH (see section 4.2) it
finds that both a BRICK and a WEDGE are acceptable as cross-members,
so generalises them to PRISM, e.g.

OBJECT

ZN
PRISM

ZN
WEDGE BRICK

N
CUBE

If something holds for both CUBE and WEDGE, the appropriate
generalisation is to PRISM.

(c) Previously learned concepts can be used in new ones, e.g. ARCH as a
component of ARCADE (see figure 5.2). Such a concept is necessarily
hierarchical: ARCADE could not be learned without first learning ARCH -
it would become hopelessly complicated.

(d) These iterative structures like ARCADE and COLUMN are handled in
the same way as simple structures. The networks have a TYPICAL-
MEMBER link, and a NUMBER-OF-MEMBERS that can be "appropriately
generalised" to be an INTEGER (implicitly,>2). See figure 5.3.

Discussion. Note the central importance of near misses for the learning.
Successful learning is dependent on being given a good training sequence.
Viewing learning as the building of an internal description gives us a

176

Figure 5.2. ARCADE

one-part- is

ki
typical

-member

in-front-of number-of a-kind-of

another
-members

ember

Figure 5.3. ARCADE

rational basis for discussing "good teaching. But does this go beyond
what Bruner, Goodnow & Austin (1956) did? Compare this view with
Bruner's own work on education (1960, 1966).

The limitation comes from the fact that the technique is essentially
'conservative focussing", so it is restricted to learning conjunctive
concepts. For example, could it learn the concept 'two bricks in the same
orientation" (either both lying or both standing)? What about the concept
"cat"? Or abuts'? Or "near to"?

177

5.2.3 Discrimination Nets
Consider the ANIMAL program you played with at the beginning of term:

THINK OF AN ANIMAL
IS IT A MOUSE?: no
OH DEAR, I DID NOT GET THAT ONE
WHAT ANIMAL WERE YOU THINKING OF? : pterodactyl
PLEASE ASK A QUESTION TO DISTINGUISH A

MOUSE FROM A PTERODACTYL : is it prehistoric
WHAT WOULD THE ANSWER BE IN THE CASE OF A

PTERODACTYL? : yes
THANK YOU, I WILL REMEMBER THAT

THINK OF AN ANIMAL
IS IT PREHISTORIC? no
IS IT A MOUSE?: no
OH DEAR, I DID NOT GET THAT ONE
WHAT ANIMAL WERE YOU THINKING OF? : whale
PLEASE ASK A QUESTION TO DISTINGUISH A MOUSE FROM

A WHALE : is it enormous
WHAT WOULD THE ANSWER BEINTHECASEOFAWNALE?

yes
THANK YOU, I WILL REMEMBER THAT

THINK OF AN ANIMAL
IS IT PREHISTORIC? :yes
IS IT A PTERODACTYL: no
OH DEAR, I DID NOT GET THAT ONE
WHAT ANIMAL WERE YOU THINKING OF? :dinosaur
PLEASE ASK A QUESTION TO DISTINGUISH A PTERODACTYL

FROM A DINOSAUR is it spelled funny
WHAT WOULD THE ANSWER BE IN THE CASE OF A

DINOSAUR?: no
THANK YOU, I WILL REMEMBER THAT

THINK OF AN ANIMAL
IS IT PREHISTORIC?:no
IS IT ENORMOUS? : yes
IS IT A WHALE? :yes
I GUESSED IT!!!

How does the program recognise an animal by testing for suitable features
in a sensible way? By making use of a (binary) discrimination tree: a tree in
which the terminal nodes are names of animals, and each non-terminal
node has (a) a test; (b) a pointer to its YES-node; and (c) a pointer to its
NO-node. For example, in the sequence above, when the program has
learned the first discrimination it builds the structure:

178

prehistoric?

iODA G)
After adding the second discrimination, this becomes:

prehistoric?

(IRODACTY enornlou s?

(wLE) QuJ

And soon.

Exercise 5.2.1. Draw a suitable discrimination tree to distinguish the
objects CUBE, CYLINDER, PYRAMID, CONE, WEDGE, PRISM, BRICK.
What about one for the objects MAN, GIRL COW, BOY, WOMAN,
BULL?

The EPAM program uses a discrimination tree to simulate the learning of
paired associates", i.e. pairs of nonsense syllables, where the subject has

to learn that when given DAX he has to reply LOM, and soon. By the very
nature of the program's learning process it exhibits the phenomena of

stimulus and response generalisation
retroactive interference
forgetting as a failure of accessing (rather than storage)

and thus provides a non-probabilistic model of paired-associate learning.
Compared to Winston's program, EPAM is cruder but it does its learning
more gradually.

5.2.4 General Commenta on Learning
Paradigms and Contrasts.
(a) statistical vs structural learning, e.g. height of man vs number of
hands.

Statistical: summarise wide experience in numbers
implicit descriptions (e.g. Samuel's program)

Structural: reflect characteristics of individual cases
explicit descriptions (e.g. Winston, EPAM)
significant learning from single instances

(b) Improving an existing program (cf. tuning an engine) vs writing a new
program (cf. building a bridge). In the case of improving an existing

179

program, we already have a program that does the job, and the task is to
make it perform better. Such programs usually have two distinct pans, the
pan that does the job and another part that fiddles with the first pan.

Trivial Kinds of Change.
(a) Adding new procedures, new data: is this "learning"? For example.
LOGO doesn't know how TO LAUGH, but if we "teach" it, then
afterwards it does? Or, we might have a program that stores titles of
books and the names of their authors. But it can't tell us who the author of
Waverley is until it has learned it?

(b) The issue of "store vs recompute". This is essentially a matter of
trading off space against time: should the program remember all the
results it produces? If we are selective enough in what gets remembered,
we may get an improvement of performance (e.g. MEMO functions).

No Attempt to Define "Learning"
(a) Learning as a possible aspect of the answer in the "what is
intelligence?" game. A feeling that a program is not intelligent if it is
"merely programmed" to do some task, but it/s "if it learns to do it by
itself".

(b) The slipperiness of learning programs wher, looked at hard. A program
that learns to do task T can usually be thought of as simply doing a related
task T', e.g. Samuel's program learns to play better checkers, or it
optimises its performance. (Cf. "the computer just does what its
programmer tells it to".)

(c) Informal, everyday use of learning as an "explanation" - as an
alternative to "mechanism"? For example, how does one ride a bicycle?
You can't be told how to do it, you have to "learn by experience". For the
period c.1 920-1 950, experimental psychology (especially in the U.S.) was
dominated by the "behaviourist" view, which saw learning as the problem
of psychology.

The objection to doing this is the need to have a sufficient mechanism to
accomplish the task. Look at the device/organism at a particular moment
in time: you can ask valid questions about the mechanisms it's using,
irrespective of how they were acquired.
(BUT ALSO: a deeper sense in which this formulation may be valid?)

5.2.5 References
J.S. Bruner (1960) The Process of Learn/ng. Vintage Books.

J.S. Bruner (1966) Toward a Theory of Instruction. Harvard U.P.

J.S. Bruner, J.J. Goodnow, & G.A. Austin (1956) A Study of Thinking.
Wiley.

180

E.A. Feigenbaum (1961) The simulation of verbal learning behaviour,
reprinted in Computers and Thought (eds E.A. Feigenbaum & J. Feldman),
McGraw-Hill.

P.H. Winston (1970). Learning structural descriptions from examples.
Ph.D. thesis, Al Technical Report 231, MIT. (especially chapters 5 and 6).

PERCEPTRON S

5.3.1 Background
One of the many striking facts about the human brain is that it contains
more than 1 010 neurons, each of which is a sophisticated little computing
device in its own right. In the search for the "mechanisms of intelligence",
many people have tried to confront this fact, and to ask what kind of
organisational principle could enable this vast mass of information-
processing units to exhibit intelligent behaviour. This approach is usually
loosely called 'neural net" studies (at least by workers in Artificial
Intelligence).

Underlying much of this research is the widespread notion of the
brain itself as a rather loosely organised, randomly interconnected network
of relatively simple devices'. Several key ideas that arose during the
1940s and '50s had an important influence on this line of thought, for
instance:
(a) the basic idea that lots (but lots!) of simple elements suitably put

together can yield interesting, complex behaviour;
(b) the theoretical demonstration in the mid-i 940s that networks of

simple neuron-like elements can be constructed to compute any
logical function;

(c) results that were starting to appear from neurophysiological studies of
the way that information is processed in the visual systems of various
animals;

(d) proposals from the newly-emerging field of Artificial Intelligence as to
how pattern recognition can be done by using a large number of
independent little decision-making units, working simultaneously,
"organised" in a rather unstructured way.

So far in this course we have examined ways of generating intelligent
behaviour by imposing an organisation on a sequential process - that is
what programming is all about. By contrast, the emphasis in the neural net
studies is largely on se/f-organ/sing systems. The extreme case is the idea
of a system with initially random connections that become selectively
strengthened or weakened by learning.

At one time these ideas were very popular, and much research - both
experimental and mathematical - was done on devices of this kind.
Sometimes over-ambitious claims were made, for example that such
devices would be able to play master chess by learning to "recognise"

good board situations. Nowadays it is felt (at least by workers in Artificial
Intelligence) that this approach has severe limitations. There is a need for
greater structure, for an appropriate match between the mechanism and
the task to be done.

One class of device to emerge from this work has a particularly interesting
history, and we look at it more closely.

5.3.2 Porceptrons
The idea is to have a machine that recognises a class of objects by a
simple combining of the evidence obtained from lots of small experiments
performed independently. Thus the perceptron provides a paradigm for the
intuitive notion of simple decision-making carried out by a richly parallel
mechanism.

Presented with an object X, a perceptron computes the values of various
features f 1(X), then combines them in aa weighted vote:

w 1f = w 1 f 1 +w2f2 +w3f3 +....+wf
This value is compared to a threshold 0 . If I wf 1 >9 ,we say the
perceptron responds positively. We want it to respond positively if X is an
object of a certain type, and negatively if not, e.g. if X is-a-circle: if X is-a-
convex-figure; or if X is-a-single-connected-figure.

I
>0
or
<0?

We can imagine some figure projected onto a two-dimensional "retina,
which is looked at' by a large number of little 'demons", each computing
one of the f. The outputs of these demons are then multiplied by their
respective weights and added together.

How can this device be used to classify objects? Consider two examples:
Example 1. Take the simple case where we want the perceptron to
recognise just one particular figure, at a fixed place on the retina. (Perhaps

182

a block capital letter X, as shown in the diagram above.) Let each f 1 look at
just one small spot on the retina. For each f1 that is looking at a spot that
should be black if the object is in tact the one we are interested in,
suppose it produces output 0 if its spot is black, and output—i if its spot is
white. For each f 1 looking at a spot that should be white for the correct
object, suppose it produces output 0 if the spot is white and —1 if it is
black.

Now consider the perceptron with all weights = 1 and a threshold of —1,
so that we expect f 1 >-1 for the correct object. If we show this
perceptron our desired object, then all the f i will have value zero, the whole
sum will be zero, and therefore the inequality will be true. But if the object
differs in any way from the intended one, then at least one of the f will
have value—i. so the whole sum will be < —1, and the inequality will be
broken. So this simple perceptron discriminates between our desired
figure and all others.

Example 2. Consider next a case where we want to recognise not just a
single object, but a broad class of objects. Suppose we want it to
recognise whether the black area forms a single, convex object.

/ p
coNvEx NON-CONVEX NON-CONVEX

One way of testing for convexity - or even for defining it - is to
consider collections of three collinear points, p, q, r. In a convex figure, if
two points p and r are black, then all points q on the line between them
must also be black. In a non-convex figure, however, there will always be
some black points p and r that have a white point q between them.

Suppose each f i looks at three collinear spots. If the two outer spots are
black and the middle one is white, let the f produce output—i. Otherwise
the output is 0. Suppose now there are enough f 1 to "cover" the whole
retina, in some sense. Again consider the inequality Z f 1 > — i.The
argument proceeds as before. If the object is convex, then all the f 1 will be
zero and the inequality will hold true. But if the figure is non-convex, at
least one of the f i will have value—i, and the inequality will be broken. So
this perceptron discriminates between convex and non-convex objects.

183

5.3.3 Learning in Perceptrons
Not surprisingly, given the neural-net background to the perceptron
research, much of the interest with perceptrons lies in the question of
whether a perceptron can learn to recognise objects. As with Samuel's
draughts program, learning is a matter of finding an appropriate set of
weights, w. To get the perceptron to learn to recognise a class C, we
present it with a sequence of examples, some in C and some not. Each
time, depending on right or wrong, we take appropriate reinforcing or
correcting action.

We can make an intuitive argument for the form the correction should
take, analogous to the argument made in discussing Samuel's program. If
the weighted vote Z wfl j is below threshold for a figure belonging to C,
then clearly the weights of the positive terms should be increased, and
those of the negative terms decreased. And conversely, if I w 1f, > 0 for a
figure not in C, then vice versa. One easy way to think about this is to
suppose all the f 1 have value either 1 or 0. Then the correction procedure
takes the form of adding (or subtracting) 1 to (from) the weights of all the
features that have value 1.

It was possible to prove a remarkable theorem which says, in effect, that if
a perceptron is inherently capable of recognising a class of objects, Ehen it
can learn to recognise them, by means of a simple learning procedure, in a
finite number of steps:

Perceptron Training Theorem. Given a class C, suppose that there do exist
weights w such that

= Z wf(X)
is >0 for objects in C, and <0 for objects not in C. Start with any set of
weights D = 1 w 1f 1 , and try the perceptron on a sequence of examples, X:
(a) If X is classified correctly, fine:
(b) If D < 0 for an X in C, then replace each w 1 by (w 1 + f 1(X)). Conversely,

if D> 0 for an X not in C, then replace each w by (w1 - f(X)).
Then step (b) will be taken only a finite number of times. In other words,
the perceptron will learn to recognise the class correctly after only a finite
number of errors. Notice how the description of the class C is implicit, and
distributed over the final w (or w 1 *).

5.3.4 CapabilitIes of Perceptrons
In 1969, Minsky and Papert published an influential book on perceptrons.
Their highly original contribution was to by-pass the question of learning,
and to ask instead about the fundamental abilities and limitations of
perceptrons. They point out that it is not sufficient to know merely that if a
perceptron can do a task, then it can also learn to do it. We need also to
understand what tasks perceptrons can and cannot do in principle.

The important point about a perceptron is that it makes a global decision

I
H
A

I

184

about a figure by weighing only local evidence. We distinguish two senses
of "local evidence":
(a) Order-limited: each f 1 depends on at most k points
(b) Diameter-limited: each f sees points in only a small area
It turns out that order-limited perceptrons are the deeper and more
interesting, but similar results hold for both, and as the diameter-limited
case is easier to deal with we concentrate on it here.

Diameter-limited perceptrons can recognise, e.g. a scene consisting only
of rectangles. If all f output zero for any of

and—i for anything else, then we can set all w 1 =1 and have
f1 (X) > —1) if and only if [scene consists of rectangles]

But a perceptron cannot recognise, e.g., a scene consisting of a single dot.
Consider the figures:

Gfr 33 r 0 G

A B C D

For (A), we need X wf< 0. For (B), we need 1 w 1 f, >9, so some w1 i (e.g.
w79f79) must have increased. Similarly, for (C), some other w 1 f (e.g. w33f33)
must have increased. For (D) we need E wf <0,but this is impossible
since both groups (like f79 and f33) will have increased.

Neither can it recognise whether a figure is connected. Consider

A B C D r and divide the f1 into three groups: (a) those that can "see' the left-hand

end of the figure; (b) those than can see" the right-hand end of the figure;
and (c) those that can see neither end. Then we can make the same
argument as for the single dot. The point is that we are trying to get the
perceptron to make a global judgement - about connectivity - on the
basis of local evidence. But the trouble is that B, which is connected, looks
locally just like A or D, which are disconnected. (But is it quite easy to

F)

 write programs for a serial machine, e.g. in LOGO, to determine whether a
figure is connected, and they use very little storage.)

Various other interesting figures cannot be recognised, e.g. objects that

I contain other objects, a rectangle embedded in context, etc.

185

5.3.5 Discussion
There is a general moral to be drawn from the analysis. There is no point in
discussing elaborate schemes for 'teaching" a machine to do something it
inherently cannot be made to do. Most of the early proposed schemes
lacked careful analysis of

their inherent limitations
the rates of learning
the sizes of the weights w.

