
Proof Planning

Alan Bundy
Department of Artificial Intelligence

University of Edinburgh
80 South Bridge

Edinburgh, Scotland, EH1 1HN.
A.Bundy@ed.ac.uk

Abstract

We describe proof planning, a technique for the global
control of search in automatic theorem proving. A
proof plan captures the common patterns of reason-
ing in a family of similar proofs and is used to guide
the search for new proofs in this family. Proof plans
are very similar to the plans constructed by plan
formation techniques. Some differences are the non-
persistence of objects in the mathematical domain, the
absence of goal interaction in mathematics, the high
degree of generality of proof plans, the use of a meta-
logic to describe preconditions in proof planning and
the use of annotations in formulae to guide search.

Introduction
The main research problem in automating theorem
proving is the combinatorial ezplosion. A mathem-
atical theory and conjectured theorems of it can both
be represented in a computer using mathematical lo-
gic. Proofs can be constructed by applying logical rules
forwards to the axioms of a theory in the hope of gen-
erating the conjecture w or, more often, by applying
the rules backwards to the conjecture in the hope of
reducing it to axioms. The combinatorial explosion
occurs because there is choice, i.e. more than one rule
can be applied to each of the initial and intermediate
expressions. We must use search to be sure to try out
all the possibilities. The number of intermediate ex-
pressions we must generate grows super-exponentially
with the length of the desired proof. The storage and
time requirements to find a proof by exhaustive search
are so large that it is infeasible to construct the proofs
of non-trivial theorems. Some intelligence is needed
to guide the search for a proof along promising paths,
avoiding less promising ones. Since human mathem-
aticians can often conquer the combinatorial explosion
and find complex proofs of hard theorems, it is prom-
ising to study human proof methods as a source of
inspiration for automatic methods of proof.

At Edinburgh we have pioneered a technique for
guiding the search for a proof, which we call proof
planning. A proof plan captures the common patterns
of reasoning in families of similar proofs. It is used to

provide a global control strategy for finding new proofs
from the same family. Proof planning contrasts with
the more local heuristics which have previously been
used for search control. That is, instead of making a
separate decision at each choice point, based on local
clues, proof planning has some sense of the overall dir-
ection of the proof. This seems to accord more with
the intuitions of human mathematicians that they first
make a global plan of a proof and then fill in the de-
tails.

In this paper we survey our work on proof planning.
We then go on to compare and contrast this with tra-
ditional AI work on plan formation.

The Nature of Proof Plans

We have analysed a large number of proofs, especially
from the area of inductive reasoning. Common pat-
terns of reasoning were identified and represented com-
putationally as proof plans.

Our proof planning is implemented using three kinds
of object:

Tactics: are computer programs which construct part
of a proof by applying rules of inference in a theorem
proving system, (Gordon et al, 1979). A simple tac-
tic might apply only a single rule of inference; a com-
posite tactic will be defined in terms of simpler tac-
tics and might construct a whole proof. Tactics are
hierarchical; some tactics unpack into sub-tactics.
Tactics can be composed from rules and sub-tactics
sequentially, iteratively and conditionally.

Methods: are specifications of tactics. In particular,
a method describes the preconditions for the use of
a tactic and the effects of using it. These precondi-
tions and effects are syntactic properties of the lo-
gical expressions manipulated by the tactic and are
expressed in a meta-logic.

Critics: capture common patterns of failure of meth-
ods and suggest patches to the partial proof. A critic
is associated with a method and is similar in struc-
ture, except that its preconditions describe a situ-
ation in which the method fails. Instead of effects

Bundy 261

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

it has instructions on how to patch the failed proof
plan.

Our CLAM proof planner uses methods to construct
a customised tactic for the current conjecture. It
combines genera.l-purpose tactics so that the effects
of earlier ones achieve the preconditions of later ones.
This customised tactic is then used by our proof edit-
ors, Ovster or MoRusc, to try to prove the conjecture.
Sometimes the preconditions of a method succeed, but
those of one its sub-methods fail. In this case a critic
may suggest a patch to the proof plan. This product-
ive use of failure via critics is made possible by proof
planning and is one of its most powerful features.

Proof planning combines two previous approaches
to automated reasoning: the use of tactics and the use
of meta-level control. The meta-level control is used
to identify appropriate tactics and to suggest patches
when they fail. Proof plans abstract the proof, reveal-
ing the key steps and the structure of the proof. This
abstraction can be used to construct explanations of
successful proofs and give reasons for the failure of un-
successful ones.

Implementation

Our implementation of proof plans consists of the fol-
lowing parts.

1. An object-level interactive proof editor, which can
be driven by tactics. Initially, we built ONster,
(Bundy et al, 1990), a proof editor for construct-
ive type theory closely modelled on Nuprl, (Con-
stable et al, 1986). More recently, we have built
Mollusc, (Richards et al, 1994), a generic proof ed-
itor, i.e. one which takes a logic as input and be-
comes a proof editor for that logic.

2. A variety of logics implemented in Mottusc, includ-
ing logics which are: first order and higher order;
typed and untyped; constructive and classical.

3. A set of general-purpose tactics for controlling
Motlusc and/or ONster. A method for each of these
tactics. A set of proof critics for each method.

4. A plan formation program, CLAM, (Bundy et al,
1990), for reasoning with these methods and critics
in order to build a customised tactic for each con-
jecture out of the general-purpose tactics.

5. A co-operative interface to CLAM, called Barnacle,
(Lore et al, 1995). This uses proof planning to ex-
plain the proof to the user and assist him/her in
interacting with the proof process.
The CLAM system and the proof editors have been

tested on a large corpus of theorems drawn from the lit-
erature, with very encouraging results, (Bundy et al,
1991; Ireland tz Bundy, 1995). The planning search
space is typically many orders of magnitude smaller
than the object-level search space. Furthermore, the
heuristics represented in the preconditions of the meth-
ods ensure that backtracking during planning is rare.

262 AIPS-96

So the search for a plan is computationally very cheap.
The cost of this dramatic pruning of the object-level
search space is that the planning system is incomplete.
Fortunately, this has not proved a serious limitation;
the CLAM system finds proof plans for a high per-
centage of the theorems tested and these plans are
turned into proofs by ONster or Mottusc. Thus the
proof planning has proved to be a very effective way
of tackling the combinatorial explosion in automatic
theorem proving. Proof planning sometimes fails to
find a proof. In this case the interaction provided by
Barnacle is at a much higher level than that normally
available from interactive provers. It can use the proof
plan to explain the global structure of the proof and
the nature of the plan failure. This can help suggest
an appropriate patch.

Applications to Formal Methods
Formal methods of system development use mathem-
atics to reason about computer programs or electronic
circuits. This reasoning includes: verifying that a sys-
tem meets a specification of its intended behaviour;
synthesising a system which meets such a specification;
and transforming one system into a more efficient one
meeting the same specification. Use of formal meth-
ods improves the reliability, safety and security of IT
systems. Unfortunately, formal methods are not as
widely used as they might be due to the high skill
levels and long development times required to apply
them. Machine assistance is available, but even then a
high level of very skilled user interaction is usually re-
quired. By automating much more of the proof obliga-
tions on formal methods using proof planning we hope
significantly to reduce both the development times and
skill levels required. This will make the application of
formal methods more feasible and widespread.

Mathematical inductionI is required for reasoning
about objects or events containing repetition, e.g.
computer programs with recursion or iteration, elec-
tronic circuits with feedback loops or parameterised
components. Since repetition is ubiquitous and induct-
ive reasoning is the most difficult to automate, we have
focussed on the construction of proof plans for math-
ematical induction. Our inductive proof plans are very
successful. They guide the search for quite complex
proofs with a high degree of success and a very low
branching rate. For instance, a recent success was to
verify that the Gordon Computer (a complete micro-
processor) met its specification, (Cantu et al, 1996).