Consider for example, the inability of the diameter-limited perceptron to
recognise the scene consisting of a single dot.

Notice, however, that Minsky and Papert's analysis applies only to the
very simplest kind of perceptron, called "single-layered". Real perceptron
enthusiasts play with far more complicated varieties, called "multi-
layered", and "cross-coupled", etc. It is not at all clear whether limitations
analogous to those of Minsky and Papert apply to these more complex
perceptrons. (If you are interested, see the careful review of the
Perceptron book by Block.)

5.3.6 References
M. Minsky & S. Papert (1969) Perceptrons:An Introduction to
Computational Geometry. MIT Press.

H.D. Block (1970) A review of Perceptrons' in Information and
Control, 17, 501-522.

5.4 INDUCTION

5.4.1 Introduction
Inductive tasks require detection of a pattern, or regularity, in the
information presented, such as spotting a trend, seeing similarities, finding
the odd-man-out, etc. Examples are:
(a) Geometric analogy tasks. These were discussed extensively at the

beginning of the course (see chapter 1).
(b) Letter analogies. Fill in the blanks:

IJJI POOP ED --
(c) Letter grouping. Pick out the one that doesn't belong:

AABC ACAD ACFH AACG
(d) Number groups. State what is common:

35 110 75
(e) Number relations. Pick the one that doesn't belong:

26 39 412 615
(f) Number series. State the rule:

15 18 21 24 27 30
(g) Number correction. State the one in error:

123457

186

(h) Seeing trends. What is the trend?:
ANGER BACTERIA CAMEL DEAD EXCITE

(i) Word groups. What is common?:
MAIM TEST GANG LABEL

(j) Word relations. Fill in the blanks:
REAL SEAL MEAT NEAT BORE

(k) Series completion. Write the correct letter in the blanks:
(i) CDCDCD-
(ii) AAABBBCCCDD-
(iii) ATBATAATBAT-
civ) ABMCDMEFMGHM-
cv) DEFGEFGHFGHI-
(vi) OXAPXBQXA-
(vii) AD U AC UA EU A B UA F U A-
(viii) MABMBCMCDM-
cix) URTUSTUTTU-
cx) ABYABXABWAB-
(xi) RSCDSTDETUEF-
(xii) N PAOQAPRAQSA-
(xiii) WXAXY BVZCZA DAB-
(xiv) JKQRKLRSLMST-
Cxv) PONONMNMLMLK-

Compared to more "deductive" problems, these tasks have a certain
openness". Finding the solution is a genuine 'creative act" and involves

going beyondthe evidence given (cf. a scientific theory). The answer is not
in the sequence itself: the problem solver himself has to bring something
to the task.

What defines a right answer? Mathematically speaking, there is an
indefinite number of sequences that begin 1 2 3 4...

5.4.2 Loner Sequences
See problem (k) in the examples above. Notice how the problems vary in
difficulty (e.g. as measured by time taken to solve, or the number of people
failing). Some seem especially difficult: (v), (vii), (ix), (xv), ... (Why?) By and
large, different people tend to agree about which ones are easier and
which ones are harder. (Why?)

Notice how it is important to find the periodicity of the sequence. People
usually start by doing this.

Simon and Kotovsky (1963) created a descriptive language for this class
of sequences. All that is needed is:

the idea of a repeating pattern, in square brackets [1
the idea of pointers into the alphabet
the operations of NEXT and BACKWARD NEXT on the pointers

187

For example, using the problems from (k) above:
(iv) A B M C 0 M E F M G H M -

is: x".—A/ALPH, Ix nx x nx M]
and is interpreted as follows: The sequence uses a pointer, x, which is
initialised to the letter A in the ALPHabet. The sequence is generated by
saying the letter that x currently points to ("x"), then stepping x to point to
the next letter in sequence ("nx"), saying the letter that x now points to
("x"), stepping x again ("nx"), and then saying the letter M. The sequence
is repeated over and over again. Similarly:
(ix) IJRTLJSTUTTU-

is: x.e—R/ALPH, [Li x nx TI
NO P0 N 0 N M N M L M L K -

is: x.e—y.e--P/ALPH, Lx bx x bx x by x.-y]
Simon & Kotovsky find that the harder problems have more complex
descriptions. In particular, the sequences that require two pointers impose
a bigger memory load and are almost always harder than the one-pointer
sequences. (Why?) (A more detailed analysis, based on thinking-aloud
protocols and eye movements is given in Kotovsky and Simon 1973.)

54.3 Induction Program
Simon & Kotovsky wrote various versions of a program to derive the
pattern description from the given sequences. This led to the idea of a
"natural" ordering of the difficulty of the problems, since a "stronger"
version of the program (i.e. one that solved more problems than a
"weaker' one) tended to solve all the problems the weaker one did.
Indeed, it would be hard to write a program that solved the harder
problems and failed on the easier ones.

We look at a "rational reconstruction of Simon & Kotovsky's program,
presented by Newell (1973). The idea is to start with a broad class of
hypotheses (e.g. "all sequences of period 3") and then make successive
refinements by repeated comparison with the given sequence. The trick is
to allow for a large number of possibilities by using variables (a 0 Y
but then deducing what the variables must be in order to generate the
sequence correctly. In comparing the pattern against the sequence, there
are six different situations that can occur, each of which leads to an
appropriate action:

Case 1. Pattern has a variable a ,sequence has a letter which is pointed
to by some pointer x. Action: replace a by x".

Case 2. Pattern has a variable a ,sequence has a letter which is "next
after some pointer x. Action: Replace a by 'nx x".

Case 3. Pattern has a variable a ,sequence has a letter L. Action:
Replace a by a new pointer "y", and add "y-.-L/ALPH".

Case 4. Pattern has a pointer x, sequence has the letter pointed to by x.
Action: That's fine, do nothing.

Case 5. Pattern has a pointer x, sequence has the letter next after x.
Action: Replace 'x' by 'nx x".

Case 6. Otherwise fail.

Let us see how this works out on problem (viii),
i.e. given MA B M 8CM CD M

1. Guess [a 13 7], i.e. a sequence of period 3. (See exercise below).
Generate: a ... compared to: M
Case 3: a must be pointer x, initialised to M.

2. Now have: x-.-M/ALPH, Lx 13 y
Generate: M 13 . . . compared to: MA...
Case 3: 13 must be pointer y, initialised to A.

3. Now have: x'.-M/ALPH, y'..-WALPH, Lx y 7
Generate:MA 7 ... compared to: M A B ...
Case 2: 7 must be 'nyy".

4. Now have: x'.-M/ALPH, y.-A"ALPH, [xy ny y]
Generate: MA B M B C M CD...
OK: we're there!

Unlike the Simon and Kotovsky program, this one does not begin by
finding the periodicity of the sequence. But it has no need to, since the
hypotheses that it has period one (La 1) or two ([a 13]) quickly come to
grief.

Exercise. Show this.

5.4.4 Discu8sion
By working with symbolic descriptions of sequences instead of with
the sequences themselves, we have managed to cast the induction
problem into the same form as earlier problems we have looked at.
As in the Missionaries and Cannibals problem, for example, we have
an initial state, e.g. (a 13 y J, which has to be transformed into a
goal state (i.e. a fully-specified pattern that generates the given
sequence) by means of a series of operators, e.g. replace a' by

nx x

Notice that in this case, for each kind of difference between the
pattern and the given sequence there is a single kind of change to be
made to the pattern, so we never have to undo a decision we made
earlier. This means that we can use the powerful matching technique
instead of the comparatively weaker tree-search.

The traditional distinction between 'deduction' and 'induction"
leads to a certain mystique attached to the latter. I hope to have
dispelled some of this by showing how an "inductive' problem can
be solved by the same means as were used for 'deductive"
problems. i.e. (a) use of symbolic descriptions, and (b) application of

189

operators to reduce the difference between the current state and the
goal state.

Some interesting questions have to do with the hypotheses, e.g.,
where do they come from? Consider:
(a)OTTFFSSE ... ?

(b)SMTWTF ... ?

(c)BCDGJQPQRS ... ?

5.4.5 References
A. Newell (1973) Artificial intelligence and the concept of mind, in
Computer Mode/s of Thought and Language (eds R.C. Schank &
K.M. Colby) pp.i-60.W.H. Freeman.

H.A. Simon & K. Kotovsky (1963) Human acquisition of concepts for
sequential patterns. Psycho/ogica/ Review 70, 534-46.

K. Kotovsky & H.A. Simon (1973) Empirical tests of a theory of
human acquisition of concepts for sequential patterns. Cognitive
Psycho/ogy 4,399-424.

5.5 PRODUCTION SYSTEMS

5.5.1 The Need for a Constrained Language
In the programs we have looked at so far, the learning" has con-
sisted of the building up of some data structure distinct from the
learning program itself, e.g. Winston's descriptive networks, EPAM
discrimination tree, Samuel's weighted evaluation score, and Simon
& Kotovsky's letter sequence pattern. However, in order to get a
wider range and greater flexibility of learning, and to write programs
that acquire the ability to do something they could not do before, it
will clearly be necessary to have programs that modify and add to
their existing program. For example, we might want to write a robot
program that, the first few times it is asked to assemble a toy car,
does so slowly and painfully from first principles; but after a while,
we would want it to have acquired a new procedure for that
particular task.

Unfortunately, LOGO and other ordinary" programming languages
are not really suitable for this kind of automatic manipulation. The
difficulty is rather like trying to understand someone else's LOGO
program, where all the procedures are called just P1 ,P2,P3, etc., and
the arguments and variables are all called X,Y,ZI In order to modify
someone else's program, you have to know the significance of each
of the procedures, arguments, variables, etc.; to understand the
purpose of each line in a procedure; to know enough about the
context to be able to make the modification without introducing new
bugs; to be able to use the EDITor effectively to change the old

I procedure or define a new one.

Needless to say, it is very hard to automate this process. What we do
instead is to simplify and restrict the programming language
drastically, and to write programs in this more primitive language in
a systematic way. We will suggest a way of doing this by considering
how to write LOGO programs that have the desired properties.

5.5.2 Production Systems
First suggestion. Suppose we write our program in the form:

TO MYPROGRAM
1 IF (condition 1) THEN (DO action 1) AND GO
2 IF (condition 2) THEN (DO action 2) AND GO
3 IF (condition 3) THEN (DO action 3) AND GO

999 IF (condition 999) THEN (DO action 999) AND GO 1
END

Notice that this is a special kind of program. Its execution takes place
in a sequence of cycles. During each cycle, just one line gets fully
obeyed. LOGO looks at the lines 1,2,3,.. . in turn, and finds which
one has a true (condition). The (action) on that line is obeyed, and
then LOGO jumps back to line 1 and the next cycle begins.

This kind of program has some ofthe properties we want, for we are
now stating explicitly what the conditions are for each possible
action to occur. However, this is not yet enough, because we have
said nothing about what the conditions and actions are allowed to
be. And if we allow arbitrary LOGO code to be written there, then all
the old problems come back. So:

Second suggestion. Suppose that we have a working memory, called
WM, that is used to hold all the changing information in the system.
In other words, there are to be no other variables, lists, etc., to hold
data other than those in WM. By analogy with the INFERENCE
system (see section 2.2), we can think of WM as a database, and we
are saying that all data must be stored in the database.

We are now in a position to place interesting restrictions on the con-
ditions and actions. We will say:
(a) All (conditions) consist of a pattern match against the informa-

tion in WM, rather like the ISQ pattern match in the INFERENCE
system. Call this operation MATCHES. Note that this is the only
way of retrieving information from WM: we allow no FIRSTs,
BUTFIRSTs, etc.

(b) All (actions) consist of an addition to, or modification of, the
information in WM, analogous to ASSERT.

Then our program will look like:

191

TO MYPROGRAM
1 IF MATCHES (pattern 1) THEN (WM-action 1) AND GO 1
2 IF MATCHES (pattern 2) THEN (WM-action 2) AND GO 1
3 IF MATCHES (pattern 3) THEN (WM-action 3) AND GO 1

999 IF MATCHES (pattern 999) THEN (WM-action 999)
AND GO 1

END
This kind of program is usually written in the following notation:

RULE 1 : (pattern 1) (WM-action 1)
RULE 2 : (pattern 2) (WM-action 2)
RULE 3 : (pattern 3) (WM-action 3)

RULE 999 : (pattern 999) (WM-action 999)
This is called a production system. The individual rules are called
productions or production rules.

5.5.3 An Example: ANIMAL Program Revisited
Remember the ANIMAL program, which guesses what animal you are
thinking of by asking a series of questions about its properties? The
diagram below shows the state of the program after it has learned about
MOUSE, ELEPHANT, EMU, STORK, DALMATION and LEOPARD:

spotted coat?

long neck?

""z \+
big? cart fly? dangerous?

V \+ \+/ V
tVUSE ELEPHANT EMU &rORlC DALMATIAN LEOPARD

Table 1 is a production system to find which of these animals you have in
mind. The notation is similar to that used for the INFERENCE system. The
easiest way to understand how the system works is to watch it stepping
through an example. Suppose we think of EMU, and suppose that the WM
is initially empty.

Cycle 1. The patterns of neither Rule A nor Rule B match the WM, nor do
Anim 1, Quesl,or Anim2. But the pattern of Ques2 does match (since
there is no item [ASKED SPOTTED-COAT] in WM), so the system obeys
the actions of Ques2:
(a) It asks: SPOTTED-COAT?

192

(b) It puts into WM the item [ASKED SPOTTED-COAT]
Ic) It attends to the answer: we type in [ANSWER NO), which gets

automatically ASSERTed.

Table 1. A production system for the ANIMAL program

Rule A: [GUESS 'ANIMAL] [NOT [RESPONSE 'RIGHTORWRONG))
[SAY ANIMAL!] [ATTEND-TO RESPONSE]

Rule B: [ANSWER YES] [ASKED 'PROP]
[DELETE [ANSWER YES)) [ASSERT [PROPERTY :PROP)]

Animi: [PROPERTY SPOTTED-COAT) [PROPERTY DANGEROUS]
[ASSERT [GUESS LEOPARD]]

Quesi: [PROPERTY SPOTTED-COAT) [NOT [ASKED DANGEROUS])
[SAY DANGEROUS 11 [ASSERT (ASKED DANGEROUS)]
[ATTEND-TO ANSWER]

Anim2: [PROPERTY SPOTTED-COAT)
[ASSERT [GUESS [DALMATIAN]]

Ques2: [NOT [ASKED SPOTTED-COAT)]
[SAY SPOTTED-COAT?) [ASSERT [ASKED SPOTTED-
COAT]) [ATTEND-TO ANSWER)

Anim3: [PROPERTY LONG-NECK] [PROPERTY CAN-FLY]
[ASSERT [GUESS STORK])

Ques3: [PROPERTY LONG-NECK] [NOT [ASKED CAN-FLY))
[SAY CAN-FLY ?) [ASSERT [ASKED CAN-FLY)]
[ATTEND-TO ANSWER]

Anim4: [PROPERTY LONG-NECK] [ASSERT [GUESS EMU]]
Ques4: [NOT [ASKED LONG-NECK]]

- [SAY LONG-NECK ?] [ASSERT [ASKED LONG-NECK]]
[ATTEND-TO ANSWER]

Anim5: [PROPERTY BIG] [ASSERT [GUESS ELEPHANT)]
Oues5: [NOT [ASKED BIG))

[SAY BIG ?] [ASSERT [ASKED BIG]] [ATTEND-TO
ANSWER]

Anim6: [ASSERT [GUESS MOUSE)]

Cycle 2. This time Ques2 does not match, since there now is an item
[ASKED SPOTTED-COAT) in the WM. The first rule to match is Ques4, so
as in Cycle 1:
(a) It asks: LONG NECK?
(b) It puts into WM the item [ASKED LONG-NECK]
(c) It attends to, and ASSERTs, our answer: [ANSWER YES].

Cycle 3. This time Rule B matches, since the items [ANSWER YES] and
[ASKED LONG-NECK] are both in WM. So, taking the actions of Rule B.
the system deletes the item [ANSWER YES], and adds the item
[PROPERTY LONG-NECK].
193

Cycle 4. Ques3 is the first rule which matches. As before, it asks about
CAN-FLY", and gets our [ANSWER NO].