Inductive Proof
Inductive proofs are characterised by the application
of induction rules, of which a simple example is Peano
induction:

P(o), PC" + I))
Vn:nat. P(,£)

I Not to be confused wRh the learning form of induction.

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

i.e. if a formula can be proved in the case n = 0 (the
base case) and whenever it can be proved for ~ it can
be proved for u+ | (the step case) then it can be proved
for all u.

Peano induction is merely the simplest and best
known inductive rule of inference. Similar inductive
rules are available for every kind of recursively defined
data-structure, e.g. integers, lists, trees, sets, etc. For
instance, the analogous rule for lists is:

P(~I), Vk: ~, t:list(~). (P(t) ~ P(Iklt]))
Vl:l st(). PCt)

where [)tlt] means]~ consed onto t, t : ¯ means ~ is of
type ̄ and Rst(~) is the type of lists of objects of type
"t’.

Moreover, it is not necessary to traverse such data-
structures in the obvious, stepwise manner; they can
be traversed in any order, provided it is well-founded,
i.e. provided there is no infinite ordered sequence of
smaller and smaller elements. Nor is induction restric-
ted just to data-structures, for instance, it is possible
to induce over the control flow of a computer program
or the time steps of a digital circuit.

All of these forms of induction are subsumed by a
single, general schema of well-founded induction2:

x -- -, P(x)
vx: . P(x)

where y- is some we11-founded relation on the type %
i.e. there is no infinite sequence: al ~- a2 >- as ~-
The data-structure, control flow, time step, etc., over
which induction is to be applied, is represented by the
type "c. The inductive proof is formalised in a many-
sorted or typed logical system.

Success in proving a conjecture, P, by well-founded
induction is highly dependent on the choice of x,
and y-. For many types, "r, there is an infinite variety
of possible well-orderings, >-. Thus choosing an appro-
priate induction rule to prove a conjecture is one of
the most challenging search problems to be solved in
automating inductive inference.

Heuristics for Inductive Inference

The automation of inductive inference raises a number
of unique difficulties in search control. These are:

Synthesis of Induction Rules: To prove a theorem
by induction, one of the infinite number of possible
induction rules must be synthesised.

Conjecturing Lemmata: Sometimes a lemma re-
quired to complete the proof is not already available
and must be conjectured and then proved.

Generallsation of Induction Formulae:
Sometimes a theorem cannot be proved without first
being generalised.

2Also known as ncetherian induction.

In addition to these special search problems all the
standard problems also manifest themselves, e.g. de-
ciding if and when to make a case split, determining
the witness for an existential quantifier.

We have tried to solve these search control problems
by designing tactics, methods and critics. A few such
tactics can prove most of the standard inductive theor-
ems we have tested them on. A pictorial representation
of our main proof methods for inductive proof is given
in figure 1.

inductlon_strategy

,/
]

ripple

i fertilize

Each of the bozes represents a method. The
nesting of the bores represents the nesting of
methods, i.e. an inner method is a sub-method
of the one immediately outside it. The induc-
tion strategy is a method for a complete applic-
ation of induction. After the application of in-
duction the proof is split into one or more base
and step cases (one of each is displayed here).
Within the step case method, rippling is used
to reduce the difference between the induction
conclusion and induction hypothesis. The rip-
piing method consists of repeated applications
of the wave method. The rewritten induction
conclusion is then fertilized with the induction
hypothesis.

Figure I: A Proof Plan for Induction

Rippling is the key tactic in our proof plans, (Bundy
e$ al, 1993; Basin & Walsh, 1994). The places at
which the induction conclusion differs from the in-
duction hypothesis are marked by special annotations
called wave-fronts. These can be calculated auto-

Bundy 263

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

matically by an algorithm called difference matching.
The wave-fronts are then moved out of the way so that
a copy of the induction hypothesis appears within the
induction conclusion. This movement is effected by
special rewrite rules called wave-rules. The induction
hypothesis can then be applied to the induction con-
clusion by a tactic call fertilize. Rippling involves little
or no search. An example is given in figure 2.