Cycle 5. This time Anim4 is the first rule that matches. Obeying the action,
the system adds to WM the item [GUESS EMU].

Cycle 6. Finally, Rule A can apply, since the item [GUESS EMU] is inWM.
It guesses "EMU !". asks us for the response, and records our typed-in
[RESPONSE RIGHT].

5.5.4 Properties of Production Systems
1. Notice how the 'facts' that have been learned are of the same kind as
the original "program - Rule A, Rule B, and perhaps Anim6. Rule
Anim3, for example, is just as much part of the present program as is Rule
A, and it is treated in the same way.

2. Notice how 'modular" the production system is. Each rule states a self-
contained part of the knowledge embedded in the total system. Rule
Anim3, for example, states that if the animal is known to have a long neck
and be able to fly, then STORK should be guessed. Similarly, Quesi states
that if the animal is known to have a spotted coat, but it is not yet known
whether it is dangerous, then that should be the next thing to be found
out. If we look at the corresponding nodes in the tree, we can see how
"reasonable" these rules are.

3. Largely because of this modularity, the production system is highly
amenable to automatic learning - which is why we were interested in it
in the first place. To see how this automatic learning might happen, again
it is best to follow an example. Suppose that we think of OSTRICH instead
of EMU. The answers to all the questions will be the same, so the system
will still guess "EMU I", but this time we tell it: [RESPONSE WRONG].
What needs to happen?
(a) Clearly the system must ask us for a distinguishing property of the new

animal, i.e. it does an [ATTEND-TO DISTINGUISHING-PROPERTY],
and we tell it: [DISTINGUISHING-PROPERTY HEAD-IN-SAND].

(b) The system now has in hand all the information it needs in order to
build the new rules. If it takes all the [PROPERTY ... Is that it has in
WM, these are what specify the incorrect guess that was made. If it
adds to these the distinguishing property we have just given it, then
those are all the features relevant to the new animal. So the system
forms two new rules:

Anim3.5: [PROPERTY LONG-NECK] [PROPERTY HEAD-IN-SAND]
[ASSERT [GUESS OSTRICH]]

Ques3.5: [PROPERTY LONG-NECK] [NOT [ASKED HEAD-IN-SAND])
ISAY HEAD-IN-SAND 7] [ASSERT [ASKED HEAD-IN-

SAND]] [ATTEND-TO ANSWER]

194

and puts them just before the rule responsible for the wrong guess,
i.e. between Ques3 and Anim4.

Actually to implement these steps as part of the original production
system requires only a few extra rules, and one then has a fully-fledged
system capable of learning about new animals. For details of how this is
done, see the paper by Waterman.

In fact, production systems of this kind were originally developed for the
purpose of modelling human problem-solving behaviour. We will have
some more to say about this next time.

5.5.5 Reference

D.A. Waterman (1975) Adaptive production systems. Proc. Fourth IJCA/.
pp.296-303.

5.6 SCHEMATA

5.6.1 Production Systems as Psychological Models
(a) In origin, production systems (PSs) of the kind we looked at last time
were developed by Newell and Simon for representing human problem
solving behaviour. The data typically consist of thinking-aloud protocols on
tasks such as chess and symbolic logic - much the same sort of material
as GPS was applied to. PSs turn out to provide a convenient and
appropriate form to express the models of problem solving.

(b) A typical later application of Newell and Simon's ideas is the use of
PSs to investigate cognitive development in children. This work capitalises
on the suitability of the PSs for modelling learning, and the ease of adding
new rules.

(c) As a ps ychological model, the WM (see last section) can be more-or-
less identified with the psychologists 'short-term memory', and the PS
itself with long-term memory', i.e. our knowledge, abilities and
memories.

(d) Parallel evocation. Although we described PSs last time as a serial
process, in terms of a special kind of LOGO program that tests the rules
one by one until it finds one whose '(condition)" is satisfied, there is a
psychologically more interesting way of regarding them. By analogy with
the Perceptron, we can think of each rule as a little "demon", each on the
look out for its own (condition) . As with the Perceptron, all the demons
are active at once. The first one whose (condition) is satisfied yells loudly,
and the system obeys the corresponding (action>.

(e) Thus we get the prototype for the idea of a system working on a
recognise-act cycle. More on this below. We can think of the Perceptron-
like aspects of the system as 'recognising" what to do next, while the
LOGO-like aspects actually perform the 'acts".

195

5.6.2 Schemata
The idea of a schema as a representation of skill and knowledge, i.e. as
information about something and about how to do things with it, derives
from:
(a) Work of Bartlett (1932: Remembering). Schema as the essence of a

story: outline features remembered, plus any unusual characteristics
- but distorted in a normalising direction.

(b) Piaget. Two aspects of adaptation: (i) Assimilation - incorporation of
new experience into existing structure; (ii) Accommodation -
modification of existing structure (or building of new structure): e.g.
childrens fantasy-play vs imitation.

(c) Wertheimer (1945, 1959: Productive Thinking). Role of naive,
everyday schemata in understanding formal material, such as
geometry or algebra. Hence an emphasis on difference between "rote
learning" and "real understanding".

Then in Al:
(d) J.D. Becker: a concrete suggestion for learning and use of simple

schemata, but not a working program. Schema is:
[k 1 —.-k2 --..-k3 k4],

event event

i.e. "if k 1 , then if k2 and k3 , then ks ". There are weights attached to
indicate the confidence of the schema (i.e. the probability of the
regularity holding) and criteriality of each of its components. The

schema can be used, e.g. to achieve k 4 , given k 1 .

(e) Minsky: 'frames' -.- already discussed, particularly in Vision. High-
level guidelines, but no program.

5.6.3 What does this Buy?
(a) Can represent knowledge ranging from general to specific. Lots of

specialised schemata in an area where you are 'expert'.
(b) Place to attach items of information where they are likely to be found

when needed.
(c) Provides the all-important context for perception triggered by a

feature.
(d) Model of cognitive ski/Is: what you can do, as well as what you know.
(e) (Again:) Idea of a cognitive system functioning on a 'recognise-act"

cycle. "Recognition" means the evocation of a schema, "act" means
its use. The "act" pan in humans is serial, quite slow, and depends
heavily on symbolic description. The "recognise" part seems parallel
and rapid, and is poorly understood.

5.6.4 Discussion
(a) Statistical and structural learning: the need for both, e.g. to learn

significantly from a single example and also to continue improving
during extended practice.

196

(b) Deeper sense of "learning by experience'. Our abilities are structured
in terms of things that are "familiar" to us, and the actions they lead
to. Thus our past experience, captured in schemata, serves to guide
our present behaviour.

5.6.5 References
J.D. Becker (1973) A model for the encoding of experiential information,
in Computer Mode/s of Thought and Language (eds R.C. Schank & K.M.
Colby) pp.396-434. W.H. Freeman

H. Ginsburg & S. Opper (1969) Piaget's Theory of/nte/lectual
Development:An Introduction. Prentice-Hall.

A. Newell & H.A. Simon (1972) Human Problem Solving. Prentice-Hall

197

6. PROGRAMMING

6.1 HOW TO USE A COMPUTER

6.1.1 Introduction
The best way to learn about programming is to hold a series of conversa-
tions with a computer via a terminal. For this you will need:
(a) Access to a computer terminal
(b) An interactive (conversational) programming language, like LOGO,

mounted on the computer.
(c) A reference manual for the programming language, containing precise

and concise descriptions of the facilities available.
(d) A primer for the programming language which is a guide to help you

explore the language. It should contain elementary explanations and
graded exercises.

Unfortunately we cannot help you with a-c. Either your te'acher or you will
have to make these available. The notes that follow attempt to satisfy
need d, a primer for LOGO. People came to programming with different
backgrounds and no one primer can suit everybody. Some of our students
have used an alternative primer, which we can thoroughly recommend for
those requiring a less intensive introduction: How to Work the LOGO
Machine, by Benedict du Boulay and Tim O'Shea, Occasional Paper No.4.
Department of Artificial Intelligence, University of Edinburgh.

6.1.2 TheTerminat
The terminal you will use to communicate with the computer will probably
be either a teletype or a visual display unit. The teletype is like an electric
typewriter on a stand. The visual display unit is similar except that instead
of a roll of paper to type on the symbols will appear on a television screen.

The main part of the keyboard is laid out like an ordinary typewriter. Notice
the 'shift' key at the left side of the keyboard, which you must use to type
some of the special characters. e.g.

SHIFT and 2 results in"
SHIFT and 7 results in'

Notice also that there is a complete row of numerals across the top of the
keyboard. Be careful to distinguish between the letter 'oh' and the digit
'zero', between the letter ' elI' and the digit 'one' - be sure always to type
the one you really mean.

Locate the keys; for returning the carriage to the start of a new line; for
deleting characters and lines and for interrupting the computer. Ask your
teacher to help with this and to show you how they work.

6.1.3 Logging On and Off
To get in contact with the computer you will need to switch on the ter-
minal and log on. Logging on entails telling the computer who you are,
what you want and possibly giving a password. This information is given in
a stylised log on' sequence. This sequence differs from computer to com-
puter. Your teacher will tell you what the sequence is for your particular
computer. Similarly when you want to finish your programming session
you will have to log off. You tell the computer you are finished and it gives
you a logoff message.

People who design these logging sequences are predisposed to have the
computer give you masses of esoteric information, e.g. precisely which
computer system you are using, what time of day it is. You are best to
ignore all this information at this stage. One day you might be interested in
It.

6.1.4 Bugs
A bug is a computing term for a mistake in your program. If this is your
first programming experience you are going to be surprised at the number
of mistakes you will make - everybody is. Do not worry about them,
because:
(a) Nothing you can do will damage the computer, and you will need at

least a small hammer to damage the terminal. If you hear people
talking about the computer 'crashing' this refers to psychological not
physical breakdown. Smoke pours out of computers only in bad
science fiction films.

(b) Bugs are good for you. They help you to learn. If you do not get bugs
you are not stretching yourself.

(c) If you get in a mess ask your teacher for help. That is what he is there
for.

6.1.5 Terminal Listing
The piece of paper with typewriting on it that comes from a teletype is
called a listing'. It is solely for your benefit. The computer keeps its own
record. You will normally throw it away except for bits on which you have:
(a) The final record of your program
(b) The results of the program
(c) Some particular sequence (e.g. logging on) that you want to remem-

ber.
(d) The record of an unsolved bug.
Keep your records tidy or you will be swamped. Do not leave the listing
hanging from the terminal - it is a fire hazard.

6,2 PROCEDURES

6.2.1 Introduction
In the LOGO programming language there are two kinds of beast:

199

(a) Objects, which can be numbers (like 2,13, 105), words (like CAT, or
TRIANGLE2) orlists (like [ON THE MAT] or [ON [THE MAT])).

(b) Procedures, which are instructions or recipes that allow us to
manipulate objects, e.g.

PRINT 4
causes 4 to be printed on the terminal.

Synonyms. Not everybody uses the same notation as we do. Objects are
sometimes called datastructures, data or items. Procedures are some-
times called programs, functions, routines, operations, commands or pre-
dicates. A process is a procedure that is running.

What is Provided? Numbers must be whole numbers. Words can be any
string of letters or digits, containing a letter. Lists are any sequence of
objects (i.e. numbers, words or sublists) separated by spaces and sur-
rounded by brackets. Lists can be as nested as you like, e.g.

[THIS [Is [A)] [[VERY NESTED] LIST))
Quite a lot of procedures are provided by LOGO, e.g.

PRINT, FIRST, FIRSTPUT, COUNT, SUM, DIFF, NL, VALUE, etc.
A complete list and definitions can be found in the reference manual.

You can also define your own procedures and add them to the ones
already provided. For the mechanics of doing this, see section 6.3.

Exercise 6.2.1. PRINT TYPE and SAY are very similar procedures. Find
out how they differ by experimenting at the terminal.

6.2.2 Quotes
Each procedure has a name, which must be a word. To distinguish words
as objects from procedure names, words intended as objects have a quote
sign in front of them. e.g.

PRINT 'HI
where PRINT is a procedure name, 'HI is an object. PRINT HI would
cause an error, unless HI was the name of a procedure.

Exceptions to this rule are words in lists, since these could not possibly be
intended as procedure names: e.g. PRINT [HI THERE] will work.

6.2.3 Procedure Calls
We communicate with the computer by typing in procedure calls, e.g.

PRINT 4 is a procedure call.
The procedure PRINT prints one LOGO object (number, word or list) on
the terminal listing. This LOGO object is called its argument:

4 is the argument of PRINT in PRINT 4.
Some procedures, like SUM, take two arguments. Some, like GOODBYE,
take none. Some take three or more. The number of arguments a proce-
dure takes is fixed. Arguments are always LOGO objects.

200

Sometimes arguments are not given explicitly but are the result of some
other procedure call. e.g.

PRINT SUM 2 3
the arguments of SUM are 2 and 3.
the argument of PRINT is 5, the result of SUM 23.

This nesting of procedure calls can get arbitrarily deep. e.g.
1: PRINT FIRST BUTFIRST BUTFIRST [A B C D)
C

The decisions about which procedure calls provide the arguments to
which procedures, are called the calling pattern of the procedure call. In
the above examples the calling patterns are obvious. In some examples it
can be non-obvious, e.g.

PRINT SUM COUNT [A B C) FIRST [2 4 51
When we write a procedure call we can try to make the calling pattern
clearer by putting brackets around sub-procedure calls and using new
lines and indentation for the second and consecutive arguments of a
procedure, e.g.

PRINT (SUM (COUNT [A B C))
(FIRST [2 4 51))

In fact these are not strictly necessary for the computer. Because:
(a) The procedure name comes first, followed by its arguments;
(b) The computer knows how many arguments each procedure takes;
(c) The computer can distinguish between procedure names and objects:

it can always fix the calling pattern in a unique way. Can you do it?

Exercise 6.2.2. What will the computer type out if you type in each of the
following commands?

PRINT FIRST [A B Cl
PRINT COUNT FIRST [[UP DOWN) [NORTH SOUTH EAST

WESTI)
PRINT BUTFIRST FIRST BUTFIRST [[xi [V z) IU V WI)
PRINT SUM COUNT [1 2 31 FIRST [1 2 31
PRINT SUM LAST FIRST [[2 11 [4 3]) FIRST

LAST [13 41 [1 2)]
PRINT DIFF FIRST BUTFIRST [10 9 8 71 COUNT

BUTFIRST BUTFIRST [1 2 3 4 5 61
Now log on to LOGO and check your answers.

6.2.4 Evaluation
We communicate with the computer by typing procedure calls at the ter-
minal. Each procedure call is evaluated by the computer, which causes
LOGO procedures to be run on LOGO objects. The evaluation process is as
follows:
1. The computer works along the line from left to right.
2. When it sees an unquoted word it knows this must be a procedure

name. The definition of this procedure is recovered from the com-

201

puters memory. It decides how many arguments the procedure
takes, and looks further along the line to find out what these are. The
procedure is then run on these arguments and the result is stored in
memory.

3. When it sees a number, list or quoted word, it knows that these must
be the arguments of some procedure. These LOGO objects are stored
in a special place where the procedure can find them when it runs.

6.2.5 Simple Procedures
Suppose we have a longish message that we often want to have typed out
on the terminal. We can define a procedure to do this, e.g.

TO HELP
10 PRINT [TO LOGOFF TYPE]
20 PRINT 'GOODBYE
30 PRINT [THEN TYPE]
40 PRINT 'STOP
END

The words TO and END mark the beginning and end of the procedure
definition. The first line - TO H ELP - is the title line. It consists of TO
followed by the procedure name, HELP. The middle four lines are the body
of the procedure. Each line starts with a number. When the procedure is
called, the lines are executed in numerical order. If they have bugs in,
procedures can be edited by inserting, changing or deleting lines. A line
can be inserted between lines 20 and 30 by giving it a number between
20 and 30, e.g.

25 PRINT [WAIT FOR THE PROMPT COMMAND]

Exercise 6.2.3. Write a procedure called HELLO, which will type out
HELLO
[HOW ARE YOU]

6.2.6 Procedures with Arguments
Procedures like HELP and HELLO always behave in an identical way each
time they are called. We would like to be able to write procedures, like
PRINT and SUM, which are given as arguments objects that they
manipulate. Such procedures behave differently according to the object
they are given. Procedures with arguments are defined in a similar way to
simple procedures except that they involve words (called parameters or
input variables) which stand for the arguments, e.g.

TO PRINTENDS 'LIST
10 PRINT FIRST (VALUE 'LIST)
20 PRINT LAST (VALUE 'LIST)
END

LIST is a parameter in the above example. In the title line we put all the
parameters just after the procedure name, so the computer knows how
many parameters there are and what their names are. VALUE 'LIST will
give the particular object that has been input. The effect of typing

202

PRINTENDS [SUNDAY MONDAY . . . SATURDAY]
will be that

SUNDAY
SATURDAY

is printed on the terminal. Typing VALUE LIST gives the list
[SUNDAY . . . SATURDAY].

Here is another example
TO PRINTTOTAL 'NUMl NUM2
10 PRINT (SUM (VALUE 'NUMl) (VALUE 'NUM2))
END

Exercises
6.2.4. What would be the effect of typing
(a) PRINTTOTAL 2 3
(b) PRINTTOTAL (SUM 2 3) 1
In (b), what are VALUE NUM2 and VALUE 'NUMi?

6.2.5. Write a procedure that takes a list as argument and prints the
number of elements in it (use COUNT).

6.2.7 Results and Effects
In LOGO there is a sharp distinction between two different aspects of a
procedure's behaviour, namely its result (or output) and its effect (or side-
effect). To understand the difference consider the LOGO line

PRINT FIRST [A B C]
The job of FIRST is to take one LOGO object, [A B C], and calculate
another, A. which is the result of this application of FIRST. It is stored
away in a special place, where it is later collected to be the VALUE of the
parameter of PRINT. LOGO procedures always produce exactly one result,
and this must be a LOGO object. Some procedures, like PRINT, are
executed mainly for their effect, which in this case is to cause the terminal
to work and start printing characters. Other effects might be to cause the
computer to read some characters from the teletype or to log you off
LOGO (e.g. GOODBYE).

LOGO procedures that are executed mainly for their effect (like PRINT) we
will call commands. LOGO procedures that are executed mainly for their
result (like FIRST), we will call functions. Note that the leftmost procedure
in a line will usually be a command and that the rest will be functions.

Exercise 6.2.6. Classify the following procedures into commands and
functions: SAY; LAST; COUNT; SUM; DIFF; NL; VALUE; FIRSTPUT.

6.2.8 Little Men
It is sometimes useful to think of each call of a procedure as a "little man".

203

[A B C]

FIRST

Arguments to the little man go in through his ears. Results come from his
mouth. Other things he does, like effects, are achieved by other organs.
We can use this analogy to visualize what happens when, say. PRINT
(SUM 2 3) is evaluated.

Mr SUM Mr PRINT

23

5

6.2.8 Procedures that Produce Results
So far all the procedures we have defined (HELP, PRINTENDS, etc.) have
been commands. By using the command RESULT we can also define
functions. RESULT takes one argument and stores it in the special place.
For instance, suppose we wanted to write a procedure to find the second
element of a list, we could write

TO SECOND 'LIST
10 RESULT FIRST BUTFIRST VALUE 'LIST
END

Exercises
6.2.7. Define a procedure, FOURTH, for finding the fourth element of a
list.

6.2.8. Define a procedure SUM3, which takes three numbers and returns
their sum as result.

6.2.9 Sub-Procedures
We have seen plenty of examples in procedure definitions where one
procedure calls another, e.g.

TO THIRD 'LIST
10 RESULT FIRST BUTFIRST BUTFIRST VALUE 'LIST
END

RESULT, FIRST, BUTFIRST and VALUE are called sub-procedures of
THIRD. We can use user-defined procedures as sub-procedures, e.g.

10 RESULT SECOND BUTFIRST VALUE 'LIST
where SECOND is a user-defined procedure.

KITH

6.2.10 Variables and Assignment
It is often useful to have variables in addition to the parameters, e.g. as
place holders for partial results. Consider the following arthmetic proce-
dure, DIFFSQ, for calculating the difference of two squares:

TO DIFFSQ Ni N2
10 NEW [S D]
20 MAKE 'S (SUM VALUE Ni VALUE 'N2)
30 MAKE 'D (DIFF VALUE 'Ni VALUE 'N2)
40 RESULT (PROD VALUE 'S VALUE 'D)
END

Line 10 declares that S and Dare to be new local-variables within the
procedure DIFFSO. Sand Dare very similar to the parameters Ni and N2
except that they are not assigned VALUE's when the procedure is entered.
The VALUES of S and Dare assigned (we say Sand Dare bound) in lines
20 and 30 by the command MAKE. MAKE takes two arguments, a word
and an object, and assigns the object to be the VALUE of the word, e.g.

MAKE 'S 3
PRINT VALUE 'S

causes 3 to.be printed.

Of course we could have written DIFFSQ without using local variables, but
it would have been a little difficult to read. We will soon meet examples
where they are not so easy to dispense with.

The variable declaration (e.g. NEW [Ni N2]) and the assignment
statement (e.g. MAKE 'Ni 8) are not required for parameters (e.g. Ni
and N2). They are implicitly made when the procedure is entered.

When the procedure is exited (i.e. when it is finished) the assignments of
the parameters and local variables are cancelled, e.g. outside of DIFFSQ
the VALUES of Ni, N2, Sand Dare undefined. This is important, because
it allows the same variable name to be used in different procedures that
call each other. Consider the procedure THIRD:

TO THIRD 'LIST
10 RESULT FIRST BUTFIRST BUTFIRST VALUE 'LIST
END

It is vital that the two different versions of BUTFIRST have different ideas
about the VALUE's of their parameter (called, say, L).Consider the
following little man" diagram:

205

LIST [A B C

VALUE 'L
is

[A B C DJ
0

D J [a
t

'L

oI
C
0

D J C

Mr VALUE Mr BUTFIRST2 Mr BUTFIRST1 Mr FIRST

What each little man thinks are the VALUE'S of his parameters and local
variables is called his conceptual cloud.

Principle of Reincarnation. Each time we call a procedure we get a new
little man with his own conceptual cloud.

6.2.11 Abbreviations
Some of the LOGO procedure names are a bit long-winded, e.g.
BUTFIRST, FIRSTPUT. We want to minimise typing as much as possible,
so each of the LOGO procedure names has an abbreviation, e.g.

FIRST is F
BUTFIRST is BE
FIRSTPUT is FPUT

For a complete list see the reference manual.

There is also a facility for creating new abbreviations of LOGO or user-
defined procedures. The command ABBREV is used. It takes as argument,
the old procedure name and the new abbreviation. For example, calling

ABBREV 'LONGPROCEDURENAME 'LPN
will make LPN the abbreviation for LONGPROCEDURENAME

There is a special kind of abbreviation for VALUE. If VALUE is being called
on some quoted word, VALUE is omitted and the quote is replaced by a
colon, e.g. :FRED is an abbreviation for VALUE 'FRED

6.2.12 Infix Procedures
Some mathematical function names are usually written between the
arguments rather than in front of them, e.g. we usually write 2 + 3 rather
than SUM 23. + is called an infix function. Many LOGO functions have an
equivalent infix form:

Function Abbreviation Infix Form
SUM SUM +
DIFFERENCE 01FF -
PRODUCT PROD *
QUOTIENT QUOT /
LESSQ LQ C
LESSEQUALQ LEQ

206

GRTRQ GQ >
GRTREQUALQ GEQ >=
EQUALQ EQ =

Take care when you use infix functions because the calling pattern can be
ambiguous, e.g.

FIRST :LIST1 = FIRST :LIST2
will be interpreted (parsed) by LOGO as

FIRST (:LIST1 = (FIRST :LIST2))
which will result in an error. When using the infix form always use plenty
of brackets and this will remove the ambiguity, e.g.

(FIRST :LIST1) = (FIRST :LIST2)
will be parsed correctly. For similar reasons always put brackets around
negative numbers. e.g. (-23).

Exercise 6.2.9. The following is an uncompleted table of LOGO functions.
Fill in the rest of the table by performing experiments at the terminal.

Name of Number Type of argument:
function of arguments Number Word List Result

FIRST 1 X X / First element of list
BUTFIRST
LAST
B UT LAST
SUM
DIFF
PROD
QU OT
WORD
EQUALQ
WORDQ
NUM B ERG
LISTQ
EMPTYQ
JOIN

Example of experiment:
1 PRINT FIRST 87
FIRST MUST HAVE A LIST AS ARGUMENT-87
1 PRINT FIRST WORD
FIRST MUST HAVE A LIST AS ARGUMENT—WORD
1:PRINT FIRST [THIS IS A LIST]
THIS

207

6.3 HOW TO DEFINE A PROCEDURE

6.3.1 The Procedure
To define a procedure
10 design the procedure and write it on paper
20 type it into the computer
30 show it
40 save it
50 test it
60 If procedure works perfectly then stop
70 debug it
80 edit it
90 go back to line 30
End

6.3.2 Designing Procedures
Analyse the problem and break it into parts, then analyse these parts.
Continue this process until all the problems are trivial. You should now
have a tree-structured plan:

main problem

trivial problems

Always work from the top down. You will gradually develop intuitions
about what is trivial at the lower levels and about how to break problems
down.

Write the top level procedure first and its subprocedures next. The top
level procedure can be tested before the subprocedures are written, by
using the CALLUSER facility. For instance, suppose you needed a
subprocedure ISITANENGLISHWORDQ, which checked whether words
were in a dictionary. This would obviously be time-consuming to write.
However, we can define it as follows:

TO ISITANENGLISHWORDQ 'WORD
10 CALLUSER
END

When this procedure is called processing is temporarily halted and you get
a message and the prompt "RESULT:'. You now type in the result you
think the procedure should return, this is evaluated and processing will
continue.

Find a procedure that does a similar task to the one you want done, and
use it as a model.

Keep your procedures short i.e. less than 9 lines long.

I:

Use mnemonics for procedure names and variables. ABBREVIate them
afterwards if necessary.

6.3.3 Typing in the Procedure
Log on to LOGO and type the title line of your procedure, e.g.

TO SECOND 'LIST
After this, the "prompt" that LOGO gives you at the beginning of each line
changes from its usual "1:" to a "&:'. This reminds you that you are
defining a procedure. If there is a mistake in the format of the title line you
will get an error message. Try again.

Each line of the procedure must begin with a line number. Lines can be
typed-in in any order, and will be stored not necessarily in the order you
type them but in the order of their line numbers. If you forget the line
number you will get an error message. Try again.

In order to change a line already typed, merely type a new line with the
same line number. To remove a line, say line 30, type

&: DELETE 30

To type in a command that is longer than a single physical line, towards
the end of the first line type (CR. LOGO will respond with "C:" and you
can then type in the continuation.

When you have finished defining the procedure, type
&: END

and the prompt will then revert to '1:", e.g.
1: TO SECOND 'LIST
&: 10 RESULT FIRST BUTFIRST :LIST
&: END
1: PRINT SECOND [A B Ci
B

When you are defining (or editing) procedures the lines you type in are not
run, they are merely stored away in the computer's memory for future
reference.

6.3.4 Saving Procedures
If you are writing a program, you do not want to have to retype all your
procedures every time you use LOGO. So there is a way to get LOGO to
remember your p?ocedures at one session, so that you can use them again.
at a later session. Procedures can be stored in a "file", by analogy with
storing objects in a file drawer. You can have several different files - one
for each program you are writing.

The procedure GETFILE is used for creating a new file or getting an old
one. It takes as argument the name of your file and makes this the
currently active file, e.g.

GETFILE 'JIM

209

The procedure SAVE is used to save procedures on the currently active
file, e.g.

SAVE 'SECOND
stores the procedure SECOND on file JIM.

SAVE [SECOND PRINTENDS HELP]
stores all three named procedures.

There is also a useful command
1: SAVENEW

which saves all procedures which have been typed in or EDITed, and not
yet SAVEd.

FORGET can be used to remove procedures from a file, e.g.
1: FORGET 'PRINTENDS,or
1: FORGET [SECOND HELP]

To recover the procedures at a later session, we first GETFILE the relevant
file, and then use LOAD, e.g.

1: LOAD 'SECOND
1: LOAD [PRINTENDS HELP]

or more simply
1: LOADSAVED

which loads a//the procedures in the current file.

6.3.5 Showing Procedures
To get a procedure typed on the terminal use the procedure SHOW, e.g.

SHOW 'SECOND will type procedure SECOND
SHOW [SECOND PRINTENDS HELP] will type all three
SHOWALL will type all procedures currently loaded
SHOWTITLES will type just the titles

6.3.6 Testing Procedures
If you are an inexperienced programmer your procedures are much more
likely to be wrong than right. To test a procedure, call it on some of the
arguments you expect it to be receiving in practice. Try a wide range of
types of arguments. Do not forgetawkward" cases like the empty list,
especially long lists, negative numbers, etc.

You will notice a bug because either the procedure does not produce the
result you expected or you get an error message.

6.3.7 Debugging Procedures
There are two types of bug: syntax errors and run-time errors. Syntax
errors are ungrammatical LOGO procedure calls. They always result in.
error messages, either when the procedure is typed in, or when it is run.
Run-time errors come from procedures that do not do what you expected
them to. These can sometimes give error messages if they cause a
procedure to receive an argument it is not equipped to deal with.

If you get an error message, make sure you understand what it means, and

210

what typical kinds of bug cause it. Ask the demonstrator if necessary. If
the error message tells you the line in error examine this line and possibly
one or two lines before.

Make sure you have a listing of the most recent version of the procedure
at fault. Follow the execution of the procedure through with your finger,
pretending to be the computer. Execute each line of the procedure in turn.
Does it work as expected? Make sure lines containing infix procedures are
being interpreted properly.

Sometimes the error will leave you in the middle of executing the
procedure which failed. You can now PRINT the current VALUES of the
local variables and parameters. Are they what you expected? You can
cause execution of your own procedures to be suspended by inserting the
command BREAK into them. CONTINUE will cause the processing to
continue, QUIT will cause it to be abandoned.

If you want a record of which procedures are called and by whom, before
•

 the error, call the command TRACE on each procedure you want recorded,
and then call your procedure, e.g.

TRACE [SECOND HELP]
Using FULLTRACE instead will give the VALUEs of parameters on entry,

• and result on exit. To stop procedures being TRACEd call UNTRACE on
them. Do not TRACE too many procedures, or you will be swamped.

To see whether a procedure reaches a certain point edit a PRINT or
BREAK command into that point.

For further advice see the reference manual or ask a demonstrator.

6.3.8 Editing Procedures
To change a procedure that has already been defined call the command
EDIT on that procedure. You will get the prompt '& :", and will be back in
the mode in which you defined the procedure, e.g.

EDIT 'SECOND
&: 5 PRINT 'ENTER

• &: 15 PRINT [TOO FAR]
&: END

L 6.3.9 Exercises
¶ 6.3.1. Type in definitions of HELP, SECOND and PRINTENDS; and then

try them out.

6.3.2. Make sure you understand the procedure FIRSTPUT. Use it to
define a procedure BACKTOFRONT which outputs a list with the last
element moved to the front, e.g.

BACKTOFRONT [A B C Dl is [D A B C].

211

6.3.3. Write a procedure, QUERY, that switches the first two elements of a
list, so that

PRINT QUERY [BILL CAN FIX IT]
gives

[CAN BILL FIX IT].
(Hints: What gives the list [FIX IT]? What gives the list [BILL FIX IT]?)
What is QUERY [DOGS LIKE CHEESE)?OrQUERY [THE CAT
CHASED THE SQUIRREL]? How would you set about improving the
procedure QUERY?

6.4 CONTROL STRUCTURES

6.4.1 Introduction
So far all our procedures have consisted of a simple sequence of
instructions, to be obeyed in order. Sometimes we will want the order to
be variable according to the circumstances, or we will want some
instructions to be repeated several times.

6.4.2 Conditionals
Suppose we wanted to amend the procedure SECOND so that it produced
an error message it its argument was not a list. We can do this with the
conditiona/IF . . . THEN . . . ELSEe.g.