Comparison with Plan Formation
Work on plan formation in AI goes back to the 60s
with Cordell Green’s work on QA3 and Nilsson’s on
STRIPS. Is there any similarity between this work on
plan formation and that described above?

Correspondence between Proof Planning
and Plan formation
Plan formation builds a sequence of actions to be ap-
plied by an automated agent, e.g. a robot. Proof plan-
ning builds a customised tactic for guiding a proof.
So some apparent differences are that proof planning
does not reason about time, does not involve a ro-
bot and does not deal with the manipulation of real
world objects. However, these differences are super-
ficial. The individual mathematical rule applications
in proof planning correspond to actions in plan form-
ation. Tactics cdrrespond to actions that expand into
sub-actions during hierarchical planning. The objects
being manipulated in proof planning are mathematical
expressions. Proof plans are applied by an automated
agent: the proof editor. The sequence of manipula-
tions do define some notion of time, e.g. we could re-
gard each successive formula in the ripple in figure 2 as
being a world state at a different moment in time. So
proof planning can be viewed as plan formation in the
traditional AI sense. Even the concept of critic has its
origins in plan formation. It was originally developed
by Sussman and played a similar role to our critics in
patching failed plans, (Sussman, 1975).

Persistence of Objects
One real difference is that there is no necessary persist-
ence of objects in proof planning, whereas there usually
is in plan formation. In figure 2 some parts of the ex-
pression do seem to persist. For instance, throughout
the ripple there is one h, t and t on each side of each
equation. The compound objects, however, come and
go, e.g. [hltl occurs twice in the first formula, but then
disappears not to reappear. In some proofs, atomic
objects can behave the same way. For instance, if the
rule X -{- X :~ 2 × X were applied then two occurrences
of X would merge into one. If the rule 0 × X =~ 0
were applied then X would disappear altogether. The
non-persistence of objects means that the mathemat-
ical world cannot be described merely by sets of re-
lations between objects, since this assumes they per-
sist over time. Fortunately, the mathematical formulae
themselves can be used to represent the world state.

Goal Interaction
Goal interaction is a major issue in plan formation
and has led to the development of non-linear plan-
ning, (Tate, 1977; Sacerdoti, 1977). Goal interaction
has not, so far, been an issue in proof planning, so
we have not needed to use non-linear planning. Be-
cause of the non-persistence of mathematical objects
it is not obvious what goal interaction might consist of
in mathematical reasoning.

Something a little like it does arise in our work on
critics. For instance, the point at which a proof breaks
down may not be the point at which the proof patch
needs to be applied. For instance, we might detect the
need for a case split, but this split might need to be
made at an earlier stage in the proof than where the
need for it is detected. Similarly, with changes to the
form of induction or generalizations of the theorem.
The critics currently do this by restarting the proof
from an earlier point. It is possible that a non-linear
proof representation might facilitate the incremental
growth, patching and reorganisation of proofs.

Differences in Domains
There are also differences in the domains in which plan
formation and proof planning work. Plan formation
must deal with incomplete and uncertain knowledge
about the world and the automated agent may have to
work with collaborators and/or against opponents. In
proof planning, our knowledge about the mathematical
world is complete, i.e. we know exactly what conjec-
ture to prove and what axioms to prove it with. Nor
are there other agents assisting or opposing our proof
attempts. Proof planning, however, can be adapted
to deal with uncertainty, collaborators and opponents.
We have successfully tested proof planning by apply-
ing it to non-mathematical domains, including the card
game bridge, (Frank et al, 1992). In this domain, un-
certainty arises because you do not know what cards
are held by the other players. Players collaborate with
one other player and are opposed by two others.