TO SECOND 'LIST
10 IF LISTQ LIST THEN RESULT FIRST BUTFIRST LIST

ELSE SECERR LIST
END

TO SECERA 'ARG
10 SAY [NON LIST ARGUMENT FOR SECOND]
20 PRINT :ARG
END

The general form of the conditional is
IF condition THEN instructionl ELSE instruction2

It is a funny kind of procedure. Its name is split into three parts, IF. THEN
and ELSE, and distributed between the three arguments. The first
argument must return as result either the word TRUE or the word FALSE.
Procedures like this are called predicates. Examples are:

EQUALQ A :6 tests whether :A and :6 are equal
ZEROQ NUMBER tests whether the NUMBER is zero
EMPTYQ LIST tests vhether the LIST is empty
LIST :THING tests whether the THING isa list
WORDQ THING tests whether the THING is a word
NUMBERQ THING tests whether the :THING is a number

We will adopt the convention that predicate names, even user-defined
ones, end in a Q (for Question).

212

Normally procedures evaluate all their arguments before they are called
themselves. However, when

IF condition THEN instructioni ELSE instruction2
is called only condition is evaluated. If condition returns TRUE
'instruction 1' is evaluated. If "condition' returns FALSE,
"instruction2" is evaluated, otherwise an error message is called. There is
a shortened version. i.e.

IF condition THEN instruction

RESULT not only causes its argument to be stored in the special place for
results, it also causes the current procedure to be exited. So an alternative
form for SECOND would be

TO SECOND 'LIST
10 IF LISTQ LIST THEN RESULT FIRST BUTFIRST LIST
20 SECERR LIST
END

Exercises
6,4.1. Write a version of SECOND that does not check that its argument is
a list, but does check that it is at least two elements long.

'6.4.2. Write a version of SECOND that performs both checks.

6.4.3 Linking Procedure Calls Together
The arguments of IF-THEN-ELSE-, like the arguments of any other
procedure, must be a LOGO object or a single procedure call. However, if a
conditional test succeeds we often want to do a sequence of instructions,
e.g.

IF SUNNY DAY THEN HANGOUT :WASHING
WEED :FLOWERBEDS
SUNBATHE

As it stands this is illegal LOGO syntax. What we need is a way of linking
together the last three LOGO procedure calls into one procedure call. This
is provided by the infix commandAND. AND causes the procedure calls it
links to be evaluated simply by having them as arguments, but it does
nothing further to them. The following is legal LOGO syntax:

IF SUNNY DAY THEN HANGOUT :WASHING
AND WEED :FLOWERBEDS
AND SUNBATHE

Exercise 6.4.3. Write a version of SECOND that prints out a message
"SECOND CALLED SUCCESSFULLY" whenever it is called successfully.

6.4.4 Repetition
Suppose we wanted to repeat an instruction several times. It would be
tedious to have to write the instruction several times. Instead we can use
the command REPEAT, e.g.

213

TO LOVE
10 REPEAT 3 SAY [I LOVE YOU]
END

This will print '1 LOVE YOU' three times.

We can REPEAT things a variable number of times by having the first
argument of REPEAT be a procedure call or variable, e.g.

TO MUCHLOVE NUM
10 REPEAT :NUM SAY [I LOVE YOU]
END

MUCHLOVE 1000 will now print I LOVE YOU" a thousand times.

Exercises
6.4.4. Write a procedure, PRIDE, which prints

COMPUTERS NEVER MAKE
MISTAKES
MISTAKES
MISTAKES

MISTAKES

6.4.5. Write a procedure that prints three times
I LOVE YOU
VERY MUCH

Warning. You now have the facility to define procedures that may go on
for a long time. Before running one, make sure you understand how to
interrupt and QUIT. Otherwise it will be very boring for you waiting for the
procedure to finish and you will needlessly use computer time. There is a
facility to prevent this kind of accident, called the EVALIMIT. This will
prevent you doing too much processing, by setting a limit on the depth to
which you can have sub-procedures calling each other. EVALIMIT is
currently 500. You can increase or decrease this with the command
SETELIM, which takes one argument, the new limit.

6.4.5 Running Down Lists
We will sometimes want to do something to each member of a list in turn,
e.g. PRINT each member of the list on a new line. The easiest way to do
this is with the command APPLIST, e.g.

1: APPLIST [SUNDAY MONDAY . . . SATURDAY] 'PRINT
SUNDAY
MONDAY

SATURDAY
APPLIST applies the command PRINT to each member of the list in turn.
Since PRINT always prints its arguments and then does a new line, a new
line is inserted between every member.

214

The second argument of APPLIST can be the name of any system or user-
defined, one-argument procedure (though it is usually a command).
Sometimes we do not have the appropriate command already defined,
and we do not need it except for this APPLIST. In this case the definition
can be made implicitly in the second argument to APPLIST. For instance,
suppose we wanted a procedure that printed TRUE for each word in a list
and FALSE for each list or number. It could be done as follows:

1: APPLIST [JOHN 23 MALE] [PRINT WORDQ EACH]
TRUE
FALSE
TRUE

For each member of the list, [JOHN 23 MALE], EACH finds the VALUE of
that member, WORDO works on that VALUE returning as result TRUE or
FALSE, and PRINT prints that result.

[PRINT WORDQ EACH] is an alternative to some procedure name, say
TOO, where FOO is defined by

TO FOO ARG
10 PRINT WORDO ARC
END

Corresponding to the command APPLIST there is a function MAPLIST.
This takes a list and a function name and produces as a result the new list
obtained from applying the function to each member of the old list, e.g.

1: PRINT MAPLIST [JOHN 23 MALE] WORDQ
[TRUE FALSE TRUE]

As in APPLIST the second argument of MAPLIST can be a procedure call
in the form of a list, e.g.

1: PRINT MAPLIST [1 2 31 [SUM 1 EACH]
[2 3 4]

Exercises
6.4.6. What would be the effect of typing

1: PRINT MAPLIST [1 0 31 ZEROO
1: APPLIST [JOHN 23 MALE] [PRINT NUMBERQ EACH]
1: PRINT MAPLIST [1 2 31 [PROD 2 EACH]

6.4.7. Write a function, DOUBLELIST, which takes a list of numbers and
returns a list with each member doubled.

6.4.6 Conditional Loops
Sometimes we cannot say in advance how often we would like to repeat a
command, we just want to go on repeating it until some goal has been
achieved (like hitting a nail repeatedly until it has sunk right into the
wood). This facility is provided in LOGO by the construction 'WHILE
condition THEN instruction". e.g.

215

WHILE OUT NAIL THEN HIT NAIL
WHILE combines the ideas of conditionals and repetition. As in IF-THEN-,
the condition is evaluated. If it returns TRUE the instruction is evaluated.
Then the process is repeated until the condition returns FALSE. Clearly,
evaluating the instruction should have some effect upon whatever the
condition is testing or this process will never stop.

We can use the WHILE-THEN- procedure to define a procedure
SUMFROM 1TON, which adds up all the numbers from ito some number
N, say.

i: PRINT SUMEROM1TON 2
3 (i.e., 1+2)
i: PRINT SUMFROM1TON 5
15 (i.e., 1+2+3+4+5)

TO SUMFROM1TON 'N
10 NEW [TALLY TOTAL]
20 MAKE 'TALLY 1
30 MAKE 'TOTAL 1
40 WHILE NOT EQUALQ TALLY :N

THEN MAKE 'TALLY SUM TALLY 1
AND MAKE 'TOTAL SUM :TOTAL :TALLY

50 RESULT TOTAL
END

Note the use of local variables (a) to keep a running score (TOTAL), and (b)
to count how many times something was done (TALLY). Note also the use
of AND to enable us both to do something and to record we did it, each
time round the ioop. It is nearly always necessary to use AND in WHILE
loops.

Exercise 6.4.8. Write a procedure, SUMOFLIST, which adds up all the
numbers in a list of numbers, e.g.

1: PRINT SUMOFLIST 15 7 31
15

(a) using APPLIST, and (b) using WHILE- THEN,

6.5 RECURSION

6.5.1 Breaking problems into parts
So far most of the problems we have tackled have been fairly easy. It has
been possible to break the problem down into a short sequence of
instructions, each of which can be written with the LOGO procedures
currrently available. Sometimes these instructions cannot be written using
existing procedures. Then writing these instructions becomes a new
problem and we begin to build up a hierarchical structure of procedures,
e.g.

216

TO SINGSONG
10 SINGVERSE1
20 SINGCHORUS
30 SINGVERSE2
40 SINGCHORUS
etc.
END

TO SINGVERSE1
10 SAY (RICH GIRL WEARS A .3
20 SAY EPOOR GIRL . . . 3
etc.
END

TO SINGCHORUS
10 SAY [DINAH DINAH
etc.
END

This device of 'divide and conquer, the breaking of a problem into parts,
is one of the main weapons of program writing. We will be developing it
further in our little man methods.

Until now the break down of the task has been strictly hierarchical, e.g.

main procedure: SINGSONG

sub-procedures: SINGCHORUS SINGVERSE1 SINGVERSE2

sub-sub-procedures: SAY SAY SAY

I) In fact there is nothing in LOGO to stop one of the sub-procedures or sub-
sub-procedures being the same as the main procedures. When this
happens it is called recursion, e.g.

/
/ SINGSONG

/\
SINGSONG SINGCHORUS

ik SINGSONG

In the rest of this section we will be exploring this possibility; seeing how it
is possible and when it is useful.

Many of the examples we will be using could also be done using REPEAT,
APPLIST, MAPLIST or WHILE. For expository purposes we will be
ignoring these alternatives in this section. When designing your own

217

procedures you should choose the alternative that reflects the way you
naturally break down the task. Recursion is a very powerful programming
device. It can always replace REPEAT, APPLIST, MAPLIST and WHILE,
but not vice versa.

6.5.2 Indefinite Repetition
Using REPEAT we can repeat an instruction a finite number of times, but
suppose we want to go on repeating something indefinitely? We can do
this using recursion. Consider, if we tell LOGO how to LAUGH:

TO LAUGH
10 PRINT 'HAHAHA
20 PRINT 'HOHOHO
END

If we use this procedure, "1: LAUGH", then LOGO will laugh just once;
HAHAHA
HOHOHO

But suppose we want LOGO to laugh again and again and again? We
could try

TO LAUGHALOT
10 LAUGH
20 LAUGH
30 LAUGH
etc.
END

but these do not look promising because (a) it's a nuisance to have to
write out all these LAUGHs, and (b) it still doesn't make LOGO laugh
indefinitely. Instead, try this:

TO KEEPLAUGHING
10 LAUGH
20 KEEPLAUGHING
END

KEEPLAUGHING calls itself, and this has the desired effect:
1: KEEPLAUGHING
HAHAHA
HO HO HO
HA HAH A
HOHOHO
etc. (indefinitely)

The "Little Man"Method. We give two ways of understanding how
KEEPLAUGI-IING works. We have simplified the task from the one large
problem given, to a small problem we can solve plus another large
problem. We were asked to produce:

218

HAHAHA
HOHOHO
HAHAHA
HOHOHO

an indefinite number of times. We tackle the problem by breaking it into
two parts: (a) produce a single laugh, and (b) produce the rest of the
laughs (an indefinite number). But now we can easily write the procedure
KEEPLAUG)-IING, since task (a) is what LAUGH is designed to do, and
task (b) is identical to what KEEPLAUGHING is meant to do! So these
become lines 10 and 20 of the procedure.

The second way is to think about the "little men involved. We have only
two kinds of little man here, LAUGH and KEEPLAUGHING, but there may
be many of each kind:

Mr LAUGH

f

Mr LAUGH
Mr KEEPLAUGHING /

Mr t KEEPLAUGHING Mr LAUGH

10 LAUGH
20 KEEPLAUGHING

10 LAUGH

)
20 KEEPLAUGHING

1
20 KEEPLAUGHING

When we type KEEPLAUGHING we create l.m.1,who in turn creates (line
10) l.m.2 and asks him to 'do his thing", then (line 20) creates l.m.3 and
asks him to 'do his thing". So I.m.3 first creates l.m.4 etc.

We have here a powerful method of tackling problems involving repetition. t We'll see soon that it is only half of an even more powerful method, so
let's say:

(Second Ha/f of) Little Man Method
B. Can I break the task I'm given into two (or more) parts, such that

219

(I) I can cope with one of the parts myself, and
(ii) I can give the other part(s) to someone else to deal with?

Be sure to understand how this applies to the case of KEEPLAUGHING.

Exercises
6.5.1. Write a procedure, STORY, which prints out the foliowing
monologue:

IT WAS A DARK AND STORMY NIGHT
AND THE CAPTAIN SAID TO THE MATE
TELL US A STORY
AND THE MATE BEGAN
IT WAS A DARK AND STORMY NIGHT
etc.

5.5.2. Suppose you have procedures SING and DANCE. Define a
procedure SINGANDDANCEFOREVER, which will SING, then DANCE,
then SING, then DANCE, etc. Define appropriate procedures for SING and
DANCE, and try them out.

Another Example: COUNTUPFROM. Suppose we want to write a
procedure that behaves as follows:

1: COUNTUPFROM 10 or 1: COUNTUPFROM 127
10 127
11 128
12 129
13 130
14 131
etc. etc.

We can start with
TO COUNTUPFROM 'GIVENNUMBER

Try the same method as before. Break up the whole task into two parts:
1: COUNTUPFROM 127
127 (this line produced by PRINT 127)

128
129
130 1 (The rest of the lines produced by COUNTUPFROM 128)
131
etc.

So, in terms of the little man method:
(a) The subtask we can do ourselves is to print the given number

10 PRINT :GIVENNUMBER
(b) the rest of the task is given to someone else to do

20 COUNTUPEROM SUM :GIVENNUMBER 1
i.e. one greater than the given number. So:

220

TO COUNTUPFROM 'GIVENNUMBER
10 PRINT :GIVENNUMBER
20 COUNTUPFROM SUM GIVEN NUMBER 1
END

Notice that each COUNTUPFROM little man has his own conceptual
cloud:

QGIVENNUMBER GIVENNUMBER GIVENNUMBER 5 7 s 12

127 1 129

10 PRINT ... 10 PRINT ...
20 CWNTUPFR0M 20 couwrupFRoM

Repeated Warning. Before trying these procedures on LOGO, make sure
you understand about Interrupts.

6.5.3 Terminated Recursion: COUNTDOWN
Try an example similar to the earlier procedure COUTUPEROM but with
an important difference:

1: COUNTDOWN 10
10
9
8

4
3
2

0
BLASTOFF
1: SHOW COUNTDOWN

How can we write COUNTDOWN using recursion? Most of it is easy,
analogous to COUNTUPFROM. Applying the (second half of the) little man
method, we break the task into two parts, and realise that in the call of
COUNTDOWN 10 above, the '10" in the typeout is printed directly by the
COUNTDOWN little man, whereas the rest (9,8,7, etc.) are printed by a
recursive call on COUNTDOWN 9. This gives us our first approximation:

221

TO COUNTDOWN NUMBER
10 PRINT :NUMBER
20 COUNTDOWN DIFF NUMBER
END

But when we try this we get
1: COUNTDOWN 3
3
2

0

—2
etc.

Clearly, there is nothing to stop COUNTDOWN continuing indefinitely.
After printing zero, it will not print BLASTOFF and stop because we have
not asked it to. It is easy to correct this omission:

TO COUNTDOWN 'NUMBER
10 PRINT NUMBER

- 15 IF ZEROQ NUMBER THEN PRINT 'BLASTOFF AND STOP
20 COUNTDOWN DIFF :NUMBER 1
END

This will now work correctly. ZEROG is a predicate that tests whether or
not a number is zero. Make sure you understand the little man structure of
a call on COUNTDOWN. Here is a complete diagram of the little men for
COUNTDOWN 2. This time we have added explicitly a line to represent
each l.m. saying 'done':

Mr COUNTDOWN (A)

NUMBER is2

10 PRINT
15 IF ZEROQ
20 COuNTDOWN

Mr COUNTDOWN (B)

;is1

1,,1 uI

10 PRINT
15 IF ZEROQ ...
20 COUNTDOWN

Mr COUNTDOWN (C)

NUMBER is0

0

10 PRINT
15 IF ZEROQ

"BLASTOFF"
1done"

l.m.A prints "2" (line 10), which is not zero (line 15), so calls I.m.B, who
similarly prints 'I' and calls l.m.C, l.m.0 prints "0', which is zero so (line
15) he prints "BLASTOFF" and STOPs, i.e. tells l.m.B that he is done.

222

I.m.B has already executed his last instruction (line 20), so he too is done,
and so similarly is l.m.A.

6.5.4 Full Little Man Method
We have just used an application of our very powerful little man method,
which looks like this:

Little Man Method
A. Is (are) there any special or simple case(s) that I can take care of

) myself?
B. Otherwise, can I break the task into two (or more) parts, such that

(i) I can cope with one of the parts myself, and
(ii) I can give the other pan(s) to someone else?

In the case of COUNTDOWN, the special case (A) is when the number is
zero, the pan the little man can do himself (B(i)) is to print the given
number, and the pan (B(ii)) that he gives to someone else is to
COUNTDOWN one less than the given number.

It follows that the structure of a procedure written by this method is
somewhat as follows:
1. Test for the special case; if so, take care of it, and stop.
2. Deal with the part to be handled directly.
3. Ask someone else to deal with the rest.
(Sometimes, as in COUNTDOWN, step 2 may precede step 1).

Another example: LAUGHN TIMES. Try the Little Man Method on another
example. Remember the procedure LAUGH? How about a procedure
LAUGH7TIMES, which will laugh exactly seven times? We could have

TO LAUGH7TIMES
10 LAUGH
20 LAUGH
30 LAUGH
40 LAUGH
SO LAUGH
60 LAUGH
70 LAUGH
END

but this doesn't look too good, and is obviously hopeless for LAUGHing
2719 times. It's actually easier to write the more general procedure that
can laugh any number of times, and then tell it how many times we want.
So let's try writing.

TO LAUGHNTIMES 'HOWMANY
We could follow the same argument as for COUNTDOWN, so that we first
have a procedure that laughs indefinitely (cf. KEEPLAUGHING) and then
we worry about how to stop it. Instead, apply the little man method and
try to get the procedure right directly. So, is there any special case the Lm.

223

can take care of himself? Yes of course, if he is asked to laugh zero times
then he simply stops:

10 IF ZEROQ :HOWMANY THEN STOP
Otherwise, can the tm. break the task into two parts such that .. . ? Yes;
for example if he is asked to laugh 19 times, he can laugh once himself
and ask someone to laugh the other 18 times:

TO LAUGHNTIMES HOWMANY
10 IF ZEROQ :HOWMANY THEN STOP

—>20 LAUGH
—*30 LAUGHNTIMES 01FF :HOWMANY 1

END
Simple!

Exercises
6.5.3. Draw the little men diagram for LAUGHNTIMES 3.

6.5.4. Write a procedure to sing a simplified version of a well-known song,
e.g.

1: SIMPLEMOW 23
23 MEN WENT TO MOW
22 MEN WENT TO MOW
21 MEN WENT TO MOW
etc.

6.5.5 Recursion along a list
In both COUNTDOWN and LAUGHNTIMES, we have determined when to
stop by counting. There is another important class of procedures where
we control the recursion by doing something to each item on a list. The
two kinds of procedures correspond directly:

For a counting recursion, where we do something N times,
(a) we ask if N is zero, if so we stop;
(b) we do it once;
(c) someone else does it (N-i) times.
For a list recursion, where we do something with each item on a list,
(a) we ask if the list is empty, if so we stop;
(b) we do it with the FIRST item of the list;
(c) someone else does it with the rest (i.e. BUTFIRST) of the list.

An example: PRINTLIST. Most of our examples could be done with
APPLIST or WHILE, but this will not always be possible. In order that we
can explore recursion along a list in some simple cases we will suppress
the APPLIST and WHILE solutions. Let us again try to write the procedure
PRINTLIST, which prints each element of a list on a separate line. Assume
we have

TO PRINTLIST ANYLIST
and apply the little man method. Is there any special case the tm can take

224

care of himself? Yes, if the list is empty, then he has nothing to do:
10 IF EMPTYQ :ANYLIST THEN STOP

Otherwise, can he break the task into two pans .. . ? Yes, he himself can
print the first item

20 PRINT FIRST ANYLIST
and ask another I.m. to look after the rest of the list:

30 PRINTLIST BUTFIRST :ANYLIST
So we have:

TO PRINTLIST 'ANYLIST
10 IF EMPTYQ :ANYLIST THEN STOP
20 PRINT FIRST :ANYLIST
30 PRINTLIST BUTFIRST :ANYLIST
END

Here is the I.m. diagram for PRINTLIST [PENCIL PEN]:

=ANYLISTEP
PENCIL EN]

o o

a C

[PENCIL
PEN] [PEN]

10 IF EMPTYQ . .. 10 IF ETYQ .. 5

20 PRINT 20 PRINT

30 PRINTLIST ' 30 PRINTLIST "

"PENCIL "PEN"

~ED

10 IF EMPTYQ
20
30

6.5.6 Exegesis of the Little Man Method
Try summarising our experience with the kind of procedures discussed
above, as a commentary to help in the use of the method:

For counting recursion, we often have:
Special case (A) consists of equality between two numbers

(with zero as a particular instance),
Step B(i) consists of doing what was asked just once.
Step B(ii) consists of doing what was asked 'N- i" times.

For list recursion, we often have:
Special case (A) consists of the empty list.
Step B(i) consists of doing something to the FIRST of the list,
Step 8(u) consists of recursing on the BUTFIRST of the list.

AMONGQ. We are now in a position to write the procedure AMONGQ:
TO AMONGQ 'ITEM 'LIST

225

Clearly, this involves some kind of a recursion down the list, though we
may not have to go to the very end. What we have to "do" with each
element of the list is to check whether it is the same as the given item.
Apply the little man method: Is there anyspecial case .. . ?The
commentary recommends checking for the empty list. If we have the
empty list, then clearly the given item is not contained in it, so the result of
the procedure must be FALSE:

10 IF EMPTYQ LIST THEN RESULT FALSE
Break into two tasks .. . ?The commentary recommends dealing with the
first element of the list. If it is the same as the given item, then the result
of the procedure must be TRUE:

20 IF EQUALQ ITEM FIRST LIST THEN RESULT TRUE
Otherwise we need to go searching down the rest of the list:

30 RESULT AMONGQ ITEM BUTFIRST :LIST
So we have:

TO AMONGO 'ITEM 'LIST
10 IF EMPTYQ LIST THEN RESULT FALSE
20 IF EQUALQ ITEM FIRST :LIST THEN RESULT TRUE
30 RESULT AMONGQ ITEM BUTFIRST LIST
END

Exercise 6.5.5. Draw little man diagrams for AMONGQ 'HOUSE [DOG
CAT COW] and AMONGQ 'CAT [DOG CAT Cow].
6.5.6 Understanding recursion: TRIANGLE
Consider the procedure TRIANGLE

1: TRIANGLE [V W X Y 7]
[V W X V z]
[w X V 7]
[xYz]
rY 7j
[z]

Writing this should now be a simple exercise:
TO TRIANGLE 'LIST
10 PRINT LIST part 6(i)
20 IF EMPTYQ :LIST THEN STOP special case (A)
30 TRIANGLE BUTFIRST LIST the rest, B(ii)
END

But what happens if we add a new line?
40 PRINT LIST

Try it and see! Is the effect surprising? Try understanding it in terms of the
little men in'solved:

226

Mr TRIANGLE (A) Mr TRIANGLE (B) Mr TRIANGLE (C)

:LIST is :LIST :LIST
lAB] is[B] is [I

o o 0
o 0 0

[A B]

" B]" "[j

u[Jo

10 PRINT ,,. J 1OPRINT ... 1OPRINT

20 IF E?'2TYQ ,..20 IF EMPrYQ 20 IF EMPTYQ

30 TRIANGLE ,.'" 30 TRIANGLE ... 30
40 PRINT ... 40 PRINT . 40

"done" 1 "done"
"[A s]" "[B]

When l.m.0 stops (line 20), I.m.B resumes with his next instruction (line
40) and prints "[B]", then he is finished so I.m.A resumes and prints
'[A B]'.

Exercises
6.5.6. What happens if we swap lines 10 and 15 of COUNTDOWN? Or
lines 10 and 20 of TRIANGLE?

6.5.7. Define the procedure COUNTUP, which counts up from one
number to another:

1: COUNTUP 8 11
8
9
10
11

6.5.8. Define the procedure NTH, which returns the Nth element of a
1st:

1: PRINT NTH 2 [COW DOG HORSE]
DOG
1: PRINT NTh 3 [ON CIRCLE SQUARE)
SQUARE
1: PRINT NTH 2 [PINK]
LIST TOO SHORT

6.5.9. The procedure RANDOM returns a random number between 0
and the number it is given as argument, e.g. RANDOM 3 returns one of
the numbers 0, 1,2, or 3 with equal likelihood. Use RANDOM and NTH to
write a procedure RANDOMSELECT, which returns a randomly chosen
element of the list it is given:

227

1: PRINT RANDOMSELECT [BLUE GREEN RED YELLOW]
RED
1: PRINT RANDOMSELECT [BLUE GREEN RED YELLOW]
BLUE

6.5.7 Constructing Recursive Objects
Just as we have used the little man method to deal with tasks that have a
recursive structure, so also we can use it to construct objects with a
recursive structure. Adapt the wording of the 1mm. appropriately, i.e. we
ask if there is a special case where we can construct the entire object
immediately, otherwise we ask other little men to build parts of the object
and then we put them together, etc.

In LOGO the "objects" we are constructing are usually numbers or lists,
e.g. in COUNTDOWN we ana/ysedthe task of doing something ten times
as: doing it once, then doing it the remaining nine times:

10 - 1 + 9 (recursive)
Similarly, to construct an object of ten parts, we get someone else to build
the object with nine parts and then we add the tenth part, an act of
synthesis:

1 + 9 (recursive) - 10

SUMOFLIST. We want a procedure whose argument is a list of numbers,
and which returns the sum of all the numbers as result.

1: PRINT SUMOFLIST [5 7 9 11 131
45

As usual, we break the list into its FIRST and BUTFIRST components:
1579 11 131- 5 & [79 11 131

There is a corresponding synthesis of the total sum we are seeking:
5 + SUMOFLIST [7 9 11 131-45

All we need now to apply the 1mm. is the specially easy case, which as
usual comes from the empty list. Notice that SUMOFLIST [] isO. So we
get

TO SUMOFLIST 'NUMBERLIST
10 IF EMPTYG :NUMBERLIST THEN RESULT 0
20 RESULT SUM FIRST :NUMBERLIST

SUMOFLIST BUTFIRST :NUMBERLIST
END

Exercise 6.5.10. Draw the l.m. diagram for SUMOFLIST [10 17 231.

COUNT. This is of course a built-in procedure, but how could we write it if
it weren't already provided, e.g. COUNT [A B C D El? Apply the usual
l.m. analysis of the list, and there is a corresponding synthesis of the
number we want:

1 + COUNT [B C D E]—COUNT [A B C D El
And of course, COUNT [1 isO.

228

TO COUNT 'LIST
10 IF EMPTYO LIST THEN RESULT 0
20 RESULT SUM 1 COUNT BUTFIRST LIST
END

Exercise 6.5.11. The procedure NUMBEROF, e.g.
NUMBEROF 'COW [HORSE COW DOG COW SHEEP] is2.

What are the analysis/synthesis rules?
(a) NUMBEROF COW [HORSE COW DOG COW SHEEP]

0 + NUMBEROF COW [COW DOG COW SHEEP]
(b) NUMBEROF 'COW [COW DOG COW SHEEP] .-

1 + NUMBEROF 'COW [DOG COW SHEEP]
(c) NUMBEROF 'COW [je'O
Can you write the procedure?

6.5.8 Constructing Lists
To get the parts of a list, we have used the analysis

LIST F.BF) F LIST & BF LIST
To build up a list, we can use FIRSTPUT

ITEM & LIST) FPUT :ITEM LIST
e.g. FPUT 'A [B C D] is [A B C D].

Notice these relationships that hold for all lists:
FIRST FIRSTPUT :X :Y is :X
BUTFIRST FIRSTPUT :X :Y is :Y

ADD1L/ST. Given a list of numbers, write a procedure to return the list
with one added to each of the numbers, e.g.

ADD1LIST [100 200 300] is[1O1 201 301].
AUDi LIST could be easily written using MAPLIST, but this is not true of
the next two examples, so we ignore the MAPLIST solution and
concentrate on the recursive one. We analyse the argument list as follows:

1100 200 3001-100 & [200 3001
The corresponding synthesis of the result list is

ADD1LIST [100 200 3001—(100 + 1) & ADD1LIST [200 300]
unless this is the null list, in which case the synthesis is

ADD1LIST
So we have

TO ADD1LIST 'LIST
10 IF EMPTYQ LIST THEN RESULT
20 RESULT FPUT SUM 1 FIRST LIST

ADD1LIST BF :LIST
END

Exercise 6.5.12. Write a procedure, NEGSUBLIST, which returns a list of
those numbers on its argument list that are negative, e.g.

NEGSUBLIST [i -2 3-4 51 is [-2 -41.

229

Example: WITHOUT. In the M & C program we will need the procedure
WITHOUT for changing one state description into another, i.e.

MAKE 'LEFTBANK WITHOUT :MOVELIST :LEFTBANK
where WITHOUT isa procedure that removes a sublist from a list, e.g.

'I: PRINT WITHOUT [M C BOAT] [M M C C BOAT]
[M C]

We now tackle the problem of writing this procedure. Remember that the
heart of programming is breaking tasks up into easier sub-tasks, so we
first tackle the easier problem of removing just a single item from a list,
e.g.

WITHOUT1 'M [C M C BOAT] is [C C BOAT]
What are the synthesis rules? It must depend on whether or not the first of
the list is the item we are trying to remove, e.g.
(a) WITHOUT1 'M [C M C BOAT]

'C & WITHOUT1 'M [M C BOAT]
(b) WITHOUT1 'M EM C BOATft- [C BOAT]
(c) The empty list this time is a bit weird: if we can reach it it means that

we havent been able to find the item we're looking for. This may
indicate an error.

So we have
TO WITHOUT1 'ITEM 'LIST

(c) 10 IF EMPTYQ LIST THEN BREAK ERROR
(b) 20 IF EQ ITEM FIRST LIST THEN RESULT BF LIST
(a) 30 RESULT FPUT FIRST :LIST WITHOUT1 JTEM BF LIST

END

Exercise 6.5.13. Write WITHOUT, making use of the sub-procedure
WITHO UT 1.

6.6 MISCELLANEOUS EXERCISES

6.6.1. What is the result of the following LOGO commands:
(a) COUNT [DESK [TABLE CHAIR] CARPET]
(b) FIRST [CIRCLE SQUARE TRIANGLE]
(c) FIRST [[COLOUR RED] [SIZE BIG]]
(d) BUTFIRST [CIRCLE SQUARE TRIANGLE]
(e) BUTFIRST [[COLOUR RED] [SIZE BIG]]
(f) BUTFIRST [MAN WOMAN]
(g) SUM COUNT BUTFIRST [A B Cl 7

6.6.2. Define a procedure, CENSOR, which checks on the public
acceptability of lists. More precisely, the procedure CENSOR takes a list as
argument, and if the word "SEX" occurs in the list it prints out the word
"CENSORED", and if not it prints out the word 'PASSED". e.g.

230

1: CENSOR [A PORNOGRAPHIC FILM]
PASSED
1: CENSOR [REPRESENTATIVE OF THE FAIR SEX]
CENSORED

Hint: Use the predicate AMONGQ - see previous sections.

6.6.3. Suppose that we keep student records in the form of lists,
containing the name, age, and department of each student, e.g.

[BLOGGS 23 ASTROLOGY]
[MCFINL.AY 95 GERIATRICS]

Write a procedure, NICEPRINT, that will type out one of these lists in a
readable format, e.g.

1: NICEPRINT [BLOGGS 23 ASTROLOGYI
NAME BLOGGS
AGE 23
DEPT ASTROLOGY

6.6.4. Define a predicate, VOWELQ, which decides whether a given
letter is one of A. E, 1,0, or U, e.g.

1: PRINT VOWELQ 'E
TRUE
1: PRINT VOWELQ F
FALSE

6.6.5. Define a predicate, CONSONANTO, which tests for consonants.

6.7 BEHINDTHE SCENES

6.7.1 Introduction
One of the joys of programming with an advanced programming language
like LOGO is that you do not have to concern yourself with the details of
how the computer works, how your programs are actually stored etc. You
need only think about the LOGO machine, i.e. what LOGO will do with the
message you type. Nevertheless you may still be curious about what is
going on behind the scenes, and it is sometimes useful to know for sorting
out difficult bugs. This note is intended to give a brief glimpse behiQd
LOGO.