Hierarchical Planning

As illustrated in figure 1, proof plans are hierarchical.
The tactics of proof planning correspond to the action
expansions of plan formation. Like actions, tactics may
unpack into several sub-tactics which may, in turn, un-
pack into sub-sub-tactics. The unpacking may involve
recursion or conditionals. There do, however, seem to
be some differences between the realisation of hierarch-
ical planning in proof planning and plan formation.

Firstly, we use only a few tactics (about a dozen)
compared to the much larger number typically used in
plan formation. Our tactics are much more general.
Rippling, for instance, is not only used in all inductive
proofs, but we have also found applications in other
areas of mathematics, e.g. for summing series, (Walsh
et al, 1992), and for proving limit theorems in ana-
lysis, (Yoshida et al, 1994). Action expansions, on the

264 AIPS-96

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Conjectured Theorem:

VK, L:Kst(x). rev(K <> L) = rev(L) <>

Induction Hypothesis:

rev(t <> t) = rev(t) <> rev(t)
Induction Conclusion and Ripple :

: ""¯¯ "" " " ""¯ "" "¯¯" "" ""::q ~ ~ ~ ~ "¯:" ": ̄ : T ¯ " " ̄ " ¯ ̄ ¯ " ̄ ¯ " ̄ ¯ ̄¯ ̄ "¯¯¯¯¯ ¯¯ " ̄ ::~: ~ :: :: :: ¯ : .~ ̄ <~:.~.(.t..<~..t~!~:~?.~;= ..~(9.<> ~.~.(0.~i:i~]::

........
The conjecture to be proved is that list reversal,
rev, distributes over hst append, <>, with
sw~tch in the argument order. We use the
Prolog convention that variables are in upper
case and constants in lower case. We also use
the Prolog notation for list cons, i.e. [HdITt].
X:ti.st(x) means that X is a list of objects of
type "r.
The proof is by induction on K. Only the step
case is shown. The induction conclusion is an-
notated to show its similarities to and differ-
ences from the induction hypothesis. The dif-
ferences are the bits which are inside a shaded
area. These are called wave-fronts. The un-
shaded bits inside the shaded bo=es are called
wave-holes. Rippling makes the wave-fronts
bigger and bigger until a copy of the induction
hypothesis appears wholly within a wave-hole.
When this happens this part of the induction
conclusion can be replaced with true and the
remaining goal is [b.] = [h], which is trivially
true. We call this final step fertilization.
Rippling is achieved by applying wave-rules.
The wave-rules used in this ezample can be
found in figure 3. Rules (1) and (2) are applied
to the left- and right-hand sides, respectively,
of the first line, then rules (2) and (3) to the
second line, and finally rule (4).

Figure 2: An example of rippling

x <> = ii x .T

=
r

Wave-rules are also annotated to show the sim-
ilarities and differences between the left- and
right-hand sides of the rules. To apply a wave-
rule, the left-hand side is matched against
a subezpression of the induction conclusion,
which is then replaced with the right-hand side.
This matching includes alignment of the an-
notations as well as the normal matching.
This additional condition severely restricts the
choices and reduces search. A measure is
defined using the height of the wave-fronts. By
definition this measure must be strictly less on
the right-hand side of each rule than on the
left-hand side.
Rules (1) and (2) come from the recursive
definitions of <> and rev, respectively. Rule
(5) is the associativity of <>. Rule (~) is the
equality congruence rule for <>. Note that rule
(4) is an implication from right to left, but be-
cause ClAM reasons backwards, the direction
of rewriting is inverted. In the example of fig-
ure 2, a weakened form of rule (4) is used,
in which a wave-hole on the right-hand side
of each equality is shaded and becomes part of
the wave-fronL When proved, the conjecture of
figure 2 will also form a wave-rule.