6.7.2 The Physical Set-Up
You may have been surprised to be able to communicate with the
computer without having to touch it. Nowadays it is normal to talk to
computers via a terminal linked to it by a telephone line. The computer
may actually be situated thousands of miles from the terminal.

231

terminal telephone line computer

If you do your computing in a room with several other terminals then it is
unlikely that each terminal has a separate telephone line to the computer.
Telephone lines are expensive to buy or rent, so several terminals are
made to share the same line. To make this possible the different messages
are interleaved by a mini-computer (the concentrator) at your end; sent
down the line as one message, and decoded by another mini-computer
(the front end processor) at the computer end.

00 lool 1000

telephone line

concentrator front-end mainframe
terminals processor computer

The mainframe computer you use will be simultaneously handling several
users at once. To manage this it is running a main program called the
operating system. This program divides the effort of the computer
between the users on a "round robin" basis. It also keeps each user's
program isolated from everyone else's in the computer working memory.
In case your message should come in at a time when the computer is
dealing with someone else, all messages are temporarily stored in a
special place called a buffer until they can be processed. All this is done in
such a way that it should appear to you that you have the computer all to
yourself.

the operating system

the LO language

other languages

your programs

other users'

programs

-where computer has got to

232

6.7.3 How Computers Work
Computers can be conveniently divided into four components: the control
unit; the arithmetic unit; the store and the input/output.

control
input/ unit
output *

The Arithmetic Unit is where the basic arithmetic operations, like adding
two numbers, are performed. The store is where your programs and data
are stored. Input/output covers a wide range of peripheraldevices, like
teletypes, line printers, card readers. disc files, and even other computers.
The control unit is the thing that decides what to do next, e.g. whether to
add two numbers, get something from store, or output to the line printer.
It knows what to do because it feeds itself your program in a suitably
coded form.

Machine Code. The suitably coded form is called machine code. This is the
only programming language that the control unit understands. All other
languages (LOGO, IMP, FORTRAN. ALGOL, etc.) have first to be
translated into machine code. The computer does this for itself by using
either a compiler or an interpreter. These are programs that operate on
your program as if it were a piece of data and produce a machine code
translation. A compiler does this once, giving you the machine code in a
form in which you can ask for it to be run. An interpreter translates your
program as it is run.

Interpretation is much slower and more expensive than running an already
compiled, machine code program. However, interpretation is much more
convenient when a program is being developed interactively, because you
do not have to recompile after every change. Compiling is best when a
program has been completely developed and is now to be used for several
"production runs".

Machine code is actually a sequence of binary numbers like:

233

01100011111
00111000011
01000111000
etc.

The control unit will break this into parts according to its own conventions.
One part will tell it the instruction to be performed, and one part will tell it
where, in store, to find the thing to perform the instruction on. For
example, the first number might be broken into

O 1 1 0 and 0 0 1 1 1 1 1
The number 0 1 1 0 tells us this is a fetch from store instruction, and the
number 00 1 1 1 1 1 is the address of some location in store. Whatever i5
currently in that location is copied into a special place (the accumulator) in
the arithmetic unit. The next number is broken down into

0 0 1 1 and 1 0 0 0 0 11
The number 0 0 1 1 tells us this is an addition" instruction. The number
1 0000 1 1 is the address of some place in store. The contents of that
place are added to the number in the accumulator and the result is stored
in the accumulator. The next instruction would be to store the result in
some place in store.

For more information see the Open University introduction to computing
or read S.H. Hollingdale & G.C. Toothill (1965) Electronic Computers,
Penguin Books.

6.7.4 The Computer's Memory
So far we have discussed only one part of the computers memory, the
store (sometimes called core store). This is where the computer keeps the
things it is currently working on. Information in core store can be accessed
fast, but core store is expensive. Therefore the computer has a hierarchy of
cheaper but slower memories. These are, in order of decreasing cost and
speed: the paging drum; the disc files; the archives.

core I paging
store j

< Pa e turns
drum

SAVing + I LOADing

disc files Computer
Memory

automatic RESTORing

0-
archives

All these extension memories are based on magnetic recording, like your
home tape recorder. The archive store is in fact just that: a tape recorder.
The disc files are a stack of magnetic discs, like a juke box for LPs. The

234

paging drum is a revolving magnetic drum, and is an (optional) extension
to the computer's core store. Users who are logged on but who are
waiting to be worked on, will probably have their programs stored there.
Even parts of a program that is being worked on may be there. You should
not notice your program being put out to or brought in from the drum,
except that the number of "page turns", i.e. the number of times bits (or
pages) of your program are moved in and out, is recorded in your logoff
message.

The disc files are where your programs are remembered when you are
logged off. Procedures you want to be remembered are put onto the disc
by the LOGO command SAVE. They are copied from the disc into the core
store by the LOGO command LOAD.

235

APPENDIXES

7.1 TEACHING AND ASSESSMENT METHODS

This appendix records the methods used to teach the course and assess
the students. For opinions on the success of these methods see Appendix
6 on the student questionnaire.

7.1.1 Formal lectures
The course ran for three terms (of 9, 9 and 6 weeks) and there were three
lecture slots per week. Because of the difficulty of finding appropriate
background reading, the lectures were accompanied by the extensive
handouts bound in this volume. Not all the lecture slots were used for
formal lectures. Some were used for class discussions, problem classes,
student presentations and an introductory teletype session. These are
explained below.

C/ass Discussions. Three of the slots were used for holding general
discussions on: Can machines think? Why is understanding natural
language so hard? The scope and limitations of Al.

Prob/em C/asses. Because some of the skills we were trying to impart
were too new to some of the students for them to make much initial
progress, unassisted, we set aside some of the lecture time for them to do
exercises, with the lecturer on hand to give assistance if needed.

Student Presentations. Each student was required to give a 25-minute
talk on an Al topic of his choice, usually his project, to the whole class.

/ntroductory Teletype Session. The whole class was assembled in the
terminal room for the second slot and nursed onto the computer by a large
number of staff. A series of games and simple copied commands were
devised for this.

7.1.2 General Notes on Teaching
Audio VisualAids. The overhead projector was universally used with
prepared transparencies. Various films were shown including Winograd's
"Dialog with a Robot", the MIT vision film "The Eye of a Robot", SHAKEY
and the Edinburgh Car/Ship assembly film.

Tutorials. Weekly tutorials were held in the first two terms with small (i.e.
2-5 students), mixed ability groups. Exercises were set and marked by the
lecturers, and were used bytutors as a basis in a variety of ways according
to their style. These tutorials were replaced by individual project
supervisions in the third term.

Teletype Sessions. Students were expected to put in about three hours a
week at the terminal in interactive computing. This computing often
involved preparation for tutorials. The terminal room was shared with the
Computer Science Department. It could be used at any time, but the

236

students were encouraged to use it during the four hours when an Al
demonstrator was present.

Assigned Reading. This was kept to a minimum (approximately one hour a
week), because of the lack of suitable material and the pressure of other
assigned work. The general reading list is given in section 7.3. Specific
reading is included in the text, usually at the end of each section.

Reading Fortnight. At the end of the first term in 1975/76 it became
apparent that there were wide discrepancies in the progress being made
by different students. It was decided to suspend all lectures and tutorials
for a fortnight and run individual supervisions geared to each students
needs. The reading fortnight was not required in subsequent years.

7.1.3 Assessment
Assessment was by one three-hour written examination and a project. The
mars were split on a 60 (examination)-40 (project) basis. Sample
examination papers can be found in section 7.4. Projects could be of three
types: a programming project, the design of a program, or a survey of a
small set of Al programs. Students were expected to spend about 30-40
hours on them and write a report of 3-5000 words (some students spent
much more time than this). The list of project titles for 1974/75, 1975/76
and 1976/77 is given in section 7.5.

7.2 A ROUGH TIMETABLE

No. of
Lectures: Subject
1st term
9 + 6 Problem Solving (9 lectures) and

Programming (6 lectures) in parallel.
7 Introductions to: Natural Language (2);

Vision (3) and Learning (2).
1 Class Discussion "Can Machines be Intelligent?".
4 Natural Language
2nd Term
2 weeks Reading Fortnight (no lectures)
11 Natural Language (including 3 guest lectures by

Yorick Wilks, and class discussion on Natural
Language).

5 Representation of Knowledge
4 + I Vision (4) and a Programming lecture.
3rd Term
3 Vision
5 Learning
9 Student Presentations
1 Concluding Class Discussion.

237

7.3 GENERAL READING LIST

In addition to the recommended reading on specific topics (to be found in
the lecture notes), the students were required to read the following
general references.

M. Minsky & S. Papert (1972)Artificia/ Intelligence Progress Report. Al
Memo No. 252, MIT.

J.N. Nilsson (1974) Artificial Intelligence. I FIP Congress, August 1974.

A . M. Turing (1963) Computing Machinery and Intelligence in Computers
and Thought (eds F.A. Feigenbaum & J. Feldman) pp.1 1-35. McGraw Hill.

F.A. Feigenbaum (1969) Themes in the second decade, in Information
Processing 68, vol.2 (ed. A.J.H. Morell), pp.1008-22. North Holland.

C. Longuet-Higgins (1972) Artificial Intelligence. Br. Med. Bull, 27, no.3,
218-2 1.

7.4 EXAMINATION QUESTIONS

Here are the papers set for the class examination 1974-75 and the degree
examinations 1974-75, 1975-76, and 1976-77. (There were no class
examinations after 1974-75.)

Instructions to candidates were: Answer any FOUR questions. All
questions carry equal weight.

7.4.1 Class Examination 1974-75
Question 1.

0 a • T

(a) Give a symbolic description of figures A, B and C and a description of
the similarities between corresponding objects in A and B.

(b) Give a symbolic description of the rule which would change figure A
into figure B.

(c) If the description of the rule were applied to the description of figure C
what would be the description of the resulting answer figure?

(d) Suppose figure C had been

238

What goes wrong when we try to apply the description of the rule to the
description of figureD? How might we amend the rule description so that
it applies to the description of D and produces a description of figure E?

FFo)

Question 2.
(a) What tests does Roberts program use in order to select a picture
fragment for matching to a model?

(b) Show one possible decomposition of the scene depicted below and
one of the intermediate stages which would result from applying Roberts'
program.

(c) What are the principle virtues of Roberts' approach compared to the
way other programs you know do scene analysis?

Question 3. Times of day are expressed by phrases such as: twelve fifteen,
three o'clock, five thirty-seven, a quarter to three, half past ten.

(a) Make a context-free grammar to describe such sentences,

(b) Give the parse trees for the above phrases.

(c) Indicate by writing typical procedures how you would write a LOGO
program to take a list of words and return YES or NO according to
whether it is desthbed by your grammar. (You may assume procedures
CHECK and TRY are provided.)

Question 4. Discuss what is meant by:
(a) A Look-Ahead tree.
(b) A weighted sum of feature scores.
(c) Mini-Maxing.
Illustrate your answer with reference to any board game of your choice
except draughts (checkers).

Question 5. Explain how a syntactic production rule may have a semantic
rule attached to it to compute the meaning of the phrases generated.
Illustrate your answer by referring to the meanings of various kinds of
phrase in the blocks world program described in the course.

239

Question 6. Discuss Guzman's use of picture junctions and linking rules to
decompose a picture of a polyhedral scene. What are the limitations of
such an approach?

Question 7.
(a) Using the LOGO inference system translate each of the following
sentences into a procedure call corresponding to its meaning:

The Pope is good
John Wayne is good
John Wayne is courageous
Anyone who is good and courageous is a hero

Who is a hero?

(b) Suppose the translations of the sentences above the line were used to
set up a database and the translation of the sentence below the line were
used to interrogate that database. Draw the search tree of that
interrogation.

7.4.2 Degree Examination 1974-75
Question 1.

Using the LOGO INFERENCE system:
(a) Give a partial symbolic description of the above drawing of a face
sufficient to answer yes to the following questions, by direct data-base
lookup:

Is the mouth in the lower portion of the face?
Is the left eye in the upper portion of the face?
Is the nose in the centre of the face?

(b) In addition represent the laws that:
Anything in the centre of the face is also in the middle portion.
Anything in the middle portion of something is always above
anything in the lower portion.
Anything in the upper portion of something is always above anything
in the middle portion.

(c) Represent the question:
Is the nose above the mouth?
Draw the complete search tree of its interrogation of the database.

(d) In addition represent the law:
To infer that xis above y show that xis above z and z is above y.

240

and the question:
Is the mouth above the nose?

Draw some of the search tree of this interrogation. What problem arises?
How might it be overcome?
Does your solution involve changing the LOGO INFERENCE system?

Question 2. Suppose that a computer program is to be written to take in
simple directions such as the ones below and check their correctness from
a street map from a given starting place.

'To get to the school, take the first road on the left, then the first road
on the right after the bridge'
'To get to the hospital, take the second road on the left, then the first
road on the right'
'To get to the station, take the fourth road on the left'
'To get to the bridge, take the first road on the right after the school'

(a) Write a context-free grammar to generate directions such as these,
using the vocabulary in the above sentences.

(b) Explain how the following simple street map might be represented in
LOGO so as to be usable as a semantic model for such a checking
program. (Hint: recall the list structure representations of the state of the
blocks world described in the course.)

'W Lj E- E-

___ L__J
ALPHA ST

Th1
BETA ST

1 L i L 1 _ H0NI

GAMMA STREET

START

241

Question 3. The "Eight-Puzzle" is played on the 3 x 3 tray illustrated
below: San flV4fl

-C
Mounted in the tray are eight 1 x 1 square pieces, which are free to slide
left, right, up or down into an empty square. The standard position is
illustrated in which the centre square is empty and the letters are arranged
in alphabetic order. The puzzle is played by initializing the pieces in some
other order and then trying to get them back into the standard position.

(a) Explain how a course of play can be represented as a search through a
tree or graph.

(b) How would this representation help you to design a computer program
to solve eight-puzzle problems?

(c) Suppose you were writing such a program. How could you represent in
LOGO: states of the tray and moves. Explain in English (or LOGO) how you
would apply moves to states to produce new states.

Question 4. "The correspondence between 2D features and 3D concepts
is central to the design of any program for interpreting pictures of scenes."
Discuss, giving a critical account of relevant aspects of vision programs
you know of.

Question 5. What difficulties arise in attempting to write a computer
program to understand children's stories? Describe some mechanisms
which have been proposed to tackle them.

Question 6. Explain briefly (one paragraph each) each of the following:
(a) credit assignment problem
(b) hill climbing
(c) near miss
(d) Winston's notion of "appropriate generalization"
(e) discrimination tree
(f) diameter-limited perceptron

Question 7. Discuss up to four of the following statements. You may write
at length on one of them or more briefly on two or more.
(a) Representing the effects of operators by add and delete lists solves the
frame problem.
(b) Line-verifying is better than line-finding.
(c) Alpha-beta pruning is a way to obtain a gain in efficiency in exchange
for an increased danger of overlooking the best choice.

242

(d) Since a program can now do analogy problems it makes no sense to
use them on human intelligence tests.
(e) Attempts to model human intelligence on a computer are doomed to
failure since the human brain and the digital computer are based on
different hardware.

7.4.3 Degree Examination 1975-76
Quest/on 1. The following context-free grammar generates linguistic
descriptions of chess pieces in terms of their colour and board position.
(Terminal symbols are quoted.)

Piecename—.. pawn

Piecename—'king
Colour—..'black
Colour—s"white
Piece—...Piecename
Piece —'Colour Piecename
Nth "first

Nth —.-'eight
Position— Nth rank
Position -' Nth file
Position - Nth 'rank 'and Nth file
Description—..' 'the Piece
Description—."the Piece 'on 'the Position

Ci) Write out five descriptions generated by grammar.