(i)

(2)

(3)

(4)

Figure 3: Examples of wave-rules

Bundy 265

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

other hand, are usually more limited in their potential
applications. Each ripple uses a different set of wave-
rules and the number of rules used varies according
to need. Newly proved conjectures may be automat-
ically recognised as wave-rules, annotated and used in
future ripples. Action expansions usually incorporate
a fixed set of lower level actions. Tactics in math-
ematical domains can involve search and may not be
guaranteed to terminate, e.g. they may call complete
theorem provers which are semi-decision procedures.
Action expansions are usually deterministic and ter-
minating.

Secondly, and crucially, tactics have meta-logical
preconditions, whereas action expansions have object-
level preconditions. Our rules and tactics describe
properties of numbers, lists, trees and other data-
structures, i.e. they are object-level. The precon-
ditions of these tactics describe syntactic properties
of mathematical formulae, i.e. they reason about the
object-level representation. We have developed a
meta-logic for representing these syntactic properties.
For instance, the definition of a wave-rule discusses the
similarities and differences between the left- and right-
hand sides of the rule. The preconditions of the wave
tactic require wave-fronts to be present within the goal
and for the matching of rule and goal to include the
alignment of their wave-fronts. Such meta-level pre-
conditions permit a level of generality for tactics which
would not otherwise be possible.

Search Control

Search is controlled in proof planning by a combin-
ation of tactics and meta-level reasoning. Meta-level
reasoning has a long history in AI and was first used
in plan formation in MOLGEN, (Stefik, 1981). Con-
trol knowledge referring to the global development of a
plan has also been used in plan formation. It was first
suggested for SOAR (Laird et al, 1987) and further
explored in Prodigy (Minton et al, 1989). One way
in which proof planning extends this is in its use of
annotation to guide search, i.e. the use of wave-fronts
to guide rippling to preserve some parts of a formula
while moving others in a desired direction.

The depth and complexity of reasoning arising in
mathematics is typically greater than that required
in plan formation. The attention that has been paid
to search control issues in proof planning reflects this
greater demand for an efficient solution.

Conclusion

In this paper we have described proof planning and
compared it to plan formation. Proof planning com-
bines the use of tactics with meta-level control. It
is implemented by: tactics, which correspond to ac-
tion expansions; methods, which specify tactics using
a meta-logic; and critics, which capture common pat-
terns of failure and suggest patches to the plan. Proof
plans abstract the global structure of a proof and this

can be used to guide search, explain the proof and sug-
gest patches when the plan fails.

Our main application area is inductive proof, es-
pecially as used to reason about programs and hard-
ware. Our proof plans for mathematical induction are
both restrictive and successful; they require very little
search in finding quite complex proofs, but have a high
success rate.

The main differences between proof planning and
plan formation are:

¯ the non-persistence of objects in the mathematical
domain;

¯ the absence of goal interaction in the mathematical
domain, and hence the adequacy of linear planning;

¯ the high degree of generality of proof plans;

¯ the use of a meta-logic for describing the precondi-
tions of tactics, and

¯ the use of meta-level annotations to guide search.

It would be interesting to explore whether some of the
ideas developed in proof planning can be imported into
plan formation, and vice versa.

Acknowledgements The research reported in this
paper was supported by EPSRC grant GR/J/80702
and ARC grant 438. I am grateful for feedback on
this paper from Erica Melis, Austin Tate and Andrew
Ireland.

References

Basin, D.A. and Walsh, T. (1994). Annotated rewrit-
ing in inductive theorem proving. Technical report,
MPI, Submitted to JAR.
Bundy, A., van Harmelen, F., Horn, C. and Smaill, A.
(1990). The Oyster-Clam system. In Stickel, M.E.,
(ed.), lOth International Conference on Auto-
mated Deduction, pages 647-648. Springer-Verlag.
Lecture Notes in Artificial Intelligence No. 449. Also
available from Edinburgh as DAI Research Paper 507.
Bundy, A., van Harmelen, F., Hesketh, J. and Smaill,
A. (1991). Experiments with proof plans for induc-
tion. Journal of Automated Reasoning, 7:303-324.
Earlier version available from Edinburgh as DAI Re-
search Paper No 413.
Bundy, A., Stevens, A., van Harmelen, F., Ireland, A.
and Smaill, A. (1993). Rippling: A heuristic for guid-
ing inductive proofs. Artificial Intelligence, 62:185-
253. Also available from Edinburgh as DAI Research
Paper No. 567.
Cantu, F., Bundy, A., Smaill, A. and Basin, D.
(1996). Proof plans for automatic hardware verifica-
tion. Research Paper forthcoming, Dept. of Artificial
Intelligence, Edinburgh.

Constable, R.L., Allen, S.F., Bromley, H.IVI. et aL
(1986). Implementing Mathematics with the Nuprl
Proof Development System. Prentice Hall.

266 AIPS-96

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Frank, I., Basin, D. and Bundy, A. (1992). An adapt-
ation of proof-planning to declarer play in bridge. In
Proceedings of ECAI-92, pages 72-76, Vienna, Aus-
tria. Longer Version available from Edinburgh as DAI
Research Paper No. 575.

Gordon, M.J., Milner, A.J. and Wadsworth, C.P.
(1979). Edinburgh LCF - A meehanised logic of
computation, volume 78 of Lecture Notes in Com-
puter Science. Springer Verlag.

Ireland, A. and Bundy, A. (1995). Productive use
failure in inductive proof. Research Paper 716, Dept.
of Artificial Intelligence, Edinburgh, To appear in the
special issue of JAR on inductive proof.

Laird, J., Newell, A. and Rosenbloom, P. (1987).
SOAR:an architecture for general intelligence. Ar-
tificia! Intelligence, 33(1):1-64.

Lowe, H., Bundy, A. and McLean, D. (1995). The
use of proof planning for co-operative theorem prov-
ing. Research Paper 745, Dept. of Artificial Intelli-
gence, Edinburgh, Accepted by the special issue of
the 3ournal of Symbolic Computation on graphical
user interfaces and protocols.
Minton, S., Knoblock, C., Koukka, D., Gil, Y.,
Joseph, R. and Carbonell, J. (1989). Prodigy 2.0:
The manual and tutorial. Technical Report CMU-CS-
89-146, School of Computer Science, Carnegie Mellon
University, Pittsburgh.
Richards, B.L., Kraan, I., Smaill, A. and Wiggins,
G.A. (1994). Mollusc: a general proof development
shell for sequent-based logics. In Bundy, A., (ed.),
12th Conference on Automated Deduction, pages
826-30. Springer-Verlag. Lecture Notes in Artificial
Intelligence, vol 814; Also available from Edinburgh
as DAI Research paper 723.

Sacerdoti, E.D. (1977). A Structure for Plans and
Behauiour. Artificial InteUigence Series. North Hol-
land, Also as SRI AI Technical note number 109, Au-
gust 1975.

Stefik, M. (1981). Planning and meta-planning
(MOLGEN: Part 2). Artificial Intelligence, 16:141-
170.
Sussman, G.J. (1975). A Computer Model of Skill
Acquisition. Artificial Intelligence Series. North Hol-
land.
Tare, A. (1977). Generating project networks.
Reddy, R., (ed.), Proceedings of IJCAI-77, pages
888-893, Boston, Ma. International Joint Conference
on Artificial Intelligence.
Walsh, T., Nunes, A. and Bundy, A. (1992). The
use of proof plans to sum series. In Kapur, D., (ed.),
l lth Conference on Automated Deduction, pages
325-339. Springer Verlag. Lecture Notes in Computer
Science No. 607. Also available from Edinburgh as
DAI Research Paper 563.
Yoshida, Tetsuya, Bundy, Alan, Green, Ian, Walsh,
Toby and Basin, David. (1994). Coloured rippling:

An extension of a theorem proving heuristic. In Cohn,
A.G., (ed.), In proceedings of ECAI-9~, pages 85-
89. John Wiley.

Bundy 267

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