The current state of a chess board can be represented, e.g. in LOGO, by a
list of quadruples, where each quadruple represents a piece by a list of
four elements, namely

PIECEKIND which is 'PAWN or ... or 'KING
BLAWHI which is 'BLACK or 'WHITE
RANKNO which is 1 or ... or 8
FILENO which is 1 or.. ,or 8

A chess playing program accepts linguistic descriptions of the above form
and needs to find their meaning relative to the current state. For example,
in the current state "The pawn on the first rank" might refer to [PAWN
BLACK 1 81.

(ii) What LOGO or other data structures could you use as the meaning of
each of the six kinds of phrase: Piecename, Colour Description?

(iii) How could you write procedures to calculate the meaning of each
phrase from the meaning of its components and (if necessary) the current
state? (Say what these procedures would have to do; you need not write
them.)

243

Question 2. "Deduction is a formal, logical procedure with well-defined
rules and can be carried out by a computer program. Induction, on the
other hand, by its very nature involves a creative component and cannot
even in principle be done by a machine."
Discuss, with reference to computer programs you know of that claim to
do induction.

Question 3. Below is a typical "Geometric Analogy Problem'.

ri [1L) H
511) C H C Li

Find the rule by which figure A has been changed to make figure B. Apply
the rule to figure C. Select the resulting figure from figures 1-5.'

(a) Explain, briefly, how Evans' computer program, ANALOGY, could solve
such problems.
(b) Give an example of a geometric analogy problem which Evans'
program would be unable to solve and explain why.

Question 4.
(i) Explain the distinction between forward inference and backward
inference, giving as an example some Al tasks for which they might be
used.

(ii) What problems arise with the use of (a) forward inference and (b)
backward inference? Illustrate your answer with examples. Suggest ways
in which these problems might be overcome.

QuestionS. Consider the task defined by the following diagrams.

ROOMA 1 ROOMS

000R1

goscxr BOXi

Initial State

ROOMA ROOMS

BOX1

Goal State

The initial state is described by:
(IN ROBOT ROOMAI (IN BOX1 ROOMBI [OPEN DOOR]
(IN DOOR1 ROOMA] [IN DOOR1 ROOMBI ICONNECTS
000R1 ROOMA ROOMBI

The goal is described by:
[NEXTrO ROBOT BOX11 [CLOSED DOOR]

The Robot has three operators, described by:
[GOTO ?OBJ] Puts the ROBOT next to the OBJ, and not next to

anything else. (Represent this latter by putting INEXTTO ROBOT '1 in the
delete list). It is applicable if the ROBOT and OBJ are in the same room.

[GOTHRU ?DOOA) Puts the ROBOT in the room which the DOOR
connects to his present room. Initially the ROBOT must be next to the
open DOOR.

[CLOSE ?DOOR) Closes the open DOOR. The ROBOT must be next
to the DOOR.

(a) Describe the three operators by drawing an Operator Table giving their
preconditions, delete and add lists.

(b) Describe a plan for achieving the goal, and draw a diagram giving
symbolic descriptions of the sequence of states which would be achieved
if the plan were executed.

(c) What is subgoal protection? Why is subgoal protection sometimes
needed by planning programs? If a robot plan formation program, which
used subgoal protection, was given the above task, what difficulty would it
encounter? How might this difficulty be overcome?

Quest/on 6. "A stimulus fragment takes its meaning from a consideration
of its neighbouring fragments; i.e. from the context in which it occurs."
Discuss possible mechanisms for achieving this principle of context-
sensitive analysis, drawing examples from Al V/S/ON programs with
which you are familiar.

Question 7. Can computer programs be used to model human
intelligence? At what level can they be compared? Illustrate your answer
with reference to GPS or some other program designed to simulate
human behaviour.

Quest/on 8. Discuss the relevance of Al programs to either philosophy,
psychology or linguistics.

7.4.4 Degree Resit ExaminatIon 1975-76

Question 1.
(a) What follows is a description of the behaviour of a hungry monkey.
Explain how a computer program could build a plan, which if executed,
would model the behaviour of the monkey.

245

bananas

box

monkey

"A hungry monkey is sitting in a cage. Suspended from the roof, just out of
his reach is a bunch of bananas. In the corner of the cage is a box. After
several unsuccessful attempts to reach the bananas the monkey walks to
the box, pushes it under the bananas, climbs on it, picks the bananas and
eats them."

(b) Discuss the plausibility of the program as an explanation of the thought
processes of a real monkey.

Question 2.
(a) Explain how the meanings of noun phrases and adjectives in
conversations about a simple world of blocks could be adequately
represented in a computer program.

(b) Discuss a proposal for representing meanings of verbs (e.g. Schank's).

Question 3.

(a) How might a program for describing the similarities and differences
between figures A. B and C describe each of them? How might it describe
the similarities between A and B?

(b) Give a symbolic description of a rule which would change figure A into
figure B and explain how this rule could have been formed automatically
from the descriptions given in part (a).

(c) Apply your rule to your description of figure C. What is the resulting
description? Draw the figure this describes. Describe the similarities
between this figure and figure C.

(d) Alter the description of figure C so that your rule still applies to it but
gives a different result. [Hint: consider the following possible resultant
figures].

EJH
246

Question 4. 'Deduction is a formal, logical procedure with well-defined
rules and can be carried out by a computer program. Induction, on the
other hand, by its very nature involves a creative component and cannot
even in principle be done by a machine.'
Discuss with reference to computer programs you know of that claim to
do induction.

Question 5. Explain how you might use a system like the LOGO inference
system to represent information about the countries of Western Europe,
their capital cities, flights between the cities and which countries have a
common land frontier. Explain how this could be used to answer questions
about travelling by car or by plane from one country to another, e.g. how
to get from Spain to Sweden. Point out difficulties (if any) from which your
proposed method would suffer.

Question 6. "Perception is an interpretative constructive activity involving
the interaction between stimulus patterns and stored internal
descriptions."
Discuss how Roberts' program embodies such an idea.

Question 7. Discuss two of the following statements.
(a) Evans' ANALOGY program has shown that, given descriptions of the
figures in geometric analogy problems, the process of finding a rule and
applying it is purely mechanical. Therefore the only intelligence required to
do these problems is in choosing the original descriptions.

(b) "The method of Samuel's checkers [draughts] program's learning was
no different in principle from that of the human being who learns to play
checkers" - Norbert Wiener.

(c) Since programs dictate a preordered, inviolable sequence of steps a
computer's attention cannot be drawn by "fringe consciousness" to those
unusual elements of a scene that are so telling in human experience.

(d) "The Analytical Engine [a very early digital computer] has no
pretensions to originate anything. It can only do whatever we know how
to order it to perform" - Lady Lovelace.

QuestionS. Discuss the relevance of Al programs to either philosophy,
psychology or linguistics.

7.4.5 Degree Examination 1976-77

Question 1. The European Economic Community has decided to pay
farmers a subsidy of one pound per leg for every animal on their farm.
Farmers must send in returns, in English, of the form

Six chickens and four cows and seventy seven pigs, or
One hundred and twenty seven hens and one horse.

247

(I) Write a suitable context-free grammar for these returns.

(ii) Sketch briefly how you would write a LOGO program to calculate the
subsidy, giving some typical procedures with input and output and what
they would do. (The answers for the returns above are 6*2 ± 44 + 77'4
and 1272 + 1*4 respectively.)

Question 2.
Ci) Discuss briefly the design of a computer program which could search
for a solution to the missionaries and cannibals puzzle.

(ii) Design an evaluation function for the states of this puzzle.

(iii) Discuss methods of guiding the programs search with special
reference to the use of your evaluation function.

Question 3. What is means/ends analysis? Compare the ways in which
means/ends analysis is implemented in GPS and STRIPS, with particular
reference to the following points.
Ci) How are differences represented in GPS and STRIPS?

(ii) How are differences found in GPS and STRIPS?

(iii) How are relevant operators found in GPS and STRIPS?

(iv) In STRIPS what corresponds to the three GPS goal types of:
Transforming one object into another; Reducing a difference and Applying
an Operator?

Quest/on 4.
Ci) Explain what is meant by 'deep case' as opposed to 'surface case.

(ii) Explain eight possible deep cases which may be distinguished in
English sentences.

(iii) Analyse the following sentences showing which cases are used
(a) Mary sent John a parcel by rail
(b) The airship burst into flames
(c) I bought it for my wife

(iv) How would you represent the case structure of (a) as a series of
assertions to the LOGO inference system?

Question 5. 'Perception is an interpretative constructive activity involving
the interaction between stimulus patterns and stored internal
descriptions".
Discuss how Roberts' program embodies such an idea.

Quest/on 6. Both Evans Geometric Analogy program and Winstons
Concept Formation program worked by forming symbolic descriptions of
line drawings and compairing these descriptions. Compare and contrast
the methods used and discuss the thesis that the formation and

248

comparison of symbolic descriptions is a basic element in intelligent
activity.

Question 7. Discuss in detail two of the following topics:
(i) The local-global problem in perceptron "learning'.

(ii) Discrimination nets (or trees) such as EPAM. Construct a simple
example.

(iii) Simon & Kotovsky's "induction' program for the completion of series.
In what sense can machines perform inductions?

Question 8. Discuss two of the following statements.
(i) The design of programs to solve puzzles, like the missionaries and
cannibals, throws no light on human problem solving.

(ii) Attempts to model human intelligence on a computer are doomed to
failure since the human brain and the digital computer are based on
different hardware.

(iii) A computer could never exercise judgement.

(iv) "In order for a program to be capable of learning something it must
first be capable of being told it" (John McCarthy).

7.5 STUDENT PROJECT TITLES

1974-75
Student Title
N.Conliffe GRIP: Graphics Routines with Interpretive Parsing
C.Oavie Relation of work in Al and Psychology in Visual

Perception
A.Fletcher A Bidding Program in LOGO
T.Gayle BUILD: A Lesson on Anarchism in the Blocks World
S.Holtzman A Program for Key Determination*
I.Malcolm Maze Traversing
D.Paterson The Imitation Game: An Anti-Behaviourist Approach
?.Reddish Approaching Perception
K.Schroeder Models of Linguistic Description and Implications for

Computer Programs involving Natural Language
AIso available as DA! Research Report No.20

1975-76
Student Title
R.Aikman Generating English Sentences
M.Bennett SUBSTITUTOR - CAl error analysis
M.Bottomley Machine Translation reviewed: evaluation of selected

programs
K.Chisholm DRAFT4—A Draughts program
A.Coldham Date (and time) Translation Quizzing Machine

249

P.Dunne Two Move Chess Problems
E.Doe Fox and Hounds
D.Giles Natural Language Analysis Using Case
J.Kennaway Geometry theorem proving
E.Lawson A Puzzle Solving System
G.Morris P.A. Learning Models
M.Schairer Word into sentence: parsing an agglutinative language
S.Wrigglesworth A program to play Backgammon

1976-77
Student Title
G.Connelly Variations on a theme, a computer program
M.Lineberry A Program to play backgammon
K.McLelland Variations on theme, a musical program
R.Omond A spelling correction system (the speller)
A.Pauson ELIZA
M.Philip Assembling a jigsaw
P.Turcan Mastermind
l.Wershofen Numbers into numerals

The project reports are kept in the Library, Department of Artificial
Intelligence, Forrest Hill.

7.6 STUDENT QUESTIONNAIRE RETURNS 1975-76

In order to get feedback to help us improve the course we issued a
questionnaire at the end of each year. The questions asked in 1975-76,
together with a brief summary of the replies, are given below. All 21
students who started the course were circulated: we received 12 replies.

Student Questionnaire
In order to get feedback to enable us to plan next year's course, we should
be grateful if you would complete this questionnaire and give us your
comments on any aspect of the course. Please be completely frank.

1. How did you find out about the course?
Original source: Director of Studies. 2; Faculty programme, 5; a
friend, 2; noticeboard, 1; lecture in Computer Science on Al, 2.

2. What factors influenced your decision to enrol in the course?
Most frequently mentioned factors were: looked interesting;
previous interest in Al; general interest in computers; relevance to
some other subject.

3. What do you think the objective of the course was? Did it succeed?
Most answers centred on the "Introduction to Al" idea, mentioning
some aspect like past achievements, current developments, or scope
and limitations. A few answers mentioned our specific aims of
teaching the methodology or establishing the relevance with soft

250

sciences. Three gave no answer at all. Nearly everyone thought it
succeeded.

4. Did you find the subject matter of the course: (i) Interesting?
Nearly everyone found it interesting, some said "very".

(ii) Demanding?
Reaction was mixed, from a non programmer's 'I still found myself
completely out of my depth" through 'Some of the programs,
particularly in Natural Language (parsing), were difficult to follow",
to an experienced programmer's Most of the work I did was fun
rather than 'real' work". Most people found it time consuming (too
many exercises) whether or not they also found it demanding.

(iii) Relevant to other subjects you are studying (please specify)?
People also doing computer science or linguistics found Al relevant
to those subjects. Otherwise a fairly negative response (e.g. not
much - but should it be?), apart from one reference to psychology.

5. How do you think the teaching and assessment could be improved?
As an aid to thought we have listed the teaching and assessment methods
below.
(i) Formal Lectures
(ii) Handouts

Much appreciation expressed. They found lectures well prepared and
were able to give full attention to following them: Handouts were
better than those I got in any other course so far— complete and
readable - and most of the lectures appeared to be well prepared".

(iii) Problem Classes
(iv) Class Discussions

More of both wanted. Several criticisms levelled at class discussions
as being too infrequent, too general and class too large.

Cv) Student Presentations
Welcomed, but too late in term for feedback to be incorporated in
projects.

(vi) Audio Visual Aids
Compliments expressed on films, videos, overheads, etc.

(vii) Tutorials

L Cx) Other Assigned Work
Strong feeling that these should continue into second term. A
suggestion that they should be streamed by programming ability. r (viii) Teletype Sessions
Too much programming in course. More personal tuition wanted.

(ix) Assigned Reading
Several suggestions for improving the method of access.

NO Informal contact with members of the department
Better than most departments but could be better. More information
wanted about research work of department.

251

(xii) Examinations
(xiii) Project

Two requests for an extra class examination, balanced by one
request for continuous assessment and one for exemptions for
deserving cases. Opportunity to do project much appreciated but not
enough time in course to do it justice (e.g. "why give 30-40 hours as
a guide-line and then show previous examples which must have
taken their authors about twice as long?").

6. (i) Was this your first opportunity to program a computer? (ii) If so, how
hard did you find it? (iii) Did any particular aspect of learning to program
give you trouble, e.g., a particular concept, a misconception you
harboured, a particular type of bug? (please specify).

People with no previous experience found programming very hard
(typical comments were "very, very hard; 'bad'. etc.).
Unfortunately (and significantly) they were unable to identify
particular areas of difficulty, but just said "all of it (except the very
early programming)' or 'everything".

Please record any other comments you wish.
Mainly used to expand on above points. General mood was that
course was good (e.g. "10/10 for effort put into 5(ii,vi,vii,viii, ix, xiii)
etc."), but we had gone overboard with the imparting of specific
skills (e.g. programming), to the detriment of general philosophical
discussion (e.g. more a series of intellectual exercises"; even after
deciding to drop the course it was stressed to me that Al was not a
mathematical-type subject - but it is!"; "lack of spontaneous class
discussion'). Some pointed out that the proper balance was difficult
to strike while the class continued to contain a mixture of soft and
hard scientists (e.g. I don't think the same course should apply for
people who have done computer science and also for people who
have done nothing of this sort before'; "more places should be
allocated to Psychologists, Philosophers, Linguists and other non-
mathematicians").

7.7 AFTERNOTE

We received our most adverse criticism in 1975-76, especially as regards
the teaching of programming to non-scientists. To answer this criticism
we took the following steps.

(i) Plans were made to replace the existing one-year course with two
consecutive one-year courses. The first was designed as an elementary
introduction, and the second was skill and project oriented. These plans
cannot take full effect until 1979-80.

(ii) In 1976-77 the class was divided into two groups for programming
tuition: beginners and those with previous experience. The beginners

252

tuition was based on that developed in the highly successful Edinburgh
LOGO project, using the primer How to Work the LOGO Machine by B. du
Boulay and T. OShea. This method was a great improvement on the
previous one, but it remains true that a great deal of time is needed to
teach programming to students with a poor mathematical background.

(iii) In 1976-77, the number of exercises, which had been excessive, was
reduced.

(iv) In 1976-77, tutorials were continued into the second term and
grouped by programming ability.

253

